JP4540288B2 - Perpendicular magnetic recording medium and manufacturing method thereof - Google Patents

Perpendicular magnetic recording medium and manufacturing method thereof Download PDF

Info

Publication number
JP4540288B2
JP4540288B2 JP2002176327A JP2002176327A JP4540288B2 JP 4540288 B2 JP4540288 B2 JP 4540288B2 JP 2002176327 A JP2002176327 A JP 2002176327A JP 2002176327 A JP2002176327 A JP 2002176327A JP 4540288 B2 JP4540288 B2 JP 4540288B2
Authority
JP
Japan
Prior art keywords
magnetic recording
layer
magnetic
recording medium
cocrpt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002176327A
Other languages
Japanese (ja)
Other versions
JP2004022082A (en
Inventor
俊司 竹野入
泰志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002176327A priority Critical patent/JP4540288B2/en
Publication of JP2004022082A publication Critical patent/JP2004022082A/en
Application granted granted Critical
Publication of JP4540288B2 publication Critical patent/JP4540288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は各種磁気記録装置に搭載される垂直磁気記録媒体およびその製造方法に関する。
【0002】
【従来の技術】
磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。
【0003】
垂直磁気記録媒体は主に、硬質磁性材料の磁気記録層、磁気記録層を目的の方向に配向させるための下地層、磁気記録層の表面を保護する保護膜、そしてこの記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料の裏打ち層から構成される。
【0004】
垂直媒体の磁気記録層材料としては、これまで主にCoCrPt、CoCrTa等の合金材料が用いられてきた。これらの合金材料では、結晶粒界に非磁性材料であるCrが偏析することにより、個々の結晶粒が磁気的に分離され、高い保磁力(Hc)など磁気記録媒体として必要な特性を発現する。このような結晶粒界へのCrの偏析は、面内媒体では、加熱や基体バイアス印加など成膜プロセスの工夫により促進されてきた。しかし、垂直媒体では、面内媒体と同様に加熱や基体バイアス印加を施してもCrの偏析量が少なく、それが原因で媒体ノイズが高くなってしまうことが問題となっていた。
【0005】
この問題を解決する方法として、CoPtやCoCrPt等の合金材料にSiO、Al、Cr等の酸化物やSiN、AlN等の窒化物など非磁性体を添加したグラニュラー磁性膜が提案されている。例えばCoPt−SiOグラニュラー膜では、CoPt結晶粒の周囲をSiOが取り囲むように偏析し、それにより個々のCoPt結晶粒は磁気的に分離される。このように、グラニュラー膜では合金材料の相分離(磁気相分離)を利用するのではなく、酸化物や窒化物など合金材料と固溶しにくい非晶質材料を加えることが特徴である。
【0006】
【発明が解決しようとする課題】
しかし、酸化物や窒化物をマトリクスとしたグラニュラー材料は、CoPtやCoCrPtなどの磁性材料とSiOやAlNなどの非磁性マトリクス材料を完全に相分離させることが困難であり、一部マトリクス材料が磁性材料中に混合することが知られている。マトリクス材料の磁性材料への混合は、磁気記録層の結晶性や配向性の劣化を招くだけでなく、一軸異方性の低下に起因して熱安定性の悪化を引き起こす。熱処理により磁気特性や一軸異方性を改善する試みもあるが、長時間を要する熱処理は量産には向かないことから、実用化を考えた場合には適用することは困難である。
【0007】
また、酸化物や窒化物などの材料は導電率が低く、CoPtやCoCrPtなどの合金材料と混合しても高い導電率は得られない。そのため、グラニュラー膜をスパッタリングにより成膜する場合にはRFスパッタリングを用いる必要がある。しかし、RFスパッタリング法はDCスパッタリング法に比べて装置コスト、ランニングコストともに高く、大量生産を考慮するとDCスパッタリングにより成膜することが望ましい。
【0008】
非酸化物あるいは非窒化物かつDCスパッタリングにより成膜可能なグラニュラー磁性膜としては、CoC(第21回応用磁気学会学術講演概要集,23(1997)やCoPtC(IEEE Trans.Mag.,34,4,1627(1998) )が提案されているが、保磁力[Hc]がCoCでは80[kA/m]以下、CoPtCでも160[kA/m]程度であり、十分な磁気特性は得られていない。
【0009】
そこで、本発明の目的は、上記の課題を解決することのできる垂直磁気記録媒体及びその製造方法を提供することである。
【0010】
【課題を解決するための手段】
グラニュラー磁性膜において、非磁性マトリクス材料と磁性材料が適切に相分離し、十分な磁気特性および熱安定性を得るためには、非磁性マトリクス材料が磁性材料と固溶したり化合物を形成したりせず、非晶質の状態で結晶粒界に析出することが必要である。また大量生産を考えた場合、装置の安定性やコストの観点から、DCスパッタリング法により成膜可能であることが望ましいが、このようなグラニュラー磁性層材料を得るためには、非磁性添加物の導電率が高いことが必要である。
【0011】
上記条件を満たし、従来の問題を解決する手段として、本発明者らは、検討を繰り返し、BCを非磁性材料とするグラニュラー膜を磁気記録層に用いることで、DCスパッタリングによる成膜が可能で、高い磁気特性および熱安定性が得られることを見出した。また、これらのグラニュラー膜を用いた場合には、従来のCoCrPtやCoCrTa等の合金系の磁気記録層と比較して低ノイズであることも見出した。
【0012】
上記の考察および知見に基づいて上述の目的を達成するために本発明者らは、非磁性基体上に軟磁性裏打ち層、下地層、中間層、磁気記録層、保護膜、液体潤滑層を順次積層されてなる垂直記録媒体であって、前記下地層がパーマロイ系材料からなり、前記中間層がRuまたはRu基合金からなり、前記磁気記録層がCoCrPtを主成分としてBCを加えたグラニュラー構造からなり且つDCスパッタリング法により成膜されている形態の垂直磁気記録媒体を実施した。
【0013】
ここで、前記磁気記録層の前記グラニュラー構造は、BCが結晶粒界に偏析して形成されたものであってよい。
【0014】
また上述の目的を達成するために本発明者らは、非磁性基体上に軟磁性裏打ち層、下地層、中間層、CoCrPtからなる磁気記録層を順次形成する垂直記録媒体の製造方法であって、パーマロイ系材料を用いて前記下地層を成膜し、RuまたはRu基合金材料を用いて前記中間層を成膜し、磁性材料にBCを加えたグラニュラー材料を原材料に用いて前記磁気記録層をDCスパッタリング法により成膜し且つ該成膜時の前記非磁性基体の温度をほぼ室温程度の常温とする垂直磁気記録媒体の製造方法を実施した。
【0016】
【発明の実施の形態】
以下、本発明の好ましい形態について図面を参照して説明する。
図1は本発明に係る垂直媒体の断面模式図である。
本発明に係る垂直磁気記録媒体は、非磁性基体1上と、非磁性基体1の上に順次設けられる軟磁性裏打ち層2、下地層3、非磁性中間層4、磁気記録層5、及び保護膜6、液体潤滑材層7とを有する。
【0017】
非磁性基体1としては表面が平滑である様々な基体であってよく、例えば、磁気記録媒体用に用いられる、NiPメッキを施したAl合金や強化ガラス、結晶化ガラス等を用いることができる。軟磁性裏打ち層2としては、結晶のFeTaC、センダスト(FeSiAl)合金等、また非晶質のCo合金であるCoZrNb、CoTaZrなどを用いることができる。軟磁性裏打ち層2の膜厚は、記録に使用する磁気ヘッドの構造や特性によって最適値が変化するが、おおむね10nm以上500nm以下程度であることが、生産性との兼ね合いから望ましい。
【0018】
下地層3には磁気記録層5のc軸を膜面に垂直に配向させる効果を持つ材料が用いられ、軟磁性を有するパーマロイ系材料である、NiFe、NiFeCr、NiFeMo、NiFeNb、NiFeNbMo、非磁性NiFeCr、Ti、TiCr、Pdなどを用いることができる。
【0019】
非磁性中間層4は非磁性かつ磁気記録層のc軸を膜面に垂直に配向させる効果を持ち、また磁気記録層の初期層を低減する効果を同時に有する材料が用いられ、例えばRu、あるいはRuC、RuW等のRu基合金、CoCr、Ptなどを用いることができる。なお、下地層3が非磁性であり、かつ非磁性中間層4の機能を兼ねる場合は、非磁性中間層4を形成する必要は無い。
【0020】
磁気記録層5には、磁性材料中にBCを添加したグラニュラー材料が用いられる。このとき、磁性材料としては、Co、CoPt、CoCrPt、FePt、SmCo等を用いることができるが、これらに限定されるものではない。ただし、磁気記録層5を成膜するときの非磁性基体1の温度は、ほぼ室温程度の常温としたままで磁気記録層5を成膜すればよく、熱処理なしで相分離を実現することができる。
【0021】
軟磁性裏打ち層2と非磁性基体1の間には、軟磁性裏打ち層2の磁化を半径方向外向きにピンしてノイズを減らすことを目的として、下地層および反強磁性ピン層(ともに図示せず)を用いることができる。
【0022】
図2に、本発明に係る反強磁性ピン層を有する垂直媒体断面模式図である。
反強磁性ピン層のための下地層8には、NiFe、NiFeCr、NiFeB等のパーマロイ系材料を用いることができ、反強磁性ピン層9としては、PtMn、NiMn等の規則合金材料、FeMn、IrMn等の不規則合金材料、またNiO等の酸化物材料などを用いることができる。反強磁性ピン層9の膜厚は、使用する材料や軟磁性層との組合せにより変化するが、おおむね1nm以上30nm以下程度であることが、生産性との兼ね合いから望ましい。
【0023】
保護膜5は、例えばカーボンを主体とする薄膜が用いられる。その他、磁気記録媒体の保護膜として一般的に用いられる様々な薄膜材料を使用しても良い。
【0024】
液体潤滑材層6は、例えばパーフルオロポリエーテル系の潤滑剤を用いることができる。その他、磁気記録媒体の液体潤滑層材料として一般的に用いられる様々な潤滑材料を使用しても良い。
【0025】
非磁性基体1の上に積層される各層は、磁気記録媒体の分野で通常用いられる様々な成膜技術によって形成することが可能である。液体潤滑層を除く各層の形成には、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、真空蒸着法を用いることが出来る。また、液体潤滑層の形成には、例えばディップ法、スピンコート法を用いることができる。しかし、これらに限定されるものではない。
【0026】
【実施例】
以下に本発明の垂直磁気記録媒体について、以下の実施例により詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0027】
[実施例1]
本実施例は、非磁性基体と、その上に順次設けられる軟磁性CoZrNb裏打ち層、軟磁性NiFeNbB下地層、Ru中間層、CoCrPt−BCグラニュラー磁気記録層、保護膜、液体潤滑層とを有する二層垂直磁気記録媒体に関する。
【0028】
非磁性基体として表面が平滑な化学強化ガラス基体(例えばHOYA社製N−10ガラス基体)を用い、これを洗浄後スパッタ装置内に導入し、Co8Zr5Nbターゲットを用いてCoZrNb非晶質軟磁性裏打ち層を200nm成膜した。次に下地層として、パーマロイ系の軟磁性材料であるNi12Fe3Nb3Bターゲットを用いてNiFeNbB下地層を5nm成膜した。
【0029】
引き続いてRuターゲットを用いて、Arガス圧4.0Pa下でRu中間層を20nm成膜した。次に、Co10Cr15Pt合金中にBCを8at%混合した、92(Co8Cr15Pt)−8BCターゲットを用いて、CoCrPt−BC磁気記録層を20nm成膜した。
【0030】
最後にカーボンターゲットを用いてカーボンからなる保護膜10nmを成膜後、真空装置から取り出した。Ru中間層の成膜を除くこれらの成膜はすべてArガス圧0.67Pa下で行い、全ての成膜はDCマグネトロンスパッタリング法により行なった。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成し、垂直磁気記録媒体とした。
【0031】
[比較例1]
磁気記録層にCo20Cr10Ptを用い、磁気記録層成膜前にランプヒータを用いて基体表面温度が280℃になるように加熱を行なったこと以外は実施例1と全く同様の方法により垂直磁気記録媒体を作製した。
【0032】
完成した垂直磁気記録媒体の保磁力Hcおよび角型比Sを磁気カー効果磁力計で、配向分散(Δθ50)をX線回折装置を用いてロッキングカーブ法で、結晶粒径および粒界幅を透過型電子顕微鏡(TEM)で評価した。測定結果を表1に示す。
【0033】
磁気特性を比較すると、実施例1では比較例1(従来の条件で製作した媒体)よりも高いHcが得られているが、これはTEMにより評価した粒界幅の差からもわかるように、結晶粒の分離が進み、粒子間相互作用が低下したためであると考えられる。また、角型比Sは比較例1では0.9程度であるのに対し、実施例1ではほぼ1となっている。角型比が高いということは、信号の劣化が小さい、即ち熱安定性が高いということに繋がることから、CoCrPt媒体と比較してCoCrPt−BCグラニュラー媒体が熱安定性に優れることがわかった。
【0034】
配向分散Δ50はグラニュラー磁性膜(実施例1)とCoCrPt磁性膜(比較例1)に差は無く、非磁性マトリクス材料を混合しているにもかかわらず配向の劣化が起こっていないことが確認された。グラニュラー媒体とCoCrPt媒体で特に差が大きく出ているのが、結晶粒径と粒界幅である。実施例1と比較例1では、全く同じ下地層および中間層を使用しているにもかかわらず、磁気記録層の結晶粒径が大幅に微細化されている。結晶粒径が小さいということは、ヘッドにより記録した際にビットの遷移のギザギザが低減されることを意味し、媒体の低ノイズ化のために重要な指標である。
【0035】
また、比較例1のCoCrPtの粒界幅は1nmであるのに対し、CoCrPt−BC(実施例1)では2.2nmと約2倍に粒界幅が広がっている。粒界幅の広がりは結晶粒同士の磁気的相互作用の低減に有効であり、磁気的相互作用が低減することが低ノイズ化につながる。
【0036】
図3にスピンスタンドテスタを用いて実施例1、比較例1の媒体のノイズを測定した結果を示す。結晶粒径が微細化されたことや、粒界幅が広がったことから予想されるように、CoCrPt−BC(実施例1)はCoCrPt(比較例1)と比較して大幅にノイズ化を低くすることができた。
【0037】
以上のように、磁気記録層をCoCrPt−BCとすることで、高い熱安定性および磁気特性を持つ媒体を得ることが出来た。また、結晶粒の微細化、粒界幅の増大に伴い、従来のCoCrPt媒体と比較して大幅な低ノイズ化が実現された。
【0038】
【表1】

Figure 0004540288
【0039】
[実施例2]
本実施例は、非磁性基体と、その上に順次設けられるTaシード層、非磁性NiFeCr下地層、Ru中間層、CoCrPt−BCグラニュラー磁気記録層、保護膜、液体潤滑層とを有する単層垂直磁気記録媒体に関する。
【0040】
非磁性基体として表面が平滑な化学強化ガラス基体(例えばHOYA社製N−10ガラス基体)を用い、これを洗浄後スパッタ装置内に導入し、Taターゲットを用いてTaシード層を5nm成膜した。次に下地層として、パーマロイ系の非磁性材料であるNi12Fe27Crターゲットを用いてNiFeCr下地層を10nm成膜した。
【0041】
引き続いてRuターゲットを用いて、Arガス圧4.0Pa下でRu中間層を20nm成膜した。次に、Co8Cr12Pt合金中にBCを8at%混合した、92(Co8Cr12Pt)−8BCターゲットを用いて、CoCrPt−BC磁気記録層を20nm成膜した。
【0042】
最後にカーボンターゲットを用いてカーボンからなる保護膜10nmを成膜後、真空装置から取り出した。Ru中間層の成膜を除くこれらの成膜はすべてArガス圧0.67Pa下で行い、全ての成膜はDCマグネトロンスパッタリング法により行なった。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成し、単層垂直磁気記録媒体とした。
【0043】
[実施例3]
磁気記録層中のBC濃度を12at%として磁気記録層組成を88(Co8Cr12Pt)−12BCとしたこと以外は実施例2と全く同様の方法により単層垂直磁気記録媒体を作製した。
【0044】
[実施例4]
磁気記録層中のBC濃度を16at%として磁気記録層組成を84(Co8Cr12Pt)−16BCとしたこと以外は実施例2と全く同様の方法により単層垂直磁気記録媒体を作製した。
【0045】
[実施例5]
磁気記録組成を、Co8Cr16Pt中にBC濃度を16at%混合した84(Co8Cr16Pt)−16BCとしたこと以外は実施例2と全く同様の方法により単層垂直磁気記録媒体を作製した。
【0046】
[比較例2]
磁気記録層にRFスパッタリング法による92(Co8Cr12Pt)−8SiOを用いたこと以外は実施例2と全く同様の方法により単層垂直磁気記録媒体を作製した。
【0047】
完成した垂直磁気記録媒体の保磁力Hcおよび角型比Sを試料振動磁力計(VSM)により、一軸異方性定数Kuを磁気トルクメータにより評価した。測定結果を表2に示す。Hcに関しては、実施例2〜4で比較例2よりも低くなっているものの、実施例5では比較例2よりも高い値となっており、組成の工夫により従来のSiOグラニュラー媒体よりも高いHcを得ることが可能であることがわかる。
【0048】
特に差が大きく出ているのは一軸異方性定数Kuである。Kuは表2に示した全ての実施例において比較例を大きく上回っており、特に実施例5では比較例2のほぼ2倍という大きなKuが得られている。Kuが大きいということは熱安定性に優れるということを示しており、実施例2〜5のCoCrPt−BC媒体が従来のCoCrPt−SiO媒体と比較して優れた熱安定性を有することがわかる。
【0049】
また、角型比に関しては、比較例2では0.9程度であるのに対し、実施例2〜5では誤差の範囲でほぼ1となっている(測定上のノイズの関係で1よりも低くなっているが、磁化曲線上は明らかに1となっている)。CoCrPt−BC媒体において角型比が高くなっているのは、上述のKuの向上が寄与しているものと考えられる。
【0050】
【表2】
Figure 0004540288
【0051】
【発明の効果】
以上説明したように本発明に係る垂直磁気記録媒体およびその製造方法によれば、BCを非磁性添加物として磁性材料に加えた材料を用いてグラニュラー磁気記録層を形成することで、従来のCoCrPt媒体やCoCrPt−SiOグラニュラー媒体と比較して高い熱安定性を得ることができる。また、従来のCoCrPtなどの合金材料に比べてノイズを低減することが可能になり、媒体の特性向上に繋がる。更に、本発明に係る垂直磁気記録媒体におけるグラニュラー磁気記録層はDCスパッタリングにより成膜可能なことから、RFスパッタリングでなければ成膜できなかったCoPt−SiOなど従来のグラニュラー材料を使用する場合と比べて安価に製造でき、媒体のコストダウンにも繋がるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る垂直二層媒体の一実施形態を示す断面模式図である。
【図2】本発明に係る垂直二層媒体の別の実施形態を示す断面模式図である。
【図3】本発明に係る垂直二層媒体の実施例1および比較例1に係る規格化ノイズの線記録密度依存を示す特性図である。
【符号の説明】
1 非磁性基体
2 軟磁性裏打ち層
3 軟磁性下地層
4 非磁性中間層
5 磁気記録層
6 保護膜
7 液体潤滑材層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a perpendicular magnetic recording medium mounted on various magnetic recording apparatuses and a manufacturing method thereof.
[0002]
[Prior art]
As a technique for realizing a high density magnetic recording, a perpendicular magnetic recording system is drawing attention in place of the conventional longitudinal magnetic recording system.
[0003]
Perpendicular magnetic recording media are mainly used for magnetic recording layers of hard magnetic materials, an underlayer for orienting the magnetic recording layer in a desired direction, a protective film for protecting the surface of the magnetic recording layer, and recording on this recording layer. It is composed of a backing layer of a soft magnetic material that plays a role of concentrating the magnetic flux generated by the magnetic head used.
[0004]
As magnetic recording layer materials for perpendicular media, alloy materials such as CoCrPt and CoCrTa have been mainly used so far. In these alloy materials, Cr, which is a nonmagnetic material, segregates at the crystal grain boundaries, so that individual crystal grains are magnetically separated, and the characteristics necessary for a magnetic recording medium such as high coercivity (Hc) are exhibited. . Such segregation of Cr to the crystal grain boundary has been promoted in the in-plane medium by devising a film forming process such as heating or applying a substrate bias. However, in the case of a vertical medium, the amount of Cr segregation is small even when heating or applying a substrate bias is applied as in the case of the in-plane medium, and this causes a problem that the medium noise becomes high.
[0005]
As a method for solving this problem, a granular magnetic film in which a nonmagnetic material such as an oxide such as SiO 2 , Al 2 O 3 or Cr 2 O 3 or a nitride such as SiN or AlN is added to an alloy material such as CoPt or CoCrPt. Has been proposed. For example, in a CoPt—SiO 2 granular film, the CoPt crystal grains are segregated so as to surround the SiO 2 , whereby the individual CoPt crystal grains are magnetically separated. As described above, the granular film is characterized in that it does not use phase separation (magnetic phase separation) of the alloy material but adds an amorphous material that is not easily dissolved in the alloy material, such as oxide or nitride.
[0006]
[Problems to be solved by the invention]
However, it is difficult to completely separate the magnetic material such as CoPt or CoCrPt and the non-magnetic matrix material such as SiO 2 or AlN from the granular material using oxide or nitride as a matrix. It is known to mix in magnetic materials. Mixing the matrix material with the magnetic material not only causes deterioration in crystallinity and orientation of the magnetic recording layer, but also causes deterioration in thermal stability due to a decrease in uniaxial anisotropy. Although there are attempts to improve magnetic properties and uniaxial anisotropy by heat treatment, heat treatment that requires a long time is not suitable for mass production, so it is difficult to apply when considering practical application.
[0007]
In addition, materials such as oxides and nitrides have low conductivity, and even when mixed with alloy materials such as CoPt and CoCrPt, high conductivity cannot be obtained. For this reason, when the granular film is formed by sputtering, it is necessary to use RF sputtering. However, the RF sputtering method is higher in apparatus cost and running cost than the DC sputtering method, and it is desirable to form a film by DC sputtering in consideration of mass production.
[0008]
Non-oxide or non-nitride granular magnetic films that can be formed by DC sputtering include CoC (Summary of the 21st Annual Conference of the Magnetic Society of Japan, 23 (1997) and CoPtC (IEEE Trans.Mag., 34 , 4). , 1627 (1998)), but the coercive force [Hc] is 80 [kA / m] or less for CoC and about 160 [kA / m] for CoPtC, and sufficient magnetic properties are not obtained. .
[0009]
Accordingly, an object of the present invention is to provide a perpendicular magnetic recording medium and a method for manufacturing the same that can solve the above-described problems.
[0010]
[Means for Solving the Problems]
In a granular magnetic film, in order for the nonmagnetic matrix material and the magnetic material to properly phase-separate and obtain sufficient magnetic properties and thermal stability, the nonmagnetic matrix material can form a solid solution or form a compound with the magnetic material. However, it is necessary to precipitate in the grain boundary in an amorphous state. When mass production is considered, it is desirable that the film can be formed by a DC sputtering method from the viewpoint of the stability and cost of the apparatus. However, in order to obtain such a granular magnetic layer material, a nonmagnetic additive can be used. High conductivity is required.
[0011]
As means for satisfying the above-described conditions and solving the conventional problems, the present inventors have repeatedly studied and formed a film by DC sputtering by using a granular film containing B 4 C as a nonmagnetic material for the magnetic recording layer. It was found that high magnetic properties and thermal stability can be obtained. It has also been found that when these granular films are used, the noise is lower than that of conventional magnetic recording layers such as CoCrPt and CoCrTa.
[0012]
In order to achieve the above object based on the above considerations and knowledge, the present inventors sequentially formed a soft magnetic backing layer, an underlayer, an intermediate layer, a magnetic recording layer, a protective film, and a liquid lubricating layer on a nonmagnetic substrate. A perpendicular recording medium, wherein the underlayer is made of a permalloy material, the intermediate layer is made of Ru or a Ru-based alloy, and the magnetic recording layer is a granular material containing CoCrPt as a main component and adding B 4 C. A perpendicular magnetic recording medium having a structure and formed by a DC sputtering method was implemented.
[0013]
Here, the granular structure of the magnetic recording layer may be formed by segregating B 4 C at a grain boundary.
[0014]
In order to achieve the above object, the inventors of the present invention provide a method for manufacturing a perpendicular recording medium in which a soft magnetic underlayer, an underlayer, an intermediate layer, and a magnetic recording layer made of CoCrPt are sequentially formed on a nonmagnetic substrate. The underlayer is formed using a permalloy material, the intermediate layer is formed using a Ru or Ru-based alloy material, and the magnetic material is made of a granular material obtained by adding B 4 C to the magnetic material. The recording layer was formed by a DC sputtering method, and a method of manufacturing a perpendicular magnetic recording medium was performed in which the temperature of the nonmagnetic substrate at the time of film formation was about room temperature.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional view of a vertical medium according to the present invention.
The perpendicular magnetic recording medium according to the present invention includes a nonmagnetic substrate 1, a soft magnetic backing layer 2, an underlayer 3, a nonmagnetic intermediate layer 4, a magnetic recording layer 5, and a protective layer that are sequentially provided on the nonmagnetic substrate 1. A film 6 and a liquid lubricant layer 7 are included.
[0017]
The nonmagnetic substrate 1 may be various substrates having a smooth surface. For example, an Al alloy plated with NiP, tempered glass, crystallized glass or the like used for a magnetic recording medium can be used. As the soft magnetic backing layer 2, crystalline FeTaC, Sendust (FeSiAl) alloy, etc., or amorphous Co alloy such as CoZrNb, CoTaZr, or the like can be used. The optimum value of the film thickness of the soft magnetic underlayer 2 varies depending on the structure and characteristics of the magnetic head used for recording, but is preferably about 10 nm to 500 nm in view of productivity.
[0018]
The underlayer 3 is made of a material having an effect of orienting the c-axis of the magnetic recording layer 5 perpendicularly to the film surface. NiFe, NiFeCr, NiFeMo, NiFeNb, NiFeNbMo, nonmagnetic, which are soft magnetic permalloy materials. NiFeCr, Ti, TiCr, Pd, or the like can be used.
[0019]
The nonmagnetic intermediate layer 4 is made of a material that is nonmagnetic and has an effect of orienting the c-axis of the magnetic recording layer perpendicularly to the film surface, and also has an effect of reducing the initial layer of the magnetic recording layer. Ru-based alloys such as RuC and RuW, CoCr, Pt, and the like can be used. When the underlayer 3 is nonmagnetic and also functions as the nonmagnetic intermediate layer 4, it is not necessary to form the nonmagnetic intermediate layer 4.
[0020]
For the magnetic recording layer 5, a granular material in which B 4 C is added to a magnetic material is used. At this time, Co, CoPt, CoCrPt, FePt, SmCo, or the like can be used as the magnetic material, but is not limited thereto. However, the magnetic recording layer 5 may be formed while the temperature of the nonmagnetic substrate 1 when forming the magnetic recording layer 5 is kept at about room temperature, and phase separation can be realized without heat treatment. it can.
[0021]
Between the soft magnetic backing layer 2 and the nonmagnetic substrate 1, the underlayer and the antiferromagnetic pin layer (both shown in the figure) are used to reduce noise by pinning the magnetization of the soft magnetic backing layer 2 radially outward. (Not shown) can be used.
[0022]
FIG. 2 is a schematic cross-sectional view of a vertical medium having an antiferromagnetic pinned layer according to the present invention.
For the underlayer 8 for the antiferromagnetic pin layer, a permalloy material such as NiFe, NiFeCr, NiFeB or the like can be used. As the antiferromagnetic pin layer 9, an ordered alloy material such as PtMn or NiMn, FeMn, An irregular alloy material such as IrMn or an oxide material such as NiO can be used. The film thickness of the antiferromagnetic pinned layer 9 varies depending on the combination of the material used and the soft magnetic layer, but is preferably about 1 nm to 30 nm in view of productivity.
[0023]
For example, a thin film mainly composed of carbon is used as the protective film 5. In addition, various thin film materials generally used as a protective film of a magnetic recording medium may be used.
[0024]
For the liquid lubricant layer 6, for example, a perfluoropolyether lubricant can be used. In addition, various lubricating materials that are generally used as liquid lubricating layer materials for magnetic recording media may be used.
[0025]
Each layer laminated on the nonmagnetic substrate 1 can be formed by various film forming techniques normally used in the field of magnetic recording media. For example, a DC magnetron sputtering method, an RF magnetron sputtering method, or a vacuum deposition method can be used to form each layer except the liquid lubricant layer. In addition, for example, a dipping method or a spin coating method can be used for forming the liquid lubricating layer. However, it is not limited to these.
[0026]
【Example】
Hereinafter, the perpendicular magnetic recording medium of the present invention will be described in detail with reference to the following examples. However, the present invention is not limited thereto, and various modifications can be made without departing from the scope of the present invention. Needless to say.
[0027]
[Example 1]
In this example, a nonmagnetic substrate and a soft magnetic CoZrNb backing layer, a soft magnetic NiFeNbB underlayer, a Ru intermediate layer, a CoCrPt-B 4 C granular magnetic recording layer, a protective film, and a liquid lubricating layer sequentially provided thereon are formed. The present invention relates to a dual-layer perpendicular magnetic recording medium having the same.
[0028]
A chemically tempered glass substrate (for example, N-10 glass substrate manufactured by HOYA) having a smooth surface is used as the nonmagnetic substrate, and this is introduced into a sputtering apparatus after cleaning, and a CoZrNb amorphous soft magnetic backing layer using a Co8Zr5Nb target. Was deposited to 200 nm. Next, as a base layer, a NiFeNbB base layer having a thickness of 5 nm was formed using a Ni12Fe3Nb3B target, which is a permalloy-based soft magnetic material.
[0029]
Subsequently, using a Ru target, a 20 nm thick Ru intermediate layer was formed under an Ar gas pressure of 4.0 Pa. Next, a CoCrPt—B 4 C magnetic recording layer was formed to a thickness of 20 nm using a 92 (Co8Cr15Pt) -8B 4 C target in which 8 at% of B 4 C was mixed in a Co10Cr15Pt alloy.
[0030]
Finally, a protective film 10 nm made of carbon was formed using a carbon target, and then taken out from the vacuum apparatus. All of these film formations except for the Ru intermediate layer film formation were performed under an Ar gas pressure of 0.67 Pa, and all film formations were performed by the DC magnetron sputtering method. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dip method to obtain a perpendicular magnetic recording medium.
[0031]
[Comparative Example 1]
Perpendicular magnetic recording medium using the same method as in Example 1 except that Co20Cr10Pt was used for the magnetic recording layer and that the substrate surface temperature was 280 ° C. using a lamp heater before the magnetic recording layer was formed. Was made.
[0032]
The coercive force Hc and squareness ratio S of the completed perpendicular magnetic recording medium are determined with a magnetic Kerr effect magnetometer, orientation dispersion (Δθ 50 ) is determined with a rocking curve method using an X-ray diffractometer, and the crystal grain size and grain boundary width are determined. Evaluation was performed with a transmission electron microscope (TEM). The measurement results are shown in Table 1.
[0033]
When the magnetic properties are compared, in Example 1, Hc higher than that in Comparative Example 1 (medium manufactured under conventional conditions) is obtained. As can be seen from the difference in grain boundary width evaluated by TEM, This is thought to be because the separation of crystal grains progressed and the interparticle interaction decreased. Further, the squareness ratio S is about 0.9 in Comparative Example 1, whereas it is almost 1 in Example 1. A high squareness ratio means that the signal degradation is small, that is, the thermal stability is high. Therefore, it is understood that the CoCrPt-B 4 C granular medium is superior in thermal stability compared to the CoCrPt medium. It was.
[0034]
There is no difference in the orientation dispersion Δ 50 between the granular magnetic film (Example 1) and the CoCrPt magnetic film (Comparative Example 1), and it was confirmed that no deterioration of the orientation occurred even though the nonmagnetic matrix material was mixed. It was done. The difference between the granular medium and the CoCrPt medium is particularly large in the crystal grain size and the grain boundary width. In Example 1 and Comparative Example 1, although the same underlayer and intermediate layer are used, the crystal grain size of the magnetic recording layer is greatly miniaturized. The fact that the crystal grain size is small means that the jaggedness of bit transition is reduced when recording by the head, and is an important index for reducing the noise of the medium.
[0035]
In addition, the grain boundary width of CoCrPt in Comparative Example 1 is 1 nm, whereas in CoCrPt-B 4 C (Example 1), the grain boundary width is about twice as large as 2.2 nm. The broadening of the grain boundary width is effective for reducing the magnetic interaction between crystal grains, and the reduction of the magnetic interaction leads to a reduction in noise.
[0036]
FIG. 3 shows the results of measuring the noise of the media of Example 1 and Comparative Example 1 using a spin stand tester. CoCrPt-B 4 C (Example 1) is greatly reduced in noise compared to CoCrPt (Comparative Example 1), as expected because the crystal grain size has been refined and the grain boundary width has increased. Was able to be lowered.
[0037]
As described above, a medium having high thermal stability and magnetic properties could be obtained by using CoCrPt—B 4 C as the magnetic recording layer. In addition, with the refinement of crystal grains and the increase in grain boundary width, a significant reduction in noise was achieved compared to conventional CoCrPt media.
[0038]
[Table 1]
Figure 0004540288
[0039]
[Example 2]
In this example, a single unit having a nonmagnetic substrate, a Ta seed layer, a nonmagnetic NiFeCr underlayer, a Ru intermediate layer, a CoCrPt-B 4 C granular magnetic recording layer, a protective film, and a liquid lubricating layer sequentially provided thereon. The present invention relates to a layer perpendicular magnetic recording medium.
[0040]
A chemically strengthened glass substrate having a smooth surface (for example, N-10 glass substrate manufactured by HOYA) was used as the nonmagnetic substrate, and this was introduced into the sputtering apparatus after cleaning, and a Ta seed layer was formed to a thickness of 5 nm using a Ta target. . Next, a NiFeCr underlayer was formed to a thickness of 10 nm using a Ni12Fe27Cr target, which is a permalloy-based nonmagnetic material.
[0041]
Subsequently, using a Ru target, a 20 nm thick Ru intermediate layer was formed under an Ar gas pressure of 4.0 Pa. Next, a CoCrPt-B 4 C magnetic recording layer was formed to a thickness of 20 nm using a 92 (Co8Cr12Pt) -8B 4 C target in which 8 at% of B 4 C was mixed in a Co 8 Cr 12 Pt alloy.
[0042]
Finally, a protective film 10 nm made of carbon was formed using a carbon target, and then taken out from the vacuum apparatus. All of these film formations except for the Ru intermediate layer film formation were performed under an Ar gas pressure of 0.67 Pa, and all film formations were performed by the DC magnetron sputtering method. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dip method to obtain a single layer perpendicular magnetic recording medium.
[0043]
[Example 3]
A single-layer perpendicular magnetic recording medium was produced in the same manner as in Example 2 except that the B 4 C concentration in the magnetic recording layer was 12 at% and the magnetic recording layer composition was 88 (Co8Cr12Pt) -12B 4 C.
[0044]
[Example 4]
A single-layer perpendicular magnetic recording medium was produced in the same manner as in Example 2 except that the B 4 C concentration in the magnetic recording layer was 16 at% and the magnetic recording layer composition was 84 (Co8Cr12Pt) -16B 4 C.
[0045]
[Example 5]
A single-layer perpendicular magnetic recording medium was produced in the same manner as in Example 2 except that the magnetic recording composition was 84 (Co8Cr16Pt) -16B 4 C in which B 4 C concentration was mixed at 16 at% in Co 8 Cr 16 Pt.
[0046]
[Comparative Example 2]
To prepare a single-layer perpendicular magnetic recording medium by exactly the same method as in Example 2 except for using 92 (Co8Cr12Pt) -8SiO 2 by RF sputtering magnetic recording layer.
[0047]
The coercive force Hc and squareness ratio S of the completed perpendicular magnetic recording medium were evaluated by a sample vibration magnetometer (VSM), and the uniaxial anisotropy constant Ku was evaluated by a magnetic torque meter. The measurement results are shown in Table 2. As for Hc, although it is lower than Comparative Example 2 in Examples 2 to 4, it is higher than that of Comparative Example 2 in Example 5, and is higher than that of the conventional SiO 2 granular medium due to the composition. It can be seen that Hc can be obtained.
[0048]
A particularly large difference is the uniaxial anisotropy constant Ku. Ku greatly exceeds the comparative example in all the examples shown in Table 2, and in particular, in Example 5, a large Ku of approximately twice that of Comparative Example 2 is obtained. A large Ku indicates that the thermal stability is excellent, and the CoCrPt—B 4 C media of Examples 2 to 5 have superior thermal stability compared to the conventional CoCrPt—SiO 2 media. I understand.
[0049]
Further, the squareness ratio is about 0.9 in Comparative Example 2, whereas it is almost 1 in the error range in Examples 2 to 5 (lower than 1 due to measurement noise). Although it is clearly 1 on the magnetization curve). The reason why the squareness ratio is high in the CoCrPt—B 4 C medium is thought to be due to the above-described improvement in Ku.
[0050]
[Table 2]
Figure 0004540288
[0051]
【The invention's effect】
As described above, according to the perpendicular magnetic recording medium and the method of manufacturing the same according to the present invention, a granular magnetic recording layer is formed by using a material in which B 4 C is added as a nonmagnetic additive to a magnetic material. Compared with CoCrPt medium and CoCrPt-SiO 2 granular medium, high thermal stability can be obtained. In addition, noise can be reduced as compared with conventional alloy materials such as CoCrPt, which leads to improvement of the characteristics of the medium. Further, since the granular magnetic recording layer in the perpendicular magnetic recording medium according to the present invention can be formed by DC sputtering, a conventional granular material such as CoPt-SiO 2 that could not be formed only by RF sputtering is used. Compared with this, it can be manufactured at a low cost, and the cost of the medium can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a vertical double-layer medium according to the present invention.
FIG. 2 is a schematic cross-sectional view showing another embodiment of a vertical double-layer medium according to the present invention.
FIG. 3 is a characteristic diagram showing the linear recording density dependence of standardized noise according to Example 1 and Comparative Example 1 of a vertical double-layer medium according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nonmagnetic base | substrate 2 Soft magnetic backing layer 3 Soft magnetic underlayer 4 Nonmagnetic intermediate layer 5 Magnetic recording layer 6 Protective film 7 Liquid lubricant layer

Claims (3)

非磁性基体上に軟磁性裏打ち層、下地層、中間層、磁気記録層、保護膜、液体潤滑層を順次積層されてなる垂直記録媒体であって、
前記下地層がパーマロイ系材料からなり、
前記中間層がRuまたはRu基合金からなり、
前記磁気記録層がCoCrPtを主成分としてBCを加えたグラニュラー構造からなり且つDCスパッタリング法により成膜されている
ことを特徴とする垂直磁気記録媒体。
A perpendicular recording medium in which a soft magnetic backing layer, an underlayer, an intermediate layer, a magnetic recording layer, a protective film, and a liquid lubricating layer are sequentially laminated on a nonmagnetic substrate,
The underlayer is made of a permalloy material,
The intermediate layer is made of Ru or a Ru-based alloy;
A perpendicular magnetic recording medium, wherein the magnetic recording layer has a granular structure in which CoCrPt is a main component and B 4 C is added, and is formed by a DC sputtering method.
請求項1において、
前記磁気記録層の前記グラニュラー構造は、BCが結晶粒界に偏析して形成されたものであることを特徴とする垂直磁気記録媒体。
In claim 1,
The perpendicular magnetic recording medium according to claim 1, wherein the granular structure of the magnetic recording layer is formed by segregating B 4 C at a grain boundary.
非磁性基体上に軟磁性裏打ち層、下地層、中間層、CoCrPtからなる磁気記録層を順次形成する垂直記録媒体の製造方法であって、
パーマロイ系材料を用いて前記下地層を成膜し、
RuまたはRu基合金材料を用いて前記中間層を成膜し、
磁性材料にBCを加えたグラニュラー材料を原材料に用いて前記磁気記録層をDCスパッタリング法により成膜し且つ該成膜時の前記非磁性基体の温度をほぼ室温程度の常温とすることを特徴とする垂直磁気記録媒体の製造方法。
A method of manufacturing a perpendicular recording medium in which a soft magnetic backing layer, an underlayer, an intermediate layer, and a magnetic recording layer made of CoCrPt are sequentially formed on a nonmagnetic substrate,
The underlayer is formed using a permalloy material,
Depositing the intermediate layer using Ru or a Ru-based alloy material;
Forming the magnetic recording layer by a DC sputtering method using a granular material obtained by adding B 4 C to a magnetic material as a raw material, and setting the temperature of the nonmagnetic substrate at the time of film formation to a room temperature of about room temperature. A manufacturing method of a perpendicular magnetic recording medium characterized by the above.
JP2002176327A 2002-06-17 2002-06-17 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Lifetime JP4540288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176327A JP4540288B2 (en) 2002-06-17 2002-06-17 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176327A JP4540288B2 (en) 2002-06-17 2002-06-17 Perpendicular magnetic recording medium and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008000313A Division JP2008097824A (en) 2008-01-07 2008-01-07 Vertical magnetic recording medium and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2004022082A JP2004022082A (en) 2004-01-22
JP4540288B2 true JP4540288B2 (en) 2010-09-08

Family

ID=31174702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176327A Expired - Lifetime JP4540288B2 (en) 2002-06-17 2002-06-17 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4540288B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088609A1 (en) * 2004-03-15 2005-09-22 Fuji Electric Device Technology Co., Ltd. Vertical magnetic recording medium, process for producing the same and magnetic recording apparatus
JP2005353256A (en) 2004-05-13 2005-12-22 Fujitsu Ltd Perpendicular magnetic recording medium, method of producing the same, and magnetic storage device
US7498092B2 (en) * 2005-01-26 2009-03-03 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with magnetic torque layer coupled to the perpendicular recording layer
US7833640B2 (en) 2005-08-19 2010-11-16 Hitachi Global Storage Technologies Netherlands B.V. Intermediate tri-layer structure for perpendicular recording media
EP3300080B1 (en) * 2015-05-18 2020-02-05 Sony Corporation Magnetic recording medium
JP6767251B2 (en) 2016-12-08 2020-10-14 昭和電工株式会社 Manufacturing method of magnetic recording medium
JP6767256B2 (en) 2016-12-21 2020-10-14 昭和電工株式会社 Manufacturing method of magnetic recording medium

Also Published As

Publication number Publication date
JP2004022082A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US7635498B2 (en) Fabrication method for perpendicular magnetic recording media
JP3755449B2 (en) Perpendicular magnetic recording medium
US7781079B2 (en) Perpendicular magnetic recording medium, its manufacturing method, and a magnetic storage apparatus
US7993764B2 (en) Perpendicular magnetic recording medium and the method of manufacturing the same
US6383668B1 (en) Magnetic recording media with antiferromagnetically coupled host layer for the magnetic recording layer
US20070275269A1 (en) Magnetic recording medium and magnetic storage unit
JP2004022138A (en) Vertical magnetic recording medium and its manufacturing method
US20070218316A1 (en) Magnetic recording medium, method of producing same, and magnetic storage apparatus
JP2008192249A (en) Vertical magnetic recording medium, method for manufacturing the same, and magnetic recording and reproducing device
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4540288B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20070207348A1 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic storage unit
US7045225B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2008097824A (en) Vertical magnetic recording medium and manufacturing method therefor
JP4624838B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP4123008B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2004288348A (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP5345543B2 (en) Method for manufacturing perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
US20060280972A1 (en) Magnetic recording medium and magnetic storage
JP2003346333A (en) Perpendicular magnetic record medium and manufacturing method therefor
JP4348673B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4066845B2 (en) Magnetic recording medium and method for manufacturing the same
JP4072753B2 (en) Method for manufacturing perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4540288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term