JP2002269718A - Perpendicular magnetic recording medium and magnetic storage device - Google Patents

Perpendicular magnetic recording medium and magnetic storage device

Info

Publication number
JP2002269718A
JP2002269718A JP2001072941A JP2001072941A JP2002269718A JP 2002269718 A JP2002269718 A JP 2002269718A JP 2001072941 A JP2001072941 A JP 2001072941A JP 2001072941 A JP2001072941 A JP 2001072941A JP 2002269718 A JP2002269718 A JP 2002269718A
Authority
JP
Japan
Prior art keywords
film
magnetic
layer
medium
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001072941A
Other languages
Japanese (ja)
Other versions
JP3647379B2 (en
Inventor
Yukio Honda
幸雄 本多
Masaaki Futamoto
正昭 二本
Kiwamu Tanahashi
究 棚橋
Atsushi Kikukawa
敦 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001072941A priority Critical patent/JP3647379B2/en
Publication of JP2002269718A publication Critical patent/JP2002269718A/en
Application granted granted Critical
Publication of JP3647379B2 publication Critical patent/JP3647379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium having excellent low noise characteristics and stability of recording magnetization and suitable for super high density magnetic recording and to provide a magnetic storage device. SOLUTION: In the perpendicular magnetic recording medium, a perpendicularly magnetized film 20 having a laminated structure consisting of Co/(Pt or Pd) multilayered films 14, 16 and 18 and Co-Xa/(Pt or Pd) multilayered films 15 and 17 (Xa: Cr, B, Ta, Mn, V) or consisting of the Co/(Pt or Pd) multilayered films and Co/(Pt-Ya or Pd-Ya) multilayered films (Ya: B, Ta, Ru, Re, Ir, Mn, Mg, Zr, Nb) is used and an amorphous material or a polycrystalline thin film having a noncolumnar structure is used as a backing layer 12 whose magnetic domain structure is controlled by a magnetic domain fixing layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、再生ノイズが小さ
く、記録磁化の安定性に優れた超高密度磁気記録に好適
な垂直磁気記録媒体及び磁気記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium and a magnetic storage device which are suitable for ultra-high-density magnetic recording and have low reproduction noise and excellent recording magnetization stability.

【0002】[0002]

【従来の技術】現在、実用的に用いられている面内磁気
記録方式において線記録密度を向上するには、記録時の
反磁界の影響を減少するために記録媒体である磁性膜の
残留磁化(Br)と磁性膜厚(t)の積(Br・t)を
小さくし、保磁力を増大する必要がある。また、磁化遷
移から発生する媒体ノイズを減少するために、磁性膜の
磁化容易軸を基板面に平行に配向させると共に、結晶粒
径の制御が必要である。
2. Description of the Related Art In order to improve the linear recording density in the in-plane magnetic recording system currently used practically, the residual magnetization of a magnetic film as a recording medium must be reduced in order to reduce the influence of a demagnetizing field during recording. It is necessary to reduce the product (Br · t) of (Br) and the magnetic film thickness (t) to increase the coercive force. Further, in order to reduce the medium noise generated from the magnetization transition, it is necessary to orient the easy axis of the magnetic film parallel to the substrate surface and to control the crystal grain size.

【0003】面内磁気記録用の磁性膜としては、Coを
主成分とし、これにCr,Ta,Pt,Rh,Pd,T
i,Ni,Nb,Hfなどを添加したCo合金薄膜が用
いられる。磁性薄膜を構成するCo合金は、主として六
方稠密格子構造(以下、hcp構造という)の材料を用
いる。この結晶のc軸は<00.1>方向に磁化容易軸
を持ち、この磁化容易軸を面内方向に配向させる。磁性
薄膜の結晶配向性や粒径を制御するために、基板と磁性
膜の間に構造制御用の下地層を形成する。下地層として
は、Crを主成分とし、これにTi,Mo,V,W,P
t,Pdなどを添加した材料を用いる。磁性薄膜は真空
蒸着法やスパッタリング法により形成する。前記したよ
うに、面内磁気記録において媒体ノイズを小さくし線記
録密度を向上するには、磁性膜の残留磁化(Br)と磁
性膜厚(t)の積を小さくする必要があり、このために
磁性膜の膜厚を20nm以下まで薄くし、結晶粒径を1
0〜15nmまで微細化することが必要である。しか
し、このような磁性結晶粒を微細化した媒体では、熱揺
らぎにより記録磁化が減少するという極めて重大な問題
があり、高密度記録の障害となっている。
As a magnetic film for longitudinal magnetic recording, Co is used as a main component and Cr, Ta, Pt, Rh, Pd, T
A Co alloy thin film to which i, Ni, Nb, Hf or the like is added is used. As the Co alloy constituting the magnetic thin film, a material having a hexagonal close-packed lattice structure (hereinafter, referred to as an hcp structure) is mainly used. The c axis of the crystal has an easy axis in the <00.1> direction, and the easy axis is oriented in the in-plane direction. In order to control the crystal orientation and grain size of the magnetic thin film, an underlayer for structure control is formed between the substrate and the magnetic film. The base layer is mainly composed of Cr, and Ti, Mo, V, W, P
A material to which t, Pd, or the like is added is used. The magnetic thin film is formed by a vacuum evaporation method or a sputtering method. As described above, in order to reduce medium noise and improve linear recording density in longitudinal magnetic recording, it is necessary to reduce the product of the residual magnetization (Br) and the magnetic film thickness (t) of the magnetic film. First, the thickness of the magnetic film is reduced to 20 nm or less, and the crystal grain size is reduced to 1 nm.
It is necessary to reduce the size to 0 to 15 nm. However, such a medium in which the magnetic crystal grains are made fine has a very serious problem that the recording magnetization decreases due to thermal fluctuation, which is an obstacle to high-density recording.

【0004】一方、垂直磁気記録方式は、記録媒体面に
垂直に、かつ隣り合う記録ビットが互いに反平行になる
ように磁区を形成する磁気記録方式であり、記録ビット
の境界での反磁界が小さくなり高密度記録ほど磁化が安
定に保たれ易い利点があり、高密度磁気記録の有力な手
段の一つである。垂直磁気記録では、面内磁気記録に比
べて磁性膜厚を厚くでき、特に高記録密度領域での記録
磁化を安定に保持できる利点がある。垂直磁気記録によ
り線記録密度を向上するためには、記録ビット内部及び
磁化遷移領域に形成される不規則構造の磁区から発生す
る媒体ノイズを減少することが必要である。このために
は、磁性膜の磁化容易軸を基板面に垂直に配向させると
共に、磁化容易軸の配向分散を小さくし、結晶粒径を制
御することが必要である。
On the other hand, the perpendicular magnetic recording system is a magnetic recording system in which magnetic domains are formed perpendicularly to the recording medium surface so that adjacent recording bits are antiparallel to each other. There is an advantage that the smaller the recording density is, the more easily the magnetization can be stably maintained as the recording density is high. This is one of the effective means of the high-density magnetic recording. Perpendicular magnetic recording has an advantage that the magnetic film thickness can be made thicker than in-plane magnetic recording, and that the recording magnetization in a high recording density region can be stably maintained, particularly. In order to improve linear recording density by perpendicular magnetic recording, it is necessary to reduce medium noise generated from magnetic domains having irregular structures formed inside recording bits and in a magnetization transition region. To this end, it is necessary to align the easy axis of the magnetic film perpendicular to the substrate surface, reduce the orientation dispersion of the easy axis, and control the crystal grain size.

【0005】垂直磁気記録媒体には、基板上に構造制御
層を介して垂直磁化膜を形成した単層垂直磁気記録媒体
と、基板上に軟磁性膜を形成し、この上に構造制御層を
介して垂直磁化膜を形成した2層垂直磁気記録媒体があ
る。前者の場合、媒体ノイズの主因は、記録ビット内部
及び磁化遷移領域に形成される不規則構造の磁区であ
る。一方、後者の2層垂直磁気記録媒体の場合、媒体ノ
イズは記録ビット内部及び磁化遷移領域に形成される不
規則構造の磁区に加えて、垂直磁化膜の下層に設けた軟
磁性膜の磁区構造の乱れによっても発生する。
[0005] The perpendicular magnetic recording medium includes a single-layer perpendicular magnetic recording medium in which a perpendicular magnetization film is formed on a substrate via a structure control layer, and a soft magnetic film formed on a substrate, on which a structure control layer is formed. There is a two-layer perpendicular magnetic recording medium in which a perpendicular magnetization film is formed through the medium. In the former case, the main cause of the medium noise is a magnetic domain having an irregular structure formed in the recording bit and in the magnetization transition region. On the other hand, in the case of the latter two-layer perpendicular magnetic recording medium, the medium noise is caused by the magnetic domain structure of the soft magnetic film provided below the perpendicular magnetization film in addition to the irregular domain formed inside the recording bit and the magnetization transition region. It is also caused by turbulence.

【0006】[0006]

【発明が解決しようとする課題】垂直磁気記録における
ノイズ低減や記録磁化の安定性を改善する多くの手段が
提案されている。例えば、Digest of the Fourth Perpe
ndicular Magnetic Recording Conference '97やDigest
of the Fifth Perpendicular Magnetic Recording Con
ference 2000に記述されたように、CoCr合金/Ti
からなる2層下地層の導入によるCoCr合金磁性膜の
結晶配向性の向上、CoCrPt−Oグラニュラー型磁
性膜、Co/Pt(or Pd)多層磁性膜、Te−Fe
−Co非晶質磁性膜、あるいはCoCr合金磁性膜の上
にCo/Pt(or Pd)多層磁性膜を被覆することに
より垂直磁化膜の角型比を向上する方法が提案されてい
る。CoCr合金系を用いた従来の垂直磁化膜では、C
oCr合金組成やTa,B,Nbなどの添加元素の導入
による磁性粒子間の相互作用の制御、あるいはシード層
の採用によるCoCr合金磁性膜の結晶配向改善などに
より媒体ノイズの低減や磁化の安定性向上が図られた。
There have been proposed many means for reducing noise and improving the stability of recording magnetization in perpendicular magnetic recording. For example, Digest of the Fourth Perpe
ndicular Magnetic Recording Conference '97 and Digest
of the Fifth Perpendicular Magnetic Recording Con
CoCr alloy / Ti as described in ference 2000
Of the crystal orientation of the CoCr alloy magnetic film by introducing a two-layer underlayer made of CoCrPt-O granular magnetic film, Co / Pt (or Pd) multilayer magnetic film, Te-Fe
A method of improving the squareness ratio of a perpendicular magnetization film by coating a Co / Pt (or Pd) multilayer magnetic film on a -Co amorphous magnetic film or a CoCr alloy magnetic film has been proposed. In a conventional perpendicular magnetization film using a CoCr alloy system, C
Controlling the interaction between magnetic particles by introducing an oCr alloy composition or an additive element such as Ta, B, Nb, or improving the crystal orientation of a CoCr alloy magnetic film by using a seed layer, etc., to reduce medium noise and stabilize magnetization. Improvements were made.

【0007】しかしながらCoCr合金系を用いた従来
の垂直磁化膜では、媒体ノイズの低減と磁化の安定性を
同時に満たす技術は確立されていない。Co/Pt(or
Pd)多層磁性膜やTe−Fe−Co非晶質磁性膜
は、垂直磁気異方性が大きく磁化の安定性に優れている
が、磁性粒間の相互作用が強く高密記録したとき遷移性
ノイズが向上する欠点がある。この欠点を克服するため
に従来技術では、シード層にミクロな起伏を形成する手
段やスパッタリングガス圧力を制御する方法、あるいは
CoCr合金磁性膜の上にCo/Pt(or Pd)多層
磁性膜を被覆する方法などが採用されている。これら従
来技術ではCo/Pt(or Pd)多層磁性膜の垂直磁
気異方性分散を拡大し、媒体ノイズや磁化の安定性を損
なうなど高密度記録の障害となっている。
However, in a conventional perpendicular magnetization film using a CoCr alloy system, a technique for simultaneously reducing medium noise and stabilizing magnetization has not been established. Co / Pt (or
Pd) The multilayer magnetic film and the Te—Fe—Co amorphous magnetic film have large perpendicular magnetic anisotropy and excellent magnetization stability. However, there is a disadvantage that is improved. In order to overcome this drawback, in the prior art, a method of forming microscopic undulations in a seed layer, a method of controlling a sputtering gas pressure, or a method of coating a Co / Pt (or Pd) multilayer magnetic film on a CoCr alloy magnetic film. And the like. In these prior arts, the perpendicular magnetic anisotropy dispersion of the Co / Pt (or Pd) multilayer magnetic film is enlarged, which is an obstacle to high-density recording, such as impairing medium noise and magnetization stability.

【0008】また、垂直磁化膜の下層に軟磁性裏打ち層
を形成することにより記録効率を向上できるが、一方で
は軟磁性層に形成された磁区から発生するノイズも重要
な課題である。軟磁性膜の磁区構造を制御する方式とし
て、例えば特開平11−191217号公報「垂直磁気
記録媒体の製造方法」のように、軟磁性膜の下層に直接
面内磁化膜を接して形成する方法が提案されている。こ
の方法によれば、外部磁界による軟磁性膜の磁区構造の
乱れをある程度低下できる効果は認められるが、軟磁性
膜の下層に直接面内磁化膜を接して形成することにより
面内磁化膜の磁区構造乱れがこの上の軟磁性膜に転写さ
れ、その結果、垂直磁化膜の再生信号の中に軟磁性膜か
ら発生したノイズが含まれて高密度記録の障害になる問
題がある。
Although the recording efficiency can be improved by forming a soft magnetic underlayer below the perpendicular magnetization film, noise generated from magnetic domains formed in the soft magnetic layer is also an important issue. As a method for controlling the magnetic domain structure of the soft magnetic film, for example, a method in which an in-plane magnetized film is directly in contact with a lower layer of the soft magnetic film as disclosed in Japanese Patent Application Laid-Open No. 11-191217, "Method for Manufacturing a Perpendicular Magnetic Recording Medium" Has been proposed. According to this method, the effect that the disturbance of the magnetic domain structure of the soft magnetic film due to the external magnetic field can be reduced to some extent is recognized, but by forming the in-plane magnetic film directly in contact with the lower layer of the soft magnetic film, the in-plane magnetic film can be reduced. The disturbance of the magnetic domain structure is transferred to the soft magnetic film thereon, and as a result, there is a problem that noise generated from the soft magnetic film is included in the reproduction signal of the perpendicular magnetization film, which causes an obstacle to high-density recording.

【0009】垂直磁気異方性に優れたCo/Ptあるい
はCo/Pd多層膜からなる垂直磁気記録媒体により超
高密度磁気記録を実現するには、線記録密度の向上の他
に再生信号に含まれる媒体ノイズの低減と記録磁化を安
定に保つことが重要である。垂直磁気記録媒体におい
て、記録層である垂直磁化膜としては反磁界に打ち勝つ
ために垂直磁気異方性が大きく膜面垂直方向の角型比が
限りなく1に近く、またニュークリエイションフィール
ドが負の値を有し、磁性粒子間の相互作用が適度に制御
され高密度記録したときの磁区サイズが小さいことが、
媒体ノイズの低減と信号劣化を低減するのに望ましい。
In order to realize ultra-high-density magnetic recording with a perpendicular magnetic recording medium composed of a Co / Pt or Co / Pd multilayer film having excellent perpendicular magnetic anisotropy, not only the linear recording density is improved but also the reproduction signal is included. It is important to reduce the medium noise and to keep the recording magnetization stable. In a perpendicular magnetic recording medium, the perpendicular magnetic film as a recording layer has a large perpendicular magnetic anisotropy to overcome the demagnetizing field, has a squareness ratio in the direction perpendicular to the film surface infinitely close to 1, and has a negative nucleation field. Value, the interaction between the magnetic particles is moderately controlled and the magnetic domain size when recording at high density is small,
It is desirable to reduce medium noise and signal degradation.

【0010】本発明は、このような問題認識のもとに、
従来技術の欠点を解消し、優れた低ノイズ特性と記録磁
化の安定性を有し超高密度磁気記録に好適な垂直磁気記
録媒体及び磁気記憶装置を提供することを目的とする。
The present invention has been made in view of such a problem.
It is an object of the present invention to provide a perpendicular magnetic recording medium and a magnetic storage device that have excellent low noise characteristics and stable recording magnetization and that are suitable for ultra-high-density magnetic recording while solving the drawbacks of the prior art.

【0011】[0011]

【課題を解決するための手段】本発明者らは、Co/P
t多層膜やCo/Pd多層膜の優れた垂直磁気異方性を
損なうことなく低ノイズ特性と記録磁化の安定性に優れ
た超高密度磁気記録に好適な垂直磁化膜を見出し、本発
明を完成するに至った。
Means for Solving the Problems The present inventors have proposed Co / P
The present inventors have found a perpendicular magnetization film suitable for ultra-high-density magnetic recording which has low noise characteristics and excellent recording magnetization stability without impairing the excellent perpendicular magnetic anisotropy of the t multilayer film or the Co / Pd multilayer film. It was completed.

【0012】すなわち、本発明による垂直磁気記録媒体
は、Co/Pt又はCo/Pd多層膜を含む垂直磁化膜
からなる垂直磁気記録媒体において、垂直磁化膜の一部
にCo−Xa/Pt又はCo−Xa/Pd多層膜層(X
aはCr,B,Ta,Mn,Vから選択される少なくと
も1種類の元素)を設けたことを特徴とする。
That is, a perpendicular magnetic recording medium according to the present invention is a perpendicular magnetic recording medium comprising a perpendicular magnetic film including a Co / Pt or Co / Pd multilayer film, wherein Co-Xa / Pt or Co -Xa / Pd multilayer film layer (X
a is at least one element selected from the group consisting of Cr, B, Ta, Mn, and V).

【0013】本発明による垂直磁気記録媒体は、また、
Co/Pt又はCo/Pd多層膜を含む垂直磁化膜から
なる垂直磁気記録媒体において、垂直磁化膜の一部にC
o/Pt−Ya又はCo/Pd−Ya多層膜層(Yaは
B,Ta,Ru,Re,Ir,Mn,Mg,Zr,Nb
から選択される少なくとも1種類の元素)を設けたこと
を特徴とする。
[0013] The perpendicular magnetic recording medium according to the present invention also includes:
In a perpendicular magnetic recording medium composed of a perpendicular magnetic film including a Co / Pt or Co / Pd multilayer film, C
o / Pt-Ya or Co / Pd-Ya multilayer film layer (Ya is B, Ta, Ru, Re, Ir, Mn, Mg, Zr, Nb
At least one element selected from the group consisting of:

【0014】Co−Xa/Pt又はCo−Xa/Pd多
層膜層における添加元素Xa(Xa:Cr,B,Ta,
Mn,V)はCo粒子間の磁気的相互作用を制御する作
用があり、また、Co/Pt−Ya又はCo/Pd−Y
a多層膜層おける添加元素Ya(Ya:B,Ta,R
u,Re,Ir,Mn,Mg,Zr,Nb)はPt層や
Pd層の結晶粒径を制御する作用がある。これによりC
o/Pt多層膜やCo/Pd多層膜本来の優れた垂直磁
気異方性を損なうことなく、磁性粒間の磁気的相互作用
を制御し低ノイズ特性と記録磁化の安定性が共に優れた
超高密度磁気記録に好適な垂直磁気録媒体が得られる。
前記垂直磁気記録媒体は、垂直磁化膜の下層に軟磁性層
を有してもよく、また、軟磁性層と垂直磁化膜との間に
非磁性中間層を有してもよい。
In the Co—Xa / Pt or Co—Xa / Pd multilayer film, the additive element Xa (Xa: Cr, B, Ta,
Mn, V) has the effect of controlling the magnetic interaction between Co particles, and also Co / Pt-Ya or Co / Pd-Y
aAdditional element Ya (Ya: B, Ta, R) in a multilayer film layer
u, Re, Ir, Mn, Mg, Zr, Nb) have the effect of controlling the crystal grain size of the Pt layer or Pd layer. This gives C
An ultra-high-performance film that controls the magnetic interaction between magnetic grains and maintains excellent low-noise characteristics and stable recording magnetization without impairing the excellent perpendicular magnetic anisotropy inherent in the o / Pt multilayer film or the Co / Pd multilayer film. A perpendicular magnetic recording medium suitable for high-density magnetic recording is obtained.
The perpendicular magnetic recording medium may have a soft magnetic layer below the perpendicular magnetic film, or may have a non-magnetic intermediate layer between the soft magnetic layer and the perpendicular magnetic film.

【0015】軟磁性層は、Co−Zr−Xb(XbはT
a,Nb,Mo,W,Niから選択される少なくとも1
種類の元素)系非晶質合金膜、Fe−Al−Si合金や
Fe−C−Yc(YcはTa,Hf,Zr,Nbから選
択される少なくとも1種類の元素)合金などの非柱状多
結晶膜、Ni−Fe合金の何れかから構成するのが好ま
しい。
The soft magnetic layer is made of Co-Zr-Xb (Xb is T
at least one selected from a, Nb, Mo, W, and Ni
Non-columnar polycrystals such as an amorphous alloy film of Fe-Al-Si alloy, Fe-C-Yc (Yc is at least one element selected from Ta, Hf, Zr, and Nb) alloys It is preferable to be composed of any of a film and a Ni—Fe alloy.

【0016】また、前記のような裏打ち軟磁性層を備え
た垂直磁気記録媒体において、垂直磁化膜の裏面から1
0〜200nmの距離だけ隔ててIrMn,PtMn,
PtCrMnなどの反強磁性層膜を備えることにより軟
磁性膜から発生するスパイク状ノイズを低減できること
を見い出した。
Further, in the perpendicular magnetic recording medium provided with the above-described soft magnetic underlayer, one side of the perpendicular magnetic film is
IrMn, PtMn,
It has been found that spike noise generated from the soft magnetic film can be reduced by providing an antiferromagnetic layer film such as PtCrMn.

【0017】本発明による垂直磁気記録媒体は一例とし
て、垂直磁化膜直下に配置した反強磁性層の両面に軟磁
性層を設け、磁気記録の際に記録ヘッドからの漏洩磁界
のフラックスリターンパスを形成し記録効率を向上する
構成、垂直磁化膜直下の軟磁性層と垂直磁化膜の間に非
磁性中間層を配置する構成、裏打軟磁性層としてCo−
Zr−Xb(Xb:Ta,Nb,Mo,W,Ni)系非
晶質合金膜、もしくはFe−Al−Si合金やFe−C
−Yc(Yc:Ta,Hf,Zr,Nb)合金などの非
柱状多結晶膜、Ni−Fe合金の何れかの軟磁性層を上
記反強磁性層の片面もしくは両面に設ける構成を採用す
る。
In the perpendicular magnetic recording medium according to the present invention, as an example, soft magnetic layers are provided on both surfaces of an antiferromagnetic layer disposed immediately below a perpendicular magnetization film to provide a flux return path for a leakage magnetic field from a recording head during magnetic recording. A structure in which a recording layer is formed to improve recording efficiency, a structure in which a non-magnetic intermediate layer is disposed between the soft magnetic layer immediately below the perpendicular magnetic film and the perpendicular magnetic film, and a Co-
Zr-Xb (Xb: Ta, Nb, Mo, W, Ni) amorphous alloy film, or Fe-Al-Si alloy or Fe-C
A configuration is employed in which a non-columnar polycrystalline film such as -Yc (Yc: Ta, Hf, Zr, Nb) alloy or a soft magnetic layer of Ni-Fe alloy is provided on one or both surfaces of the antiferromagnetic layer.

【0018】本発明による磁気記憶装置は、磁気記録媒
体と、リング型もしくは単磁極型の磁気記録用ヘッド
と、磁気抵抗効果型、スピンバルブ型もしくは磁気トン
ネル型の信号再生用ヘッドとを備える磁気記憶装置にお
いて、垂直磁気記録媒体として前述の垂直磁気記録媒体
を用いたことを特徴とする。
A magnetic storage device according to the present invention comprises a magnetic recording medium, a ring or single pole type magnetic recording head, and a magnetoresistive, spin valve or magnetic tunnel type signal reproducing head. In the storage device, the above-described perpendicular magnetic recording medium is used as the perpendicular magnetic recording medium.

【0019】[0019]

【発明の実施の形態】以下に本発明の実施例を挙げ、図
面を参照しながら詳細に説明する。図において、同一の
符号を付した部分は、同じ性能特性を有する部分を示
す。図1は、本発明による垂直磁気記録媒体の基本構造
の一例を示す断面模式図である。本発明による垂直磁気
記録媒体は、下層に裏打ち軟磁性層を設けない垂直媒体
でも使用できるが、ここでは下層に裏打ち軟磁性層を有
する図1に示した2層垂直磁気記録媒体により本発明の
内容を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. In the figure, the portions denoted by the same reference numerals indicate portions having the same performance characteristics. FIG. 1 is a schematic sectional view showing an example of the basic structure of a perpendicular magnetic recording medium according to the present invention. Although the perpendicular magnetic recording medium according to the present invention can be used with a perpendicular medium having no underlying soft magnetic layer in the lower layer, the perpendicular magnetic recording medium according to the present invention uses the two-layer perpendicular magnetic recording medium shown in FIG. Explain the contents.

【0020】本発明の垂直磁気記録媒体は、基板11上
に裏打ち軟磁性層12、非磁性中間層13、多層の垂直
磁化膜20、及び保護層19を形成して構成される。基
板11としては、ガラス基板の他にSiディスク基板、
NiP被覆アルミニウム基板、カーボン基板、あるいは
高分子基板などを用いる。裏打ち軟磁性層12は、Co
−Zr−Xb(Xb:Ta,Nb,Mo,W,Ni)系
非晶質合金膜、もしくはFe−Al−Si合金やFe−
C−Yc(Yc:Ta,Hf,Zr,Nb)合金などの
非柱状多結晶膜、Ni−Fe合金の何れかの軟磁性膜を
使用し、裏打ち軟磁性層の磁区構造を制御するためにI
rMn,PtMn,PtCrMnなどの反強磁性層膜を
設ける。
The perpendicular magnetic recording medium of the present invention is formed by forming a soft magnetic underlayer 12, a non-magnetic intermediate layer 13, a multilayer perpendicular magnetic film 20, and a protective layer 19 on a substrate 11. As the substrate 11, a Si disk substrate other than a glass substrate,
An NiP-coated aluminum substrate, a carbon substrate, a polymer substrate, or the like is used. The soft magnetic underlayer 12 is made of Co
-Zr-Xb (Xb: Ta, Nb, Mo, W, Ni) based amorphous alloy film, or Fe-Al-Si alloy or Fe-
In order to control the magnetic domain structure of the backing soft magnetic layer by using a non-columnar polycrystalline film such as a C-Yc (Yc: Ta, Hf, Zr, Nb) alloy or a soft magnetic film of a Ni-Fe alloy. I
An antiferromagnetic layer film such as rMn, PtMn, PtCrMn is provided.

【0021】反強磁性層膜は、裏打ち軟磁性層における
磁区形成を抑止し、スパイク状ノイズの発生を防止する
ために使用する。反強磁性層膜は、垂直磁化膜20の下
面から10〜200nmの距離だけ隔てて設けるのが望
ましい。非磁性中間層13は、この上に形成する垂直磁
化膜の結晶配向や結晶粒径制御に加えて、垂直磁化膜と
裏打軟磁性層間の磁気的相互作用を弱めることにより裏
打軟磁性層から発生するノイズを低減する効果がある。
非磁性中間層13としては例えばTiCr合金、CoC
r合金、NiTaZr合金、Ti、あるいはSi,G
e,Cなど非晶質状の薄膜、Pt,Pd,Ru薄膜、I
TO(Indium Tin Oxide)薄膜などが使用できる。非磁
性中間層13の膜厚は1〜5nmとする。
The antiferromagnetic layer film is used to suppress the formation of magnetic domains in the soft magnetic underlayer and to prevent the occurrence of spike noise. The antiferromagnetic layer film is desirably provided at a distance of 10 to 200 nm from the lower surface of the perpendicular magnetization film 20. The non-magnetic intermediate layer 13 is generated from the backing soft magnetic layer by weakening the magnetic interaction between the perpendicular magnetization film and the backing soft magnetic layer in addition to controlling the crystal orientation and crystal grain size of the perpendicular magnetization film formed thereon. This has the effect of reducing noise.
As the nonmagnetic intermediate layer 13, for example, a TiCr alloy, CoC
r alloy, NiTaZr alloy, Ti, or Si, G
e, C, amorphous thin film, Pt, Pd, Ru thin film, I
A TO (Indium Tin Oxide) thin film or the like can be used. The thickness of the non-magnetic intermediate layer 13 is 1 to 5 nm.

【0022】垂直磁化膜20は、Co/Pt多層膜又は
Co/Pd多層膜14,16,18とCo−Xa/P
t,Co−Xa/Pd(Xa:Cr,B,Ta,Mn,
V)又はCo/Pt−Ya,Co/Pd−Ya(Ya:
B,Ta,Ru,Re,Ir,Mn,Mg,Zr,N
b)多層膜の中から選ばれた多層膜15,17との積層
構造とする。Co−Xa/Pt,Co−Xa/Pd(X
a:Cr,B,Ta,Mn,V)多層膜における添加物
(Xa:Cr,B,Ta,Mn,V)は、Co層の粒子
径の制御と磁性粒子の孤立性を促進する効果がある。ま
たCo/Pt−Ya,Co/Pd−Ya(Ya:B,T
a,Ru,Re,Ir,Mn,Mg,Zr,Nb)多層
膜における添加物(Ya:B,Ta,Ru,Re,I
r,Mn,Mg,Zr,Nb)は、Pt層又はPd層の
粒子径の制御と磁性粒子の孤立性を促進する効果があ
る。
The perpendicular magnetization film 20 is formed of a Co / Pt multilayer film or Co / Pd multilayer films 14, 16, 18 and Co-Xa / P
t, Co-Xa / Pd (Xa: Cr, B, Ta, Mn,
V) or Co / Pt-Ya, Co / Pd-Ya (Ya:
B, Ta, Ru, Re, Ir, Mn, Mg, Zr, N
b) A laminated structure with multilayer films 15 and 17 selected from multilayer films. Co-Xa / Pt, Co-Xa / Pd (X
a: Cr, B, Ta, Mn, V) The additive (Xa: Cr, B, Ta, Mn, V) in the multilayer film has the effect of controlling the particle diameter of the Co layer and promoting the isolation of the magnetic particles. is there. Co / Pt-Ya, Co / Pd-Ya (Ya: B, T
a, Ru, Re, Ir, Mn, Mg, Zr, Nb) Additives in a multilayer film (Ya: B, Ta, Ru, Re, I)
(r, Mn, Mg, Zr, Nb) have the effect of controlling the particle diameter of the Pt layer or Pd layer and promoting the isolation of magnetic particles.

【0023】本発明のごとくCo/Pt,Co/Pd多
層膜とCo−Xa/Pt,Co−Xa/Pd,Co/P
t−Ya,Co/Pd−Ya多層膜の何れかとの積層構
造の垂直磁化膜を用いることにより、従来のCo/Pt
又はCo/Pd多層垂直磁化膜に比べて低ノイズ、高磁
化安定性を実現できる。また積層比を変えることにより
垂直磁化膜の磁化の大きさを任意に変化できる。
According to the present invention, Co / Pt, Co / Pd multilayer film and Co-Xa / Pt, Co-Xa / Pd, Co / P
By using a perpendicular magnetization film having a laminated structure with any of the t-Ya and Co / Pd-Ya multilayer films, the conventional Co / Pt
Alternatively, low noise and high magnetization stability can be realized as compared with a Co / Pd multilayer perpendicular magnetization film. The magnitude of the magnetization of the perpendicular magnetization film can be arbitrarily changed by changing the lamination ratio.

【0024】本発明による媒体の記録再生特性の評価に
用いた磁気記憶装置の概略を図2により説明する。磁気
記憶装置は、磁気ディスク31、記録再生用の磁気ヘッ
ド32、磁気ヘッドを支持するサスペンジョン33、ア
クチュエータ34、ボイスコイルモータ35、記録再生
回路36、位置決め回路37、インターフェース制御回
路38などで構成される。磁気ディスク31は上記図1
にて説明した垂直磁気記録媒体からなり、保護膜上には
潤滑膜が被覆されている。磁気ヘッド32は、スライダ
ー、この上に設けられた磁気記録用ヘッド及び信号再生
用の磁気抵抗効果型、巨大磁気抵抗効果型もしくはスピ
ンバルブ型素子あるいは磁気トンネル型素子からなる再
生用ヘッドで構成される。記録信号再生用の磁気ヘッド
のギャップ長は、高分解能の再生信号を得るために0.
25μm以下とし、望ましくは0.08〜0.15μm
とする。磁気記録用のヘッドは、リング型ヘッド又は単
磁極型ヘッドを用いた。再生用ヘッドのトラック幅は、
記録用ヘッド磁極のトラック幅より狭くし、記録トラッ
ク両端部から生じる再生ノイズを低減する。磁気ヘッド
32は、サスペンジョン33によって支持される。本装
置を用いて、以下の実施例で説明する媒体ノイズ特性や
記録再生特性評価を行った。
The outline of the magnetic storage device used for evaluating the recording and reproducing characteristics of the medium according to the present invention will be described with reference to FIG. The magnetic storage device includes a magnetic disk 31, a magnetic head 32 for recording and reproduction, a suspension 33 supporting the magnetic head, an actuator 34, a voice coil motor 35, a recording and reproduction circuit 36, a positioning circuit 37, an interface control circuit 38, and the like. You. The magnetic disk 31 is shown in FIG.
And a lubricating film is coated on the protective film. The magnetic head 32 is composed of a slider, a magnetic recording head provided thereon, and a reproducing head composed of a magnetoresistive, giant magnetoresistive or spin-valve element or a magnetic tunnel element for reproducing signals. You. The gap length of the magnetic head for reproducing the recording signal is set at 0.
25 μm or less, preferably 0.08 to 0.15 μm
And As a magnetic recording head, a ring type head or a single pole type head was used. The track width of the playback head is
The recording head magnetic pole is made narrower than the track width to reduce reproduction noise generated from both ends of the recording track. The magnetic head 32 is supported by the suspension 33. Using this apparatus, medium noise characteristics and recording / reproduction characteristics evaluation described in the following examples were performed.

【0025】〔実施例1〕本発明の垂直磁気記録媒体の
内容を裏面に軟磁性層を設けない垂直磁化膜を例に図3
を用いて以下に説明する。
Example 1 The contents of a perpendicular magnetic recording medium of the present invention are shown in FIG.
This will be described below with reference to FIG.

【0026】以下の方法で媒体Aを作製した。洗浄した
ガラス基板11を高真空DCマグネトロンスパッタリン
グ装置に設置し、基板を250℃に加熱の後、プリコー
ト層として膜厚5nmのTa層を形成した。プリコート
層は、この上に形成する薄膜と基板との付着強度を高め
るために使用する。このプリコート層の上に膜厚10n
mの非磁性中間層13を形成した。非磁性中間層13と
しては、Pd膜を用いた。
A medium A was prepared by the following method. The washed glass substrate 11 was set in a high vacuum DC magnetron sputtering apparatus, and after heating the substrate to 250 ° C., a Ta layer having a thickness of 5 nm was formed as a precoat layer. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate. On this precoat layer, a film thickness of 10 n
m of the non-magnetic intermediate layer 13 was formed. As the nonmagnetic intermediate layer 13, a Pd film was used.

【0027】引き続いて[Pd(0.75nm)/Co
(0.25nm)]からなる積層膜14を4層形成し
た。この構成の膜を以後[Pd(0.75nm)/Co
(0.25nm)]×4多層膜と記述する。更に[Pd
(0.75nm)/Co−Mn(0.25nm)]×4
多層膜15、[Pd(0.75nm)/Co(0.25
nm)]×4多層膜16、[Pd(0.75nm)/C
o−Mn(0.25nm)]×4多層膜17、[Pd
(0.75nm)/Co(0.25nm)]×4多層膜
18の順に積層した構成の全膜厚20nmの垂直磁化膜
20を作製した。ここで[Pd(0.75nm)/Co
−Mn(0.25nm)]×4多層膜15、[Pd
(0.75nm)/Co−Mn(0.25nm)]×4
多層膜17において、Co−Mn層中のMnの添加量は
2〜10at%の範囲とし、本実施例では5at%とし
た。Mnの代わりにCr,B,Ta,Vの何れかを使用
することも可能である。上記垂直磁化膜20の表面に膜
厚5nmのC保護層19を形成して媒体Aとした。
Subsequently, [Pd (0.75 nm) / Co
(0.25 nm)]. The film having this configuration is hereinafter referred to as [Pd (0.75 nm) / Co
(0.25 nm)] × 4 multilayer film. Furthermore, [Pd
(0.75 nm) / Co-Mn (0.25 nm)] × 4
The multilayer film 15, [Pd (0.75 nm) / Co (0.25 nm)
nm)] × 4 multilayer film 16, [Pd (0.75 nm) / C
o-Mn (0.25 nm)] × 4 multilayer film 17, [Pd
(0.75 nm) / Co (0.25 nm)] × 4 multilayer films 18 were stacked to form a perpendicular magnetization film 20 having a total thickness of 20 nm. Here, [Pd (0.75 nm) / Co
-Mn (0.25 nm)] × 4 multilayer film 15, [Pd
(0.75 nm) / Co-Mn (0.25 nm)] × 4
In the multilayer film 17, the addition amount of Mn in the Co-Mn layer was set in a range of 2 to 10 at%, and in this embodiment, 5 at%. Any of Cr, B, Ta, and V can be used instead of Mn. A medium A was formed by forming a C protective layer 19 having a thickness of 5 nm on the surface of the perpendicular magnetization film 20.

【0028】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPdとCoの回
折ピークが検出された。媒体Aの膜面垂直方向の磁気特
性をカー効果型磁力計により測定した結果、保磁力3.
7kOe、ニュークリエーションフィールドHn=−
1.2kOe、角型比SQ=1であった。ここでニュー
クリエーションフィールドHnは、磁化磁界曲線におい
て保磁力における接線と飽和磁化の延長線との交点の磁
界強度で定義される。また角型比SQは、残留磁化Mr
と飽和磁化Msの比Mr/Msで定義される。
When the structure of the perpendicular magnetization film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pd and Co were detected. As a result of measuring the magnetic properties of the medium A in the direction perpendicular to the film surface with a Kerr effect magnetometer, the coercive force was 3.
7 kOe, nucleation field Hn =-
The squareness ratio SQ was 1.2 kOe. Here, the nucleation field Hn is defined by the magnetic field strength at the intersection of the tangent to the coercive force and the extension of the saturation magnetization in the magnetization magnetic field curve. The squareness ratio SQ is determined by the residual magnetization Mr
And the ratio Mr / Ms of the saturation magnetization Ms.

【0029】以下の方法で媒体Bを作製した。洗浄した
ガラス基板11を高真空DCマグネトロンスパッタリン
グ装置に設置し、基板を250℃に加熱の後、プリコー
ト層として膜厚5nmのTa層を形成した。プリコート
層は、この上に形成する薄膜と基板との付着強度を高め
るために使用する。このプリコート層の上に膜厚10n
mの非磁性中間層13を形成した。非磁性中間層13と
しては、Pd膜を用いた。
A medium B was prepared by the following method. The washed glass substrate 11 was set in a high vacuum DC magnetron sputtering apparatus, and after heating the substrate to 250 ° C., a Ta layer having a thickness of 5 nm was formed as a precoat layer. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate. On this precoat layer, a film thickness of 10 n
m of the non-magnetic intermediate layer 13 was formed. As the nonmagnetic intermediate layer 13, a Pd film was used.

【0030】引き続いて[Pd(0.75nm)/Co
(0.25nm)]×4からなる多層膜14を形成し
た。更に[Pd−B(0.75nm)/Co(0.25
nm)]×4多層膜15、[Pd(0.75nm)/C
o(0.25nm)]×4多層膜16、[Pd−B
(0.75nm)/Co(0.25nm)]×4多層膜
17、[Pd(0.75nm)/Co(0.25n
m)]×4多層膜18の順に積層した構成の全膜厚20
nmの垂直磁化膜20を作製した。ここで[Pd−B
(0.75nm)/Co(0.25nm)]×4多層膜
15、[Pd−B(0.75nm)/Co(0.25n
m)]×4多層膜17において、Pd−B層中のBの添
加量は2〜10at%の範囲とし、本実施例では5at
%とした。Bの代わりにTa,Ru,Re,Ir,M
n,Mg,Zr,Nbの何れかを使用することも可能で
ある。上記垂直磁化膜20の表面に膜厚5nmのC保護
層19を形成して媒体Bとした。
Subsequently, [Pd (0.75 nm) / Co
(0.25 nm)] × 4 was formed. Further, [Pd-B (0.75 nm) / Co (0.25 nm)
nm)] × 4 multilayer film 15, [Pd (0.75 nm) / C
o (0.25 nm)] × 4 multilayer film 16, [Pd-B
(0.75 nm) / Co (0.25 nm)] × 4 multilayer film 17, [Pd (0.75 nm) / Co (0.25 n)
m)] The total film thickness 20 of the configuration in which the × 4 multilayer films 18 are stacked in this order.
The perpendicular magnetization film 20 of nm was manufactured. Here [Pd-B
(0.75 nm) / Co (0.25 nm)] × 4 multilayer film 15, [Pd-B (0.75 nm) / Co (0.25 n)
m)] In the × 4 multilayer film 17, the addition amount of B in the Pd—B layer is in the range of 2 to 10 at%, and is 5 at in the present embodiment.
%. Ta, Ru, Re, Ir, M instead of B
It is also possible to use any of n, Mg, Zr, and Nb. A medium B was formed by forming a 5 nm-thick C protective layer 19 on the surface of the perpendicular magnetization film 20.

【0031】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPdとCoの回
折ピークが検出された。媒体Bの膜面垂直方向の磁気特
性をカー効果型磁力計により測定した結果、保磁力3.
8kOe、ニュークリエーションフィールドHn=−
1.1kOe、角型比SQ=1であった。
When the structure of the perpendicular magnetic film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pd and Co were detected. As a result of measuring the magnetic properties of the medium B in the direction perpendicular to the film surface using a Kerr effect magnetometer, the coercive force was 3.
8 kOe, nucleation field Hn =-
1.1 kOe and squareness ratio SQ = 1.

【0032】比較用媒体Cを作製した。洗浄したガラス
基板11を高真空DCマグネトロンスパッタリング装置
に設置し、基板を250℃に加熱の後、プリコート層と
して膜厚5nmのTa層を形成した。プリコート層は、
この上に形成する薄膜と基板との付着強度を高めるため
に使用する。このプリコート層の上に膜厚10nmの非
磁性中間層13を形成した。非磁性中間層13として
は、Pd膜を用いた。引き続いて[Pd(0.75n
m)/Co(0.25nm)]×20からなる多層膜構
造の全膜厚20nm垂直磁化膜20を形成した。上記垂
直磁化膜20の表面に膜厚5nmのC保護層19を形成
して比較用媒体Cとした。
A comparative medium C was prepared. The washed glass substrate 11 was set in a high vacuum DC magnetron sputtering apparatus, and after heating the substrate to 250 ° C., a Ta layer having a thickness of 5 nm was formed as a precoat layer. The pre-coat layer
It is used to increase the adhesion strength between the thin film formed thereon and the substrate. A nonmagnetic intermediate layer 13 having a thickness of 10 nm was formed on the precoat layer. As the nonmagnetic intermediate layer 13, a Pd film was used. Subsequently, [Pd (0.75n
m) / Co (0.25 nm)] × 20 to form a perpendicular magnetization film 20 having a total thickness of 20 nm and a multilayer structure. A comparative medium C was formed by forming a C protective layer 19 having a thickness of 5 nm on the surface of the perpendicular magnetization film 20.

【0033】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPdとCoの回
折ピークが検出された。媒体Cの膜面垂直方向の磁気特
性をカー効果型磁力計により測定した結果、保磁力3.
2kOe、ニュークリエーションフィールドHn=−
1.8kOe、角型比SQ=1であった。
When the structure of the perpendicular magnetization film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pd and Co were detected. As a result of measuring the magnetic properties of the medium C in the direction perpendicular to the film surface using a Kerr effect magnetometer, the coercive force was 3.
2 kOe, nucleation field Hn =-
1.8 kOe and squareness ratio SQ = 1.

【0034】比較用媒体Dを作製した。洗浄したガラス
基板11を高真空DCマグネトロンスパッタリング装置
に設置し、基板を250℃に加熱の後、プリコート層と
して膜厚5nmのTa層を形成した。プリコート層は、
この上に形成する薄膜と基板との付着強度を高めるため
に使用する。このプリコート層の上に膜厚10nmの非
磁性中間層13を形成した。非磁性中間層13として
は、Pt膜を用いた。引き続いて[Pt(0.75n
m)/Co(0.25nm)]×20からなる多層膜構
造の全膜厚20nm垂直磁化膜20を形成した。上記垂
直磁化膜20の表面に膜厚5nmのC保護層19を形成
した比較用媒体Dを作製した。
A comparative medium D was prepared. The washed glass substrate 11 was set in a high vacuum DC magnetron sputtering apparatus, and after heating the substrate to 250 ° C., a Ta layer having a thickness of 5 nm was formed as a precoat layer. The pre-coat layer
It is used to increase the adhesion strength between the thin film formed thereon and the substrate. A nonmagnetic intermediate layer 13 having a thickness of 10 nm was formed on the precoat layer. As the nonmagnetic intermediate layer 13, a Pt film was used. Subsequently, [Pt (0.75n
m) / Co (0.25 nm)] × 20 to form a perpendicular magnetization film 20 having a total thickness of 20 nm and a multilayer structure. A comparative medium D in which a 5 nm-thick C protective layer 19 was formed on the surface of the perpendicular magnetization film 20 was produced.

【0035】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPtとCoの回
折ピークが検出された。媒体Dの膜面垂直方向の磁気特
性をカー効果型磁力計により測定した結果、保磁力3.
0kOe、ニュークリエーションフィールドHn=−
1.7kOe、角型比SQ=1であった。
When the structure of the perpendicular magnetization film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pt and Co were detected. As a result of measuring the magnetic properties of the medium D in the direction perpendicular to the film surface with a Kerr effect magnetometer, the coercive force was 3.
0 kOe, nucleation field Hn =-
1.7 kOe and squareness ratio SQ = 1.

【0036】垂直磁化膜としてCoCrPt合金を用い
た比較用媒体Eを作製した。洗浄したガラス基板11を
高真空DCマグネトロンスパッタリング装置に設置し、
基板を300℃に加熱の後、膜厚10nmの非磁性中間
層13を形成した。非磁性中間層13としては、Ni−
30at%Ta−5at%Zr膜を用いた。引き続いて
Co−22at%Cr−14at%Ptからなる膜厚2
0nmの垂直磁化膜20を形成した。上記垂直磁化膜2
0の表面に膜厚5nmのC保護層19を形成して比較用
媒体Eとした。
A comparative medium E using a CoCrPt alloy as a perpendicular magnetization film was manufactured. The washed glass substrate 11 is set in a high vacuum DC magnetron sputtering apparatus,
After heating the substrate to 300 ° C., a nonmagnetic intermediate layer 13 having a thickness of 10 nm was formed. As the non-magnetic intermediate layer 13, Ni-
A 30 at% Ta-5 at% Zr film was used. Successively, a film thickness 2 of Co-22 at% Cr-14 at% Pt
A perpendicular magnetization film 20 having a thickness of 0 nm was formed. The perpendicular magnetization film 2
On the surface of No. 0, a C protective layer 19 having a thickness of 5 nm was formed to obtain a comparative medium E.

【0037】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<002>配向したCoCrPt合
金の回折ピークが検出された。媒体Eの膜面垂直方向の
磁気特性をカー効果型磁力計により測定した結果、保磁
力3.0kOe、ニュークリエーションフィールドHn
=0.5kOe、角型比SQ=0.95であった。媒体
A、媒体B、媒体C、媒体D、及び媒体Eの特性を表1
に比較して示す。
When the structure of the perpendicular magnetization film 20 was measured by X-ray diffraction, a diffraction peak of a <002> -oriented CoCrPt alloy was detected. As a result of measuring the magnetic properties of the medium E in the direction perpendicular to the film surface using a Kerr effect magnetometer, the coercive force was 3.0 kOe, and the nucleation field Hn was measured.
= 0.5 kOe and squareness ratio SQ = 0.95. Table 1 shows the characteristics of the medium A, the medium B, the medium C, the medium D, and the medium E.
Is shown in comparison with.

【0038】[0038]

【表1】 [Table 1]

【0039】表1において、ノイズはCoCrPt合金
垂直磁化膜を用いた媒体Eに対する比率、SNRは40
0kFCIにおける信号とノイズの比、磁区サイズは交
流消去した試料表面の磁区構造をMFM(磁気力顕微
鏡)で測定して得た不規則磁区の平均径、信号劣化率
は、10kFCIの信号を記録し、記録直後の信号に対
する1×106秒後の信号強度の比をそれぞれ示す。磁
区サイズが小さい程、高密度記録に適した媒体である。
またD50は、記録分解能の指標として用いられ、低記録
密度の信号出力に対して50%の信号出力になるときの
線記録密度であり、これが大きい程性能が優れている。
In Table 1, the noise is the ratio to the medium E using the CoCrPt alloy perpendicular magnetization film, and the SNR is 40.
The signal-to-noise ratio at 0 kFCI and the magnetic domain size were recorded as the average diameter of irregular magnetic domains obtained by measuring the magnetic domain structure on the sample surface subjected to AC erasing with a magnetic force microscope (MFM), and the signal degradation rate was recorded at 10 kFCI. And the ratio of the signal intensity after 1 × 10 6 seconds to the signal immediately after recording. The smaller the magnetic domain size, the more suitable the medium for high density recording.
D 50 is used as an index of the recording resolution, and is a linear recording density at which a signal output becomes 50% of a signal output at a low recording density. The larger this value, the better the performance.

【0040】図2にて説明した磁気録装置用いて、上記
媒体にトラック幅0.2mのリング型磁気ヘッドで磁気
記録し、シールド間隔80nmの巨大磁気抵抗型ヘッド
(GMRヘッド)で再生し、媒体ノイズと記録分解能を
測定した。記録再生時のスペーシングは16nmとし
た。交流消去した媒体表面の磁区構造を磁気力顕微鏡で
観察し、表面に形成された不規則磁区の大きさを測定し
た。ここで不規則磁区の大きさは、同じ面積の円に近似
したときの直径で比較した。不規則磁区の径が大きいほ
ど媒体ノイズが大きく、記録分解能が低下する性質があ
る。
Using the magnetic recording apparatus described with reference to FIG. 2, magnetic recording was performed on the medium with a ring-type magnetic head having a track width of 0.2 m, and reproduction was performed with a giant magnetoresistive head (GMR head) having a shield interval of 80 nm. Media noise and recording resolution were measured. The spacing during recording and reproduction was 16 nm. The magnetic domain structure on the surface of the medium after AC erasing was observed with a magnetic force microscope, and the size of the irregular magnetic domains formed on the surface was measured. Here, the sizes of the irregular magnetic domains were compared by the diameter when approximated to a circle having the same area. The larger the diameter of the irregular magnetic domain, the greater the medium noise and the lower the recording resolution.

【0041】表1の比較から明らかなように、CoCr
Pt垂直磁化膜を用いた従来媒体Eは、磁区サイズが比
較的小さく、記録分解能やSNR特性も比較的優れてい
るが、信号劣化率が大きい欠点がある。またCo/Pd
多層膜やCo/Pt多層膜を用いた従来の媒体Cや媒体
Dは、垂直磁気異方性が大きくSQ特性やHn特性に優
れて信号劣化率は小さいが、記録分解能特性やSNR特
性が劣る。一方、本発明の媒体Aと媒体Bは、垂直磁気
異方性が大きくSQ特性やHn特性に優れて信号劣化率
が小さく、且つ磁性粒子間の相互作用も適度に制御さ
れ、その結果磁区サイズが小さく、媒体ノイズ、SNR
特性、記録分解能特性に優れていることがわかる。
As is clear from the comparison in Table 1, CoCr
The conventional medium E using the Pt perpendicular magnetization film has a relatively small magnetic domain size and relatively excellent recording resolution and SNR characteristics, but has a disadvantage of a large signal deterioration rate. Co / Pd
Conventional media C and D using a multilayer film or a Co / Pt multilayer film have large perpendicular magnetic anisotropy, excellent SQ characteristics and Hn characteristics, and a small signal deterioration rate, but have poor recording resolution characteristics and SNR characteristics. . On the other hand, the mediums A and B of the present invention have large perpendicular magnetic anisotropy, excellent SQ characteristics and Hn characteristics, a small signal degradation rate, and moderately controlled interaction between magnetic particles. Small, medium noise, SNR
It can be seen that the characteristics and the recording resolution characteristics are excellent.

【0042】振動試料型磁力計(VSM)を用いて磁気
特性(保磁力)の印加磁界方向依存性を前記媒体A、媒
体B、媒体C、媒体D、及び媒体Eについて測定し、比
較した結果を図4に示す。図の横軸は、試料の膜面垂直
方向からの傾斜角(θ)を示す。縦軸は、傾斜角(θ)
で測定したときの保磁力Hc(θ)と、膜面垂直方向で
測定したときの保磁力Hc(⊥)の比Hc(θ)/Hc
(⊥)で示した。磁気特性(保磁力)の印加磁界方向依
存性の振る舞いにより、測定試料における磁性粒子の磁
気的孤立性を評価する手段として用いられる。
Using a vibrating sample magnetometer (VSM), the dependence of the magnetic properties (coercive force) on the applied magnetic field direction was measured for the medium A, medium B, medium C, medium D, and medium E, and the results were compared. Is shown in FIG. The horizontal axis in the figure indicates the inclination angle (θ) from the direction perpendicular to the film surface of the sample. The vertical axis is the inclination angle (θ)
The ratio Hc (θ) / Hc of the coercive force Hc (θ) measured in the above to the coercive force Hc (⊥) measured in the direction perpendicular to the film surface.
(⊥). The behavior of the magnetic properties (coercive force) depending on the direction of the applied magnetic field is used as a means for evaluating the magnetic isolation of magnetic particles in a measurement sample.

【0043】媒体Eは、CoCrPt垂直磁化膜に高濃
度のCr添加により磁性粒子の磁気的孤立性を促進した
試料であり媒体ノイズが小さく、磁化回転型の磁化反転
をしていることを示す。一方Co/Pd多層膜(媒体
C)、Co/Pt多層膜(媒体D)垂直媒体は保磁力の
角度依存性が大きく媒体ノイズが大きく、磁性粒子間の
相互作用が強く磁壁移動型の磁化反転をしている。一
方、本発明の媒体Aと媒体Bは、従来の媒体Cや媒体D
に比べて磁性粒子の磁気的孤立性が大幅に改善され、媒
体ノイズの低減と共に磁化の安定性が改善されたことが
明らかである。
The medium E is a sample in which the magnetic isolation of the magnetic particles is promoted by adding a high concentration of Cr to the CoCrPt perpendicular magnetization film. The medium E has a small medium noise and indicates that the magnetization rotation type magnetization reversal is performed. On the other hand, the Co / Pd multilayer film (medium C) and the Co / Pt multilayer film (medium D) perpendicular media have large angle dependence of coercive force, large media noise, strong interaction between magnetic particles, and domain wall displacement type magnetization reversal. You are. On the other hand, the medium A and the medium B of the present invention are
It is evident that the magnetic isolation of the magnetic particles was greatly improved as compared with the case of, and the stability of magnetization was improved together with the reduction of the medium noise.

【0044】〔実施例2〕本発明の垂直磁気記録媒体の
内容を裏面に軟磁性層を設けた垂直磁化膜を例に図1を
用いて以下に説明する。以下のようにして媒体Fを作製
した。洗浄した直径2.5インチのガラス基板11を高
真空DCマグネトロンスパッタリング装置に設置し、基
板を250℃に加熱の後、プリコート層として膜厚5n
mのTa層を形成した。プリコート層は、この上に形成
する薄膜と基板との付着強度を高めるために使用する。
プリコート層の上に膜厚20nmの50at%Ir−M
n反強磁性膜、膜厚200nmの非晶質構造のCo−1
0at%Ta−2at%Zrからなる裏打ち軟磁性層1
2を形成した。薄膜形成中約300ガウスの磁界をディ
スクの半径方向に印加し、裏打ち軟磁性層12に半径方
向の磁気異方性を付与した。裏打ち軟磁性層12の上に
膜厚5nmの非磁性中間層13を形成した。非磁性中間
層13としては、Pd−5at%B膜を用いた。
Embodiment 2 The contents of a perpendicular magnetic recording medium according to the present invention will be described below with reference to FIG. 1 using a perpendicular magnetic film having a soft magnetic layer provided on the back surface as an example. The medium F was produced as follows. The cleaned glass substrate 11 having a diameter of 2.5 inches is placed in a high vacuum DC magnetron sputtering apparatus, and the substrate is heated to 250 ° C., and then has a thickness of 5 n as a precoat layer.
m Ta layers were formed. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate.
50 at% Ir-M having a thickness of 20 nm on the pre-coat layer
n-1 antiferromagnetic film, 200 nm-thick amorphous Co-1
Backing soft magnetic layer 1 of 0 at% Ta-2 at% Zr
2 was formed. During the formation of the thin film, a magnetic field of about 300 Gauss was applied in the radial direction of the disk to give the backing soft magnetic layer 12 a magnetic anisotropy in the radial direction. A nonmagnetic intermediate layer 13 having a thickness of 5 nm was formed on the soft magnetic underlayer 12. As the nonmagnetic intermediate layer 13, a Pd-5 at% B film was used.

【0045】引き続いて[Pd(0.75nm)/Co
(0.25nm)]×4からなる多層膜14を形成し
た。更に[Pd(0.75nm)/Co−B(0.25
nm)]×4多層膜15、[Pd(0.75nm)/C
o(0.25nm)]×4多層膜16、[Pd(0.7
5nm)/Co−B(0.25nm)]×4多層膜1
7、[Pd(0.75nm)/Co(0.25nm)]
×4多層膜18の順に積層した構成の全膜厚20nmの
垂直磁化膜20を作製した。ここで[Pd(0.75n
m)/Co−B(0.25nm)]×4多層膜におい
て、Co−B層中のBの添加量は2〜10at%の範囲
とし、本実施例では5at%とした。Bの代わりにC
r,Mn,Ta,Vの何れかを使用することも可能であ
る。上記垂直磁化膜20の表面に膜厚5nmのC保護層
19を形成して媒体Fとした。
Subsequently, [Pd (0.75 nm) / Co
(0.25 nm)] × 4 was formed. Further, [Pd (0.75 nm) / Co-B (0.25 nm)
nm)] × 4 multilayer film 15, [Pd (0.75 nm) / C
o (0.25 nm)] × 4 multilayer film 16, [Pd (0.7
5 nm) / Co-B (0.25 nm)] × 4 multilayer film 1
7, [Pd (0.75 nm) / Co (0.25 nm)]
A perpendicular magnetization film 20 having a total thickness of 20 nm and a configuration in which the × 4 multilayer films 18 were stacked in this order was manufactured. Here, [Pd (0.75n
m) / Co—B (0.25 nm)] × 4, the amount of B added in the Co—B layer was in the range of 2 to 10 at%, and was 5 at% in the present embodiment. C instead of B
It is also possible to use any of r, Mn, Ta, and V. A medium F was formed by forming a C protective layer 19 having a thickness of 5 nm on the surface of the perpendicular magnetization film 20.

【0046】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPdとCoの回
折ピークが検出された。媒体Fの膜面垂直方向の磁気特
性をカー効果型磁力計により測定した結果、保磁力4.
3kOe、ニュークリエーションフィールドHn=−
1.2kOe、角型比SQ=1であった。
When the structure of the perpendicular magnetic film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pd and Co were detected. As a result of measuring the magnetic properties of the medium F in the direction perpendicular to the film surface using a Kerr effect magnetometer, the coercive force was measured.
3 kOe, nucleation field Hn =-
The squareness ratio SQ was 1.2 kOe.

【0047】媒体Gを作製した。洗浄した直径2.5イ
ンチのガラス基板11を高真空DCマグネトロンスパッ
タリング装置に設置し、基板を250℃に加熱の後、プ
リコート層として膜厚5nmのTa層を形成した。プリ
コート層は、この上に形成する薄膜と基板との付着強度
を高めるために使用する。プリコート層の上に膜厚20
nmの50at%Ir−Mn反強磁性膜、膜厚200n
mの非晶質構造のCo−10at%Ta−2at%Zr
からなる裏打ち軟磁性層12を形成した。薄膜形成中約
300ガウスの磁界をディスクの半径方向に印加し、裏
打ち軟磁性層12に半径方向の磁気異方性を付与した。
裏打ち軟磁性層12の上に膜厚5nmの非磁性中間層1
3を形成した。非磁性中間層13としては、Pd−5a
t%B膜を用いた。
A medium G was prepared. The cleaned glass substrate 11 having a diameter of 2.5 inches was placed in a high vacuum DC magnetron sputtering apparatus, and after heating the substrate to 250 ° C., a Ta layer having a thickness of 5 nm was formed as a precoat layer. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate. A film thickness of 20 on the precoat layer
50 at% Ir-Mn antiferromagnetic film with a thickness of 200 nm
Co-10at% Ta-2at% Zr having an amorphous structure of m
A soft magnetic underlayer 12 made of During the formation of the thin film, a magnetic field of about 300 Gauss was applied in the radial direction of the disk to give the backing soft magnetic layer 12 a magnetic anisotropy in the radial direction.
Non-magnetic intermediate layer 1 having a thickness of 5 nm on soft magnetic under layer 12
3 was formed. As the non-magnetic intermediate layer 13, Pd-5a
A t% B film was used.

【0048】引き続いて[Pd(0.75nm)/Co
(0.25nm)]×4からなる多層膜14を形成し
た。更に[Pd−B(0.75nm)/Co(0.25
nm)]×4多層膜15、[Pd(0.75nm)/C
o(0.25nm)]×4多層膜16、[Pd−B
(0.75nm)/Co(0.25nm)]×4多層膜
17、[Pd(0.75nm)/Co(0.25n
m)]×4多層膜18の順に積層した構成の全膜厚20
nmの垂直磁化膜20を作製した。ここで[Pd−B
(0.75nm)/Co(0.25nm)]×4におい
て、Pd−B層中のBの添加量は2〜10at%の範囲
とし、本実施例では5at%とした。Bの代わりにT
a,Ru,Re,Ir,Mn,Mg,Zr,Nbの何れ
かを使用することも可能である。上記垂直磁化膜20の
表面に膜厚5nmのC保護層19を形成して媒体Gとし
た。
Subsequently, [Pd (0.75 nm) / Co
(0.25 nm)] × 4 was formed. Further, [Pd-B (0.75 nm) / Co (0.25 nm)
nm)] × 4 multilayer film 15, [Pd (0.75 nm) / C
o (0.25 nm)] × 4 multilayer film 16, [Pd-B
(0.75 nm) / Co (0.25 nm)] × 4 multilayer film 17, [Pd (0.75 nm) / Co (0.25 n)
m)] The total film thickness 20 of the configuration in which the × 4 multilayer films 18 are stacked in this order.
The perpendicular magnetization film 20 of nm was manufactured. Here [Pd-B
(0.75 nm) / Co (0.25 nm)] × 4, the addition amount of B in the Pd—B layer is in the range of 2 to 10 at%, and is 5 at% in the present embodiment. T instead of B
It is also possible to use any of a, Ru, Re, Ir, Mn, Mg, Zr, and Nb. A medium G was formed by forming a C protective layer 19 having a thickness of 5 nm on the surface of the perpendicular magnetization film 20.

【0049】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPdとCoの回
折ピークが検出された。媒体Gの膜面垂直方向の磁気特
性をカー効果型磁力計により測定した結果、保磁力4.
2kOe、ニュークリエーションフィールドHn=−
1.1kOe、角型比SQ=1であった。
When the structure of the perpendicular magnetization film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pd and Co were detected. As a result of measuring the magnetic properties of the medium G in the direction perpendicular to the film surface with a Kerr effect magnetometer, the coercive force was measured.
2 kOe, nucleation field Hn =-
1.1 kOe and squareness ratio SQ = 1.

【0050】比較用媒体Hを作製した。洗浄した直径
2.5インチのガラス基板11を高真空DCマグネトロ
ンスパッタリング装置に設置し、基板を250℃に加熱
の後、プリコート層として膜厚5nmのTa層を形成し
た。プリコート層は、この上に形成する薄膜と基板との
付着強度を高めるために使用する。プリコート層の上に
膜厚20nmの50at%Ir−Mn反強磁性膜、膜厚
200nmの非晶質構造のCo−10at%Ta−2a
t%Zrからなる裏打ち軟磁性層12を形成した。薄膜
形成中約300ガウスの磁界をディスクの半径方向に印
加し、裏打ち軟磁性層12に半径方向の磁気異方性を付
与した。裏打ち軟磁性層12の上に膜厚5nmの非磁性
中間層13を形成した。非磁性中間層13としては、P
d膜を用いた。
A comparative medium H was prepared. The cleaned glass substrate 11 having a diameter of 2.5 inches was placed in a high vacuum DC magnetron sputtering apparatus, and after heating the substrate to 250 ° C., a Ta layer having a thickness of 5 nm was formed as a precoat layer. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate. On the precoat layer, a 50 at% Ir-Mn antiferromagnetic film having a thickness of 20 nm, and an amorphous Co-10 at% Ta-2a film having a thickness of 200 nm.
A backing soft magnetic layer 12 of t% Zr was formed. During the formation of the thin film, a magnetic field of about 300 Gauss was applied in the radial direction of the disk to give the backing soft magnetic layer 12 a magnetic anisotropy in the radial direction. A nonmagnetic intermediate layer 13 having a thickness of 5 nm was formed on the soft magnetic underlayer 12. As the non-magnetic intermediate layer 13, P
d film was used.

【0051】引き続いて[Pd(0.75nm)/Co
(0.25nm)]×20からなる多層膜構造の全膜厚
20nm垂直磁化膜20を形成した。上記垂直磁化膜2
0の表面に膜厚5nmのC保護層19を形成して比較用
媒体Hとした。この垂直磁化膜20の構造をX線回折に
より測定したところ、<111>配向したPdとCoの
回折ピークが検出された。媒体Hの膜面垂直方向の磁気
特性をカー効果型磁力計により測定した結果、保磁力
3.3kOe、ニュークリエーションフィールドHn=
−1.7kOe、角型比SQ=1であった。
Subsequently, [Pd (0.75 nm) / Co
(0.25 nm)] A perpendicular magnetization film 20 having a total thickness of 20 nm and a multilayer structure of × 20 was formed. The perpendicular magnetization film 2
On the surface of No. 0, a C protective layer 19 having a thickness of 5 nm was formed to obtain a comparative medium H. When the structure of the perpendicular magnetization film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pd and Co were detected. As a result of measuring the magnetic properties of the medium H in the direction perpendicular to the film surface using a Kerr effect magnetometer, the coercive force was 3.3 kOe, and the nucleation field Hn =
-1.7 kOe and squareness ratio SQ = 1.

【0052】比較用媒体Iを作製した。洗浄した直径
2.5インチのガラス基板11を高真空DCマグネトロ
ンスパッタリング装置に設置し、基板を250℃に加熱
の後、プリコート層として膜厚5nmのTa層を形成し
た。プリコート層は、この上に形成する薄膜と基板との
付着強度を高めるために使用する。プリコート層の上に
膜厚20nmの50at%Ir−Mn反強磁性膜、膜厚
200nmの非晶質構造のCo−10at%Ta−2a
t%Zrからなる裏打ち軟磁性層12を形成した。薄膜
形成中約300ガウスの磁界をディスクの半径方向に印
加し、裏打ち軟磁性層12に半径方向の磁気異方性を付
与した。裏打ち軟磁性層12の上に膜厚5nmの非磁性
中間層13を形成した。非磁性中間層13としては、P
t膜を用いた。引き続いて[Pt(0.75nm)/C
o(0.25nm)]×20からなる多層膜構造の全膜
厚20nm垂直磁化膜20を形成した。上記垂直磁化膜
20の表面に膜厚5nmのC保護層19を形成して比較
用媒体Iとした。
A comparative medium I was prepared. The cleaned glass substrate 11 having a diameter of 2.5 inches was placed in a high vacuum DC magnetron sputtering apparatus, and after heating the substrate to 250 ° C., a Ta layer having a thickness of 5 nm was formed as a precoat layer. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate. On the precoat layer, a 50 at% Ir-Mn antiferromagnetic film having a thickness of 20 nm, and an amorphous Co-10 at% Ta-2a film having a thickness of 200 nm.
A backing soft magnetic layer 12 of t% Zr was formed. During the formation of the thin film, a magnetic field of about 300 Gauss was applied in the radial direction of the disk to give the backing soft magnetic layer 12 a magnetic anisotropy in the radial direction. A nonmagnetic intermediate layer 13 having a thickness of 5 nm was formed on the soft magnetic underlayer 12. As the non-magnetic intermediate layer 13, P
A t film was used. Subsequently, [Pt (0.75 nm) / C
o (0.25 nm)] × 20, and a perpendicular magnetization film 20 having a total film thickness of 20 nm having a multilayer structure was formed. A C protective layer 19 having a thickness of 5 nm was formed on the surface of the perpendicular magnetization film 20 to obtain a comparative medium I.

【0053】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPtとCoの回
折ピークが検出された。媒体Iの膜面垂直方向の磁気特
性をカー効果型磁力計により測定した結果、保磁力3.
2kOe、ニュークリエーションフィールドHn=−
1.6kOe、角型比SQ=1であった。
When the structure of the perpendicular magnetic film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pt and Co were detected. As a result of measuring the magnetic properties of the medium I in the direction perpendicular to the film surface using a Kerr effect magnetometer, the coercive force was 3.
2 kOe, nucleation field Hn =-
1.6 kOe and squareness ratio SQ = 1.

【0054】垂直磁化膜としてCoCrPt合金を用い
た比較用媒体Jを作製した。洗浄した直径2.5インチ
のガラス基板11を高真空DCマグネトロンスパッタリ
ング装置に設置し、基板を250℃に加熱の後、プリコ
ート層として膜厚5nmのTa層を形成した。プリコー
ト層は、この上に形成する薄膜と基板との付着強度を高
めるために使用する。プリコート層の上に膜厚20nm
の50at%Ir−Mn反強磁性膜、膜厚200nmの
非晶質構造のCo−10at%Ta−2at%Zrから
なる裏打ち軟磁性層12を形成した。薄膜形成中約30
0ガウスの磁界をディスクの半径方向に印加し、裏打ち
軟磁性層12に半径方向の磁気異方性を付与した。基板
を300℃に加熱の後、裏打ち軟磁性層12の上に膜厚
5nmの非磁性中間層13を形成した。非磁性中間層1
3としては、Ni−30at%Ta−5at%Zr膜を
用いた。引き続いてCo−22at%Cr−14at%
Ptからなる膜厚20nmの垂直磁化膜20を形成し
た。上記垂直磁化膜20の表面に膜厚5nmのC保護層
19を形成して比較用媒体Jとした。
A comparative medium J using a CoCrPt alloy as the perpendicular magnetization film was manufactured. The cleaned glass substrate 11 having a diameter of 2.5 inches was placed in a high vacuum DC magnetron sputtering apparatus, and after heating the substrate to 250 ° C., a Ta layer having a thickness of 5 nm was formed as a precoat layer. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate. 20 nm thick on the pre-coat layer
And a backing soft magnetic layer 12 of Co-10 at% Ta-2 at% Zr having an amorphous structure and a thickness of 200 nm was formed. About 30 during thin film formation
A magnetic field of 0 Gauss was applied in the radial direction of the disk to impart a magnetic anisotropy in the radial direction to the soft magnetic underlayer 12. After heating the substrate to 300 ° C., a nonmagnetic intermediate layer 13 having a thickness of 5 nm was formed on the soft magnetic underlayer 12. Non-magnetic intermediate layer 1
As No. 3, a Ni-30 at% Ta-5 at% Zr film was used. Subsequently, Co-22 at% Cr-14 at%
A 20-nm-thick perpendicular magnetization film 20 made of Pt was formed. A C protective layer 19 having a thickness of 5 nm was formed on the surface of the perpendicular magnetization film 20 to obtain a comparative medium J.

【0055】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<002>配向したCoCrPt合
金の回折ピークが検出された。媒体Eの膜面垂直方向の
磁気特性をカー効果型磁力計により測定した結果、保磁
力3.1kOe、ニュークリエーションフィールドHn
=0.5kOe、角型比SQ=0.94であった。媒体
F、媒体G、媒体H、媒体I、及び媒体Jの特性を表2
に比較して示す。
When the structure of the perpendicular magnetization film 20 was measured by X-ray diffraction, a diffraction peak of a <002> -oriented CoCrPt alloy was detected. As a result of measuring the magnetic properties of the medium E in the direction perpendicular to the film surface with a Kerr effect magnetometer, the coercive force was 3.1 kOe and the nucleation field Hn
= 0.5 kOe and squareness ratio SQ = 0.94. Table 2 shows the characteristics of medium F, medium G, medium H, medium I, and medium J.
Is shown in comparison with.

【0056】[0056]

【表2】 [Table 2]

【0057】表2において、ノイズはCoCrPt合金
垂直磁化膜を用いた媒体Jに対する比率、SNRは40
0kFCIにおける信号とノイズの比、磁区サイズは交
流消去した試料表面の磁区構造をMFM(磁気力顕微
鏡)で測定して得た不規則磁区の平均径、信号劣化率
は、10kFCIの信号を記録し、記録直後の信号に対
する1×106秒後の信号強度の比をそれぞれ示す。磁
区サイズが小さい程高密度記録に適した媒体である。ま
たD50は、記録分解能の指標として用いられ、低記録密
度の信号出力に対して50%の信号出力になるときの線
記録密度であり、これが大きい程性能が優れている。
In Table 2, the noise is the ratio to the medium J using the CoCrPt alloy perpendicular magnetization film, and the SNR is 40.
The signal-to-noise ratio at 0 kFCI and the magnetic domain size were recorded as the average diameter of irregular magnetic domains obtained by measuring the magnetic domain structure on the sample surface subjected to AC erasing with a magnetic force microscope (MFM), and the signal degradation rate was recorded at 10 kFCI. And the ratio of the signal intensity after 1 × 10 6 seconds to the signal immediately after recording. The smaller the magnetic domain size, the more suitable the medium for high density recording. D 50 is used as an index of the recording resolution, and is a linear recording density at which a signal output becomes 50% of a signal output at a low recording density. The larger this value, the better the performance.

【0058】図2にて説明した磁気録装置用いて上記媒
体にトラック幅0.2mの単磁極型磁気ヘッドで磁気記
録し、シールド間隔80nmの巨大磁気抵抗型ヘッド
(GMRヘッド)で再生し、媒体ノイズと記録分解能を
測定した。記録再生時のスペーシングは16nmとし
た。交流消去した媒体表面の磁区構造を磁気力顕微鏡で
観察し、表面に形成された不規則磁区の大きさを測定し
た。ここで不規則磁区の大きさは、同じ面積の円に近似
したときの直径で比較した。不規則磁区の径が大きいほ
ど媒体ノイズが大きく、記録分解能が低下する性質があ
る。
Using the magnetic recording apparatus described with reference to FIG. 2, magnetic recording was performed on the medium with a single pole type magnetic head having a track width of 0.2 m, and reproduction was performed with a giant magnetoresistive head (GMR head) having a shield interval of 80 nm. Media noise and recording resolution were measured. The spacing during recording and reproduction was 16 nm. The magnetic domain structure on the surface of the medium after AC erasing was observed with a magnetic force microscope, and the size of the irregular magnetic domains formed on the surface was measured. Here, the sizes of the irregular magnetic domains were compared by the diameter when approximated to a circle having the same area. The larger the diameter of the irregular magnetic domain, the greater the medium noise and the lower the recording resolution.

【0059】表2の比較から明らかなように、CoCr
Pt垂直磁化膜を用いた従来媒体Jは、磁区サイズが比
較的小さく、記録分解能やSNR特性が比較的優れてい
るが、信号劣化率が大きい欠点がある。またCo/Pd
多層膜やCo/Pt多層膜を用いた従来の媒体Hや媒体
Iは、垂直磁気異方性が大きくSQ特性やHn特性に優
れて信号劣化率は小さいが、記録分解能特性やSNR特
性が劣る。一方、本発明の媒体Fと媒体Gは、垂直磁気
異方性が大きくSQ特性やHn特性に優れて信号劣化率
が小さく、且つ磁性粒子間の相互作用が適度に制御さ
れ、その結果磁区サイズが小さく、媒体ノイズ、SNR
特性、記録分解能特性に優れていることがわかる。
As is clear from the comparison of Table 2, CoCr
The conventional medium J using the Pt perpendicular magnetization film has a relatively small magnetic domain size and relatively excellent recording resolution and SNR characteristics, but has a disadvantage of a large signal deterioration rate. Co / Pd
Conventional media H and I using a multilayer film or a Co / Pt multilayer film have large perpendicular magnetic anisotropy, excellent SQ characteristics and Hn characteristics, and a small signal deterioration rate, but have poor recording resolution characteristics and SNR characteristics. . On the other hand, the mediums F and G of the present invention have large perpendicular magnetic anisotropy, excellent SQ characteristics and Hn characteristics, a small signal deterioration rate, and moderately controlled interaction between magnetic particles. Small, medium noise, SNR
It can be seen that the characteristics and the recording resolution characteristics are excellent.

【0060】また、従来媒体構成の比較用媒体は、媒体
ノイズの低減、記録分解能の向上及び磁化の安定性を同
時に実現するのが困難であるが、本発明の媒体は、保磁
力、ニュークリエーションフィールド、角型比、磁気的
孤立性などの磁気特性を大幅に改善でき、媒体ノイズの
低減と記録分解能向上、磁化の安定性などの大幅な改善
が同時に実現可能となった。また、高保磁力、高角型比
の実現により、線記録密度5kFCIから400kFC
Iの広記録密度領域において長時間の磁化の安定性を維
持できることが分かった。
Further, it is difficult for the comparative medium having the conventional medium configuration to simultaneously reduce the medium noise, improve the recording resolution, and stabilize the magnetization, but the medium of the present invention has a coercive force, nucleation, and nucleation. The magnetic properties such as field, squareness ratio, magnetic isolation, etc. can be greatly improved, and it is possible to simultaneously reduce medium noise, improve recording resolution, and greatly improve magnetization stability. Also, by realizing high coercive force and high squareness ratio, linear recording density from 5 kFCI to 400 kFC
It was found that long-term magnetization stability can be maintained in the wide recording density region of I.

【0061】〔実施例3〕図1に示した媒体構成の本発
明の垂直磁気記録媒体の他の応用例を以下に説明する。
本実施例では、Co/(Pt,or Pd)多層膜とCo
−Xa/(Pt,or Pd)多層膜の積層比やCo/
(Pt,or Pd)多層膜とCo/(Pt−Ya,or P
d−Ya)多層膜の積層比を変化した媒体を使用した。
ここではCo/Pd多層膜とCo−Xa/Pd多層膜
(XaはV)の積層比を変化した垂直磁化膜、Co/P
d多層膜とCo/Pd−Ya多層膜(YaはB)の積層
比を変化した垂直磁化膜を例に説明する。
Embodiment 3 Another application example of the perpendicular magnetic recording medium of the present invention having the medium configuration shown in FIG. 1 will be described below.
In the present embodiment, the Co / (Pt, or Pd) multilayer film
-Xa / (Pt, or Pd)
(Pt, or Pd) Multilayer film and Co / (Pt-Ya, or Pd)
d-Ya) A medium in which the lamination ratio of the multilayer film was changed was used.
Here, a perpendicular magnetization film in which the stacking ratio of the Co / Pd multilayer film and the Co-Xa / Pd multilayer film (Xa is V) is changed, and Co / P
A perpendicular magnetization film in which the stacking ratio of the d multilayer film and the Co / Pd-Ya multilayer film (Ya is B) is changed will be described as an example.

【0062】洗浄した直径2.5インチのガラス基板1
1を高真空DCマグネトロンスパッタリング装置に設置
し、基板を250℃に加熱の後、プリコート層として膜
厚5nmのTa層を形成した。プリコート層は、この上
に形成する薄膜と基板との付着強度を高めるために使用
する。プリコート層の上に膜厚20nmの50at%I
r−Mn反強磁性膜、膜厚200nmの非晶質構造のC
o−10at%Ta−2at%Zrからなる裏打ち軟磁
性層12を形成した。薄膜形成中約300ガウスの磁界
をディスクの半径方向に印加し、裏打ち軟磁性層12に
半径方向の磁気異方性を付与した。裏打ち軟磁性層12
の上に膜厚5nmの非磁性中間層13を形成した。非磁
性中間層13としては、Pd−5at%B膜を用いた。
A cleaned glass substrate 1 having a diameter of 2.5 inches
1 was placed in a high-vacuum DC magnetron sputtering apparatus, the substrate was heated to 250 ° C., and a 5 nm-thick Ta layer was formed as a precoat layer. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate. 50 at% I of 20 nm thickness on the pre-coat layer
r-Mn antiferromagnetic film, 200 nm thick amorphous C
A backing soft magnetic layer 12 made of o-10 at% Ta-2 at% Zr was formed. During the formation of the thin film, a magnetic field of about 300 Gauss was applied in the radial direction of the disk to give the backing soft magnetic layer 12 a magnetic anisotropy in the radial direction. Backing soft magnetic layer 12
A non-magnetic intermediate layer 13 having a thickness of 5 nm was formed on the substrate. As the nonmagnetic intermediate layer 13, a Pd-5 at% B film was used.

【0063】引き続いて[Pd(0.75nm)/Co
(0.25nm)]×m多層膜14、[Pd(0.75
nm)/Co−V(0.25nm)]×n多層膜15、
[Pd(0.75nm)/Co(0.25nm)]×m
多層膜16、[Pd(0.75nm)/Co−V(0.
25nm)]×n多層膜17、及び[Pd(0.75n
m)/Co(0.25nm)]×m多層膜18の順に積
層した構成の全膜厚20nmの垂直磁化膜20を作製し
た。m及びnは多層膜の層数である。
Subsequently, [Pd (0.75 nm) / Co
(0.25 nm)] × m multilayer film 14, [Pd (0.75 nm)
nm) / Co-V (0.25 nm)] × n multilayer film 15,
[Pd (0.75 nm) / Co (0.25 nm)] × m
The multilayer film 16, [Pd (0.75 nm) / Co-V (0.
25 nm)] × n multilayer film 17 and [Pd (0.75 n
m) / Co (0.25 nm)] × m multilayer film 18 was stacked in this order to produce a perpendicular magnetization film 20 having a total film thickness of 20 nm. m and n are the number of layers of the multilayer film.

【0064】ここで[Pd(0.75nm)/Co
(0.25nm)]層の層数mと[Pd(0.75n
m)/Co−V(0.25nm)]層の層数nを変える
ことにより積層比を変化した。また[Pd(0.75n
m)/Co−V(0.25nm)]層におけるCo−V
膜のV添加量を3at%,5at%,8at%と変化し
た試料を作製した。上記垂直磁化膜20の表面に膜厚5
nmのC保護層19を形成した媒体を作製した。
Here, [Pd (0.75 nm) / Co
(0.25 nm)] layer number m and [Pd (0.75n)
m) / Co-V (0.25 nm)], the stacking ratio was changed by changing the number n of layers. Also, [Pd (0.75n
m) / Co-V (0.25 nm)] layer.
Samples were prepared in which the V addition amount of the film was changed to 3 at%, 5 at%, and 8 at%. A film thickness of 5 on the surface of the perpendicular magnetization film 20
A medium having a C protective layer 19 of nm was formed.

【0065】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPdとCoの回
折ピークが検出された。媒体の膜面垂直方向の磁気特性
をカー効果型磁力計により測定した結果、保磁力4.3
〜3.8kOeの範囲、ニュークリエーションフィール
ドHn=−1.3〜−1.1kOe、角型比SQ=1〜
0.98の範囲であった。
When the structure of the perpendicular magnetic film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pd and Co were detected. As a result of measuring the magnetic properties of the medium in the direction perpendicular to the film surface using a Kerr effect magnetometer, the coercive force was 4.3.
ニ ュ ー 3.8 kOe, nucleation field Hn = −1.3 to −1.1 kOe, squareness ratio SQ = 11〜
The range was 0.98.

【0066】洗浄した直径2.5インチのガラス基板1
1を高真空DCマグネトロンスパッタリング装置に設置
し、基板を250℃に加熱の後、プリコート層として膜
厚5nmのTa層を形成した。プリコート層は、この上
に形成する薄膜と基板との付着強度を高めるために使用
する。プリコート層の上に膜厚20nmの50at%I
r−Mn反強磁性膜、膜厚200nmの非晶質構造のC
o−10at%Ta−2at%Zrからなる裏打ち軟磁
性層12を形成した。薄膜形成中約300ガウスの磁界
をディスクの半径方向に印加し、裏打ち軟磁性層12に
半径方向の磁気異方性を付与した。裏打ち軟磁性層12
の上に膜厚5nmの非磁性中間層13を形成した。非磁
性中間層13としては、Pd−5at%B膜を用いた。
The cleaned glass substrate 1 having a diameter of 2.5 inches
1 was placed in a high-vacuum DC magnetron sputtering apparatus, the substrate was heated to 250 ° C., and a 5 nm-thick Ta layer was formed as a precoat layer. The precoat layer is used to increase the adhesion strength between the thin film formed thereon and the substrate. 50 at% I of 20 nm thickness on the pre-coat layer
r-Mn antiferromagnetic film, 200 nm thick amorphous C
A backing soft magnetic layer 12 made of o-10 at% Ta-2 at% Zr was formed. During the formation of the thin film, a magnetic field of about 300 Gauss was applied in the radial direction of the disk to give the backing soft magnetic layer 12 a magnetic anisotropy in the radial direction. Backing soft magnetic layer 12
A non-magnetic intermediate layer 13 having a thickness of 5 nm was formed on the substrate. As the nonmagnetic intermediate layer 13, a Pd-5 at% B film was used.

【0067】引き続いて[Pd(0.75nm)/Co
(0.25nm)]×m多層膜14、[Pd−B(0.
75nm)/Co(0.25nm)]×n多層膜15、
[Pd(0.75nm)/Co(0.25nm)]×m
多層膜16、[Pd−B(0.75nm)/Co(0.
25nm)]×n多層膜17、[Pd(0.75nm)
/Co(0.25nm)]×m多層膜18の順に積層し
た構成の全膜厚20nmの垂直磁化膜20を作製した。
Subsequently, [Pd (0.75 nm) / Co
(0.25 nm)] × m multilayer film 14, [Pd-B (0.
75 nm) / Co (0.25 nm)] × n multilayer film 15,
[Pd (0.75 nm) / Co (0.25 nm)] × m
The multilayer film 16, [Pd-B (0.75 nm) / Co (0.
25 nm)] × n multilayer film 17, [Pd (0.75 nm)
/ Co (0.25 nm)] × m multilayer film 18 was stacked in this order to produce a perpendicular magnetization film 20 having a total thickness of 20 nm.

【0068】ここで[Pd(0.75nm)/Co
(0.25nm)]層の層数mと[Pd−B(0.75
nm)/Co(0.25nm)]層の層数nを変えるこ
とにより積層比を変化した。また[Pd−B(0.75
nm)/Co(0.25nm)]層におけるPd−Bの
B添加量を3at%,5at%,8at%と変化した試
料を作製した。上記垂直磁化膜20の表面に膜厚5nm
のC保護層19を形成した媒体を作製した。
Here, [Pd (0.75 nm) / Co
(0.25 nm)] layer number m and [Pd-B (0.75 nm)
nm) / Co (0.25 nm)] layer, the stacking ratio was changed. In addition, [Pd-B (0.75
nm) / Co (0.25 nm)] layer, and the amount of B added of Pd-B was changed to 3 at%, 5 at%, and 8 at%. 5 nm thick on the surface of the perpendicular magnetization film 20
The medium on which the C protective layer 19 was formed was produced.

【0069】この垂直磁化膜20の構造をX線回折によ
り測定したところ、<111>配向したPdとCoの回
折ピークが検出された。この垂直磁化膜20の構造をX
線回折により測定したところ、<111>配向したPd
とCoの回折ピークが検出された。媒体の膜面垂直方向
の磁気特性をカー効果型磁力計により測定した結果、保
磁力4.2〜3.9kOeの範囲、ニュークリエーショ
ンフィールドHn=−1.25〜−1.1kOeの範
囲、角型比SQ=1〜0.98の範囲であった。
When the structure of the perpendicular magnetization film 20 was measured by X-ray diffraction, diffraction peaks of <111> -oriented Pd and Co were detected. The structure of the perpendicular magnetization film 20 is represented by X
<111> -oriented Pd as measured by X-ray diffraction
And Co diffraction peaks were detected. As a result of measuring the magnetic characteristics of the medium in the direction perpendicular to the film surface using a Kerr effect magnetometer, the coercive force was in the range of 4.2 to 3.9 kOe, the nucleation field Hn was in the range of -1.25 to -1.1 kOe, and the angle was The mold ratio SQ was in the range of 1 to 0.98.

【0070】図5(a)は、Co/Pd多層膜とCo−
Xa/Pd多層膜(XaはV)の積層比を変化した垂直
磁化膜の積層比とノイズの関係をVの添加量をパラメー
タとして示す。図5(a)の横軸は(Co−V/Pd多
層膜の層数)/{(Co/Pd多層膜の層数)+(Co
−V/Pd多層膜の層数)}である。図5(b)は、C
o/Pd多層膜とCo/Pd−Ya多層膜(YaはB)
の積層比を変化した垂直磁化膜の積層比とノイズの関係
をBの添加量をパラメータとして示す。図5(b)の横
軸は(Co/Pd−B多層膜の層数)/{(Co/Pd
多層膜の層数)+(Co/Pd−B多層膜の層数)}で
ある。図5において、ノイズは線記録密度400kFC
Iにおける媒体ノイズを線記録密度10kFCIの信号
強度で規格化した値で示す。
FIG. 5A shows a Co / Pd multilayer film and a Co-Pd multilayer film.
The relationship between the lamination ratio of the perpendicular magnetization film and the noise, in which the lamination ratio of the Xa / Pd multilayer film (Xa is V) is changed, is shown with the addition amount of V as a parameter. The horizontal axis in FIG. 5A is (Co-V / Pd multilayer film number) / {(Co / Pd multilayer film number) + (Co).
−V / Pd multilayer film number)}. FIG.
o / Pd multilayer film and Co / Pd-Ya multilayer film (Ya is B)
The relationship between the lamination ratio of the perpendicular magnetization film and the noise, in which the lamination ratio is changed, is shown using the addition amount of B as a parameter. The horizontal axis in FIG. 5B is (Co / Pd-B multilayer film number) / {(Co / Pd
(Number of layers of multilayer film) + (number of layers of Co / Pd-B multilayer film)}. In FIG. 5, the noise is a linear recording density of 400 kFC.
The medium noise at I is represented by a value normalized by the signal intensity at a linear recording density of 10 kFCI.

【0071】図5から明らかなように、Co/Pd多層
膜とCo−Xa/Pd多層膜(XaはV)を積層した垂
直磁化膜やCo/Pd多層膜とCo/Pd−Ya多層膜
(YaはB)を積層した垂直磁化膜は、積層比や添加量
を適正に選択することにより、Co/Pd多層膜やCo
−Xa/Pd多層膜(XaはV)あるいはCo/Pd−
Ya多層膜(YaはB)など単一の組み合わせからなる
垂直磁化膜に比べてノイズを低減できることがわかる。
As is clear from FIG. 5, a perpendicular magnetization film in which a Co / Pd multilayer film and a Co-Xa / Pd multilayer film (Xa is V) is laminated, or a Co / Pd multilayer film and a Co / Pd-Ya multilayer film ( Ya is a layer of perpendicular magnetization formed by laminating B) by appropriately selecting the lamination ratio and the amount of addition to form a Co / Pd multilayer film or a Co / Pd multilayer film.
-Xa / Pd multilayer film (Xa is V) or Co / Pd-
It can be seen that noise can be reduced as compared with a perpendicular magnetization film composed of a single combination such as a Ya multilayer film (Ya is B).

【0072】図6は、本発明のCo/Pd多層膜とCo
−Xa/Pd多層膜(XaはV)を積層した全膜厚20
nmの垂直磁化膜、及びCo/Pd多層膜とCo/Pd
−Ya多層膜(YaはB)を積層した全膜厚20nmの
垂直磁化膜を用いた磁気記録媒体の残留磁化の経時変化
を示す。V及びBの添加量は8at%、積層比は0.4
の媒体を用いた例で示す。比較のために全膜厚20nm
のCo/Pd多層膜を用いた垂直磁気記録媒体、全膜厚
20nmのCo−V/Pd多層膜を用いた垂直磁気記録
媒体、及び全膜厚20nmのCo−22at%Cr−1
4at%Ptを用いた垂直磁気記録媒体も示す。Co/
Pd多層膜とCo−V/Pd多層膜を積層した垂直磁化
膜を用いた本発明の磁気記録媒体、及びCo/Pd多層
膜とCo/Pd−B多層膜を積層した垂直磁化膜を用い
た本発明の磁気記録媒体の残留磁化はほとんど同じ経時
変化を示し、図6には両者をまとめて白丸でプロットし
て示してある。
FIG. 6 shows the Co / Pd multilayer film of the present invention and Co / Pd multilayer film.
-Xa / Pd multilayer film (Xa is V), total thickness 20
nm perpendicular magnetization film, Co / Pd multilayer film and Co / Pd
The change over time of the residual magnetization of a magnetic recording medium using a perpendicular magnetization film having a total film thickness of 20 nm in which a multilayered Ya film (Y is B) is shown. The addition amount of V and B is 8 at%, and the lamination ratio is 0.4.
An example using the medium described above. Total thickness 20nm for comparison
Perpendicular magnetic recording medium using a Co / Pd multilayer film, a perpendicular magnetic recording medium using a Co-V / Pd multilayer film having a total thickness of 20 nm, and Co-22 at% Cr-1 having a total thickness of 20 nm
A perpendicular magnetic recording medium using 4 at% Pt is also shown. Co /
The magnetic recording medium of the present invention using a perpendicular magnetic film in which a Pd multilayer film and a Co-V / Pd multilayer film are stacked, and a perpendicular magnetic film in which a Co / Pd multilayer film and a Co / Pd-B multilayer film are stacked. The remanent magnetization of the magnetic recording medium of the present invention shows almost the same change with time, and FIG. 6 shows both of them collectively plotted by white circles.

【0073】図6は、垂直磁気記録媒体において反磁界
による磁化の減衰が最も大きい残留磁化状態での測定結
果であり、図の縦軸は初期の残留磁化Mr(0)に対す
るt時間経過後の残留磁化Mr(t)の比Mr(t)/
Mr(0)を示す。Co−22at%Cr−14at%
Ptを用いた垂直磁気記録媒体はニュークリエーション
フィールドHn=0.5kOe、角型比0.94である
ため、残留磁化状態での磁化の減衰が大きい。CoV/
Pd多層膜を用いた垂直磁気記録媒体はニュークリエー
ションフィールドHn=−0.3kOe、角型比0.9
8で比較的垂直磁気異方性の良い媒体であるが、長時間
の内に磁化の減衰が認められた。Co/Pd多層膜を用
いた垂直磁気記録媒体はニュークリエーションフィール
ドHn=−1.7kOe、角型比がほぼ1の媒体であ
り、残留磁化状態での磁化の減衰は殆ど認められない。
しかしこの媒体は図5に示したように、媒体ノイズが大
きい欠点がある。一方、本発明の両媒体は垂直磁気異方
性に優れニュークリエーションフィールドHn=−1.
2kOe、角型比がほぼ1の媒体であり、残留磁化状態
での磁化の減衰は殆ど認められない。また図5に示した
ように、媒体ノイズも小さい特徴が認められる。
FIG. 6 shows a measurement result in a remanent magnetization state in which the magnetization is greatly attenuated by the demagnetizing field in the perpendicular magnetic recording medium. The vertical axis of the figure indicates the initial remanence Mr (0) after elapse of t time. Ratio of residual magnetization Mr (t) Mr (t) /
Shows Mr (0). Co-22at% Cr-14at%
Since the perpendicular magnetic recording medium using Pt has a nucleation field Hn = 0.5 kOe and a squareness ratio of 0.94, the attenuation of the magnetization in the remanent magnetization state is large. CoV /
A perpendicular magnetic recording medium using a Pd multilayer film has a nucleation field Hn = -0.3 kOe and a squareness ratio of 0.9.
8 is a medium having relatively good perpendicular magnetic anisotropy, but the magnetization was attenuated within a long time. A perpendicular magnetic recording medium using a Co / Pd multilayer film is a medium having a nucleation field Hn = -1.7 kOe and a squareness ratio of almost 1, and hardly any attenuation of magnetization in a remanent magnetization state is recognized.
However, this medium has a drawback that the medium noise is large as shown in FIG. On the other hand, both media of the present invention have excellent perpendicular magnetic anisotropy and nucleation field Hn = -1.
The medium is 2 kOe and has a squareness ratio of almost 1, and hardly any attenuation of magnetization in the residual magnetization state is recognized. Further, as shown in FIG. 5, a feature that the medium noise is small is recognized.

【0074】〔実施例4〕垂直磁化膜の裏面に配置した
裏打ち軟磁性層の磁区固定用の反強磁性層の配置場所と
スパイクノイズの関係を調べた一実施例を図7により説
明する。高真空DCマグネトロンスパッタリング装置に
洗浄したガラス基板11を設置し、膜厚5nmのTaプ
リコート層41、膜厚20nmの48at%Mn−Ir
反強磁性膜42、及び非晶質構造のCo−10at%T
a−2at%Zrからなる軟磁性膜A43を順次形成し
た。軟磁性膜Aの膜厚を10nm,50nm,100n
m,200nm,及び300nmと変化した。300
℃、1kOeの磁界中熱処理した。基板の後方にソレノ
イド型の電磁石を配置し、これに通電してディスクの半
径方向の磁界を発生して基板温度の低下と共に印加磁界
強度を小さくした。この処理により磁気ディスクの半径
方向に異方性が付与された。引き続き同一真空中でこの
上に膜厚5nmのPtからなる非磁性中間層44、全膜
厚20nmの多層構造の垂直磁化膜45、及びC保護層
46を順次形成し、図7(a)の構成の媒体M(−1,
−2,−3,−4,−5)を作製した。
[Embodiment 4] An embodiment in which the relationship between the location of the antiferromagnetic layer for fixing the magnetic domain of the backing soft magnetic layer disposed on the back surface of the perpendicular magnetization film and the spike noise is described with reference to FIG. The washed glass substrate 11 is placed in a high vacuum DC magnetron sputtering apparatus, and a Ta precoat layer 41 having a thickness of 5 nm and a 48 at% Mn-Ir film having a thickness of 20 nm are provided.
Anti-ferromagnetic film 42 and amorphous Co-10 at% T
A soft magnetic film A43 made of a-2 at% Zr was sequentially formed. The thickness of the soft magnetic film A is 10 nm, 50 nm, and 100 n.
m, 200 nm, and 300 nm. 300
C. and heat treatment in a magnetic field of 1 kOe. A solenoid-type electromagnet was disposed behind the substrate, and a current was applied to the solenoid to generate a magnetic field in the radial direction of the disk. As the substrate temperature decreased, the applied magnetic field intensity decreased. This processing provided anisotropy in the radial direction of the magnetic disk. Subsequently, a nonmagnetic intermediate layer 44 made of Pt having a thickness of 5 nm, a perpendicular magnetization film 45 having a multilayer structure having a total thickness of 20 nm, and a C protective layer 46 are successively formed thereon in the same vacuum, and a layer shown in FIG. The medium M (−1,
−2, −3, −4, −5).

【0075】本実施例では、多層構造の垂直磁化膜45
としてCo/Pt多層膜とCo−Xa/Pt多層膜(X
aはV)を積層した全膜厚20nmの垂直磁化膜でVの
添加量は8at%、Co/Pt多層膜とCo−Xa/P
t多層膜の積層比は0.4の媒体を用いた例で説明す
る。
In this embodiment, the perpendicular magnetization film 45 having a multilayer structure is used.
Co / Pt multilayer film and Co-Xa / Pt multilayer film (X
a is a perpendicular magnetization film having a total thickness of 20 nm in which V) is laminated, and the added amount of V is 8 at%, and the Co / Pt multilayer film and the Co-Xa / P
An example using a medium with a lamination ratio of the t multilayer film of 0.4 will be described.

【0076】高真空DCマグネトロンスパッタリング装
置に洗浄したガラス基板11を設置し、膜厚5nmのT
aプリコート層41を形成し、この上に裏打軟磁性層B
47として膜厚300nmのFe−8at%Ta−12
at%C膜を形成し400℃に加熱した。この熱処理に
よりFeの微結晶粒が析出した構造の軟磁性膜が形成さ
れた。裏打軟磁性層B47としては、他にCo−Zr−
Xb(Xb:Ta,Nb,Mo,W,Ni)系非晶質合
金膜、もしくはFe−Al−Si合金やFe−C−Yc
(Yc:Ta,Hf,Zr,Nb)合金などを使用でき
る。裏打軟磁性層B47の上に膜厚10nmの48at
%Mn−Ir反強磁性膜42、及び膜厚10nm,50
nm,100nm,200nm,及び300nmの非晶
質構造のCo−10at%Ta−2at%Zrからなる
裏打軟磁性層A43を形成した。300℃、1kOeの
磁界中熱処理してした。基板の後方にソレノイド型の電
磁石を配置し、これに通電してディスクの半径方向の磁
界を発生して基板温度の低下と共に印加磁界強度を小さ
くした。この処理により磁気ディスクの半径方向に異方
性が付与された。引き続き同一真空中で膜厚5nmのP
tからなる非磁性中間層44、全膜厚20nmの多層構
造の垂直磁化膜45、及びC保護層46を順次形成し図
7(a)の構成の媒体N(−1,−2,−3,−4,−
5)を作製した。
The cleaned glass substrate 11 was placed in a high vacuum DC magnetron sputtering apparatus, and a 5 nm-thick T
a Pre-coat layer 41 is formed, and a soft magnetic layer B
47 is Fe-8 at% Ta-12 having a thickness of 300 nm.
An at% C film was formed and heated to 400 ° C. By this heat treatment, a soft magnetic film having a structure in which fine crystal grains of Fe were precipitated was formed. As the backing soft magnetic layer B47, Co-Zr-
Xb (Xb: Ta, Nb, Mo, W, Ni) based amorphous alloy film, Fe-Al-Si alloy or Fe-C-Yc
(Yc: Ta, Hf, Zr, Nb) alloy or the like can be used. 48 atm of 10 nm thickness on the backing soft magnetic layer B47
% Mn-Ir antiferromagnetic film 42 and a film thickness of 10 nm, 50
A soft underlayer A43 made of Co-10 at% Ta-2 at% Zr having an amorphous structure of nm, 100 nm, 200 nm, and 300 nm was formed. Heat treatment was performed at 300 ° C. in a magnetic field of 1 kOe. A solenoid-type electromagnet was disposed behind the substrate, and a current was applied to the solenoid to generate a magnetic field in the radial direction of the disk. As the substrate temperature decreased, the applied magnetic field intensity decreased. This processing provided anisotropy in the radial direction of the magnetic disk. Then, in the same vacuum, a 5 nm thick P
7A, a non-magnetic intermediate layer 44, a perpendicular magnetization film 45 having a multilayer structure with a total film thickness of 20 nm, and a C protective layer 46 are sequentially formed, and a medium N (-1, -2, -3) having the configuration of FIG. , -4,-
5) was produced.

【0077】本実施例では、多層構造の垂直磁化膜45
としてCo/Pt多層膜とCo/Pt−Ya多層膜(Y
aはB)を積層した全膜厚20nmの垂直磁化膜を用い
た。Bの添加量は8at%、Co/Pt多層膜とCo/
Pt−Ya多層膜の積層比は0.4の媒体を用いた例で
説明する。
In this embodiment, the perpendicular magnetization film 45 having a multilayer structure is used.
As a Co / Pt multilayer film and a Co / Pt-Ya multilayer film (Y
For a, a perpendicular magnetization film having a total film thickness of 20 nm laminated with B) was used. The amount of B added is 8 at%, and the Co / Pt multilayer film and Co / Pt
An example using a medium in which the stacking ratio of the Pt-Ya multilayer film is 0.4 will be described.

【0078】本実施例で作製した媒体M(−1,−2,
−3,−4,−5)、及び媒体N(−1,−2,−3,
−4,−5)を図2にて説明した磁気記録装置に設置
し、裏打ち軟磁性層A43に形成された磁区から発生す
るスパイク状のノイズ信号と磁気記録したときのオーバ
ーライト特性を測定比較した結果を表3に示す。ここで
スパイク状のノイズ信号は次のように定義した。磁気ヘ
ッドにより垂直磁化膜45を直流消去し、再生ヘッドで
検出される平均の直流消去ノイズレベルの1.2倍以上
の信号強度を有する不規則状の信号をスパイク状のノイ
ズ信号とし、磁気ディスク一周当たりに検出される数を
比較した。またオーバーライト特性は、初めに線記録密
度300kFCIの信号を記録し、同一記録トラック上
に線記録密度40kFCIの信号を重ね書きした。この
とき最初に記録した消し残り信号(N)と後に記録した
信号(S)の比(N/S)が−35dBより悪い特性を
×印、優れた特性を○印で示した。
The medium M (-1, -2,
−3, −4, −5) and medium N (−1, −2, −3,
−4, −5) are installed in the magnetic recording apparatus described with reference to FIG. 2, and a spike-like noise signal generated from a magnetic domain formed in the backing soft magnetic layer A43 is measured and compared with an overwrite characteristic when magnetic recording is performed. Table 3 shows the results. Here, the spike-like noise signal is defined as follows. The perpendicular magnetic film 45 is DC-erased by a magnetic head, and an irregular signal having a signal strength of 1.2 times or more of an average DC erasing noise level detected by the reproducing head is set as a spike noise signal, The numbers detected per round were compared. Regarding the overwrite characteristics, a signal having a linear recording density of 300 kFCI was recorded first, and a signal having a linear recording density of 40 kFCI was overwritten on the same recording track. At this time, a characteristic in which the ratio (N / S) of the remaining erased signal (N) recorded first and a signal (S) recorded later was worse than -35 dB was indicated by x, and excellent characteristics were indicated by ○.

【0079】[0079]

【表3】 [Table 3]

【0080】表3の比較から明らかなように、垂直磁化
膜の下層に反強磁性膜42を配置する事により、この間
に配置した裏打ち軟磁性層Aへの磁区形成を抑制するこ
とができ、特に垂直磁化膜45から200nm以下の距
離の位置に反強磁性膜42を配置し、垂直磁化膜45と
反強磁性膜42の間に軟磁性層を配置した構成とするこ
とによりスパイク状ノイズを低減する効果が大きい。ま
た前記反強磁性膜42の下層にも裏打ち軟磁性層B47
を配置した構成により、スパイク状ノイズの低減に加え
て、記録効率が向上できその結果オーバーライト特性を
向上できる。
As is clear from the comparison in Table 3, by arranging the antiferromagnetic film 42 below the perpendicular magnetization film, the formation of magnetic domains in the backing soft magnetic layer A disposed therebetween can be suppressed. In particular, the anti-ferromagnetic film 42 is disposed at a distance of 200 nm or less from the perpendicular magnetic film 45, and a soft magnetic layer is disposed between the perpendicular magnetic film 45 and the anti-ferromagnetic film 42. Great effect of reduction. Under the antiferromagnetic film 42, a soft magnetic underlayer B47 is also provided.
Is arranged, the recording efficiency can be improved in addition to the reduction of spike noise, and as a result, the overwrite characteristics can be improved.

【0081】本実施例では、裏打軟磁性層、反強磁性
層、非磁性中間層、磁性膜などの材料の一例を用いて説
明したが、前記した材料の他の何れの組み合わせでも同
様の効果を得ることができる。
Although the present embodiment has been described using an example of a material such as a soft magnetic underlayer, an antiferromagnetic layer, a non-magnetic intermediate layer, and a magnetic film, the same effect can be obtained by any other combination of the above materials. Can be obtained.

【0082】本実施例では、裏打軟磁性層としてCo−
10at%Ta−2at%Zr非晶質膜、Fe−8at
%Ta−12at%C多結晶膜、及びFe−12at%
Al−5at%Si多結晶膜を用いた例で説明したが、
この他にCo−Zr−Xb(Xb:Ta,Nb,Mo,
W,Ni)系非晶質合金膜、もしくはFe−Al−Si
合金やFe−C−Yc(Yc:Ta,Hf,Zr,N
b)合金などの非柱状多結晶膜を用いても同様の効果を
得ることができる。また、反強磁性層としてMn−Pt
合金を用いた例で説明したが、他にMn−Fe合金、M
n−Ir合金、Cr−Mn−Pt合金などを用いても良
い。更に本発明の垂直磁化膜としてCo/Pt多層膜と
Co−Xa/Pt多層膜(XaはV)を積層した垂直磁
化膜とCo/Pt多層膜とCo/Pt−Ya多層膜(Y
aはB)を積層した垂直磁化膜からなる媒体構成で発明
の内容を説明したが、垂直磁化膜としては、Co/(P
t,or Pd)多層膜とCo−Xa/(Pt,or Pd)
多層膜(Xa:Cr,B,Ta,Mn,V)の積層構
造、あるいはCo/(Pt,or Pd)多層膜とCo/
(Pt−Ya,or Pd−Ya)多層膜(Ya:B,T
a,Ru,Re,Ir,Mn,Mg,Zr,Nb)の積
層構造としても良い。また、基板11としてガラス基板
を用いた例により説明したが、ガラス基板の他にSiデ
ィスク基板、NiP被覆アルミニウム基板、カーボン基
板、あるいは高分子基板などを用いてもよい。
In this embodiment, as the soft magnetic under layer, Co-
10 at% Ta-2 at% Zr amorphous film, Fe-8 at
% Ta-12 at% C polycrystalline film and Fe-12 at%
As described in the example using the Al-5 at% Si polycrystalline film,
In addition, Co-Zr-Xb (Xb: Ta, Nb, Mo,
W, Ni) amorphous alloy film, or Fe-Al-Si
Alloy or Fe-C-Yc (Yc: Ta, Hf, Zr, N
b) A similar effect can be obtained by using a non-columnar polycrystalline film such as an alloy. Further, Mn-Pt is used as an antiferromagnetic layer.
Although the description has been given of the example using the alloy, the Mn-Fe alloy, M
An n-Ir alloy, a Cr-Mn-Pt alloy, or the like may be used. Further, as the perpendicular magnetization film of the present invention, a perpendicular magnetization film in which a Co / Pt multilayer film and a Co-Xa / Pt multilayer film (Xa is V) are laminated, a Co / Pt multilayer film, and a Co / Pt-Ya multilayer film (Y
In the description of the invention, the content of the invention has been described with a medium configuration including a perpendicular magnetic film in which B) is stacked.
t, or Pd) Multilayer film and Co-Xa / (Pt, or Pd)
A multilayer structure of a multilayer film (Xa: Cr, B, Ta, Mn, V), or a Co / (Pt, or Pd) multilayer film and Co /
(Pt-Ya, or Pd-Ya) Multilayer (Ya: B, T)
a, Ru, Re, Ir, Mn, Mg, Zr, Nb). Further, although an example using a glass substrate as the substrate 11 has been described, a Si disk substrate, a NiP-coated aluminum substrate, a carbon substrate, a polymer substrate, or the like may be used instead of the glass substrate.

【0083】〔実施例5〕図2を用いて、本発明による
磁気記憶装置の一実施例を説明する。磁気記憶装置は、
磁気ディスク31、記録再生用の磁気ヘッド32、磁気
ヘッドを支持するサスペンジョン33、アクチュエータ
34、ボイスコイルモータ35、記録再生回路36、位
置決め回路37、インターフェース制御回路38などで
構成される。磁気ディスク31は上記実施例にて説明し
た垂直磁気記録媒体からなり、保護膜上には潤滑膜が被
覆されている。磁気ヘッド32は、スライダー、この上
に設けられた磁気記録用ヘッド及び信号再生用の磁気抵
抗効果型、巨大磁気抵抗効果型もしくはスピンバルブ型
素子あるいは磁気トンネル型素子からなる再生用ヘッド
で構成される。記録信号再生用の磁気ヘッドのギャップ
長は、高分解能の再生信号を得るために0.25μm以
下とし、望ましくは0.08〜0.15μmとする。磁
気記録用のヘッドは、単磁極型ヘッドもしくはリング型
ヘッドのいずれを用いても良い。再生用ヘッドのトラッ
ク幅は、記録用ヘッド磁極のトラック幅より狭くし、記
録トラック両端部から生じる再生ノイズを低減する。磁
気ヘッド32は、サスペンジョン33によって支持され
る。
[Embodiment 5] An embodiment of a magnetic storage device according to the present invention will be described with reference to FIG. The magnetic storage device
It comprises a magnetic disk 31, a recording / reproducing magnetic head 32, a suspension 33 supporting the magnetic head, an actuator 34, a voice coil motor 35, a recording / reproducing circuit 36, a positioning circuit 37, an interface control circuit 38 and the like. The magnetic disk 31 is made of the perpendicular magnetic recording medium described in the above embodiment, and the protective film is covered with a lubricating film. The magnetic head 32 is composed of a slider, a magnetic recording head provided thereon, and a reproducing head composed of a magnetoresistive, giant magnetoresistive or spin-valve element or a magnetic tunnel element for reproducing signals. You. The gap length of the magnetic head for reproducing the recording signal is set to 0.25 μm or less, preferably 0.08 to 0.15 μm in order to obtain a high-resolution reproduction signal. As a magnetic recording head, either a single pole type head or a ring type head may be used. The track width of the reproducing head is made narrower than the track width of the recording head magnetic pole to reduce reproduction noise generated from both ends of the recording track. The magnetic head 32 is supported by the suspension 33.

【0084】本装置を用いて、本実施例の媒体ノイズ特
性や記録再生特性評価を行った。表1、表2に示したよ
うに本発明の垂直磁気記録媒体により記録分解能:30
0kFCI以上の高密度記録が実現でき、この密度にお
ける媒体ノイズ:8μVrms/μVpp、エラーレー
ト:10-6以下の高密度特性が得られ、面記録密度50
Gb/in2以上の磁気ディスク装置構成できる。
Using this apparatus, the evaluation of the medium noise characteristics and the recording / reproducing characteristics of this embodiment were performed. As shown in Tables 1 and 2, the perpendicular magnetic recording medium of the present invention has a recording resolution of 30.
High-density recording of 0 kFCI or more can be realized, high-density characteristics with a medium noise of 8 μVrms / μVpp and an error rate of 10 −6 or less at this density can be obtained, and a surface recording density of 50
A magnetic disk drive of Gb / in 2 or more can be configured.

【0085】[0085]

【発明の効果】本発明によると、Co/(Pt,or P
d)多層膜とCo−Xa/(Pt,orPd)多層膜(X
a:Cr,B,Ta,Mn,V)の積層構造、あるいは
Co/(Pt,or Pd)多層膜とCo/(Pt−Y
a,or Pd−Ya)多層膜(Ya:B,Ta,Ru,
Re,Ir,Mn,Mg,Zr,Nb)の積層構造の垂
直磁化膜を用い、裏打ち磁性層として非晶質材料もしく
は非柱状構造の多結晶性薄膜を用い、磁区固定層により
裏打磁性層の磁区構造を制御することにより媒体ノイズ
の原因となる垂直磁化膜媒表面における不規則磁区の抑
止と不規則磁区サイズの微細化が可能となり、媒体ノイ
ズの小さい記録磁化の安定性に優れた超高密度磁気記録
に好適な垂直磁気記録媒体を得ることができる。
According to the present invention, Co / (Pt, or P
d) Multilayer film and Co-Xa / (Pt, or Pd) multilayer film (X
a: a laminated structure of Cr, B, Ta, Mn, V) or a Co / (Pt, or Pd) multilayer film and Co / (Pt-Y)
a, or Pd-Ya) multilayer film (Ya: B, Ta, Ru,
A perpendicular magnetic film having a laminated structure of (Re, Ir, Mn, Mg, Zr, Nb) is used, and an amorphous material or a non-columnar polycrystalline thin film is used as a backing magnetic layer. By controlling the magnetic domain structure, it is possible to suppress irregular magnetic domains on the surface of the perpendicular magnetic film medium that causes medium noise and to reduce the size of the irregular magnetic domains. A perpendicular magnetic recording medium suitable for density magnetic recording can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による垂直磁気記録媒体の基本構造の一
例を示す断面模式図。
FIG. 1 is a schematic sectional view showing an example of a basic structure of a perpendicular magnetic recording medium according to the present invention.

【図2】磁気記憶装置の説明図。FIG. 2 is an explanatory diagram of a magnetic storage device.

【図3】本発明による垂直磁気記録媒体の一実施例を示
す断面模式図。
FIG. 3 is a schematic sectional view showing one embodiment of a perpendicular magnetic recording medium according to the present invention.

【図4】磁気特性の角度依存性の説明図。FIG. 4 is an explanatory diagram of the angle dependence of magnetic characteristics.

【図5】ノイズ特性の性能比較図。FIG. 5 is a performance comparison diagram of noise characteristics.

【図6】磁化の安定性の性能比較図。FIG. 6 is a performance comparison diagram of magnetization stability.

【図7】本発明による垂直磁気記録媒体の一実施例を示
す断面模式図。
FIG. 7 is a schematic sectional view showing one embodiment of a perpendicular magnetic recording medium according to the present invention.

【符号の説明】[Explanation of symbols]

11:基板、12:裏打ち軟磁性層、13:非磁性中間
層、14:多層膜、15:多層膜、16:多層膜、1
7:多層膜、18:多層膜、19:保護層、20:垂直
磁化膜、31:磁気ディスク、32:磁気ヘッド、3
3:サスペンジョン、34:アクチュエータ、35:ボ
イスコイルモータ、36:記録再生回路、37:位置決
め回路、38:インターフェース制御回路、41:プリ
コート層、42:反強磁性膜、43:軟磁性膜A、4
4:非磁性中間層、45:垂直磁化膜、46:保護層、
47:軟磁性膜B。
11: substrate, 12: soft magnetic underlayer, 13: nonmagnetic intermediate layer, 14: multilayer, 15: multilayer, 16: multilayer, 1
7: multilayer film, 18: multilayer film, 19: protective layer, 20: perpendicular magnetization film, 31: magnetic disk, 32: magnetic head, 3
3: Suspension, 34: Actuator, 35: Voice coil motor, 36: Recording / reproducing circuit, 37: Positioning circuit, 38: Interface control circuit, 41: Precoat layer, 42: Antiferromagnetic film, 43: Soft magnetic film A, 4
4: non-magnetic intermediate layer, 45: perpendicular magnetization film, 46: protective layer,
47: Soft magnetic film B.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/26 H01F 10/26 (72)発明者 棚橋 究 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 菊川 敦 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D006 BB01 BB07 BB08 CA01 CA03 CA06 FA09 5E049 AA04 AA09 AC05 BA08 DB12──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 10/26 H01F 10/26 (72) Inventor: Itaru Tanahashi 1-280, Higashi-Koigabo, Kokubunji-shi, Tokyo Hitachi, Ltd. Hitachi, Ltd. At the Central Research Laboratory of the Works (72) Atsushi Kikukawa, Inventor 1-280, Higashi Koigakubo, Kokubunji-shi, Tokyo F-term at the Central Research Laboratory of Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Co/Pt又はCo/Pd多層膜を含む
垂直磁化膜からなる垂直磁気記録媒体において、前記垂
直磁化膜の一部にCo−Xa/Pt又はCo−Xa/P
d多層膜層(XaはCr,B,Ta,Mn,Vから選択
される少なくとも1種類の元素)を設けたことを特徴と
する垂直磁気記録媒体。
1. A perpendicular magnetic recording medium comprising a perpendicular magnetic film including a Co / Pt or Co / Pd multilayer film, wherein a part of the perpendicular magnetic film is Co-Xa / Pt or Co-Xa / P.
A perpendicular magnetic recording medium comprising a d multilayer film layer (Xa is at least one element selected from Cr, B, Ta, Mn, and V).
【請求項2】 Co/Pt又はCo/Pd多層膜を含む
垂直磁化膜からなる垂直磁気記録媒体において、前記垂
直磁化膜の一部にCo/Pt−Ya又はCo/Pd−Y
a多層膜層(YaはB,Ta,Ru,Re,Ir,M
n,Mg,Zr,Nbから選択される少なくとも1種類
の元素)を設けたことを特徴とする垂直磁気記録媒体。
2. A perpendicular magnetic recording medium comprising a perpendicular magnetic film including a Co / Pt or Co / Pd multilayer film, wherein a part of the perpendicular magnetic film has Co / Pt-Ya or Co / Pd-Y.
a multilayer film layer (Ya is B, Ta, Ru, Re, Ir, M
at least one element selected from n, Mg, Zr, and Nb).
【請求項3】 請求項1又は2記載の垂直磁気記録媒体
において、前記垂直磁化膜の下層に軟磁性層を有し、前
記軟磁性層は、Co−Zr−Xb(XbはTa,Nb,
Mo,W,Niから選択される少なくとも1種類の元
素)系非晶質合金膜、Fe−Al−Si合金やFe−C
−Yc(YcはTa,Hf,Zr,Nbから選択される
少なくとも1種類の元素)合金などの非柱状多結晶膜、
Ni−Fe合金の何れかから構成されることを特徴とす
る垂直磁気記録媒体。
3. The perpendicular magnetic recording medium according to claim 1, further comprising a soft magnetic layer below the perpendicular magnetization film, wherein the soft magnetic layer is formed of Co—Zr—Xb (Xb is Ta, Nb,
At least one element selected from Mo, W, and Ni) -based amorphous alloy films, Fe-Al-Si alloys and Fe-C
Non-columnar polycrystalline films such as -Yc (Yc is at least one element selected from Ta, Hf, Zr, and Nb) alloys;
A perpendicular magnetic recording medium comprising any one of a Ni-Fe alloy.
【請求項4】 請求項3記載の垂直磁気記録媒体におい
て、前記軟磁性層と前記垂直磁化膜との間に非磁性中間
層を有することを特徴とする垂直磁気記録媒体。
4. The perpendicular magnetic recording medium according to claim 3, further comprising a non-magnetic intermediate layer between said soft magnetic layer and said perpendicular magnetic film.
【請求項5】 請求項3又は4記載の垂直磁気記録媒体
において、前記垂直磁化膜の裏面から10〜200nmの
距離だけ隔ててIrMn,PtMn,PtCrMnなど
の反強磁性層膜を備えたことを特徴とする垂直磁気記録
媒体。
5. The perpendicular magnetic recording medium according to claim 3, further comprising an antiferromagnetic layer film of IrMn, PtMn, PtCrMn or the like separated from the back surface of the perpendicular magnetization film by a distance of 10 to 200 nm. Characteristic perpendicular magnetic recording medium.
JP2001072941A 2001-03-14 2001-03-14 Perpendicular magnetic recording medium and magnetic storage device Expired - Fee Related JP3647379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001072941A JP3647379B2 (en) 2001-03-14 2001-03-14 Perpendicular magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001072941A JP3647379B2 (en) 2001-03-14 2001-03-14 Perpendicular magnetic recording medium and magnetic storage device

Publications (2)

Publication Number Publication Date
JP2002269718A true JP2002269718A (en) 2002-09-20
JP3647379B2 JP3647379B2 (en) 2005-05-11

Family

ID=18930452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001072941A Expired - Fee Related JP3647379B2 (en) 2001-03-14 2001-03-14 Perpendicular magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP3647379B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342919A (en) * 2001-05-14 2002-11-29 Fuji Electric Co Ltd Perpendicular magnetic recording medium and method of manufacturing the same
KR101083799B1 (en) 2010-01-14 2011-11-18 한국과학기술연구원 Magnetic thin film member and method for manufacturing the same
JP2014081981A (en) * 2012-10-17 2014-05-08 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342919A (en) * 2001-05-14 2002-11-29 Fuji Electric Co Ltd Perpendicular magnetic recording medium and method of manufacturing the same
JP4591806B2 (en) * 2001-05-14 2010-12-01 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
KR101083799B1 (en) 2010-01-14 2011-11-18 한국과학기술연구원 Magnetic thin film member and method for manufacturing the same
JP2014081981A (en) * 2012-10-17 2014-05-08 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device

Also Published As

Publication number Publication date
JP3647379B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
KR100370441B1 (en) Magnetic recording media with antiferromagnetically coupled ferromagnetic films as the recording layer
JP5892213B2 (en) Magnetic recording method
JP4540557B2 (en) Perpendicular magnetic recording medium
JP4292226B1 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
US20020132140A1 (en) Magnetic recording medium
US6383668B1 (en) Magnetic recording media with antiferromagnetically coupled host layer for the magnetic recording layer
JP2004505397A (en) Laminated magnetic recording medium with antiferromagnetic coupling as individual magnetic layers in the laminated medium
JP2004111040A (en) Perpendicular magnetic recording medium
JP2003016620A (en) Magnetic recording medium, magnetic recording device and method for magnetic recording
JP2009059402A (en) Vertical magnetic recording medium and magnetic recording/reproducing system using the same
JP2008146816A (en) Vertical magnetic recording medium equipped with multilayer recording structure including intergranular exchange enhancement layer
JP2008140460A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JP2004039033A (en) Magnetic recording medium and magnetic recording/reproducing device
JP2000113441A (en) Vertical magnetic recording medium
JP4154341B2 (en) Magnetic recording medium and magnetic storage device
JPH11102510A (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP3652999B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3647379B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2006286106A (en) Vertical magnetic recording medium and magnetic storage apparatus
JP3921052B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP4233710B2 (en) Magnetic recording medium
JP2004272982A (en) Manufacturing method of perpendicular magnetic recording medium, and perpendicular magnetic recording medium
JP2002074639A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2003030812A (en) Magnetic recording medium and magnetic recorder
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees