JP2002342919A - Perpendicular magnetic recording medium and method of manufacturing the same - Google Patents

Perpendicular magnetic recording medium and method of manufacturing the same

Info

Publication number
JP2002342919A
JP2002342919A JP2001143481A JP2001143481A JP2002342919A JP 2002342919 A JP2002342919 A JP 2002342919A JP 2001143481 A JP2001143481 A JP 2001143481A JP 2001143481 A JP2001143481 A JP 2001143481A JP 2002342919 A JP2002342919 A JP 2002342919A
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic recording
recording medium
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001143481A
Other languages
Japanese (ja)
Other versions
JP4591806B2 (en
Inventor
Yasushi Sakai
泰志 酒井
Sadayuki Watanabe
貞幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001143481A priority Critical patent/JP4591806B2/en
Publication of JP2002342919A publication Critical patent/JP2002342919A/en
Application granted granted Critical
Publication of JP4591806B2 publication Critical patent/JP4591806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process design suitable for mass production without requiring heat treatment after deposition for the purpose of obtaining a sufficient exchange bond of an antiferromagnetic film and a soft magnetic lining layer in manufacturing of a perpendicular magnetic recording medium. SOLUTION: A nonmagnetic substrate is heated to a temperature of 150 to 400 deg.C within the same deposition device prior to deposition of at least the antiferromagnetic film and thereafter the antiferromagnetic layer and the soft magnetic layer are continuously deposited while a magnetic field is impressed thereto, by which the large exchange bond is obtained and the domain wall formation of the soft magnetic lining layer is suppressed without subjecting these layers to the heat treatment after the deposition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種磁気記録装置に
搭載される垂直磁気記録媒体及びその製造方法に関す
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a perpendicular magnetic recording medium mounted on various magnetic recording devices and a method of manufacturing the same.

【0002】[0002]

【従来の技術】磁気記録の高密度化を実現する技術とし
て、従来の長手磁気記録方式に代えて、垂直磁気記録方
式が注目されつつある。
2. Description of the Related Art As a technique for realizing a higher density of magnetic recording, a perpendicular magnetic recording method is attracting attention instead of a conventional longitudinal magnetic recording method.

【0003】垂直磁気記録媒体は、硬質磁性材料の磁気
記録層と、この記録層への記録に用いられる、磁気ヘッ
ドが発生する磁束を集中させる役割を担う軟磁性材料で
形成される裏打ち層を構成要素に含んでいる。このよう
な構造の垂直磁気記録媒体において問題となるノイズの
ひとつであるスパイクノイズは、裏打ち層である軟磁性
膜に形成された磁壁によるものであることが知られてい
る。そのため垂直磁気記録方式を実現化させるために
は、軟磁性裏打ち層の磁壁形成を阻止する必要がある。
A perpendicular magnetic recording medium has a magnetic recording layer of a hard magnetic material and a backing layer formed of a soft magnetic material used for recording on the recording layer and having a role of concentrating a magnetic flux generated by a magnetic head. Included in components. It is known that spike noise, which is one of the problems in the perpendicular magnetic recording medium having such a structure, is caused by domain walls formed in a soft magnetic film serving as a backing layer. Therefore, in order to realize the perpendicular magnetic recording method, it is necessary to prevent the formation of the domain wall of the soft magnetic underlayer.

【0004】この軟磁性裏打ち層の磁壁の制御について
は、例えば特開平6−180834号公報や特開平10
−214719号公報に示されているように、軟磁性裏
打ち層の上層や下層に、Co合金等の強磁性層を形成し
これを所望の方向に磁化させるように着磁する方法や、
反強磁性薄膜を形成し交換結合を利用して磁化をピン止
めする方法が提案されている。
The control of the domain wall of the soft magnetic underlayer is described in, for example, JP-A-6-180834 and JP-A-10-180834.
As described in JP-A-214719, a method of forming a ferromagnetic layer of a Co alloy or the like on an upper layer or a lower layer of a soft magnetic underlayer and magnetizing the same in a desired direction,
A method has been proposed in which an antiferromagnetic thin film is formed and magnetization is pinned using exchange coupling.

【0005】[0005]

【発明が解決しようとする課題】反強磁性膜を用いて軟
磁性裏打ち層との交換結合により磁壁の制御を行なう方
法は、交換結合が十分に得られた場合、軟磁性裏打ち層
の磁壁形成を阻止することができ、非常に効果的であ
る。しかしながら、十分な交換結合を得るためには、例
えば前出の特開平10−214719号公報に示すよう
に、成膜後の加熱処理が必要であり、大量生産を行なう
場合に非常に不利であった。
A method of controlling a domain wall by exchange coupling with a soft magnetic underlayer using an antiferromagnetic film is described below. Can be very effective. However, in order to obtain sufficient exchange coupling, for example, as described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 10-214719, a heat treatment after film formation is necessary, which is very disadvantageous in mass production. Was.

【0006】[0006]

【課題を解決するための手段】本発明者らは、反強磁性
膜を用いて軟磁性裏打ち層の磁壁の制御を有効に行な
い、かつ大量生産に適した工程設計を行なうべく、鋭意
検討した結果、反強磁性膜を成膜する前に同一成膜装置
内にて非磁性基体を150℃以上400℃以下に加熱し
た後、連続して磁区制御層並びに軟磁性層を磁場を印加
しながら成膜することにより、成膜後に加熱処理等を行
なわなくても大きな交換結合が得られ、軟磁性裏打ち層
の磁壁形成の抑制を行なえることを見出した。
Means for Solving the Problems The present inventors have studied diligently to effectively control the domain wall of the soft magnetic underlayer using an antiferromagnetic film and to design a process suitable for mass production. As a result, before the antiferromagnetic film is formed, the nonmagnetic substrate is heated to 150 ° C. or more and 400 ° C. or less in the same film forming apparatus, and then the magnetic domain control layer and the soft magnetic layer are continuously applied while applying a magnetic field. It has been found that by forming a film, a large exchange coupling can be obtained without performing a heat treatment or the like after the film is formed, and formation of a magnetic domain wall of the soft magnetic underlayer can be suppressed.

【0007】すなわち、本発明の第1の態様は、非磁性
基体上に少なくとも下地層、配向制御層、Mnを含む反
強磁性材料を用いた磁区制御層、軟磁性材料を用いた裏
打ち層、中間層、磁気記録層、保護層及び液体潤滑剤層
が順次積層されてなる垂直磁気記録媒体の製造方法であ
って、少なくとも前記磁区制御層を成膜する前に同一成
膜装置内にて前記非磁性基体を加熱した後、連続して磁
区制御層並びに軟磁性層を磁場を印加しながら成膜する
ことを特徴とする。
That is, a first aspect of the present invention is to provide at least an underlayer, an orientation control layer, a magnetic domain control layer using an antiferromagnetic material containing Mn, a backing layer using a soft magnetic material on a nonmagnetic substrate, A method for manufacturing a perpendicular magnetic recording medium, in which an intermediate layer, a magnetic recording layer, a protective layer, and a liquid lubricant layer are sequentially stacked, wherein at least the magnetic domain control layer is formed in the same film forming apparatus before forming the magnetic domain control layer. After heating the non-magnetic substrate, the magnetic domain control layer and the soft magnetic layer are continuously formed while applying a magnetic field.

【0008】本発明の第2の態様は、前記製造方法にお
いて、前記非磁性基体を150℃以上400℃以下で加
熱することを特徴とする。
According to a second aspect of the present invention, in the above-mentioned manufacturing method, the non-magnetic substrate is heated at a temperature of 150 ° C. or more and 400 ° C. or less.

【0009】本発明の第3の態様は、前記製造方法にお
いて作製される垂直磁気記録媒体であって、前記軟磁性
裏打ち層が単磁区化されていることを特徴とする。
According to a third aspect of the present invention, there is provided a perpendicular magnetic recording medium manufactured by the above manufacturing method, wherein the soft magnetic underlayer has a single magnetic domain.

【0010】[0010]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。図1は本発明の実施の一態様を示す垂直
磁気記録媒体の断面模式図である。非磁性基体1上に少
なくとも下地層2、配向制御層3、反強磁性層4、軟磁
性層5、中間層6、磁気記録層7及び保護層8が順に形
成された構造を有しており、さらにその上に液体潤滑剤
層9が形成されてなる形態を示している。
Embodiments of the present invention will be described below. FIG. 1 is a schematic sectional view of a perpendicular magnetic recording medium showing one embodiment of the present invention. It has a structure in which at least an underlayer 2, an orientation control layer 3, an antiferromagnetic layer 4, a soft magnetic layer 5, an intermediate layer 6, a magnetic recording layer 7, and a protective layer 8 are sequentially formed on a nonmagnetic substrate 1. Further, an embodiment is shown in which a liquid lubricant layer 9 is further formed thereon.

【0011】液体潤滑剤層9としては、従来より使用さ
れている材料を用いることができる。例えば、パーフル
オロポリエーテル系の潤滑剤をもちいることができる。
液体潤滑剤層9の膜厚等の条件は、通常の磁気記録媒体
で用いられる諸条件をそのまま用いることができる。
As the liquid lubricant layer 9, a conventionally used material can be used. For example, a perfluoropolyether-based lubricant can be used.
The conditions such as the film thickness of the liquid lubricant layer 9 can be the same as those used for a normal magnetic recording medium.

【0012】保護層8も従来より使用されている保護膜
を用いることができる。例えば、カーボンを主体とする
保護膜を用いることができる。保護層8の膜厚等の条件
は、通常の磁気記録媒体で用いられる諸条件をそのまま
用いることができる。
As the protective layer 8, a conventionally used protective film can be used. For example, a protective film mainly composed of carbon can be used. The conditions such as the film thickness of the protective layer 8 can be the same as those used for a normal magnetic recording medium.

【0013】磁気記録層7としてはCoCr系合金結晶質
膜、希土類−遷移金属合金非晶質膜、Co系多層膜あるい
は、それらの積層膜が挙げられるがこれに限定されな
い。CoCr系合金結晶質膜には、CoCr、CoCrTa、CoCrPt、
CoCrPtX(X = B、Ta、Zr、Nb)等を含み、希土類−遷移
金属合金非晶質膜には、TbCo、TbFeCo、TbCoCr等を含
み、Co系多層膜としては[Co/Pd]nや[Co/Pt]n等を含む
が、これらに限定されない。膜厚としては特に制限され
ないが、垂直磁気記録媒体として良好な特性を得るため
には10nm以上50nm以下にすることが望ましい。
The magnetic recording layer 7 includes, but is not limited to, a CoCr-based alloy crystalline film, a rare earth-transition metal alloy amorphous film, a Co-based multilayer film, or a laminated film thereof. CoCr-based alloy crystalline films include CoCr, CoCrTa, CoCrPt,
CoCrPtX (X = B, Ta, Zr, Nb), etc., the rare earth-transition metal alloy amorphous film contains TbCo, TbFeCo, TbCoCr, etc., and the Co-based multilayer film includes [Co / Pd] n and [Co / Pt] n , but is not limited thereto. The thickness is not particularly limited, but is preferably 10 nm or more and 50 nm or less in order to obtain good characteristics as a perpendicular magnetic recording medium.

【0014】中間層6は、磁性層の結晶粒のc軸を垂直
に好ましく配向させるため、さらに磁性層の結晶粒の粒
径制御、磁性層の初期成長層の制御、磁性層の結晶粒の
偏析の促進等を行なうために用いられる。更に、軟磁性
裏打ち層と磁気記録層との磁気的な結合を切断するため
にも用いられるが、なるべく薄い方が高密度記録には有
利となる。材料系としては、 Ta、Ti、TiCr、CoCr、Co
CrX(X = B、V、Mn、Nb、Mo、Ru Ta、W)、Ru、Pd、Pt
等が挙げられるがこれに限定されない。
The intermediate layer 6 preferably controls the crystal grain size of the magnetic layer, controls the initial growth layer of the magnetic layer, and controls the crystal grain size of the magnetic layer in order to vertically orient the c-axis of the crystal grain of the magnetic layer. Used to promote segregation and the like. It is also used to break the magnetic coupling between the soft magnetic backing layer and the magnetic recording layer. The thinner the layer, the more advantageous for high density recording. Materials include Ta, Ti, TiCr, CoCr, Co
CrX (X = B, V, Mn, Nb, Mo, Ru Ta, W), Ru, Pd, Pt
And the like, but is not limited thereto.

【0015】軟磁性裏打ち層5は、単磁極ヘッドから出
た磁束を磁気記録層に集中するために必要なものであ
り、ヘッドの一部として機能しているため、記録の面か
らは軟磁性層の膜厚は厚い方が有利である。ただし、生
産性の面から言えば、なるべく薄い方が有利である。膜
厚は、記録に使用する磁気ヘッドの構造や特性により最
適値が変化するが、50nm以上300nm以下である
ことが、生産性との兼合いから望ましい。材料系として
は、NiFe、FeAlSi、CoZrNb、CoTaZr、FeTaC、CoNiFe、F
eN系合金等があるが、これらに限定されない。
The soft magnetic backing layer 5 is necessary for concentrating the magnetic flux emitted from the single-pole head on the magnetic recording layer, and functions as a part of the head. It is advantageous that the thickness of the layer is large. However, from the viewpoint of productivity, it is advantageous to be as thin as possible. The optimum value of the film thickness varies depending on the structure and characteristics of the magnetic head used for recording. However, it is desirable that the film thickness be 50 nm or more and 300 nm or less in consideration of productivity. Materials include NiFe, FeAlSi, CoZrNb, CoTaZr, FeTaC, CoNiFe, F
There are eN-based alloys and the like, but not limited to these.

【0016】軟磁性裏打ち層を成膜しただけでは、磁気
的なエネルギーを下げようとしてたくさんの磁区が形成
される。この時、磁区と磁区の間に発生する磁壁を形成
する磁化モーメントからは漏れ磁束が発生し、垂直方向
に発生している磁束が、電磁変換特性を測定する際にス
パイクノイズとして観測される。
[0016] Only by forming the soft magnetic underlayer, many magnetic domains are formed in an attempt to reduce magnetic energy. At this time, a leakage magnetic flux is generated from a magnetization moment that forms a domain wall generated between magnetic domains, and a magnetic flux generated in a vertical direction is observed as spike noise when measuring electromagnetic conversion characteristics.

【0017】磁区制御層4とは、上記磁壁の形成を抑制
するために、軟磁性裏打ち層の下層に設けられる反強磁
性層をいう。これは、反磁性層と軟磁性裏打ち層との間
に働く交換結合を利用して軟磁性裏打ち層に磁区が形成
されないようにするものである。これにより、軟磁性裏
打ち層の磁化は一方向(この場合垂直磁気記録媒体の半
径方向)に揃えられ、スパイクノイズは観測されなくな
る。交換結合磁界が小さい場合には、わずかな外部磁界
が印加されただけで磁化はその方向を向いてしまい、磁
区が形成されスパイクノイズが発生する。しかし、交換
結合磁界を大きくすると、その外部磁場に対する耐性が
強くなり、スパイクノイズが発生しなくなる。
The magnetic domain control layer 4 is an antiferromagnetic layer provided below the soft magnetic underlayer to suppress the formation of the magnetic domain wall. This is to prevent the formation of magnetic domains in the soft magnetic underlayer by utilizing exchange coupling acting between the diamagnetic layer and the soft magnetic underlayer. Thereby, the magnetization of the soft magnetic underlayer is aligned in one direction (in this case, the radial direction of the perpendicular magnetic recording medium), and no spike noise is observed. When the exchange coupling magnetic field is small, the magnetization is directed in the direction only by applying a slight external magnetic field, and a magnetic domain is formed to generate spike noise. However, when the exchange coupling magnetic field is increased, the resistance to the external magnetic field is increased, and no spike noise is generated.

【0018】この場合、特に基板加熱を行なわなくても
交換結合磁界は得られるが、加熱成膜することにより反
強磁性層の結晶配向性が向上するために、より大きな交
換結合磁界が得られる。加熱成膜を行なうことにより、
磁化の分散が小さくなるために一方向異方性としての交
換結合磁界が大きくなるためである。
In this case, an exchange coupling magnetic field can be obtained without heating the substrate, but a larger exchange coupling magnetic field can be obtained because the crystal orientation of the antiferromagnetic layer is improved by forming the film by heating. . By performing heating film formation,
This is because the exchange coupling magnetic field as unidirectional anisotropy increases because the dispersion of the magnetization decreases.

【0019】磁区制御層4としては、得られる交換結合
磁界の大きさ並びに製造のし易さから、Mn系合金が好ま
しい。Mn系合金膜には、FeMn、NiMn、CoMn、IrMn、PtMn
といった材料系が含まれるが、これに限定されない。膜
厚は特に制限されないが、適度な交換結合が得られ、か
つ大量生産に適するためには5nm以上50nm程度が
好ましい。
The magnetic domain control layer 4 is preferably made of a Mn-based alloy in view of the magnitude of the obtained exchange coupling magnetic field and the ease of manufacture. FeMn, NiMn, CoMn, IrMn, PtMn
However, the present invention is not limited to this. Although the film thickness is not particularly limited, it is preferably about 5 nm or more and about 50 nm in order to obtain an appropriate exchange coupling and be suitable for mass production.

【0020】配向制御層3とは、磁区制御層である反強
磁性層の結晶配向性を向上させるために必要な層をい
う。配向制御層がない場合には、反強磁性層があっても
反強磁性層の結晶配向性が悪いために、交換結合磁界は
得られない。面心立方構造を有する単金属あるいは合金
系材料を用いることにより、反強磁性層の配向性が向上
する。材料系としては、Cu、Ir、Pd、Ptやそれらの合金
系、NiFe系合金等が含まれるが、これらに限定されな
い。膜厚は特に限定されないが、大量生産に適するため
には50nm以下にすることが望ましい。
The orientation control layer 3 is a layer necessary for improving the crystal orientation of the antiferromagnetic layer which is a magnetic domain control layer. When there is no orientation control layer, even if an antiferromagnetic layer is present, an exchange coupling magnetic field cannot be obtained because the crystal orientation of the antiferromagnetic layer is poor. By using a single metal or alloy-based material having a face-centered cubic structure, the orientation of the antiferromagnetic layer is improved. Examples of the material system include, but are not limited to, Cu, Ir, Pd, Pt, alloys thereof, and NiFe alloys. The film thickness is not particularly limited, but is preferably 50 nm or less in order to be suitable for mass production.

【0021】下地層2とは、配向制御層の微細構造を制
御するために用いられる層であって、下地層を用いるこ
とにより基板表面を平滑化し、それにより配向制御層の
初期層制御、配向制御等を行なう。材料系としては、T
a、Ti、Zr、Nbやそれらの合金系が挙げられる。膜厚と
しては特に制限されないが、大量生産に適するためには
3nm以上50nm以下が望ましい。
The underlayer 2 is a layer used to control the fine structure of the orientation control layer. The use of the underlayer smoothes the surface of the substrate, thereby controlling the initial layer control of the orientation control layer and the orientation. Performs control and the like. As a material system, T
a, Ti, Zr, Nb and alloys thereof. The thickness is not particularly limited, but is preferably 3 nm or more and 50 nm or less in order to be suitable for mass production.

【0022】非磁性基体と反強磁性層との間には配向制
御層と下地層の少なくとも一方が存在すれば良いが、上
述の8層全てを用いた層構成にすることにより、より高
い交換結合磁界を得ることが出来た。
It is sufficient that at least one of the orientation control layer and the underlayer exists between the non-magnetic substrate and the antiferromagnetic layer. A coupling magnetic field was obtained.

【0023】非磁性基体としては、通常の磁気記録媒体
用に用いられるNiPメッキを施したAl合金や強化ガラ
ス、結晶化ガラス等を用いることが出来る。
As the non-magnetic substrate, there can be used a NiP-plated Al alloy, tempered glass, crystallized glass or the like, which is used for ordinary magnetic recording media.

【0024】本発明の垂直磁気記録媒体の製造にあたっ
ては、少なくとも反強磁性層を成膜する前に、同一成膜
装置内にて非磁性基体をヒーター等を用いて加熱した
後、連続して反強磁性層並びに軟磁性層を、非磁性基体
の半径方向に磁場を印加しながら成膜する必要がある。
加熱をするために用いられるヒーターは、非磁性基体の
温度が上昇しさえすれば種類は問わないが、生産性の観
点からランプヒーターを用いることが温度制御が簡単で
あり、望ましい。
In manufacturing the perpendicular magnetic recording medium of the present invention, at least before forming the antiferromagnetic layer, the nonmagnetic substrate is heated using a heater or the like in the same film forming apparatus, and then continuously. It is necessary to form the antiferromagnetic layer and the soft magnetic layer while applying a magnetic field in the radial direction of the nonmagnetic substrate.
The type of heater used for heating is not limited as long as the temperature of the non-magnetic substrate rises. However, from the viewpoint of productivity, it is desirable to use a lamp heater because temperature control is simple and easy.

【0025】以下に本発明の実施例により更に具体的に
説明するが、本発明はこれらに限定されない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.

【0026】(実施例1)非磁性基体として表面が平滑
な化学強化ガラス基板(例えばHOYA社製N−5ガラ
ス基板)を用い、これを洗浄後スパッタ装置内に導入
し、Taターゲットを用いてTa下地膜を5nm成膜し、続
いてCrを添加したNiFe系合金ターゲットを用い、NiFeCr
合金薄膜を5nm成膜した。引き続いてランプヒーター
を用いて基板温度が250℃になるように加熱を行なっ
た後、IrMn合金ターゲットを用い反強磁性膜を5nmの
厚さに成膜し、続いてCoZrNb合金ターゲットを用いて軟
磁性膜を100nm成膜した。これらの反強磁性層及び
軟磁性層の成膜時には、基板の半径方向に平行に50O
eの磁場を印加した。
(Example 1) A chemically strengthened glass substrate (for example, N-5 glass substrate manufactured by HOYA) having a smooth surface was used as a non-magnetic substrate, and after washing, introduced into a sputtering apparatus, and a Ta target was used. A Ta underlayer is formed to a thickness of 5 nm, and then a NiFe-based alloy
An alloy thin film was formed to a thickness of 5 nm. Subsequently, heating is performed using a lamp heater so that the substrate temperature becomes 250 ° C., an antiferromagnetic film is formed to a thickness of 5 nm using an IrMn alloy target, and then softened using a CoZrNb alloy target. A magnetic film was formed to a thickness of 100 nm. At the time of forming these antiferromagnetic layers and soft magnetic layers, 50O
The magnetic field of e was applied.

【0027】引き続いてランプヒータを用いて基板表面
温度が再び250℃になるように加熱を行なった後、Ti
中間膜を10nm、引き続きCoCrPt磁気記録層を30n
m成膜し、最後にカーボン保護膜を10nm成膜後、真
空装置から取り出した。これらの成膜はすべてArガス圧
5mTorr下でDCマグネトロンスパッタリング法に
より行なった。その後、パーフルオロポリエーテルから
なる液体潤滑剤層2nmをディップ法により形成し、垂
直磁気記録媒体とした。
Subsequently, heating was performed using a lamp heater so that the substrate surface temperature was again 250 ° C.
10 nm for the intermediate film and 30 n for the CoCrPt magnetic recording layer.
m, and finally a carbon protective film was formed to a thickness of 10 nm and then taken out of the vacuum apparatus. All of these films were formed by DC magnetron sputtering under an Ar gas pressure of 5 mTorr. Thereafter, a liquid lubricant layer of 2 nm made of perfluoropolyether was formed by dipping to obtain a perpendicular magnetic recording medium.

【0028】(比較例1)スパイクノイズが発生しない
場合の出力波形を確認するための比較例として、実施例
1に示した垂直媒体の製造方法において、非磁性基体を
洗浄後スパッタ装置内に導入後、下地膜から軟磁性膜ま
での各成膜工程を行なわずに、ランプヒーターを用いて
250℃になるように加熱を行なった後、Ti膜を10n
m、引き続きCoCrPt磁気記録層を30nm成膜し、最後
にカーボン保護膜を10nm成膜後、真空装置から取り
出した。その後、パーフルオロポリエーテルからなる液
体潤滑剤層2nmをディップ法により形成し、垂直磁気
記録媒体とした。
(Comparative Example 1) As a comparative example for confirming an output waveform in the case where no spike noise occurs, in the method for manufacturing a perpendicular medium shown in Example 1, a non-magnetic substrate was introduced into a sputtering apparatus after cleaning. Then, without performing each film forming process from the base film to the soft magnetic film, heating was performed to 250 ° C. using a lamp heater, and then the Ti film was
Next, a CoCrPt magnetic recording layer was formed to a thickness of 30 nm, and finally a carbon protective film was formed to a thickness of 10 nm and then taken out of the vacuum apparatus. Thereafter, a liquid lubricant layer of 2 nm made of perfluoropolyether was formed by dipping to obtain a perpendicular magnetic recording medium.

【0029】実施例1に示す垂直磁気記録媒体の製造方
法において、中間層、磁気記録層、保護層及び液体潤滑
材層を形成せずにスパッタ装置から取り出した試料の基
板半径方向の磁化曲線を振動試料型磁力計にて測定し、
交換結合磁界を測定した。また完成した垂直磁気記録媒
体の軟磁性裏打ち層に形成される磁壁の有無を確認する
ために、スピンスタンドテスターを用いて、信号が書き
込まれていない状態での出力波形の平均値に対する変動
の割合(COV)を測定することにより、スパイクノイ
ズの有無を調べた。
In the method for manufacturing a perpendicular magnetic recording medium shown in Example 1, the magnetization curve in the substrate radial direction of a sample taken out of a sputtering apparatus without forming an intermediate layer, a magnetic recording layer, a protective layer and a liquid lubricant layer was determined. Measured with a vibrating sample magnetometer,
The exchange coupling magnetic field was measured. In order to confirm the presence or absence of a magnetic domain wall formed on the soft magnetic underlayer of the completed perpendicular magnetic recording medium, the ratio of the fluctuation to the average value of the output waveform in the state where no signal is written was measured using a spin stand tester. (COV) was measured to check for the presence of spike noise.

【0030】図2に、基板加熱温度に対する交換結合磁
界の大きさを示す。基板加熱せずに室温にて成膜した媒
体においても、反強磁性層の下に下地層並びに配向制御
層を用いることにより7Oe程度の交換結合磁界が得ら
れている。基板加熱温度の上昇と共に交換結合磁界の値
は増加し、250℃加熱において23Oe程度の最大値
を示し、その後徐々に低下し450℃加熱においては8
Oe程度の値まで低下してしまう。
FIG. 2 shows the magnitude of the exchange coupling magnetic field with respect to the substrate heating temperature. Even in a medium formed at room temperature without heating the substrate, an exchange coupling magnetic field of about 7 Oe is obtained by using an underlayer and an orientation control layer below the antiferromagnetic layer. The value of the exchange coupling magnetic field increases as the substrate heating temperature increases, shows a maximum value of about 23 Oe at 250 ° C. heating, and then gradually decreases to 8 ° C. at 450 ° C. heating.
It will be reduced to a value of about Oe.

【0031】表1に、スパイクノイズの存在を示す指標
となるCOV値を加熱温度に対して示す。表中には、そ
れぞれの加熱温度における交換結合磁界の値も示してあ
る。更に、スパイクノイズの有無を確認するための比較
例として、比較例1に示した層構成を有する垂直磁気記
録媒体の結果も同じ表中に示した。軟磁性裏打ち層がな
い比較例1に示す媒体構成の場合、COVの値は5%で
ある。基板加熱せずに室温にて成膜した媒体において
は、7Oe程度の交換結合磁界が得られているにもかか
わらずCOV値は12%を示し、7Oeではスパイクノ
イズを抑制しきれていないことが分かる。これに対し、
交換結合磁界が10Oe以上の媒体ではCOV値は、ス
パイクノイズが発生していない場合と同じ5%であり、
スパイクノイズの発生が完全に抑制されている。したが
って、スパイクノイズを完全に抑制するために必要な1
0Oe以上の交換結合磁界を得るためには、基板加熱温
度は150℃以上400℃以下であることが必要である
ことが分かる。
Table 1 shows the COV value as an index indicating the presence of spike noise with respect to the heating temperature. The table also shows the value of the exchange coupling magnetic field at each heating temperature. Further, as a comparative example for confirming the presence or absence of spike noise, the result of the perpendicular magnetic recording medium having the layer configuration shown in Comparative Example 1 is also shown in the same table. In the case of the medium configuration shown in Comparative Example 1 having no soft magnetic backing layer, the value of COV is 5%. In the medium formed at room temperature without heating the substrate, the COV value shows 12% despite the fact that an exchange coupling magnetic field of about 7 Oe is obtained, and the spike noise cannot be completely suppressed at 7 Oe. I understand. In contrast,
In a medium having an exchange coupling magnetic field of 10 Oe or more, the COV value is 5%, which is the same as when no spike noise is generated.
Generation of spike noise is completely suppressed. Therefore, 1 is necessary to completely suppress spike noise.
It can be seen that in order to obtain an exchange coupling magnetic field of 0 Oe or more, the substrate heating temperature needs to be 150 ° C. or more and 400 ° C. or less.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】以上述べたように本発明によれば、少な
くとも反強磁性膜を成膜する前に同一成膜装置内にて非
磁性基体を150℃以上400℃以下に加熱した後、連
続して反強磁性層並びに軟磁性層を磁場を印加しながら
成膜することにより、成膜後に加熱処理等を行なわなく
ても大きな交換結合が得られ、軟磁性裏打ち層の磁壁形
成の抑制を行なうことが出来る。この製造方法によれば
既存の成膜装置をそのまま使用することができ、なおか
つヒーターを用いて加熱を行なうという非常に単純な製
造方法により、必要とされる均一で高い交換結合が得ら
れるため、大量生産にも非常に適したものである。
As described above, according to the present invention, the non-magnetic substrate is heated to 150 ° C. or more and 400 ° C. or less in the same film forming apparatus at least before the anti-ferromagnetic film is formed. By forming the antiferromagnetic layer and the soft magnetic layer while applying a magnetic field, a large exchange coupling can be obtained without performing a heat treatment or the like after the film formation, and the suppression of domain wall formation of the soft magnetic backing layer can be achieved. You can do it. According to this manufacturing method, the existing film forming apparatus can be used as it is, and the required uniform and high exchange coupling can be obtained by a very simple manufacturing method of performing heating using a heater. It is also very suitable for mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一態様を示す垂直磁気記録媒体
の断面模式図である。
FIG. 1 is a schematic sectional view of a perpendicular magnetic recording medium showing one embodiment of the present invention.

【図2】本発明の実施例を説明するための基板加熱温度
に対する交換結合磁界の値の変化を示した図である。
FIG. 2 is a diagram illustrating a change in a value of an exchange coupling magnetic field with respect to a substrate heating temperature for explaining an example of the present invention.

【符号の説明】[Explanation of symbols]

1:非磁性基体 2:下地層 3:配向制御層 4:反強磁性層 5:軟磁性裏打ち層 6:中間層 7:磁気記録層 8:保護層 9:液体潤滑層 1: Non-magnetic substrate 2: Underlayer 3: Orientation control layer 4: Antiferromagnetic layer 5: Soft magnetic backing layer 6: Intermediate layer 7: Magnetic recording layer 8: Protective layer 9: Liquid lubricating layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5D006 CA01 CA03 CA05 DA08 EA03 EA05 5D112 AA03 AA04 FA04 FB29  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5D006 CA01 CA03 CA05 DA08 EA03 EA05 5D112 AA03 AA04 FA04 FB29

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上に少なくとも下地層、配向
制御層、Mnを含む反強磁性材料を用いた磁区制御層、
軟磁性材料を用いた裏打ち層、中間層、磁気記録層、保
護層及び液体潤滑剤層が順次積層されてなる垂直磁気記
録媒体の製造方法であって、少なくとも前記磁区制御層
を成膜する前に同一成膜装置内にて前記非磁性基体を加
熱した後、連続して磁区制御層並びに軟磁性層を磁場を
印加しながら成膜することを特徴とする垂直磁気記録媒
体の製造方法。
1. A magnetic domain control layer using an antiferromagnetic material containing at least an underlayer, an orientation control layer, and Mn on a nonmagnetic substrate.
A method for manufacturing a perpendicular magnetic recording medium in which a backing layer using a soft magnetic material, an intermediate layer, a magnetic recording layer, a protective layer, and a liquid lubricant layer are sequentially stacked, at least before forming the magnetic domain control layer. And heating the non-magnetic substrate in the same film forming apparatus, and subsequently forming a magnetic domain control layer and a soft magnetic layer while applying a magnetic field.
【請求項2】 前記非磁性基体を150℃以上400℃
以下で加熱することを特徴とする請求項1記載の垂直磁
気記録媒体の製造方法。
2. The method according to claim 1, wherein the non-magnetic substrate is heated at 150 ° C. to 400 ° C.
The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the heating is performed in the following manner.
【請求項3】 前記軟磁性裏打ち層が単磁区化されてい
ることを特徴とする請求項1または請求項2に記載の製
造方法により作製される垂直磁気記録媒体。
3. The perpendicular magnetic recording medium manufactured by the manufacturing method according to claim 1, wherein the soft magnetic underlayer has a single magnetic domain.
JP2001143481A 2001-05-14 2001-05-14 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Lifetime JP4591806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001143481A JP4591806B2 (en) 2001-05-14 2001-05-14 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001143481A JP4591806B2 (en) 2001-05-14 2001-05-14 Perpendicular magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002342919A true JP2002342919A (en) 2002-11-29
JP4591806B2 JP4591806B2 (en) 2010-12-01

Family

ID=18989627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001143481A Expired - Lifetime JP4591806B2 (en) 2001-05-14 2001-05-14 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4591806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272999A (en) * 2006-03-31 2007-10-18 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP2007280455A (en) * 2006-04-04 2007-10-25 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, its manufacturing method, and magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091667A (en) * 1998-09-09 2000-03-31 Read Rite Smi Kk Spin valve magnetoresistance sensor and thin-film magnetic head
JP2000150235A (en) * 1998-11-09 2000-05-30 Read Rite Smi Kk Spin valve magnetoresistive sensor and thin-film magnetic head
JP2000315311A (en) * 1999-05-06 2000-11-14 Hitachi Ltd Vertical magnetic recording medium and magnetic storage device
JP2002269718A (en) * 2001-03-14 2002-09-20 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948822A (en) * 1982-09-13 1984-03-21 Hitachi Ltd Vertical magnetic recording medium and its production
JPH0992904A (en) * 1995-09-22 1997-04-04 Alps Electric Co Ltd Giant magnetoresistance material film, its manufacture, and magnetic head using the same
JP3426894B2 (en) * 1997-01-29 2003-07-14 富士通株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
JP4263802B2 (en) * 1998-03-17 2009-05-13 株式会社東芝 Magnetic core, magnetic sensor, and magnetic recording head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091667A (en) * 1998-09-09 2000-03-31 Read Rite Smi Kk Spin valve magnetoresistance sensor and thin-film magnetic head
JP2000150235A (en) * 1998-11-09 2000-05-30 Read Rite Smi Kk Spin valve magnetoresistive sensor and thin-film magnetic head
JP2000315311A (en) * 1999-05-06 2000-11-14 Hitachi Ltd Vertical magnetic recording medium and magnetic storage device
JP2002269718A (en) * 2001-03-14 2002-09-20 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272999A (en) * 2006-03-31 2007-10-18 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP2007280455A (en) * 2006-04-04 2007-10-25 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, its manufacturing method, and magnetic recording medium

Also Published As

Publication number Publication date
JP4591806B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4019703B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4626840B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3755449B2 (en) Perpendicular magnetic recording medium
JP4207140B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2006313584A (en) Manufacturing method of magnetic recording medium
JP3988117B2 (en) Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium
JP2002190108A (en) Magnetic recording medium and its production method
US7045225B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4367326B2 (en) Perpendicular magnetic recording medium
JP4540288B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4591806B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3652999B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP4348952B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2003022523A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2007102833A (en) Perpendicular magnetic recording medium
JP4798520B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4353654B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4072753B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4557277B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2006120270A (en) Perpendicular magnetic recording medium and its manufacturing method
JP4557276B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4353655B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4534402B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term