JP2003183005A - Operating method for reformer for fuel cell - Google Patents

Operating method for reformer for fuel cell

Info

Publication number
JP2003183005A
JP2003183005A JP2001383837A JP2001383837A JP2003183005A JP 2003183005 A JP2003183005 A JP 2003183005A JP 2001383837 A JP2001383837 A JP 2001383837A JP 2001383837 A JP2001383837 A JP 2001383837A JP 2003183005 A JP2003183005 A JP 2003183005A
Authority
JP
Japan
Prior art keywords
reformer
reforming
fuel cell
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001383837A
Other languages
Japanese (ja)
Other versions
JP4112222B2 (en
Inventor
Toshiyasu Miura
俊泰 三浦
Hiroshi Fujiki
広志 藤木
Jun Komiya
純 小宮
Naohiko Fujiwara
直彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001383837A priority Critical patent/JP4112222B2/en
Publication of JP2003183005A publication Critical patent/JP2003183005A/en
Application granted granted Critical
Publication of JP4112222B2 publication Critical patent/JP4112222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating method for such a reformer used in combination with a fuel cell as is contrived to achieve high efficiently, to down-size, and to control the reforming temperature. <P>SOLUTION: The operating method for the reformer which is used in combination with a fuel cell and which manufactures hydrogen by the steam reforming of a hydrocarbon-based fuel containing no oxygen atom in the molecular structure, is characterized in that the whole quantity or large portion of the heat required at the reformer is covered with the combustion heat of the off-gas out of the fuel cell by letting a reforming conversion ratio of the hydrocarbon- based fuel at the reformer to less than 90%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池と組み合
わせて使用する改質装置、すなわち燃料電池用改質装置
の運転方法に関する。
TECHNICAL FIELD The present invention relates to a reformer used in combination with a fuel cell, that is, a method for operating a reformer for a fuel cell.

【0002】[0002]

【従来の技術】水素は各種用途に用いられる基礎原料で
あり、固体高分子形燃料電池(PEFC)やリン酸形燃
料電池(PAEC)などの燃料としても用いられる。水
素の製造法の一つである水蒸気改質法は、炭化水素ある
いはアルコール類を水蒸気により改質して水素リッチな
改質ガスを生成させる方法である。水蒸気改質法では改
質装置中での触媒反応によりそれら炭化水素やアルコ−
ル類が水素リッチな改質ガスへ変えられる。
2. Description of the Related Art Hydrogen is a basic raw material used for various purposes and is also used as a fuel for polymer electrolyte fuel cells (PEFC) and phosphoric acid fuel cells (PAEC). The steam reforming method, which is one of hydrogen production methods, is a method of reforming hydrocarbons or alcohols with steam to generate a hydrogen-rich reformed gas. In the steam reforming method, those hydrocarbons and alcohols are converted by catalytic reaction in the reformer.
Fuels are converted to hydrogen-rich reformed gas.

【0003】図1は水蒸気改質装置を模式的に示す図で
ある。概略、バーナーあるいは燃焼触媒を配置した燃焼
部(加熱部)と改質触媒を配置した改質部とにより構成
される。改質部では炭化水素やアルコール類(以下、炭
化水素の場合について記載する。)が水蒸気と反応して
水素リッチな改質ガスが生成される。改質部で起こる反
応は大きな吸熱を伴うので、反応の進行のために外部か
ら熱を供給することが必要である。このため燃焼部にお
ける燃料ガスの空気(燃焼用空気)による燃焼により発
生した燃焼熱(ΔH)が改質部に供給される。
FIG. 1 is a diagram schematically showing a steam reforming apparatus. In general, it is composed of a combustion section (heating section) in which a burner or a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. In the reforming section, hydrocarbons and alcohols (hereinafter referred to as hydrocarbons) react with steam to generate hydrogen-rich reformed gas. Since the reaction that takes place in the reforming section is accompanied by a large endotherm, it is necessary to supply heat from the outside in order to proceed the reaction. Therefore, the combustion heat (ΔH) generated by the combustion of the fuel gas in the combustion section by the air (combustion air) is supplied to the reforming section.

【0004】改質部への燃焼熱の供給は、燃焼部および
改質部間の伝熱面を介して間接的に行われる。なお、改
質装置における燃焼部には空気で燃焼される燃焼用ガス
が供給され、改質部へは水蒸気で改質される炭化水素系
燃料が供給されるが、本明細書においては、両者を区別
して、燃焼部へ供給する燃焼用のガスを燃料ガスとし、
改質部へ供給される炭化水素系燃料を原料ガスと指称し
ている。
The combustion heat is supplied to the reforming section indirectly via the heat transfer surface between the combustion section and the reforming section. Note that the combustion gas combusted with air is supplied to the combustion section of the reformer, and the hydrocarbon-based fuel that is reformed with steam is supplied to the reforming section. , And the combustion gas supplied to the combustion unit as the fuel gas,
The hydrocarbon fuel supplied to the reforming section is referred to as a raw material gas.

【0005】図2は、上記のような水蒸気改質装置を用
い、原料ガスからPEFCに至るまでの態様例を示す図
である。図3は、図2に記載の脱硫器、水蒸気発生器、
改質器(燃焼部+改質部)、CO変成器及びCO選択酸
化器を改質装置として総称して表し、その一般的な運転
例を示した図である。都市ガスやLPガスにはメルカプ
タン類、サルファイド類、あるいはチオフェンなどの付
臭剤が添加されている。原料ガスとして都市ガスやLP
ガスを用いる場合、改質触媒は、それら硫黄化合物によ
り被毒し性能劣化をきたすので、それらの硫黄化合物を
除去するために脱硫器へ導入される。次いで、別途設け
られた水蒸気発生器からの水蒸気を添加、混合して改質
装置の改質器へ導入し、その改質部中での原料ガスの水
蒸気による改質反応により水素リッチな改質ガスが生成
される。
FIG. 2 is a diagram showing an example of the process from the source gas to PEFC using the steam reforming apparatus as described above. FIG. 3 shows the desulfurizer, steam generator, and
It is the figure which showed the reformer (combustion part + reforming part), CO shift converter, and CO selective oxidizer collectively as a reformer, and showed the general operation example. Odorants such as mercaptans, sulfides, and thiophene are added to city gas and LP gas. City gas or LP as raw material gas
When a gas is used, the reforming catalyst is poisoned by the sulfur compounds and deteriorates in performance, so that the reforming catalyst is introduced into the desulfurizer to remove the sulfur compounds. Next, steam from a separately provided steam generator is added and mixed and introduced into the reformer of the reformer, and the reforming reaction by the steam of the raw material gas in the reforming section causes a hydrogen-rich reforming. Gas is produced.

【0006】原料ガスがメタンである場合の改質反応は
「CH4+2H2O→CO2+4H2」で示される。生成す
る改質ガス中には未反応のメタン、未反応の水蒸気、生
成二酸化炭素(CO2)、生成水素(H2)のほか、一酸
化炭素(CO)が副生して8〜15%(%=容量%、以
下同じ)程度含まれている。このため改質ガスは、副生
COをCO2とH2に変えて除去するためにCO変成器に
かけられる。CO変成器中での反応、すなわちシフト反
応「CO+H2O→CO2+H2」で必要な水蒸気として
は改質器において未反応の残留水蒸気が利用される。
The reforming reaction when the source gas is methane is represented by "CH 4 + 2H 2 O → CO 2 + 4H 2 ". In the reformed gas produced, unreacted methane, unreacted water vapor, produced carbon dioxide (CO 2 ), produced hydrogen (H 2 ), and carbon monoxide (CO) as a byproduct of 8 to 15%. (% =% By volume, the same applies hereinafter). For this reason, the reformed gas is applied to a CO shift converter in order to remove the by-product CO by converting it into CO 2 and H 2 . The unreacted residual steam in the reformer is used as the steam required for the reaction in the CO shift converter, that is, the shift reaction “CO + H 2 O → CO 2 + H 2 ”.

【0007】CO変成器から出る改質ガスは、未反応の
メタンと余剰水蒸気を除けば、水素と二酸化炭素からな
っている。このうち水素が目的とする成分であるが、C
O変成器を経て得られる改質ガスについても、COは完
全には除去されず、1%程度以下ではあるが、なおCO
が含まれている。燃料電池がPAFCの場合、燃料水素
中のCOの許容濃度は1%程度であるので、CO変成器
を経た改質ガスはそのままPAFC用の燃料水素として
使用することができる。
The reformed gas discharged from the CO shift converter is composed of hydrogen and carbon dioxide except for unreacted methane and excess steam. Of these, hydrogen is the target component, but C
Also in the reformed gas obtained through the O-transformer, CO is not completely removed, and the CO content is about 1% or less.
It is included. When the fuel cell is PAFC, the permissible concentration of CO in fuel hydrogen is about 1%, so the reformed gas that has passed through the CO shift converter can be used as it is as fuel hydrogen for PAFC.

【0008】一方、燃料電池がPEFCの場合、PEF
Cに供給する燃料水素中のCOの許容濃度は100pp
m(ppm=容量ppm、以下同じ)程度、その燃料極
等の構成材料の如何によっては10ppm程度であり、
これを超えると電池性能が著しく劣化するので、CO成
分はPEFCへ導入する前にできる限り除去しておく必
要がある。このため、改質ガスはCO変成器によりCO
濃度を1%程度以下まで低下させた後、CO選択酸化器
にかけられる。CO選択酸化器では空気などの酸化剤が
添加され、COの酸化反応によりCOをCO2に変える
ことでCOを除去し、CO濃度を100ppm以下、1
0ppm以下、あるいは5ppm以下というように低減
させる。
On the other hand, when the fuel cell is PEFC, PEF
The allowable concentration of CO in fuel hydrogen supplied to C is 100 pp
m (ppm = capacity ppm, the same applies hereinafter), about 10 ppm depending on the constituent materials of the fuel electrode,
If it exceeds this range, the battery performance is remarkably deteriorated, so the CO component needs to be removed as much as possible before being introduced into the PEFC. Therefore, the reformed gas is converted to CO by the CO converter.
After reducing the concentration to about 1% or less, it is subjected to a CO selective oxidizer. In the CO selective oxidizer, an oxidant such as air is added, and CO is removed by changing CO to CO 2 by the oxidation reaction of CO, and the CO concentration is 100 ppm or less, 1
It is reduced to 0 ppm or less, or 5 ppm or less.

【0009】ところで、自ら水蒸気を発生し、原料ガス
を水蒸気改質して水素を製造するPEFC向けの改質装
置においては、(1)PEFCでの水素利用率(PEF
Cで消費される水素流量/水素リッチガス中の全水素流
量×100)は70〜95%、(2)PEFCの運転負
荷率は〜100%(つまり電力の需要量に応じてPEF
Cでの発電量を調整する。最大負荷率=100%)とい
う運転条件に係わらず、充分なメタン転化率が得られる
改質温度、すなわちメタンを可及的に水素に変え得る温
度に設定し(メタンはそれでも僅かではあるが未反応で
残る)、僅かな残メタンを含む水素リッチガスをPEF
Cに供給している。
By the way, in a reformer for PEFC which produces steam by itself and reforms a raw material gas with steam to produce hydrogen, (1) the hydrogen utilization rate (PEF) in PEFC
The flow rate of hydrogen consumed in C / the total flow rate of hydrogen in the hydrogen-rich gas x 100) is 70 to 95%, and (2) the operating load factor of PEFC is -100% (that is, PEF according to the demand amount of electric power).
Adjust the amount of power generation at C. Regardless of the operating condition of maximum load factor = 100%, the reforming temperature is set to obtain a sufficient methane conversion rate, that is, the temperature at which methane can be converted to hydrogen as much as possible (methane is still a little PEF with hydrogen-rich gas containing a little residual methane
Supply to C.

【0010】この結果、改質装置の所要加熱インプッ
ト、すなわち改質器および水蒸気発生器での所要加熱量
に対してPEFCからの排ガス、すなわちオフガスだけ
では不足するため、この不足熱量を、改質用原料ガスを
投入して補う運転方法が一般的である。具体的には、図
2〜3のとおり、都市ガス等の原料ガスをその導管から
分岐して燃焼部の燃料ガスとして供給している。しか
し、この運転方法では、改質用原料ガスを投入して補う
必要があるのに加え、以下〜の理由により、改質装
置を高効率化することは難しい。
As a result, the exhaust gas from the PEFC, that is, the off gas, is insufficient for the required heating input of the reformer, that is, the required heating amount in the reformer and the steam generator. A general operation method is to supply and supplement the raw material gas. Specifically, as shown in FIGS. 2 and 3, raw material gas such as city gas is branched from the conduit and supplied as fuel gas for the combustion section. However, in this operating method, it is difficult to increase the efficiency of the reforming device for the following reasons, in addition to the fact that the reforming raw material gas needs to be supplied to make up for it.

【0011】設定改質温度が高いため、水素生成率の
向上には有効であるが、放熱損失の低減が難しい。設
定改質温度が高いためCOの生成量が多く、製造水素の
酸化低減につながるCO選択酸化用空気の削減が難し
い。すなわちCO選択酸化器では改質ガス中のCOだけ
を酸化すればよいが、水素まで酸化されてしまう。設
定改質温度が高いためCO生成量が多く、熱損失低減に
は有効である一方、さらなるCO生成量の増加をきたす
低S/C比での運転が難しい。設定改質温度を高くし
て改質するため、燃焼部から改質部への伝熱面積が大き
くなり、改質装置自体が大型化する。設定改質温度が
高いため、改質装置の材料として耐熱性の高い高価なも
のを使用する必要がある。
Since the set reforming temperature is high, it is effective in improving the hydrogen production rate, but it is difficult to reduce the heat radiation loss. Since the set reforming temperature is high, a large amount of CO is produced, and it is difficult to reduce the CO selective oxidation air that leads to the reduction of the oxidation of the produced hydrogen. That is, in the CO selective oxidizer, only CO in the reformed gas needs to be oxidized, but hydrogen is also oxidized. Since the set reforming temperature is high, a large amount of CO is produced, which is effective for reducing heat loss, but it is difficult to operate at a low S / C ratio which further increases the amount of CO produced. Since the reforming is carried out by raising the set reforming temperature, the heat transfer area from the combustion section to the reforming section becomes large and the reforming apparatus itself becomes large. Since the set reforming temperature is high, it is necessary to use an expensive reforming device having high heat resistance.

【0012】[0012]

【発明が解決しようとする課題】以上のような諸問題
は、改質装置自体、またその運転方法に関する、従来に
おける技術的指向が、原料ガスからの水素生成率を可及
的に向上させることに向けられていること起因してい
る。改質装置を燃料電池と組み合わせて使用する場合に
も、当然のことながら、それを前提に運転されている。
SUMMARY OF THE INVENTION The above-mentioned problems are caused by the conventional technical orientation of the reformer itself and the method of operating the reformer to improve the hydrogen production rate from the raw material gas as much as possible. It is due to being directed to. Even when the reformer is used in combination with a fuel cell, the operation is naturally performed on the assumption that it is used.

【0013】本発明は、従来における改質装置の運転方
法、特にPEFCと組み合わせて使用する改質装置の運
転方法における以上の諸問題を解決することを目的とす
るもので、従来における技術的指向とは全く発想を変
え、従来のように改質装置における水素生成率を可及的
に向上させるのではなく、それとは逆に、水素生成率を
下げることにより、上記諸問題を一挙に解決できる燃料
電池用改質装置の運転方法を提供することを目的とす
る。
The present invention is intended to solve the above problems in the conventional method for operating a reformer, particularly the method for operating a reformer used in combination with PEFC. The idea is totally different from the above, and instead of improving the hydrogen production rate in the reformer as much as possible as in the past, on the contrary, by lowering the hydrogen production rate, the above problems can be solved all at once. An object of the present invention is to provide a method for operating a reformer for a fuel cell.

【0014】[0014]

【課題を解決するための手段】本発明は、燃料電池と組
み合わせて使用し、且つ、酸素原子を分子構造中に含ま
ない炭化水素系燃料を水蒸気改質して水素を製造する改
質装置の運転方法であって、改質装置における炭化水素
系燃料の改質転化率を90%未満とすることにより、改
質装置での所要熱量の全量または大半を燃料電池からの
オフガスの燃焼熱にて賄うことを特徴とする燃料電池用
改質装置の運転方法を提供する。
The present invention is directed to a reformer for use in combination with a fuel cell and for steam-reforming a hydrocarbon fuel containing no oxygen atoms in its molecular structure to produce hydrogen. In the operating method, the reforming conversion rate of the hydrocarbon-based fuel in the reformer is set to less than 90% so that all or most of the required heat amount in the reformer is converted into combustion heat of off-gas from the fuel cell. Provided is a method for operating a reformer for a fuel cell, which is characterized by the provision.

【0015】ここで、改質転化率(%)とは、炭化水素
系燃料がメタン(CH4)である場合、改質ガス中の各
成分の構成比から、下記式(1)により表わされる。式
(1)中、CH4は改質装置で改質されないで改質ガス
中に含まれてくる残メタン量である。炭化水素系燃料が
エタンその他の炭化水素の場合やそれらの混合ガスの場
合については、式(1)中のCH4、すなわち残メタン
量は残炭化水素量となる。
Here, the reforming conversion rate (%) is expressed by the following formula (1) from the composition ratio of each component in the reformed gas when the hydrocarbon fuel is methane (CH 4 ). . In the formula (1), CH 4 is the amount of residual methane contained in the reformed gas without being reformed by the reformer. When the hydrocarbon-based fuel is ethane or other hydrocarbon or a mixed gas thereof, CH 4 in the formula (1), that is, the amount of residual methane is the amount of residual hydrocarbon.

【0016】[0016]

【数 1】 [Equation 1]

【0017】[0017]

【発明の実施の形態】従来の運転方法においては、燃料
電池での水素利用率または運転負荷率とは関係なく、改
質装置での改質転化率を90%以上とするのが一般であ
り、その向上のためにさらに研究、開発が続けられてい
る。炭化水素系燃料がメタンである場合を例にすると、
改質装置においてメタンを可及的に改質して水素が可及
的にリッチな改質ガスとする。上記式(1)で言えば、
CH4を可及的に減らして、改質転化率をさらに向上さ
せることに開発努力が注がれている。
BEST MODE FOR CARRYING OUT THE INVENTION In the conventional operating method, the reforming conversion rate in the reformer is generally set to 90% or more regardless of the hydrogen utilization rate or operating load rate in the fuel cell. , Further research and development are being continued to improve it. Taking the example where the hydrocarbon fuel is methane,
In the reformer, methane is reformed as much as possible to form reformed gas in which hydrogen is as rich as possible. Speaking in the above formula (1),
Development efforts are being made to reduce CH 4 as much as possible and further improve the reforming conversion rate.

【0018】そうすると、燃料電池から排出されるオフ
ガス中の残メタン量が減少し、オフガスをすべて、ある
いはその大部分を改質装置における燃焼部の燃料ガスと
して利用する場合、改質部での必要熱量に不足が生じ
る。従来の運転方法では、この不足を補うために、前述
図2〜3のとおり、原料ガスをその導管から分岐して燃
焼部の燃料ガスとして供給している。
Then, the amount of residual methane in the off-gas discharged from the fuel cell is reduced, and when all or most of the off-gas is used as the fuel gas for the combustion section in the reformer, it is necessary for the reforming section. There is a shortage of heat. In the conventional operation method, in order to make up for this shortage, as shown in FIGS. 2 and 3, the raw material gas is branched from the conduit and supplied as the fuel gas for the combustion section.

【0019】図4は、燃料電池としてPEFCを用いる
場合、従来における改質装置の運転方法と本発明におけ
る改質装置の運転方法について、メタンの改質転化率と
PEFCの水素利用率との関係を負荷率一定運転時の実
測に基づき示した図である。実験条件、測定条件は後述
実施例と同様である。図4のとおり、従来の運転方法に
おいては、予め改質条件を設定しているため、改質ガス
中の残CH4濃度は1.9%、改質転化率は91%とほ
ぼ一定であり、PEFCにおける水素利用率を上げて
も、改質転化率はほぼ一定で変わらない。
FIG. 4 shows the relationship between the reforming conversion rate of methane and the hydrogen utilization rate of PEFC in the conventional operating method of the reformer and the operating method of the reformer in the present invention when PEFC is used as the fuel cell. It is the figure which showed based on the actual measurement at the time of constant load factor operation. Experimental conditions and measurement conditions are the same as those in the examples described later. As shown in FIG. 4, in the conventional operation method, since the reforming conditions are set in advance, the residual CH 4 concentration in the reformed gas is 1.9% and the reforming conversion rate is 91%, which are almost constant. The reforming conversion rate remains almost constant even if the hydrogen utilization rate in PEFC is increased.

【0020】一方、本発明の運転方法では、PEFCに
おける水素利用率の上昇に従い、改質ガス中の残CH4
濃度は2.6%、3.9%、4.7%、6.4%へと増
加し、改質装置での改質転化率は90%未満の範囲でさ
らに低下していく。改質転化率を下げていくことはすな
わち、改質装置での残CH4が多くなることを意味する
が〔前記式(1)参照〕、改質ガス中の残CH4はPE
FCでは利用されず、そのオフガス中にそのまま含まれ
てくるので、燃焼部の燃料ガスとして有効に利用できる
ことを示している。
On the other hand, in the operating method of the present invention, the residual CH 4 in the reformed gas is increased as the hydrogen utilization rate in the PEFC increases.
The concentration increases to 2.6%, 3.9%, 4.7%, and 6.4%, and the reforming conversion rate in the reformer further decreases in the range of less than 90%. It is lowered the reforming conversion i.e., is meant to be a lot of residual CH 4 in the reformer [Formula (1)], the remaining CH 4 in the reformed gas is PE
Since it is not used in FC but is contained in the off-gas as it is, it shows that it can be effectively used as fuel gas in the combustion section.

【0021】図5は、同じく負荷率一定運転時の実測に
基づく、メタン(原料ガス)のうち改質装置において改
質されず、改質ガス中およびPEFCからのオフガス中
に、それぞれ含まれる残CH4による熱量割合とPEF
Cでの水素利用率との関係を示す図である。なお、改質
ガスには水素のほか、残CH4(つまり未改質のCH4
やCO2などが含まれ、またPEFCからのオフガスに
はPEFCで未利用の水素のほか、残CH4やCO2など
が含まれるが、図5ではそのうち残CH4に注目し、こ
れに絞ってその熱量をプロットしている。
FIG. 5 shows the residual amount of methane (raw material gas) which is not reformed in the reforming device and is contained in the reformed gas and the offgas from the PEFC, respectively, which is also based on the actual measurement at the time of constant load operation. Percentage of heat due to CH 4 and PEF
It is a figure which shows the relationship with the hydrogen utilization rate in C. In addition to hydrogen as reformed gas, residual CH 4 (that is, unreformed CH 4 )
And CO 2 and the like are included, also other hydrogen off-gas in the unused in PEFC from PEFC, although etc. residual CH 4 and CO 2, focusing on them in Fig residual CH 4, focus on this The amount of heat is plotted.

【0022】従来の運転方法の場合、改質転化率は90
%以上の範囲でほぼ一定であり、これに対応して、改質
ガス中の残CH4濃度はほぼ一定であり、その絶対量は
PEFCからのオフガスでも変わらない。そして、PE
FCでは水素が消費されるので、これに伴いオフガス中
の残CH4濃度は相対的に上昇し、これに対応して残C
4による熱量割合も相対的に上昇する。すなわち、残
CH4の絶対量は変わらないので、PEFCでの水素利
用率を上げても、残CH4による熱量割合は大幅には増
加しない。図5のとおり、例えばPEFCでの水素利用
率を94%に上げても、オフガス中の残CH4による熱
量割合は57%止まりである。
In the case of the conventional operation method, the reforming conversion rate is 90.
% Is almost constant in the range of not less than%, and correspondingly, the residual CH 4 concentration in the reformed gas is almost constant, and its absolute amount does not change even when the off gas from PEFC is used. And PE
Since hydrogen is consumed in the FC, the residual CH 4 concentration in the offgas relatively rises accordingly, and the residual C 4 is correspondingly increased.
The heat quantity ratio due to H 4 also rises relatively. That is, since the absolute amount of residual CH 4 does not change, even if the hydrogen utilization rate in PEFC is increased, the heat amount ratio due to residual CH 4 does not increase significantly. As shown in FIG. 5, even if the hydrogen utilization rate in PEFC is increased to 94%, for example, the heat quantity ratio due to the residual CH 4 in the offgas remains at 57%.

【0023】これに対して、本発明の運転方法では、P
EFCの水素利用率の上昇に従い、改質転化率の低下に
より改質ガス中の残CH4の絶対量が増加し、これに対
応して改質ガス中の残CH4による熱量割合も上昇す
る。そして、PEFCでは水素が消費されるので、これ
に伴いオフガス中の残CH4量はさらに上昇し、これに
対応してオフガス中の残CH4による熱量割合もさらに
上昇する。例えば、図5のとおり、改質ガス中の残CH
4による熱量割合は10.0%、14.3%、16.9
%、21.9%へと増加し、これに対応して、オフガス
中の残CH4による熱量割合も32%、47%、60
%、83%へと大幅に増加する。
On the other hand, in the operating method of the present invention, P
As the hydrogen utilization rate of EFC increases, the reforming conversion rate decreases and the absolute amount of residual CH 4 in the reformed gas increases. Correspondingly, the ratio of heat quantity due to the residual CH 4 in the reformed gas also increases. . Since hydrogen is consumed in the PEFC, the amount of residual CH 4 in the off gas further increases accordingly, and the amount of heat due to the residual CH 4 in the off gas further increases correspondingly. For example, as shown in FIG. 5, residual CH in the reformed gas
The ratio of heat quantity by 4 is 10.0%, 14.3%, 16.9
%, 21.9%, and in response to this, the proportion of heat due to residual CH 4 in the offgas is also 32%, 47%, 60
%, 83%.

【0024】つまり、本発明の運転方法において、改質
転化率を下げていくことはすなわち、残CH4量が絶対
値として多くなることを意味し〔前記式(1)参照〕、
オフガス中の残CH4による熱量割合も大幅に増加する
が、残CH4はPEFCでは利用されず、そのオフガス
中にそのまま含まれてくるので、これを燃焼部の燃料ガ
スとして用いることにより燃焼部における必要熱量の全
量あるいはその大半を賄うことができる。なお、図4お
よび図5では、運転負荷率は一定のもとでPEFCの水
素利用率が上昇する場合の本発明の適用例を示したが、
PEFCの水素利用率が一定で運転負荷率が下降する場
合においても、改質装置の熱バランスの変化に応じて改
質転化率を低下させることにより、燃焼部における必要
熱量の全量あるいはその大半を同様にして賄うことがで
きる。
That is, in the operating method of the present invention, decreasing the reforming conversion rate means that the amount of residual CH 4 increases as an absolute value [see the above formula (1)],
The amount of heat generated by the residual CH 4 in the offgas also increases significantly, but the residual CH 4 is not used in PEFC and is contained in the offgas as it is. Therefore, by using this as the fuel gas for the combustion part, the combustion part It can cover all or most of the heat requirement in. Although FIG. 4 and FIG. 5 show application examples of the present invention in the case where the hydrogen utilization rate of PEFC increases under a constant operating load rate,
Even when the PEFC hydrogen utilization rate is constant and the operating load rate decreases, the reforming conversion rate is reduced according to the change in the heat balance of the reforming unit, so that all or most of the required heat amount in the combustion unit is reduced. You can do the same.

【0025】本発明の運転方法においては上記事実を利
用する。すなわち、改質装置において、燃料電池での水
素利用率または運転負荷率に応じて改質転化率を90%
未満に設定し、改質装置の所要加熱インプット、すなわ
ち改質装置の燃焼部での熱量として必要な全熱量または
その大半を燃料電池のオフガスの熱量により賄うことを
前提として運転する。本発明によれば、これにより、以
下(1)〜(5)のように改質装置の高性能化を図るこ
とができる。
The above facts are utilized in the operating method of the present invention. That is, in the reformer, the reforming conversion rate is 90% depending on the hydrogen utilization rate or the operating load rate in the fuel cell.
The operation is performed on the premise that the required heating input of the reformer, that is, the total amount of heat required as the amount of heat in the combustion section of the reformer or most of it is covered by the amount of off-gas of the fuel cell. According to the present invention, this makes it possible to improve the performance of the reformer as described in (1) to (5) below.

【0026】(1)改質温度が抑制されるため、放熱損
失を低減させることができる。(2)改質温度が抑制さ
れるため、COの生成量を低減させることができ、製造
水素の酸化減少につながるCO選択酸化器へのCO選択
酸化用空気量を低減させることができる。すなわち、C
O選択酸化器では改質ガス中のCOだけでなく、水素ま
で酸化されてしまうが、CO選択酸化用空気量を低減さ
せることで水素の酸化減少、抑制が図れる。(3)改質
温度が抑制されるため、COの生成量を低減させること
ができ、改質装置の効率向上に有効な低S/C比での運
転が容易となる。(4)改質温度を低くして改質するこ
とで燃焼部から改質部への伝熱面積を小さくできる。こ
れにより改質装置自体を小型化できる。(5)改質温度
が低いため、改質装置の構成材料として耐熱性の低い安
価な材料を使用することができる。
(1) Since the reforming temperature is suppressed, heat dissipation loss can be reduced. (2) Since the reforming temperature is suppressed, the amount of CO produced can be reduced, and the amount of air for CO selective oxidation to the CO selective oxidizer, which leads to a reduction in the oxidation of produced hydrogen, can be reduced. That is, C
In the O-selective oxidizer, not only CO in the reformed gas but also hydrogen is oxidized, but by reducing the amount of air for CO selective oxidation, it is possible to reduce or suppress the oxidation of hydrogen. (3) Since the reforming temperature is suppressed, the amount of CO produced can be reduced, and the operation at a low S / C ratio, which is effective for improving the efficiency of the reforming device, becomes easy. (4) The heat transfer area from the combustion section to the reforming section can be reduced by lowering the reforming temperature for reforming. As a result, the reformer itself can be downsized. (5) Since the reforming temperature is low, an inexpensive material having low heat resistance can be used as a constituent material of the reforming apparatus.

【0027】本発明における改質器は、基本的にバーナ
ーあるいは燃焼触媒を配置した燃焼部と改質触媒を配置
した改質部とにより構成される。改質触媒としては原料
ガスを改質し水素リッチなガスを生成する機能を有する
触媒であれば何れも使用されるが、例えばNi系触媒
(例えばアルミナにNiを担持した触媒)やRu系触媒
(例えばアルミナにRuを担持した触媒)を挙げること
ができる。燃焼部に燃焼触媒を配置する場合には、例え
ば白金等の貴金属触媒やアルミナヘキサネ−ト等の燃焼
触媒が用いられる。
The reformer according to the present invention is basically composed of a combustion section in which a burner or a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. As the reforming catalyst, any catalyst can be used as long as it has a function of reforming a raw material gas to generate a hydrogen-rich gas. For example, a Ni-based catalyst (for example, a catalyst in which Ni is supported on alumina) or a Ru-based catalyst is used. (For example, a catalyst in which Ru is supported on alumina) can be mentioned. When arranging the combustion catalyst in the combustion section, for example, a precious metal catalyst such as platinum or a combustion catalyst such as alumina hexaneate is used.

【0028】原料ガスとしては、酸素原子を分子構造中
に含まない炭化水素系燃料であれば何れも使用される。
その例としてはメタン、エタン、プロパン、ブタン、都
市ガス、LPガス、天然ガス、その他の炭化水素ガス
(2種以上の炭化水素の混合ガスを含む)を挙げること
ができる。
As the source gas, any hydrocarbon type fuel containing no oxygen atom in its molecular structure can be used.
Examples thereof include methane, ethane, propane, butane, city gas, LP gas, natural gas, and other hydrocarbon gases (including mixed gas of two or more kinds of hydrocarbons).

【0029】また、改質装置には、水蒸気発生器を含む
ものと含まないものとがあり、本発明の運転方法はそれ
ら何れの改質装置についても適用されるが、水蒸気発生
器の所要加熱インプットが加わる分、オフガスをよりメ
タンリッチとして改質温度を下げることができる水蒸気
発生器を含むものに対する適用がより効果的である。ま
た、本発明における燃料電池としては水素を燃料とする
燃料電池であれば何れも用いられるが、中でも水蒸気発
生器が改質装置に含まれることが要求されるPEFCへ
の適用が効果的である。PEFCからのオフガスは、改
質装置の所要加熱インプットの全量を賄う必要はなく、
その一部の熱量を原料ガスで補い、さらに、この原料ガ
ス流量を操作して改質転化率すなわち改質温度を制御す
る運転方法により、改質装置の運転性を向上させること
もできる。
The reformer includes a steam generator with or without a steam generator, and the operating method of the present invention is applicable to any of those reformers, but the required heating of the steam generator is required. As the input is added, the application to the one including the steam generator capable of making the off gas more methane rich and lowering the reforming temperature is more effective. Further, any fuel cell that uses hydrogen as a fuel can be used as the fuel cell in the present invention. Above all, the application to the PEFC in which the steam generator is required to be included in the reforming apparatus is effective. . Offgas from PEFC does not have to cover all of the required heating input of the reformer,
It is also possible to improve the operability of the reforming device by supplementing a part of the heat amount with the raw material gas and further operating the raw material gas flow rate to control the reforming conversion rate, that is, the reforming temperature.

【0030】[0030]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明が実施例に限定されないことはもち
ろんである。本実施例では図6に示すようにセットした
改質装置を使用した。改質装置にPEFCを連結してい
る。改質装置の部分は、脱硫器、水蒸気発生器、改質
器、CO変成器およびCO選択酸化器が図2に示すよう
に連結されて構成されている。
The present invention will be described in more detail based on the following examples, but it goes without saying that the present invention is not limited to the examples. In this example, the reformer set as shown in FIG. 6 was used. PEFC is connected to the reformer. A part of the reformer is configured by connecting a desulfurizer, a steam generator, a reformer, a CO shift converter and a CO selective oxidizer as shown in FIG.

【0031】改質器の燃焼部ではバーナーを用い、改質
部では適量の希土類金属を加えてカーボン析出耐性を向
上させたNi系触媒を用い、CO変成器では銅−亜鉛系
触媒(Cu/Zn系触媒)を用い、CO選択酸化器では
アルミナにPtを担持した触媒を用いた。運転条件につ
いては、原料ガス流量は一定とし、燃焼部での空気比λ
を1.1、改質部でのS/C比を3.1〜2.6の範囲
の各値とし、改質温度を680〜620℃の範囲の各温
度で実施した。PEFCとしては最高DC出力約1.5
kWのものを使用した。また、原料ガスとして天然ガス
を用い、CO選択酸化器へ供給する酸化剤として空気を
用いた。
The burner of the reformer uses a burner, the reformer uses a Ni-based catalyst whose carbon deposition resistance is improved by adding an appropriate amount of rare earth metal, and the CO shifter uses a copper-zinc catalyst (Cu / Zn). (Zn-based catalyst) was used, and in the CO selective oxidizer, a catalyst in which Pt was supported on alumina was used. Regarding the operating conditions, the flow rate of the raw material gas is constant and the air ratio λ in the combustion section is
Was set to 1.1, the S / C ratio in the reforming section was set to each value in the range of 3.1 to 2.6, and the reforming temperature was set to each temperature in the range of 680 to 620 ° C. Maximum DC output of about 1.5 for PEFC
A kW one was used. Further, natural gas was used as the raw material gas, and air was used as the oxidant supplied to the CO selective oxidizer.

【0032】図7は、本実施例で得られた諸結果のう
ち、PEFCでの水素利用率と改質装置での改質温度お
よびS/C比との関係を示す図である。図8は、図7の
関係に対応させた、PEFCでの水素利用率とCO選択
酸化器への空気流量との関係を示す図である。図9は、
図7および図8の関係に対応させた、PEFCでの水素
利用率と改質装置の燃料処理効率との関係を示す図であ
る。ここで、燃料処理効率(%)とは、下記式(2)よ
り表され、燃料電池と組み合わせて使用する改質装置の
性能を端的に示す値である。
FIG. 7 is a diagram showing the relationship between the hydrogen utilization rate in PEFC and the reforming temperature and S / C ratio in the reforming apparatus, among the results obtained in this example. FIG. 8 is a diagram showing the relationship between the hydrogen utilization rate in PEFC and the air flow rate to the CO selective oxidizer, which corresponds to the relationship of FIG. 7. Figure 9
FIG. 9 is a diagram showing the relationship between the hydrogen utilization rate in PEFC and the fuel processing efficiency of the reforming device, which corresponds to the relationship of FIGS. 7 and 8. Here, the fuel processing efficiency (%) is represented by the following formula (2) and is a value that directly indicates the performance of the reformer used in combination with the fuel cell.

【0033】[0033]

【数 2】 [Equation 2]

【0034】まず、図7では、従来における運転方法の
改質温度が700℃で一定であるのに対し、本発明にお
ける運転方法では700℃未満であり、PEFCでの水
素利用率の上昇に従いさらに降下している。このよう
に、本発明における運転方法は改質温度の降下につなが
り、その程度はPEFCでの水素利用率が高い程拡大さ
れる傾向にある。すなわち、PEFCでの水素利用率に
応じて改質温度を低くでき、従来のように高くする必要
がない。この事実は、放熱損失を減少でき、燃焼部から
改質部への伝熱面積の削減による改質装置の小型化が可
能になり、その構成材料も耐熱性の低い安価なものが使
用できることを示している。
First, in FIG. 7, the reforming temperature of the conventional operating method is constant at 700 ° C., whereas it is less than 700 ° C. in the operating method of the present invention, and the hydrogen utilization rate in the PEFC increases further. It is descending. As described above, the operating method according to the present invention leads to a decrease in the reforming temperature, and the degree thereof tends to increase as the hydrogen utilization rate in PEFC increases. That is, the reforming temperature can be lowered according to the hydrogen utilization rate in PEFC, and it is not necessary to raise it as in the conventional case. This fact makes it possible to reduce the heat dissipation loss, reduce the size of the reformer by reducing the heat transfer area from the combustion section to the reforming section, and use inexpensive materials with low heat resistance as its constituent materials. Shows.

【0035】加えて、図7では、従来のS/C比が3.
1で一定であるのに対し、本発明のS/C比は3.1以
下(S/C<3.1)であり、PEFCでの水素利用率
の上昇に従いさらに低い値で運転できている。これは、
従来、燃料処理効率は向上するが副生CO量が増加する
ために実現しにくかった低S/C比での運転が、本発明
による改質温度の降下に伴い副生CO量が減少したこと
により可能となったことを示している。
In addition, in FIG. 7, the conventional S / C ratio is 3.
While it is constant at 1, the S / C ratio of the present invention is 3.1 or less (S / C <3.1), and it can be operated at a lower value as the hydrogen utilization rate in PEFC increases. . this is,
Conventionally, the operation at a low S / C ratio, which was difficult to realize because the fuel processing efficiency is improved but the amount of by-product CO is increased, is that the amount of by-product CO is decreased as the reforming temperature of the present invention is lowered. It has been made possible by.

【0036】次に、図8では、従来の空気流量が1.7
8NL/min(min=分)で一定であるのに対し、
本発明の空気流量は1.7NL/min以下であり、P
EFCでの水素利用率の上昇に従い、さらに少ない空気
流量でCO濃度を10ppm以下にまで抑制できてい
る。この事実は、副生CO量に関して、低S/C比運転
よりも改質温度降下の方が影響が大きいことを示してお
り、結果的に、製造水素の酸化減少を抑制することがで
きる。
Next, referring to FIG. 8, the conventional air flow rate is 1.7.
While it is constant at 8 NL / min (min = minute),
The air flow rate of the present invention is 1.7 NL / min or less, and P
As the hydrogen utilization rate in the EFC increases, the CO concentration can be suppressed to 10 ppm or less with a smaller air flow rate. This fact indicates that the reforming temperature drop has a greater effect on the amount of CO produced as a byproduct than the low S / C ratio operation, and as a result, the reduction in oxidation of the produced hydrogen can be suppressed.

【0037】さらに、図9のとおり、本発明による燃料
処理効率は、いずれの水素利用率においても従来より高
く、その差はPEFCでの水素利用率の上昇に従いさら
に拡大している。これは、図7および図8で説明した放
熱損失の減少、低S/C比運転の実現、選択酸化空気流
量の減少の各効果が、燃料処理効率の向上という形で現
れた結果であり、本発明の効率面での優位性が実証され
ている。
Further, as shown in FIG. 9, the fuel processing efficiency according to the present invention is higher than the conventional one in any hydrogen utilization rate, and the difference is further expanded as the hydrogen utilization rate in PEFC increases. This is a result that the effects of reducing the heat dissipation loss, realizing the low S / C ratio operation, and reducing the selective oxidizing air flow rate described in FIGS. The efficiency advantage of the present invention has been demonstrated.

【0038】[0038]

【発明の効果】本発明によれば、燃料電池と組み合わせ
て使用する改質装置の運転方法において、改質装置燃焼
部の全量または大半の所要加熱インプットを燃料電池か
らのメタンリッチなオフガスで賄うことにより、燃料電
池で設定できる上限の水素利用率や運転負荷率に応じて
改質温度を抑制することができる。また、これにより改
質装置の高効率化、小型化を図ることができるなど各種
有用な効果が得られる。
According to the present invention, in a method of operating a reformer used in combination with a fuel cell, all or most of the required heating input of the reformer combustion section is covered by methane-rich offgas from the fuel cell. As a result, the reforming temperature can be suppressed according to the upper limit hydrogen utilization rate and operating load rate that can be set in the fuel cell. Further, by doing so, various useful effects such as high efficiency and miniaturization of the reformer can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】水蒸気改質器を模式的に示す図FIG. 1 is a diagram schematically showing a steam reformer.

【図2】水蒸気改質装置を用い、原料ガスからPEFC
に至るまでの態様例を示す図
FIG. 2 PEFC from raw material gas using a steam reformer
The figure which shows the example of the way to

【図3】改質装置の従来の運転方法例を示す図FIG. 3 is a diagram showing an example of a conventional operation method of a reformer.

【図4】改質装置について、従来の運転方法と本発明の
運転方法について改質転化率とPEFCの水素利用率と
の関係を示した図
FIG. 4 is a diagram showing the relationship between the reforming conversion rate and the hydrogen utilization rate of PEFC for the conventional operation method and the operation method of the present invention for the reformer.

【図5】改質装置において改質されず、改質ガスに含ま
れるCH4、すなわちPEFCからのオフガスに含まれ
るCH4による熱量の割合とPEFCでの水素利用率と
の関係を示す図
FIG. 5 is a diagram showing the relationship between the ratio of the amount of heat due to CH 4 contained in the reformed gas without being reformed in the reformer, that is, CH 4 contained in the offgas from the PEFC, and the hydrogen utilization rate in the PEFC.

【図6】実施例で使用した装置と運転方法を示す図FIG. 6 is a diagram showing an apparatus and an operating method used in Examples.

【図7】実施例の結果を示す図FIG. 7 is a diagram showing the results of Examples.

【図8】実施例の結果を示す図FIG. 8 is a diagram showing the results of Examples.

【図9】実施例の結果を示す図FIG. 9 is a diagram showing the results of Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小宮 純 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 藤原 直彦 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 4G040 EA03 EA06 EB03 EB14 EB31 EB32 EB42 EB43 EB44 5H026 AA06 5H027 AA06 BA01 BA09 BA16 BA17 KK42 KK52 MM12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Jun Komiya             1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas             Within the corporation (72) Inventor Naohiko Fujiwara             1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas             Within the corporation F-term (reference) 4G040 EA03 EA06 EB03 EB14 EB31                       EB32 EB42 EB43 EB44                 5H026 AA06                 5H027 AA06 BA01 BA09 BA16 BA17                       KK42 KK52 MM12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】燃料電池と組み合わせて使用し、且つ、酸
素原子を分子構造中に含まない炭化水素系燃料を水蒸気
改質して水素を製造する改質装置の運転方法であって、
改質装置における炭化水素系燃料の改質転化率を90%
未満とすることにより、改質装置での所要熱量の全量ま
たは大半を燃料電池からのオフガスの燃焼熱にて賄うこ
とを特徴とする燃料電池用改質装置の運転方法。
1. A method of operating a reformer, which is used in combination with a fuel cell and which produces hydrogen by steam-reforming a hydrocarbon-based fuel that does not contain oxygen atoms in its molecular structure,
90% conversion rate of hydrocarbon fuel in reformer
By setting the amount to be less than the above, all or most of the required amount of heat in the reformer is covered by the combustion heat of the off gas from the fuel cell.
【請求項2】前記改質装置に水蒸気発生部が含まれてい
ることを特徴とする請求項1に記載の燃料電池用改質装
置の運転方法。
2. The method for operating a reformer for a fuel cell according to claim 1, wherein the reformer includes a steam generator.
【請求項3】前記改質転化率の設定を前記燃料電池の水
素利用率に応じて変更することを特徴とする請求項1ま
たは2に記載の燃料電池用改質装置の運転方法。
3. The method for operating a reformer for a fuel cell according to claim 1, wherein the setting of the reforming conversion rate is changed according to the hydrogen utilization rate of the fuel cell.
【請求項4】前記改質転化率の設定を前記燃料電池の運
転負荷率に応じて変更することを特徴とする請求項1〜
3の何れか1項に記載の燃料電池用改質装置の運転方
法。
4. The setting of the reforming conversion rate is changed according to the operating load rate of the fuel cell.
4. The method for operating the fuel cell reformer according to any one of 3 above.
【請求項5】前記所要熱量の一部を前記炭化水素系燃料
で補い、この補償する炭化水素系燃料の流量を操作する
ことにより前記改質転化率を制御することを特徴とする
請求項1〜4の何れか1項に記載の燃料電池用改質装置
の運転方法。
5. The reforming conversion rate is controlled by compensating a part of the required heat quantity with the hydrocarbon fuel and manipulating the flow rate of the hydrocarbon fuel for compensation. 4. The method for operating the fuel cell reformer according to any one of 1 to 4.
【請求項6】前記燃料電池が固体高分子形型燃料電池で
あることを特徴とする請求項1〜5の何れか1項に記載
の燃料電池用改質装置の運転方法。
6. The method of operating a reformer for a fuel cell according to claim 1, wherein the fuel cell is a polymer electrolyte fuel cell.
JP2001383837A 2001-12-17 2001-12-17 Operation method of fuel cell reformer Expired - Lifetime JP4112222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383837A JP4112222B2 (en) 2001-12-17 2001-12-17 Operation method of fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383837A JP4112222B2 (en) 2001-12-17 2001-12-17 Operation method of fuel cell reformer

Publications (2)

Publication Number Publication Date
JP2003183005A true JP2003183005A (en) 2003-07-03
JP4112222B2 JP4112222B2 (en) 2008-07-02

Family

ID=27593728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383837A Expired - Lifetime JP4112222B2 (en) 2001-12-17 2001-12-17 Operation method of fuel cell reformer

Country Status (1)

Country Link
JP (1) JP4112222B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001798A (en) * 2005-06-22 2007-01-11 Toyota Central Res & Dev Lab Inc Hydrogen fuel-supplying system and fuel cell system
JP2008269887A (en) * 2007-04-18 2008-11-06 Aisin Seiki Co Ltd Fuel cell system
JP2012134170A (en) * 2012-03-02 2012-07-12 Osaka Gas Co Ltd Fuel cell power generation device
WO2012147317A1 (en) 2011-04-26 2012-11-01 パナソニック株式会社 Hydrogen generator, fuel cell system, and method of operating same
WO2013027415A1 (en) 2011-08-25 2013-02-28 パナソニック株式会社 Fuel cell system and operation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3000594U (en) * 1994-01-31 1994-08-09 福井めがね工業株式会社 Eye mirror

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001798A (en) * 2005-06-22 2007-01-11 Toyota Central Res & Dev Lab Inc Hydrogen fuel-supplying system and fuel cell system
JP2008269887A (en) * 2007-04-18 2008-11-06 Aisin Seiki Co Ltd Fuel cell system
WO2012147317A1 (en) 2011-04-26 2012-11-01 パナソニック株式会社 Hydrogen generator, fuel cell system, and method of operating same
US9116528B2 (en) 2011-04-26 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation apparatus, fuel cell system, and method of operating the same
WO2013027415A1 (en) 2011-08-25 2013-02-28 パナソニック株式会社 Fuel cell system and operation method therefor
US9184455B2 (en) 2011-08-25 2015-11-10 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and method of operating the same
JP2012134170A (en) * 2012-03-02 2012-07-12 Osaka Gas Co Ltd Fuel cell power generation device

Also Published As

Publication number Publication date
JP4112222B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4318920B2 (en) Fuel cell system
CN1185742C (en) Fuel cell system
JP4619753B2 (en) Fuel cell operation control method and system therefor
JP2010103084A (en) Fuel reforming method for solid oxide fuel cell system
JP2009048854A (en) Fuel cell power generating device and its control method
JP2008254942A (en) Hydrogen production method and hydrogen production system
KR20070111145A (en) Reformer with oxygen supplier and fuel cell system using the same
JP3857022B2 (en) Method for starting and stopping a polymer electrolyte fuel cell
JP4112222B2 (en) Operation method of fuel cell reformer
US6753107B2 (en) Integrated fuel cell system
JP3784775B2 (en) Control method of fuel cell power generation system
JP2001085039A (en) Fuel cell system
JP4620399B2 (en) Control method of fuel cell power generation system
JP2005108509A (en) Fuel cell power generating system
JP3872006B2 (en) Fuel cell power generation system
JP4467929B2 (en) Fuel cell power generation system
JP4536391B2 (en) Fuel cell power generation system and fuel cell module
JP2008204784A (en) Fuel cell power generation system, and fuel cell power generation method
JP4442204B2 (en) Fuel cell power generation system
JP2015191692A (en) Method of stopping fuel battery system and fuel battery system
JP4467924B2 (en) Fuel cell power generation system
JP3886887B2 (en) Fuel cell power generation system
JP4246053B2 (en) Starting method of fuel cell power generation system
JP2005056775A (en) Fuel cell power generation system
JP4073227B2 (en) Operation method of hydrogen-containing gas generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4112222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term