JP2002340402A - Heat pump type hot water supplier - Google Patents

Heat pump type hot water supplier

Info

Publication number
JP2002340402A
JP2002340402A JP2001149074A JP2001149074A JP2002340402A JP 2002340402 A JP2002340402 A JP 2002340402A JP 2001149074 A JP2001149074 A JP 2001149074A JP 2001149074 A JP2001149074 A JP 2001149074A JP 2002340402 A JP2002340402 A JP 2002340402A
Authority
JP
Japan
Prior art keywords
hot water
temperature
compressor
water
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001149074A
Other languages
Japanese (ja)
Other versions
JP3912035B2 (en
Inventor
Masahiro Ohama
昌宏 尾浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001149074A priority Critical patent/JP3912035B2/en
Publication of JP2002340402A publication Critical patent/JP2002340402A/en
Application granted granted Critical
Publication of JP3912035B2 publication Critical patent/JP3912035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type hot water supplier to improve operation efficiency and effectively utilize hot water capacity of a hot water storage tank. SOLUTION: The heat pump type hot water supplier comprises a flow rate control means 10 for controlling the opening of a flow rate regulating valve 11 so that a boiling-up outlet water temperature at the water side of a refrigerant to water heat exchanger 2 is kept at a constant value; a means 13 for detecting the condition immediately before completion of boiling-up to detect right before boiling-up of the whole of the hot water storage tank 5; and a control means 12 to effect control such that the number of revolutions of a compressor is decreased when a signal from the means 13 is changed into a given signal. Since, in the case of boiling-up completion approaching and the discharge pressure of the compressor 1 being increased, control is effected such that the number of revolutions of the compressor is decreased, hot water supplying/heating operation is practicable to a high water supply temperature, hot water capacity of the hot water storage tank 5 can be effectively utilized, and further hot water supplying/heating operation excellent in efficiency is practicable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は貯湯式のヒートポン
プ給湯機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply type heat pump water heater.

【0002】[0002]

【従来の技術】従来のこの種のヒートポンプ給湯機は特
開昭60−164157号公報に示すようなものがあ
る。図22は従来のヒートポンプ給湯機の構成図であ
る。図22において、圧縮機1、冷媒対水熱交換器2、
減圧装置3、蒸発器4からなる冷媒循環回路と、貯湯槽
5、循環ポンプ6、冷媒対水熱交換器2、補助加熱器7
を接続した給湯回路ならなり、圧縮機1より吐出された
高温高圧の過熱ガス冷媒は冷媒対水熱交換器2に流入
し、ここで循環ポンプ6から送られてきた水を加熱す
る。そして、凝縮液化した冷媒は減圧装置3で減圧さ
れ、蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガ
ス化し、圧縮機1に戻る。一方、冷媒対水熱交換器2で
加熱された湯は貯湯槽5の上部に流入し、上から次第に
貯湯されていく。そして、冷媒対水熱交換器2の入口水
温が設定値に達すると給水温度検出手段8が検知し、圧
縮機1によるヒートポンプ運転を停止して、補助加熱器
7の単独運転に切り換えるものである。
2. Description of the Related Art A conventional heat pump water heater of this kind is disclosed in Japanese Patent Application Laid-Open No. 60-164157. FIG. 22 is a configuration diagram of a conventional heat pump water heater. In FIG. 22, a compressor 1, a refrigerant-to-water heat exchanger 2,
Refrigerant circulation circuit including decompression device 3, evaporator 4, hot water storage tank 5, circulation pump 6, refrigerant-to-water heat exchanger 2, auxiliary heater 7
, And the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the refrigerant-to-water heat exchanger 2, where it heats the water sent from the circulation pump 6. The condensed and liquefied refrigerant is decompressed by the decompression device 3 and flows into the evaporator 4 where it absorbs atmospheric heat to evaporate and return to the compressor 1. On the other hand, the hot water heated by the refrigerant / water heat exchanger 2 flows into the upper portion of the hot water storage tank 5 and is gradually stored from above. Then, when the inlet water temperature of the refrigerant-to-water heat exchanger 2 reaches a set value, the feedwater temperature detecting means 8 detects it, stops the heat pump operation by the compressor 1, and switches to the independent operation of the auxiliary heater 7. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような従来例の構成では、沸き上げ運転時間の経過とと
もに貯湯槽5内の湯と水の接する部分で湯水混合層が生
じ、その層は次第に拡大していく。図23は貯湯槽5内
の湯の温度分布を示す。同図中において、T1は沸き上
げ温度(高温湯)であり、T2は市水温度(低温湯)で
ある。前述の湯水混合層は、高温湯と低温湯の熱伝導お
よび対流により発生するものであり、高温湯から低温湯
へ伝熱されその境界部分で高温湯は温度低下し、逆に低
温湯は温度上昇する。従って、貯湯槽5の沸き上げ完了
近くになると、冷媒対水熱交換器2に流入する給水温度
は高くなるため、圧縮機1の吐出圧力は上昇して、モー
タの巻線温度の上昇など圧縮機1の耐久性が課題となっ
てくる。
However, in the above-described configuration of the prior art, as the boiling operation time elapses, a hot-water mixed layer is formed at a portion where hot water and water in the hot-water storage tank 5 come into contact with each other, and the layer is gradually formed. Expand. FIG. 23 shows a temperature distribution of hot water in hot water storage tank 5. In the figure, T1 is the boiling temperature (high-temperature hot water), and T2 is the city water temperature (low-temperature hot water). The above-mentioned hot-water mixture layer is generated by heat conduction and convection between the high-temperature hot water and the low-temperature hot water, and is transferred from the high-temperature hot water to the low-temperature hot water. To rise. Therefore, when the boiling of the hot water storage tank 5 is nearly completed, the temperature of the feedwater flowing into the refrigerant-to-water heat exchanger 2 increases, so that the discharge pressure of the compressor 1 increases, and the compression pressure such as the motor winding temperature increases. The durability of the machine 1 becomes an issue.

【0004】図24は横軸に冷媒対水熱交換器2に流入
する給水温度をとり、縦軸にその時の圧縮機1の吐出圧
力をとって、給水温度に対する圧縮機1の吐出圧力の関
係を示したグラフである。同図中の圧力Pは常用上限圧
力であり、圧縮機1の耐久性を保証するためには、通常
運転ではこの圧力以下で運転する必要がある。圧力Pの
時の給水温度は同図中よりT3となる。また、有効な湯
温の下限をTu(例えば45℃)とし、前述のT3とT
uを図23に示す。同図の左側に示す貯湯槽5の断面図
において、湯温T3以下の領域は沸き上げ可能な領域で
あり、Tu以上の領域は有効な湯として使用できる領域
である。しかし、湯温T3とTuの間の領域(斜線の部
分)は有効な湯として利用できない領域である。
FIG. 24 shows the relationship between the feed pressure of the compressor 1 and the feed water temperature, with the horizontal axis representing the temperature of the feed water flowing into the refrigerant / water heat exchanger 2 and the vertical axis representing the discharge pressure of the compressor 1 at that time. FIG. The pressure P in the figure is a normal upper limit pressure, and in order to guarantee the durability of the compressor 1, it is necessary to operate the compressor 1 at or below this pressure in normal operation. The supply water temperature at the time of the pressure P is T3 from the figure. Further, the lower limit of the effective hot water temperature is Tu (for example, 45 ° C.), and the above-mentioned T3 and T3
u is shown in FIG. In the cross-sectional view of the hot water storage tank 5 shown on the left side of the figure, a region below the hot water temperature T3 is a region that can be boiled, and a region above Tu is a region that can be used as effective hot water. However, the area between the hot water temperatures T3 and Tu (shaded area) is an area that cannot be used as effective hot water.

【0005】このように従来例の構成では、冷媒対水熱
交換器2に流れる水温が低い状態で運転を停止せざるを
えないので、貯湯槽5の下部が低温の水の状態で停止す
ることになり、貯湯槽5の湯容量を有効に利用できな
い。そのため、貯湯熱量は減少し、給湯負荷を満足する
ことができない。これを解決する方法の一つとして、貯
湯槽5の容量を大きくすることが考えられる。しかし、
この場合には、貯湯槽5の設置面積が大きくなり、設置
の自由度が制限され、かつ、コストが高くなるという課
題がある。また、他の方法として、ヒートポンプ運転を
停止した後、補助加熱器7の単独運転で貯湯熱量を増加
する方法がある。しかし、この場合には、ヒータなどで
加熱するため、消費電力が大きくなり、効率が悪くなる
という課題がある。
As described above, in the configuration of the conventional example, the operation must be stopped in a state where the water temperature flowing through the refrigerant-water heat exchanger 2 is low, so that the lower part of the hot water storage tank 5 is stopped in a state of low-temperature water. As a result, the hot water capacity of the hot water storage tank 5 cannot be used effectively. Therefore, the amount of hot water stored decreases, and the hot water supply load cannot be satisfied. As one method for solving this, it is conceivable to increase the capacity of the hot water storage tank 5. But,
In this case, there is a problem that the installation area of the hot water tank 5 is increased, the degree of freedom of installation is limited, and the cost is increased. Further, as another method, there is a method of increasing the amount of stored hot water by operating the auxiliary heater 7 alone after stopping the heat pump operation. However, in this case, there is a problem that power consumption is increased and efficiency is deteriorated because heating is performed by a heater or the like.

【0006】本発明は、上記従来の課題を解決するもの
で、圧縮機の異常温度上昇ならびに異常圧力上昇もな
く、低消費電力量で貯湯槽の下部まで高温湯を貯湯し、
湯容量を有効に利用可能としたヒートポンプ給湯機の提
供を目的とする。
The present invention solves the above-mentioned conventional problems, and stores high-temperature hot water up to the lower portion of a hot water storage tank with low power consumption without an abnormal rise in temperature and abnormal pressure of a compressor.
It is an object of the present invention to provide a heat pump water heater capable of effectively utilizing a hot water capacity.

【0007】[0007]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明のヒートポンプ給湯機は、貯湯槽全体
が沸き上がる直前を検出する沸き上げ完了直前検出手段
と、沸き上げ完了に近づいたことを検出したときに、能
力可変な圧縮機の回転数を小さくするように制御する制
御手段とを設けたものである。だから、沸き上げ完了に
近づき、圧縮機の吐出圧力が上昇する場合に、加熱能力
を落とすように制御し、吐出圧力を低く押さえるので、
高温の給水温度まで給湯加熱運転が可能となるものであ
る。
In order to solve the above-mentioned conventional problems, a heat pump water heater according to the present invention is provided with a means for detecting immediately before the completion of boiling of the entire hot water storage tank, and a means for immediately before the completion of boiling. Control means for controlling the compressor so as to reduce the rotation speed of the variable capacity compressor when detecting the fact. Therefore, when the discharge pressure of the compressor nears the completion of boiling and the discharge pressure of the compressor rises, the heating capacity is controlled so as to decrease and the discharge pressure is kept low.
The hot water supply heating operation can be performed up to a high supply water temperature.

【0008】[0008]

【発明の実施の形態】請求項1に記載の発明は、能力可
変な圧縮機、冷媒対水熱交換器、減圧装置、蒸発器を順
次接続した冷媒循環回路と、貯湯槽、循環ポンプ、前記
冷媒対水熱交換器を順次接続した給湯回路と、貯湯槽全
体が沸き上がる直前を検出する沸き上げ完了直前検出手
段と、前記沸き上げ完了直前検出手段からの信号が所定
の信号になった時に、前記圧縮機の回転数を小さくする
ように制御する制御手段とを備えたことにより、沸き上
げ完了に近づき、圧縮機の吐出圧力が上昇する場合に、
加熱能力を落とすように制御し、吐出圧力を低く押さ
え、高温の給水温度まで給湯加熱運転が可能となり、貯
湯槽の湯容量を有効に利用できるものである。
DETAILED DESCRIPTION OF THE INVENTION The invention according to a first aspect of the present invention is directed to a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator, which are sequentially connected, a hot water tank, a circulation pump, A hot water supply circuit in which refrigerant-to-water heat exchangers are sequentially connected, and a heating completion detecting means for detecting immediately before the entire hot water tank is boiling, and when a signal from the heating completion detecting means becomes a predetermined signal, By providing control means for controlling the rotation speed of the compressor to be small, when the boiling is completed and the discharge pressure of the compressor increases,
The heating capacity is controlled so as to be reduced, the discharge pressure is kept low, the hot water supply heating operation can be performed up to a high supply water temperature, and the hot water capacity of the hot water storage tank can be used effectively.

【0009】請求項2に記載の発明は、圧縮機の回転数
の変更幅は外気温度を検出する外気温度検出手段から得
た外気温度に応じて決定する制御手段を備えたことによ
り、外気温度に応じた最適な加熱能力の変更を行うの
で、貯湯槽の湯容量を有効に利用でき、かつ、効率の良
い給湯加熱運転ができるものである。
According to a second aspect of the present invention, there is provided a control means for determining a change range of the number of revolutions of the compressor in accordance with an outside air temperature obtained from an outside air temperature detecting means for detecting an outside air temperature. Since the optimum heating capacity is changed according to the temperature, the hot water capacity of the hot water storage tank can be effectively used, and an efficient hot water supply heating operation can be performed.

【0010】請求項3に記載の発明は、予め決められた
複数の給水温度毎に前記圧縮機の回転数の変更を行う制
御手段を備えたことにより、給水温度に応じた最適な加
熱能力の変更を行うので、有効な湯として利用できない
無駄な領域がより少なくなるため、貯湯槽の湯容量を有
効に利用でき、かつ、効率の良い給湯加熱運転ができる
ものである。
According to a third aspect of the present invention, a control means for changing the number of revolutions of the compressor for each of a plurality of predetermined feedwater temperatures is provided, so that an optimum heating capacity according to the feedwater temperature can be obtained. Since the change is made, wasteful areas that cannot be used as effective hot water are reduced, so that the hot water capacity of the hot water storage tank can be effectively used, and an efficient hot water supply heating operation can be performed.

【0011】請求項4に記載の発明は、給水温度が高い
ほど圧縮機の回転数の変更幅を大きくした制御手段を備
えたことにより、吐出圧力の上昇が大きい高給水温度時
に圧縮機の回転数の変更量を大きくして吐出圧力を大き
く低下させて給水温度に応じた最適な加熱能力の変更を
行うので、貯湯槽の湯容量を有効に利用でき、かつ、効
率の良い給湯加熱運転ができるものである。
According to a fourth aspect of the present invention, there is provided control means for increasing the change width of the number of revolutions of the compressor as the temperature of the water supply increases, so that the rotation of the compressor at the time of the high temperature of the water supply where the rise in discharge pressure is large. The amount of change in the number is increased and the discharge pressure is greatly reduced to change the optimal heating capacity according to the feedwater temperature, so that the hot water capacity of the hot water tank can be used effectively and efficient hot water supply heating operation can be performed. You can do it.

【0012】請求項5に記載の発明は、予め設定された
時間間隔ごとに圧縮機の回転数の変更を行う制御手段を
備えたことにより、沸き上げ完了直前時に最適な加熱能
力の変更を行うので、貯湯槽の湯容量を有効に利用で
き、かつ、効率の良い給湯加熱運転ができるものであ
る。
According to a fifth aspect of the present invention, an optimal heating capacity is changed immediately before the completion of boiling, by providing a control means for changing the number of revolutions of the compressor at predetermined time intervals. Therefore, the hot water capacity of the hot water storage tank can be effectively used, and an efficient hot water supply heating operation can be performed.

【0013】請求項6に記載の発明は、圧縮機の回転数
の変更を行う時間間隔を沸き上げ完了に近づくほど小さ
くした制御手段を備えたことにより、沸き上げ完了に近
づくほど吐出圧力の上昇が大きい時に圧縮機の回転数の
変更を多くして吐出圧力を大きく低下させ、最適な加熱
能力の変更を行うので、貯湯槽の湯容量を有効に利用で
き、かつ、効率の良い給湯加熱運転ができるものであ
る。
According to a sixth aspect of the present invention, there is provided a control means for shortening the time interval for changing the rotation speed of the compressor as the boiling is completed, so that the discharge pressure is increased as the boiling is completed. When the pressure is large, the number of revolutions of the compressor is increased and the discharge pressure is greatly reduced, and the optimal heating capacity is changed, so that the hot water capacity of the hot water tank can be used effectively and efficient hot water supply heating operation Can be done.

【0014】請求項7に記載の発明は、沸き上げ完了直
前検出手段として、流量調節弁を通過する流量が最大流
量になった時に最大流量になっている時間を計測する時
間計測手段を備えたことにより、沸き上げ流量が、所定
の時間の間、最大になったことを検出して圧縮機の回転
数の変更を行い、吐出圧力を低く押さえ、加熱運転を続
けるので、高温の給水温度まで給湯加熱運転が可能とな
り、貯湯槽の湯容量を有効に利用できるものである。
According to a seventh aspect of the present invention, there is provided a time measuring means for measuring the time when the flow passing through the flow control valve reaches the maximum flow rate when the flow rate reaches the maximum flow rate as the detection means immediately before the completion of boiling. As a result, it detects that the boiling flow rate has reached the maximum for a predetermined time, changes the rotation speed of the compressor, keeps the discharge pressure low, and continues the heating operation. The hot water supply heating operation becomes possible, and the hot water capacity of the hot water storage tank can be used effectively.

【0015】請求項8に記載の発明は、沸き上げ完了直
前検出手段として吐出圧力検出手段を用い、設定された
基準圧力になれば、圧縮機の回転数小さくするように制
御する制御手段を備えたことにより、貯湯槽の湯容量を
有効に利用でき、かつ、直接圧力で制御するので、圧縮
機のより確実な耐久性の向上になるものである。
According to the present invention, the discharge pressure detecting means is used as the detecting means immediately before the completion of the boiling, and the control means is provided for controlling the rotational speed of the compressor to be reduced when the set reference pressure is reached. As a result, the hot water capacity of the hot water storage tank can be effectively used and the pressure is directly controlled, so that the durability of the compressor is more reliably improved.

【0016】請求項9に記載の発明は、沸き上げ完了直
前検出手段として貯湯槽の下部温度を検出する貯湯槽温
度検出手段を用い、所定の貯湯槽温度になれば、圧縮機
の回転数小さくするように制御する制御手段を備えたこ
とにより、貯湯槽の湯容量を有効に利用でき、かつ、直
接貯湯槽の温度で制御するので、圧縮機のより確実な耐
久性の向上になるものである。
According to a ninth aspect of the present invention, a hot water tank temperature detecting means for detecting a lower temperature of the hot water tank is used as a means for detecting immediately before completion of boiling, and when a predetermined hot water tank temperature is reached, the rotational speed of the compressor is reduced. The control means for controlling the temperature of the hot water storage tank can be effectively used, and the temperature is directly controlled by the temperature of the hot water storage tank. is there.

【0017】[0017]

【実施例】(実施例1)図1は本発明の実施例1のヒー
トポンプ給湯機の構成図、図2は同ヒートポンプ給湯機
の運転時間に対する給湯運転の状態と圧縮機の回転数と
吐出圧力と給水温度とを示すグラフ、図3は同ヒートポ
ンプ給湯機の貯湯槽の温度分布を示す説明図である。な
お、従来例で説明した図22と同じ構成部材には同一符
号を用い説明を省略する。
(Embodiment 1) FIG. 1 is a block diagram of a heat pump water heater according to Embodiment 1 of the present invention, and FIG. 2 is a state of a hot water supply operation with respect to an operation time of the heat pump water heater, a rotation speed of a compressor and a discharge pressure. FIG. 3 is a graph showing the temperature distribution of the hot water tank of the heat pump water heater. Note that the same reference numerals are used for the same components as those in FIG.

【0018】図1において、冷媒対水熱交換器2の水側
出口に設けられた沸き上げ温度検出手段9からの信号で
流量制御手段10は流量調整弁11の開度を制御して、
冷媒対水熱交換器2の出口水温(沸き上げ温度)をほぼ
一定に沸き上げる。また、制御手段12は、沸き上げ完
了の直前を検出する沸き上げ完了直前検出手段13から
の信号で、圧縮機1を駆動制御する圧縮機駆動手段14
を制御するものであり、この圧縮機駆動手段14はイン
バータを有し、圧縮機1の能力を可変するものである。
また、前記流量調整弁11としては、ステッピングモー
タで駆動する電動バルブなどがある。なお、沸き上げ完
了直前検出手段13として、ここでは冷媒対水熱交換器
2の水側入口水温である給水温度を検出する給水温度検
出手段8を用いる。
In FIG. 1, a flow rate control means 10 controls an opening degree of a flow rate control valve 11 by a signal from a boiling temperature detecting means 9 provided at a water side outlet of the refrigerant / water heat exchanger 2,
The outlet water temperature (boiling temperature) of the refrigerant / water heat exchanger 2 is boiled almost constantly. Further, the control means 12 is a compressor driving means 14 for controlling the driving of the compressor 1 by a signal from the immediately before boiling completion detecting means 13 for detecting immediately before the completion of boiling.
The compressor drive means 14 has an inverter and varies the capacity of the compressor 1.
The flow regulating valve 11 includes an electric valve driven by a stepping motor. Here, as the detecting means 13 immediately before the completion of the boiling, the feed water temperature detecting means 8 for detecting the feed water temperature which is the water temperature at the water side inlet of the refrigerant / water heat exchanger 2 is used.

【0019】次に動作、作用について説明する。図2は
横軸に運転時間をとり、縦軸に給湯運転の状態と圧縮機
1の回転数と吐出圧力と給水温度とをとって、運転時間
に対する給湯運転の状態と圧縮機1の回転数と吐出圧力
と給水温度との関係を示したものである。従来例で説明
したように、貯湯槽5の沸き上げ完了近くになると、冷
媒対水熱交換器2に流入する給水温度は高くなる。つま
り、冷媒対水熱交換器2に流入する水が前述した湯水混
合層の部分になると、同図に示すように、運転時間とと
もに給水温度が上昇する。そして、沸き上げ完了直前検
出手段13である給水温度検出手段8が(沸き上げ温度
T1よりも低い温度である)沸き上げ完了直前検出温度
Thを検出すると、制御手段12は、圧縮機駆動手段1
4に所定の回転数に対応する信号を送ることによって、
圧縮機1の回転数を小さくして加熱能力を落とす。この
時、吐出圧力はP1からP2に減少する。その後、運転
時間の経過とともに給水温度が更に上昇し、それに従っ
て吐出圧力が上昇する。そして、給水温度検出手段8
が、常用上限圧力Pになる給水温度T3aを検出する
と、圧縮機1を停止し、加熱運転を終了する。なお、同
図中の太い点線は、圧縮機1の回転数の制御を行わない
従来例の場合である。運転限界の給水温度がT3からT
3aへと高くなり、運転範囲が大きくなることがわか
る。
Next, the operation and operation will be described. In FIG. 2, the horizontal axis represents the operation time, and the vertical axis represents the state of the hot water supply operation, the number of revolutions of the compressor 1, the discharge pressure, and the temperature of the water supply. And the relationship between discharge pressure and feed water temperature. As described in the conventional example, when the boiling of the hot water storage tank 5 is nearly completed, the temperature of the supply water flowing into the refrigerant-to-water heat exchanger 2 increases. That is, when the water flowing into the refrigerant-to-water heat exchanger 2 becomes the portion of the hot water mixture layer described above, as shown in FIG. Then, when the feed water temperature detecting means 8 as the detecting means 13 immediately before the completion of the boiling detects the detected temperature Th immediately before the completion of the boiling (which is lower than the boiling temperature T1), the control means 12 starts the compressor driving means 1.
By sending a signal corresponding to a predetermined number of revolutions to 4,
The number of revolutions of the compressor 1 is reduced to lower the heating capacity. At this time, the discharge pressure decreases from P1 to P2. Thereafter, as the operation time elapses, the feedwater temperature further rises, and the discharge pressure rises accordingly. Then, the water supply temperature detecting means 8
However, when detecting the feed water temperature T3a at which the service upper limit pressure P is reached, the compressor 1 is stopped, and the heating operation is terminated. It should be noted that the thick dotted line in the figure is the case of the conventional example in which the control of the rotation speed of the compressor 1 is not performed. Operation limit feedwater temperature from T3 to T
3a, which indicates that the operating range is increased.

【0020】図3は貯湯槽5内の湯の温度分布を示す。
同図の左側に示す貯湯槽5の断面図において、湯温T3
a以下の領域は沸き上げ可能な領域であり、Tu以上の
領域は有効な湯として使用できる領域である。有効な湯
として利用できない領域は図23で示した従来例の場合
には湯温T3とTuの間の領域であったが、本実施例の
場合は湯温T3aとTuの間の領域(斜線の部分)であ
る。つまり、湯温T3とT3aの間の領域(点線による
斜線の部分)が、本実施例によって、有効になった湯の
領域である。
FIG. 3 shows the temperature distribution of the hot water in the hot water storage tank 5.
In the sectional view of the hot water storage tank 5 shown on the left side of FIG.
The region below a is a region that can be boiled, and the region above Tu is a region that can be used as effective hot water. The area that cannot be used as effective hot water is the area between the hot water temperatures T3 and Tu in the case of the conventional example shown in FIG. 23, but the area between the hot water temperatures T3a and Tu (the hatched area) in the present embodiment. Part). In other words, the area between the hot water temperatures T3 and T3a (the shaded area indicated by the dotted line) is the hot water area that has become effective according to the present embodiment.

【0021】以上のように、本実施例においては、能力
可変な圧縮機、冷媒対水熱交換器、減圧装置、蒸発器を
順次接続した冷媒循環回路と、貯湯槽、循環ポンプ、前
記冷媒対水熱交換器を順次接続した給湯回路と、貯湯槽
全体が沸き上がる直前を検出する沸き上げ完了直前検出
手段と、前記沸き上げ完了直前検出手段からの信号が所
定の信号になった時に、前記圧縮機の回転数を小さくす
る制御手段とを備えたことにより、沸き上げ完了に近づ
き、圧縮機の吐出圧力が上昇する場合に、加熱能力を落
とすように制御し、吐出圧力を低く押さえ、高温の給水
温度まで給湯加熱運転が可能となり、貯湯槽の湯容量を
有効に利用できるものである。
As described above, in this embodiment, the refrigerant circulating circuit in which the variable capacity compressor, the refrigerant / water heat exchanger, the pressure reducing device, and the evaporator are sequentially connected, the hot water tank, the circulation pump, the refrigerant A hot water supply circuit to which a water heat exchanger is sequentially connected; a heating completion detecting means for detecting immediately before the entire hot water tank is heated; and Control means for reducing the number of revolutions of the compressor, so that when the boiling is nearly completed and the discharge pressure of the compressor rises, the heating capacity is controlled to decrease, the discharge pressure is kept low, The hot water supply heating operation can be performed up to the supply water temperature, and the hot water capacity of the hot water storage tank can be effectively used.

【0022】なお、本実施例において、循環ポンプ6を
冷媒対水熱交換器2の水側入口と貯湯槽5との間に設
け、流量調整弁11を循環ポンプ6と冷媒対水熱交換器
2の水側入口との間に設けたが、流量調整弁11の位置
としては、循環ポンプ6の入口と貯湯槽5との間に設け
ても、冷媒対水熱交換器2の水側出口と貯湯槽5との間
に設けも、図1の実施例と同様の作用、効果が得られ
る。
In this embodiment, the circulation pump 6 is provided between the water-side inlet of the refrigerant / water heat exchanger 2 and the hot water storage tank 5, and the flow regulating valve 11 is provided with the circulation pump 6 and the refrigerant / water heat exchanger. 2 is provided between the inlet of the circulating pump 6 and the hot water storage tank 5, but the position of the flow control valve 11 may be provided between the water-side outlet of the refrigerant and the water heat exchanger 2. The same operation and effect as those in the embodiment of FIG.

【0023】また、冷凍サイクルとしては、図22の従
来例で説明したように、冷媒対水熱交換器2を凝縮器と
して使用する吐出圧力が臨界点より低い通常のヒートポ
ンプサイクルであってもよいし、冷媒対水熱交換器2を
ガスクーラとして使用する吐出圧力が臨界点より高い超
臨界ヒートポンプサイクルであってもよい。
The refrigeration cycle may be a normal heat pump cycle in which the refrigerant-to-water heat exchanger 2 is used as a condenser and the discharge pressure is lower than the critical point, as described in the conventional example of FIG. However, a supercritical heat pump cycle in which the refrigerant-to-water heat exchanger 2 is used as a gas cooler and the discharge pressure is higher than the critical point may be used.

【0024】(実施例2)図4は本発明の実施例2のヒ
ートポンプ給湯機の構成図、図5は同ヒートポンプ給湯
機の圧縮機の回転数に対する吐出圧力を示すグラフ、図
6は同ヒートポンプ給湯機の外気温度に対する沸き上げ
完了直前検出温度と圧縮機の回転数の変更量とを示すグ
ラフである。
(Embodiment 2) FIG. 4 is a block diagram of a heat pump water heater according to Embodiment 2 of the present invention, FIG. 5 is a graph showing discharge pressure with respect to the number of revolutions of a compressor of the heat pump water heater, and FIG. It is a graph which shows the detection temperature just before completion of boiling with respect to the outside air temperature of a water heater, and the amount of change of the rotation speed of a compressor.

【0025】本実施例において、実施例1と異なる点
は、外気温度を検出する外気温度検出手段15と、外気
温度に対する圧縮機1の回転数の変更量を記憶している
第一の記憶手段16とを設けた構成としていることであ
る。なお、実施例1と同符号の部分は同一構成を有し、
説明は省略する。
The present embodiment is different from the first embodiment in that an outside air temperature detecting means 15 for detecting the outside air temperature and a first storage means for storing a change amount of the rotation speed of the compressor 1 with respect to the outside air temperature. 16 is provided. The same reference numerals as in the first embodiment have the same configuration,
Description is omitted.

【0026】次に動作、作用について説明する。図5は
横軸に圧縮機1の回転数をとり、外気温度をパラメータ
(冬は例えば5℃、中間期は例えば18℃、夏は例えば
29℃)にして、縦軸に吐出圧力をとって、ある給水温
度の場合の圧縮機1の回転数に対する吐出圧力の関係を
示したものである。同図に示すように、圧縮機1の回転
数が小さくなれば、吐出圧力が減少する。そこで、吐出
圧力をP1からP2に減少させるための圧縮機1の回転
数の変更量を求めれば、冬(例えば5℃)では△S1、
中間期(例えば18℃)では△S2、夏(例えば29
℃)では△S3となる。
Next, the operation and operation will be described. In FIG. 5, the horizontal axis represents the rotation speed of the compressor 1, the outside air temperature is set as a parameter (for example, 5 ° C. in winter, 18 ° C. in the middle period, 29 ° C. in summer, for example), and the discharge pressure is plotted on the vertical axis. 4 shows the relationship between the rotation speed of the compressor 1 and the discharge pressure at a certain feedwater temperature. As shown in the figure, as the rotational speed of the compressor 1 decreases, the discharge pressure decreases. Therefore, if the amount of change in the rotation speed of the compressor 1 for reducing the discharge pressure from P1 to P2 is obtained, in winter (for example, 5 ° C.), ΔS1,
In the middle period (for example, 18 ° C.), ΔS2 and in the summer (for example, 29
° C), it becomes ΔS3.

【0027】図6は横軸に外気温度をとり、縦軸に沸き
上げ完了直前検出温度と圧縮機1の回転数の変更量をと
って、外気温度に対する沸き上げ完了直前検出温度と圧
縮機1の回転数の変更量との関係を示したグラフであ
る。外気温度に対する圧縮機1の回転数の変更量の関係
は、図5で求めた外気温度(冬は5℃、中間期は18
℃、夏は29℃)に対する変更量(冬は△S1、中間期
は△S2、夏は△S3)の関係である。また、外気温度
に対する沸き上げ完了直前検出温度の関係は、各外気温
度(冬は例えば5℃、中間期は例えば18℃、夏は例え
ば29℃)において吐出圧力がP1になる給水温度(沸
き上げ完了直前検出温度Th)を求めることによって決
定できる。そして、これらの関係をあらわしたものが図
6であり、この図6の関係を第一の記憶手段16に記憶
させる。
FIG. 6 shows the outside air temperature on the horizontal axis, the detected temperature immediately before the completion of boiling and the change amount of the rotation speed of the compressor 1 on the vertical axis, and the detected temperature immediately before the completion of the boiling with respect to the outside air temperature and the compressor 1. 4 is a graph showing a relationship between the rotation speed and the amount of change. The relationship between the outside air temperature and the amount of change in the number of revolutions of the compressor 1 is determined by the outside air temperature (5 ° C. in winter, 18
° C, 29 ° C in the summer), and the amount of change (1S1 in the winter, △ S2 in the intermediate period, and △ S3 in the summer). The relationship between the outside air temperature and the detected temperature immediately before the completion of boiling is as follows: at each outside air temperature (for example, 5 ° C. in winter, 18 ° C. in the intermediate period, and 29 ° C. in summer, for example), the feedwater temperature (boiling up) at which the discharge pressure is P1 It can be determined by obtaining the detected temperature immediately before completion Th). FIG. 6 shows these relationships, and the relationships in FIG. 6 are stored in the first storage unit 16.

【0028】制御手段12は、定期的に、沸き上げ完了
直前検出手段13である給水温度検出手段8から給水温
度を検出し、さらに、外気温度検出手段15から外気温
度を検出する。そして、第一の記憶手段16に記憶させ
ている、外気温度に対する圧縮機1の回転数の変更量と
沸き上げ完了直前検出温度Thとを求める。そして、給
水温度検出手段8から求めた給水温度が沸き上げ完了直
前検出温度Thより低ければ、圧縮機1の回転数は変更
せず、逆に、給水温度が沸き上げ完了直前検出温度Th
より高ければ第一の記憶手段16から求めた圧縮機1の
回転数の変更量だけ、圧縮機駆動手段14に信号を送る
ことによって、圧縮機1の回転数を変更する。圧縮機1
の回転数を変更すると吐出圧力はP1からP2に減少す
る。その後、実施例1で説明したように、運転時間の経
過とともに給水温度が更に上昇し、それに従って吐出圧
力が上昇する。そして、給水温度検出手段8が、常用上
限圧力Pになる給水温度T3aを検出すると、圧縮機1
を停止し、加熱運転を終了する。
The control means 12 periodically detects the supply water temperature from the supply water temperature detection means 8 which is the detection means 13 immediately before the completion of boiling, and further detects the outside air temperature from the outside air temperature detection means 15. Then, the amount of change in the rotation speed of the compressor 1 with respect to the outside air temperature and the detected temperature Th immediately before the completion of boiling, which are stored in the first storage means 16, are obtained. If the feed water temperature determined by the feed water temperature detecting means 8 is lower than the detected temperature Th immediately before the completion of the boiling, the rotation speed of the compressor 1 is not changed.
If it is higher, the number of rotations of the compressor 1 is changed by sending a signal to the compressor driving means 14 by the change amount of the number of rotations of the compressor 1 obtained from the first storage means 16. Compressor 1
When the number of rotations is changed, the discharge pressure decreases from P1 to P2. Thereafter, as described in the first embodiment, the feedwater temperature further increases with the elapse of the operation time, and the discharge pressure increases accordingly. When the feedwater temperature detecting means 8 detects the feedwater temperature T3a at which the service upper limit pressure P is reached, the compressor 1
Is stopped and the heating operation is terminated.

【0029】以上のように、本実施例においては、圧縮
機の回転数の変更量は外気温度を検出する外気温度検出
手段から得た外気温度に応じて決定する制御手段を備え
たことにより、外気温度に応じた最適な加熱能力の変更
を行うので、貯湯槽の湯容量を有効に利用でき、かつ、
効率の良い給湯加熱運転ができるものである。
As described above, in this embodiment, the control means for determining the amount of change in the rotational speed of the compressor in accordance with the outside air temperature obtained from the outside air temperature detecting means for detecting the outside air temperature is provided. Since the optimal heating capacity is changed according to the outside air temperature, the hot water capacity of the hot water tank can be used effectively, and
An efficient hot water supply heating operation can be performed.

【0030】(実施例3)図7は本発明の実施例3のヒ
ートポンプ給湯機の構成図、図8は同ヒートポンプ給湯
機の運転時間に対する給湯運転の状態と圧縮機の回転数
と吐出圧力と給水温度とを示すグラフである。本実施例
において、実施例1と異なる点は、給水温度記憶手段1
7を設けた構成としていることである。なお、実施例1
と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 3) FIG. 7 is a block diagram of a heat pump water heater according to a third embodiment of the present invention. FIG. It is a graph which shows supply water temperature. The difference between the present embodiment and the first embodiment is that
7 is provided. Example 1
The portions denoted by the same reference numerals have the same configuration, and description thereof will be omitted.

【0031】次に動作、作用について説明する。図8は
横軸に運転時間をとり、縦軸に給湯運転の状態と圧縮機
1の回転数と吐出圧力と給水温度とをとって、運転時間
に対する給湯運転の状態と圧縮機1の回転数と吐出圧力
と給水温度との関係を示したグラフである。同図中に示
すTh1、Th2(Th1<Th2)は、沸き上げ完了
直前検出温度で、それぞれ第一の沸き上げ完了直前検出
温度、第二の沸き上げ完了直前検出温度である。この第
一の沸き上げ完了直前検出温度Th1と第二の沸き上げ
完了直前検出温度Th2とを給水温度記憶手段17に記
憶させる。
Next, the operation and operation will be described. In FIG. 8, the horizontal axis represents the operation time, and the vertical axis represents the state of the hot water supply operation, the rotation speed of the compressor 1, the discharge pressure, and the temperature of the water supply. 4 is a graph showing the relationship between pressure, discharge pressure, and feedwater temperature. Th1 and Th2 (Th1 <Th2) shown in the figure are detected temperatures immediately before the completion of boiling, and are a detected temperature immediately before the completion of the first boiling and a second detected temperature immediately before the completion of the boiling, respectively. The detected temperature Th1 immediately before the completion of the first boiling and the detected temperature Th2 immediately before the completion of the second boiling are stored in the water supply temperature storage means 17.

【0032】前述したように、貯湯槽5の沸き上げ完了
近くになると、冷媒対水熱交換器2に流入する給水温度
は高くなる。制御手段12は、定期的に、沸き上げ完了
直前検出手段13である給水温度検出手段8から給水温
度を検出し、さらに、給水温度記憶手段17に記憶させ
ている第一の沸き上げ完了直前検出温度Th1を求め
る。そして、給水温度検出手段8から求めた給水温度が
第一の沸き上げ完了直前検出温度Th1より低ければ、
圧縮機1の回転数は変更せず、逆に、給水温度が第一の
沸き上げ完了直前検出温度Th1より高ければ圧縮機1
の回転数を小さくする。圧縮機1の回転数を変更すると
吐出圧力は減少する。その後も、制御手段12は、定期
的に、沸き上げ完了直前検出手段13である給水温度検
出手段8から給水温度を検出し、さらに、給水温度記憶
手段17に記憶させている第二の沸き上げ完了直前検出
温度Th2を求める。そして、給水温度検出手段8から
求めた給水温度が第二の沸き上げ完了直前検出温度Th
2より低ければ、圧縮機1の回転数は変更せず、逆に、
給水温度が第二の沸き上げ完了直前検出温度Th2より
高ければ、圧縮機駆動手段14に信号を送ることによっ
て、圧縮機1の回転数を小さくする。圧縮機1の回転数
を変更した時は同様に、吐出圧力は減少する。その後、
実施例1で説明したように、運転時間の経過とともに給
水温度が更に上昇し、それに従って吐出圧力が上昇す
る。そして、給水温度検出手段8が、常用上限圧力Pに
なる給水温度T3aを検出すると、圧縮機1を停止し、
加熱運転を終了する。
As described above, when the boiling of the hot water storage tank 5 is nearly completed, the temperature of the supply water flowing into the refrigerant-to-water heat exchanger 2 increases. The control means 12 periodically detects the feed water temperature from the feed water temperature detecting means 8 which is the detecting means 13 immediately before the completion of the boiling, and further detects the temperature immediately before the completion of the first boiling stored in the feed water temperature storage means 17. The temperature Th1 is obtained. And if the feed water temperature obtained from the feed water temperature detecting means 8 is lower than the detected temperature Th1 immediately before the completion of the first boiling,
The rotation speed of the compressor 1 is not changed. Conversely, if the feedwater temperature is higher than the detected temperature Th1 immediately before the completion of the first boiling, the compressor 1
Reduce the number of rotations. When the number of revolutions of the compressor 1 is changed, the discharge pressure decreases. After that, the control means 12 periodically detects the feed water temperature from the feed water temperature detecting means 8 which is the detecting means 13 immediately before the completion of the boiling, and further stores the second boiling stored in the feed water temperature storing means 17. The detected temperature Th2 immediately before completion is obtained. Then, the feed water temperature obtained from the feed water temperature detecting means 8 is equal to the detected temperature Th immediately before the completion of the second boiling.
If it is lower than 2, the rotation speed of the compressor 1 is not changed, and conversely,
If the feedwater temperature is higher than the second detected temperature Th2 immediately before the completion of boiling, a signal is sent to the compressor drive means 14 to reduce the rotation speed of the compressor 1. Similarly, when the rotation speed of the compressor 1 is changed, the discharge pressure decreases. afterwards,
As described in the first embodiment, the supply water temperature further increases with the elapse of the operation time, and the discharge pressure increases accordingly. When the feedwater temperature detecting means 8 detects the feedwater temperature T3a at which the normal upper limit pressure P is reached, the compressor 1 is stopped,
The heating operation ends.

【0033】以上のように、本実施例においては、予め
決められた複数の給水温度毎に圧縮機1の回転数の変更
を行う制御手段を備えたことにより、給水温度に応じた
最適な加熱能力の変更を行うので、有効な湯として利用
できない無駄な領域がより少なくなるため、貯湯槽の湯
容量を有効に利用でき、かつ、効率の良い給湯加熱運転
ができるものである。
As described above, in the present embodiment, by providing the control means for changing the rotation speed of the compressor 1 for each of a plurality of predetermined feedwater temperatures, the optimum heating in accordance with the feedwater temperature is provided. Since the capacity is changed, wasteful areas that cannot be used as effective hot water are reduced, so that the hot water capacity of the hot water storage tank can be effectively used, and an efficient hot water supply heating operation can be performed.

【0034】また、本実施例では、沸き上げ完了直前検
出温度として2つの給水温度を設定したが、3つ以上の
給水温度を設定しても、本実施例と同様の作用、効果が
得られる。
Further, in the present embodiment, two feed water temperatures are set as the detected temperatures immediately before the completion of the boiling, but even if three or more feed water temperatures are set, the same operation and effect as the present embodiment can be obtained. .

【0035】(実施例4)図9は本発明の実施例4のヒ
ートポンプ給湯機の構成図、図10は同ヒートポンプ給
湯機の給水温度に対する圧縮機の回転数と吐出圧力とを
示す説明図、図11は同ヒートポンプ給湯機の給水温度
に対する圧縮機の回転数の変更量を示すグラフである。
(Embodiment 4) FIG. 9 is a configuration diagram of a heat pump water heater according to Embodiment 4 of the present invention. FIG. 10 is an explanatory diagram showing the number of revolutions of the compressor and the discharge pressure with respect to the water supply temperature of the heat pump water heater. FIG. 11 is a graph showing the amount of change in the number of revolutions of the compressor with respect to the water supply temperature of the heat pump water heater.

【0036】本実施例において、実施例3と異なる点
は、給水温度に対する圧縮機の回転数の変更量を記憶す
る第二の記憶手段18を設けた構成としていることであ
る。なお、実施例3と同符号の部分は同一構成を有し、
説明は省略する。
The present embodiment is different from the third embodiment in that a second storage means 18 is provided for storing the amount of change in the number of revolutions of the compressor with respect to the feed water temperature. Note that the portions denoted by the same reference numerals as in the third embodiment have the same configuration,
Description is omitted.

【0037】次に動作、作用について説明する。図10
は横軸に給水温度をとり、縦軸に圧縮機1の回転数と吐
出圧力とをとって、給水温度に対する圧縮機1の回転数
と吐出圧力との関係を示したものである。同図におい
て、点線は圧縮機1の回転数を一定とした場合である。
同図からわかるように、給水温度が高くなればなるほど
急激に吐出圧力が高くなる。また、同図中に示すTh
1、Th2、Th3、Th4、Th5(Th1<Th2
<Th3<Th4<Th5)は、沸き上げ完了直前検出
温度Thを示す給水温度で、それぞれ第一、第二、第
三、第四、第五の沸き上げ完了直前検出温度である。こ
の第一から第五の沸き上げ完了直前検出温度を給水温度
記憶手段17に記憶させる。そして、沸き上げ完了直前
検出手段13である給水温度検出手段8から検出した給
水温度が、給水温度記憶手段17に記憶させている沸き
上げ完了直前検出温度Th(Th1、Th2、Th3、
Th4、Th5)以上になれば、圧縮機1の回転数を小
さくする(それぞれ△S1、△S2、△S3、△S4、
△S5)。この時の圧縮機1の回転数の変更量を、同図
に示すように、沸き上げ完了直前検出温度の高い方がよ
り大きくする。つまり、沸き上げ完了直前検出温度Th
1<Th2<Th3<Th4<Th5の時、圧縮機1の
回転数の変更量を△S1<△S2<△S3<△S4<△
S5とする。このようにすれば、同図の実線で示すよう
に、吐出圧力の急激な上昇はなくなる。また、図11は
横軸に給水温度をとり、縦軸に圧縮機1の回転数の変更
量をとって、給水温度に対する圧縮機1の回転数の変更
量の関係を示したものであり、この関係を第二の記憶手
段18に記憶させる。
Next, the operation and operation will be described. FIG.
Shows the relationship between the rotation speed of the compressor 1 and the discharge pressure with respect to the water supply temperature, with the horizontal axis representing the feedwater temperature and the vertical axis representing the rotation speed and the discharge pressure of the compressor 1. In the figure, the dotted line indicates the case where the rotation speed of the compressor 1 is constant.
As can be seen from the figure, the higher the feedwater temperature, the more rapidly the discharge pressure increases. Also, Th shown in FIG.
1, Th2, Th3, Th4, Th5 (Th1 <Th2
<Th3 <Th4 <Th5) is the feedwater temperature indicating the detected temperature Th immediately before the completion of the boiling, and is the first, second, third, fourth, and fifth detected temperatures immediately before the completion of the boiling, respectively. The first to fifth detected temperatures immediately before the completion of boiling are stored in the feedwater temperature storage means 17. Then, the feed water temperature detected by the feed water temperature detecting means 8 which is the detecting means 13 just before the completion of the boiling is stored in the feed water temperature storage means 17 and the detected temperature Th immediately before the completion of the boiling (Th1, Th2, Th3,
(Th4, Th5) or more, the rotation speed of the compressor 1 is reduced (△ S1, △ S2, △ S3, △ S4, respectively).
ΔS5). As shown in the figure, the change amount of the rotation speed of the compressor 1 at this time is larger when the detected temperature immediately before the completion of the boiling is higher. That is, the detected temperature Th immediately before the completion of boiling is Th
When 1 <Th2 <Th3 <Th4 <Th5, the change amount of the rotation speed of the compressor 1 is set to {S1 <△ S2 <△ S3 <△ S4 <△.
S5. In this way, as shown by the solid line in FIG. FIG. 11 shows the relationship between the feedwater temperature and the amount of change in the number of revolutions of the compressor 1, with the horizontal axis representing the feedwater temperature and the vertical axis representing the change in the number of revolutions of the compressor 1. This relationship is stored in the second storage means 18.

【0038】制御手段12は、定期的に、沸き上げ完了
直前検出手段13である給水温度検出手段8から給水温
度を検出する。そして、給水温度記憶手段17に記憶さ
せている沸き上げ完了直前検出温度Th(Th1、Th
2、Th3、Th4、Th5)を求める。そして、給水
温度検出手段8から求めた給水温度が沸き上げ完了直前
検出温度Thより低ければ、圧縮機1の回転数は変更せ
ず、逆に、給水温度が沸き上げ完了直前検出温度Thよ
り高ければ、圧縮機駆動手段14に信号を送ることによ
って、第二の記憶手段18に記憶している給水温度に対
する圧縮機1の回転数の変更量(それぞれ△S1、△S
2、△S3、△S4、△S5)だけ圧縮機1の回転数を
小さくする。
The control means 12 periodically detects the feed water temperature from the feed water temperature detecting means 8, which is the detecting means 13 immediately before the completion of boiling. Then, the detected temperature Th (Th1, Th1) immediately before the completion of the boiling stored in the feedwater temperature storage means 17 is stored.
2, Th3, Th4, Th5). If the feed water temperature determined by the feed water temperature detecting means 8 is lower than the detected temperature Th immediately before the completion of boiling, the rotation speed of the compressor 1 is not changed, and conversely, the feed water temperature is higher than the detected temperature Th immediately before the completion of boiling. For example, by sending a signal to the compressor driving means 14, the amount of change in the number of revolutions of the compressor 1 with respect to the feed water temperature stored in the second storage means 18 (18S1, 1S, respectively)
(2, ΔS3, ΔS4, ΔS5) The rotational speed of the compressor 1 is reduced.

【0039】以上のように、本実施例においては、給水
温度が高いほど圧縮機の回転数の変更量を大きくした制
御手段を備えたことにより、吐出圧力の上昇が大きい高
給水温度時に圧縮機の回転数の変更量を大きくして吐出
圧力を大きく低下させ、給水温度に応じた最適な加熱能
力の変更を行うので、貯湯槽の湯容量を有効に利用で
き、かつ、効率の良い給湯加熱運転ができるものであ
る。
As described above, in the present embodiment, the control means for increasing the change in the number of revolutions of the compressor as the feed water temperature becomes higher is provided. Since the discharge pressure is greatly reduced by increasing the amount of change in the number of rotations, and the optimal heating capacity is changed in accordance with the feed water temperature, the hot water capacity of the hot water tank can be used effectively, and the hot water heating can be performed efficiently You can drive.

【0040】また、本実施例では、沸き上げ完了直前検
出温度Thとして5つの給水温度を設定したが、6つ以
上の給水温度を設定しても、本実施例と同様の作用、効
果が得られる。
In the present embodiment, five feed water temperatures are set as the detected temperature Th immediately before the completion of boiling. However, even if six or more feed water temperatures are set, the same operation and effect as those of the present embodiment can be obtained. Can be

【0041】(実施例5)図12は本発明の実施例5の
ヒートポンプ給湯機の構成図、図13は同ヒートポンプ
給湯機の運転時間に対する吐出圧力と圧縮機の回転数と
給水温度とを示す説明図である。本実施例において、実
施例1と異なる点はタイマー19を設けた構成としてい
ることである。なお、実施例1と同符号の部分は同一構
成を有し、説明は省略する。
(Embodiment 5) FIG. 12 is a diagram showing the configuration of a heat pump water heater according to Embodiment 5 of the present invention, and FIG. 13 shows the discharge pressure, the number of rotations of the compressor, and the water supply temperature with respect to the operation time of the heat pump water heater. FIG. This embodiment is different from the first embodiment in that a timer 19 is provided. Note that the portions denoted by the same reference numerals as those in the first embodiment have the same configuration, and description thereof will be omitted.

【0042】次に動作、作用について説明する。図13
は横軸に運転時間度をとり、縦軸に吐出圧力と圧縮機の
回転数と給水温度とをとって、運転時間に対する吐出圧
力と圧縮機の回転数と給水温度との関係を示したグラフ
である。前述したように、湯水混合層の部分になると運
転時間とともに給水温度が上昇する。同図において、点
線は圧縮機1の回転数を一定とした場合であり、運転時
間が経過して給水温度が高くなればなるほど急激に吐出
圧力が高くなる。そこで、給水温度が、沸き上げ完了直
前検出温度Thになれば、予め設定された所定の時間間
隔△T毎に、圧縮機1の回転数を小さくする。このよう
にすれば、同図のように、圧縮機1の回転数が一定の場
合に比べて、吐出圧力を低くすることができる。
Next, the operation and operation will be described. FIG.
Is a graph showing the relationship between the discharge pressure, the number of rotations of the compressor, and the temperature of the water supply with respect to the operation time, taking the operation time degree on the horizontal axis and the discharge pressure, the number of rotations of the compressor, and the water supply temperature on the vertical axis. It is. As described above, the feedwater temperature rises with the operation time in the hot water / water mixture layer. In the figure, the dotted line indicates the case where the rotation speed of the compressor 1 is constant, and the discharge pressure increases rapidly as the operation time elapses and the feedwater temperature increases. Therefore, when the supply water temperature reaches the detection temperature Th immediately before the completion of boiling, the rotation speed of the compressor 1 is reduced at every predetermined time interval ΔT set in advance. By doing so, the discharge pressure can be reduced as compared with the case where the rotation speed of the compressor 1 is constant as shown in FIG.

【0043】すなわち、制御手段12は、定期的に、沸
き上げ完了直前検出手段13である給水温度検出手段8
から給水温度を検出する。そして、給水温度検出手段8
から求めた給水温度が沸き上げ完了直前検出温度Thよ
り高ければ、タイマー19からの信号で所定の時間間隔
△T毎に、圧縮機駆動手段14に信号を送ることによっ
て、圧縮機1の回転数を小さくする。
That is, the control means 12 periodically supplies the feedwater temperature detecting means 8 which is the detecting means 13 immediately before the completion of boiling.
From the water supply temperature. Then, the water supply temperature detecting means 8
If the feedwater temperature obtained from the above is higher than the detected temperature Th immediately before the completion of boiling, a signal from the timer 19 sends a signal to the compressor driving means 14 at a predetermined time interval ΔT, so that the rotation speed of the compressor 1 is increased. Smaller.

【0044】以上のように、本実施例においては、予め
設定された時間間隔ごとに圧縮機1の回転数の変更を行
う制御手段12を備えたことにより、沸き上げ完了直前
時に最適な加熱能力の変更を行うので、貯湯槽の湯容量
を有効に利用でき、かつ、効率の良い給湯加熱運転がで
きるものである。
As described above, in the present embodiment, the control means 12 for changing the number of revolutions of the compressor 1 at predetermined time intervals is provided, so that the optimum heating capacity is obtained immediately before the completion of boiling. Therefore, the hot water capacity of the hot water storage tank can be used effectively, and an efficient hot water supply heating operation can be performed.

【0045】(実施例6)図14は本発明の実施例6の
ヒートポンプ給湯機の構成図、図15は同ヒートポンプ
給湯機の運転時間に対する吐出圧力と圧縮機の回転数と
給水温度とを示すグラフである。
(Embodiment 6) FIG. 14 is a block diagram of a heat pump water heater according to Embodiment 6 of the present invention, and FIG. 15 shows discharge pressure, compressor rotation speed and water supply temperature with respect to the operation time of the heat pump water heater. It is a graph.

【0046】本実施例において、実施例5と異なる点は
時間間隔記憶手段20を設けた構成としていることであ
る。なお、実施例5と同符号の部分は同一構成を有し、
説明は省略する。
The present embodiment is different from the fifth embodiment in that a time interval storage means 20 is provided. Note that the portions denoted by the same reference numerals as those of the fifth embodiment have the same configuration,
Description is omitted.

【0047】次に動作、作用について説明する。図15
は横軸に運転時間度をとり、縦軸に吐出圧力と圧縮機の
回転数と給水温度とをとって、運転時間に対する吐出圧
力と圧縮機の回転数と給水温度との関係を示したもので
ある。前述したように、湯水混合層の部分になると運転
時間とともに給水温度が上昇する。同図において、点線
は圧縮機1の回転数を一定とした場合であり、運転時間
が経過して給水温度が高くなればなるほど急激に吐出圧
力が高くなる。そこで、給水温度が、第一の沸き上げ完
了直前検出温度Th1になれば、予め設定された所定の
第一の時間間隔△T1毎に、圧縮機1の回転数を小さく
する。そして、給水温度が上昇し、給水温度が第二の沸
き上げ完了直前検出温度Th2になれば、前記第一の時
間間隔△T1より小さい所定の第二の時間間隔△T2
(△T2<△T1)毎に、圧縮機1の回転数を小さくす
る。このように、吐出圧力が急激に上昇する高給水温度
時に、圧縮機1の回転数を修正する時間間隔を短くすれ
ば、同図のように、圧縮機1の回転数が一定の場合に比
べて、吐出圧力を低くすることができ、特に、急激な吐
出圧力の上昇をなくすことができるため、給湯加熱運転
の範囲を広げることができる。ところで、前述した第一
の時間間隔△T1と第二の時間間隔△T2とを時間間隔
記憶手段20に記憶させておく。
Next, the operation and operation will be described. FIG.
Shows the relationship between discharge pressure, compressor rotation speed, and feedwater temperature with respect to operation time, with the horizontal axis representing the degree of operation time and the vertical axis representing discharge pressure, compressor rotation speed, and feedwater temperature. It is. As described above, the feedwater temperature rises with the operation time in the hot water / water mixture layer. In the figure, the dotted line indicates the case where the rotation speed of the compressor 1 is constant, and the discharge pressure increases rapidly as the operation time elapses and the feedwater temperature increases. Therefore, when the supply water temperature becomes the detected temperature Th1 immediately before the completion of the first boiling, the rotation speed of the compressor 1 is reduced at every predetermined first time interval ΔT1. Then, when the feedwater temperature rises and the feedwater temperature becomes the detected temperature Th2 immediately before the completion of the second boiling, a predetermined second time interval ΔT2 smaller than the first time interval ΔT1.
Each time (△ T2 <△ T1), the rotation speed of the compressor 1 is reduced. As described above, when the time interval for correcting the rotation speed of the compressor 1 is shortened at a high supply water temperature at which the discharge pressure sharply increases, as shown in the figure, compared with the case where the rotation speed of the compressor 1 is constant, As a result, the discharge pressure can be reduced, and in particular, a sharp rise in the discharge pressure can be eliminated, so that the range of the hot water supply heating operation can be expanded. By the way, the first time interval ΔT1 and the second time interval ΔT2 are stored in the time interval storage means 20.

【0048】すなわち、制御手段12は、定期的に、沸
き上げ完了直前検出手段13である給水温度検出手段8
から給水温度を検出する。そして、給水温度検出手段8
から求めた給水温度が第一の沸き上げ完了直前検出温度
Th1より高ければ、時間間隔記憶手段20からの信号
によって、第一の時間間隔△T1を検出する。そして、
タイマー19からの信号で第一の時間間隔△T1毎に、
圧縮機駆動手段14に信号を送ることによって、圧縮機
1の回転数を小さくする。さらに、給水温度が上昇し、
給水温度検出手段8から求めた給水温度が第二の沸き上
げ完了直前検出温度Th2より高ければ、時間間隔記憶
手段20からの信号によって、第二の時間間隔△T2を
検出する。そして、タイマー19からの信号で第二の時
間間隔△T2毎に、圧縮機駆動手段14に信号を送るこ
とによって、圧縮機1の回転数を小さくする。
That is, the control means 12 periodically supplies the feedwater temperature detecting means 8 which is the detecting means 13 immediately before the completion of boiling.
From the water supply temperature. Then, the water supply temperature detecting means 8
If the supply water temperature obtained from the above is higher than the first detected temperature Th1 immediately before the completion of boiling, the first time interval ΔT1 is detected by the signal from the time interval storage means 20. And
With the signal from the timer 19, at every first time interval ΔT1,
By sending a signal to the compressor driving means 14, the rotation speed of the compressor 1 is reduced. In addition, the feedwater temperature rises,
If the feed water temperature obtained from the feed water temperature detecting means 8 is higher than the second detected temperature immediately before the completion of boiling, the second time interval ΔT 2 is detected by the signal from the time interval storing means 20. Then, by transmitting a signal from the timer 19 to the compressor driving means 14 at every second time interval ΔT2, the rotation speed of the compressor 1 is reduced.

【0049】以上のように、本実施例においては、圧縮
機の回転数の変更を行う時間間隔を沸き上げ完了に近づ
くほど小さくした制御手段を備えたことにより、沸き上
げ完了に近づくほど吐出圧力の上昇が大きい時に圧縮機
の回転数の変更を多くして吐出圧力を大きく低下させ、
最適な加熱能力の変更を行うので、貯湯槽の湯容量を有
効に利用でき、かつ、効率の良い給湯加熱運転ができる
ものである。
As described above, in this embodiment, the control means for shortening the time interval for changing the rotational speed of the compressor as the boiling is completed is provided, so that the discharge pressure becomes smaller as the boiling is completed. When the rise in pressure is large, the change in the number of revolutions of the compressor is increased to greatly reduce the discharge pressure,
Since the optimum heating capacity is changed, the hot water capacity of the hot water storage tank can be used effectively, and the hot water supply heating operation can be performed efficiently.

【0050】また、本実施例では、圧縮機の回転数の変
更を行う時間間隔として2つの時間間隔(△T1、△T
2)を設定したが、3つ以上の時間間隔を設定しても、
本実施例と同様の作用、効果が得られる。
In this embodiment, two time intervals (ΔT1, ΔT1) are used as time intervals for changing the number of revolutions of the compressor.
2) was set, but even if three or more time intervals were set,
The same operation and effect as in the present embodiment can be obtained.

【0051】(実施例7)図16は本発明の実施例7の
ヒートポンプ給湯機の構成図、図17は同ヒートポンプ
給湯機の運転時間に対する圧縮機の回転数と吐出圧力と
流量と流量調整弁の開度と給水温度とを示すグラフであ
る。
(Embodiment 7) FIG. 16 is a block diagram of a heat pump water heater according to Embodiment 7 of the present invention, and FIG. 17 is a diagram showing a rotational speed of a compressor, a discharge pressure, a flow rate, and a flow control valve with respect to an operation time of the heat pump water heater. 4 is a graph showing the opening degree and the supply water temperature of the circulating water.

【0052】本実施例において、実施例1と異なる点
は、沸上げ完了直前検出手段13として、流量調整弁1
1を通過する流量が最大流量になっている時間を計測す
る時間計測手段21を設けた構成としていることであ
る。なお、実施例1と同符号の部分は同一構成を有し、
説明は省略する。
This embodiment is different from the first embodiment in that the flow control valve 1 is used as the detection means 13 immediately before the completion of boiling.
1 is provided with a time measuring means 21 for measuring the time during which the flow rate passing through 1 is the maximum flow rate. The same reference numerals as in the first embodiment have the same configuration,
Description is omitted.

【0053】次に動作、作用について説明する。図17
は横軸に運転時間度をとり、縦軸に圧縮機1の回転数と
吐出圧力と流量と流量調整弁11の開度と給水温度とを
とって、運転時間に対する圧縮機1の回転数と吐出圧力
と流量と流量調整弁11の開度と給水温度との関係を示
したものである。前述したように、冷媒対水熱交換器2
の水側出口に設けられた沸き上げ温度検出手段9からの
信号で流量制御手段10は流量調整弁11の開度を制御
して、冷媒対水熱交換器2の出口水温(沸き上げ温度)
をほぼ一定になるように沸き上げる。今、湯水混合層の
部分になると運転時間とともに給水温度が上昇するの
で、冷媒対水熱交換器2の水側流量が大きくなるように
流量調整弁11の開度を大きくさせていく。ところが、
流量調整弁11の開度が最大開度(すなわち最大流量)
に達してもなお給水温度が上昇する場合がある。この場
合には、冷媒対水熱交換器2の出口水温である沸き上げ
温度が上昇し、かつ、吐出圧力も急激に上昇する。そこ
で、流量調整弁の開度が所定の運転時間続けて最大開度
になれば、圧縮機1の回転数を小さくするように制御す
れば、図17に示すように、吐出圧力が低下し、給湯加
熱運転を続けることが可能となる。
Next, the operation and operation will be described. FIG.
Takes the operation time degree on the horizontal axis, the rotation speed of the compressor 1, the discharge pressure, the flow rate, the opening degree of the flow control valve 11 and the feed water temperature on the vertical axis, and the rotation speed of the compressor 1 with respect to the operation time. 3 shows a relationship among a discharge pressure, a flow rate, an opening degree of the flow control valve 11, and a supply water temperature. As described above, the refrigerant-to-water heat exchanger 2
The flow control means 10 controls the opening degree of the flow control valve 11 by a signal from the boiling temperature detecting means 9 provided at the water side outlet of the refrigerant, and the outlet water temperature of the refrigerant-to-water heat exchanger 2 (boiling temperature).
Boil so that it is almost constant. Now, in the part of the hot and cold water mixing layer, the feed water temperature rises with the operation time, so the opening degree of the flow control valve 11 is increased so that the water flow rate of the refrigerant to the water heat exchanger 2 increases. However,
The opening of the flow control valve 11 is the maximum opening (that is, the maximum flow rate)
The water supply temperature may still rise even when the temperature reaches In this case, the boiling temperature, which is the outlet water temperature of the refrigerant-to-water heat exchanger 2, rises, and the discharge pressure also rises sharply. Therefore, if the opening of the flow control valve reaches the maximum opening continuously for a predetermined operation time, if the rotation speed of the compressor 1 is controlled to decrease, the discharge pressure decreases as shown in FIG. It becomes possible to continue the hot water supply heating operation.

【0054】すなわち、制御手段12は、定期的に、沸
き上げ完了直前検出手段13である時間計測手段21か
ら流量調整弁11の開度が最大開度になっている時間を
検出する。そして、この検出した時間が予め設定された
所定の運転時間より長ければ、時間計測手段21からの
信号で、圧縮機駆動手段14に所定の回転数に対応する
信号を送ることによって、圧縮機1の回転数を小さくす
る。
That is, the control means 12 periodically detects the time during which the opening of the flow regulating valve 11 is at the maximum from the time measuring means 21 which is the detecting means 13 immediately before completion of boiling. If the detected time is longer than a predetermined operation time set in advance, a signal corresponding to a predetermined number of revolutions is transmitted to the compressor drive means 14 by a signal from the time measurement means 21 so that the compressor 1 Reduce the number of rotations.

【0055】以上のように、本実施例においては、沸き
上げ完了直前検出手段として、流量調整弁11の開度が
最大開度(すなわち最大流量)になった時に、最大流量
になっている時間を計測する時間計測手段を備えたこと
により、流量調整弁11の開度が、所定の時間の間、最
大開度になったことを検出して圧縮機の回転数の変更を
行い、吐出圧力を低く押さえ、加熱運転を続けるので、
高温の給水温度まで給湯加熱運転が可能となり、貯湯槽
の湯容量を有効に利用できるものである。
As described above, in this embodiment, as the detection means immediately before the completion of boiling, when the opening of the flow control valve 11 reaches the maximum opening (that is, the maximum flow), the time during which the maximum flow is reached is obtained. , The opening degree of the flow regulating valve 11 is detected to be the maximum opening degree for a predetermined time, and the rotation speed of the compressor is changed. And keep the heating operation low,
The hot water supply heating operation can be performed up to a high supply water temperature, and the hot water capacity of the hot water storage tank can be effectively used.

【0056】(実施例8)図18は本発明の実施例8の
ヒートポンプ給湯機の構成図、図19は同ヒートポンプ
給湯機の運転時間に対する圧縮機の回転数と吐出圧力と
給水温度とを示すグラフである。
(Eighth Embodiment) FIG. 18 is a block diagram of a heat pump water heater according to an eighth embodiment of the present invention, and FIG. 19 shows the number of rotations of the compressor, the discharge pressure, and the water supply temperature with respect to the operation time of the heat pump water heater. It is a graph.

【0057】本実施例において、実施例1と異なる点
は、沸上げ完了直前検出手段13として、吐出圧力を検
出する吐出圧力検出手段22を設けた構成としているこ
とである。なお、実施例1と同符号の部分は同一構成を
有し、説明は省略する。
The present embodiment is different from the first embodiment in that a discharge pressure detecting means 22 for detecting a discharge pressure is provided as the detecting means 13 immediately before the completion of boiling. Note that the portions denoted by the same reference numerals as those in the first embodiment have the same configuration, and description thereof will be omitted.

【0058】次に動作、作用について説明する。図19
は横軸に運転時間をとり、縦軸に圧縮機の回転数と吐出
圧力と給水温度とをとって、運転時間に対する圧縮機の
回転数と吐出圧力と給水温度との関係を示したものであ
る。前述したように、湯水混合層の部分になると運転時
間とともに給水温度が上昇すし、これにともなって、吐
出圧力も高くなる。そこで、吐出圧力が基準圧力Pにな
れば、圧縮機1の回転数を小さくする。その結果、吐出
圧力を低下させることができる。
Next, the operation and operation will be described. FIG.
The horizontal axis indicates the operating time, and the vertical axis indicates the rotational speed of the compressor, the discharge pressure, and the feedwater temperature, and indicates the relationship between the rotational speed of the compressor, the discharge pressure, and the feedwater temperature with respect to the operating time. is there. As described above, in the hot and cold water mixing layer, the feed water temperature increases with the operation time, and the discharge pressure also increases accordingly. Therefore, when the discharge pressure reaches the reference pressure P, the rotation speed of the compressor 1 is reduced. As a result, the discharge pressure can be reduced.

【0059】すなわち、制御手段12は、定期的に、沸
き上げ完了直前検出手段13である吐出圧力検出手段2
2から吐出圧力を検出する。そして、吐出圧力検出手段
22から求めた吐出圧力が予め設定された基準圧力Pよ
り高ければ、吐出圧力検出手段22からの信号で、圧縮
機駆動手段14に所定の回転数に対応する信号を送るこ
とによって、圧縮機1の回転数を小さくする。そして、
このことを繰り返す。
That is, the control means 12 periodically controls the discharge pressure detecting means 2 as the detecting means 13 immediately before the completion of boiling.
2, the discharge pressure is detected. If the discharge pressure obtained from the discharge pressure detecting means 22 is higher than the preset reference pressure P, a signal corresponding to a predetermined rotation speed is sent to the compressor driving means 14 by a signal from the discharge pressure detecting means 22. Thereby, the rotation speed of the compressor 1 is reduced. And
This is repeated.

【0060】以上のように、本実施例においては、沸き
上げ完了直前検出手段として吐出圧力検出手段を用い、
設定された基準圧力になれば、圧縮機の回転数を小さく
するように制御する制御手段を備えたことにより、貯湯
槽の湯容量を有効に利用でき、かつ、直接圧力で制御す
るので、圧縮機のより確実な耐久性の向上になるもので
ある。
As described above, in this embodiment, the discharge pressure detecting means is used as the detecting means immediately before the completion of boiling,
When the set reference pressure is reached, the control means for controlling the rotation speed of the compressor to be low is provided, so that the capacity of the hot water in the hot water tank can be used effectively and the pressure is directly controlled by the pressure. This will surely improve the durability of the machine.

【0061】(実施例9)図20は本発明の実施例9の
ヒートポンプ給湯機の構成図、図21は同ヒートポンプ
給湯機の運転時間に対する給湯運転の状態と圧縮機の回
転数と吐出圧力と貯湯槽の下部温度とを示すグラフであ
る。
(Embodiment 9) FIG. 20 is a block diagram of a heat pump water heater according to a ninth embodiment of the present invention, and FIG. 21 is a diagram showing a state of a hot water supply operation with respect to an operation time of the heat pump water heater, a rotation speed of the compressor, a discharge pressure, and the like. It is a graph which shows the lower part temperature of a hot water storage tank.

【0062】本実施例において、実施例1と異なる点
は、沸上げ完了直前検出手段13として、貯湯槽5の下
部温度を検出する貯湯槽温度検出手段23を設けた構成
としていることである。なお、実施例1と同符号の部分
は同一構成を有し、説明は省略する。
This embodiment is different from the first embodiment in that a hot water tank temperature detecting means 23 for detecting the lower temperature of the hot water tank 5 is provided as the means 13 for detecting immediately before the completion of boiling. Note that the portions denoted by the same reference numerals as those in the first embodiment have the same configuration, and description thereof will be omitted.

【0063】次に動作、作用について説明する。図21
は横軸に運転時間をとり、縦軸に給湯運転の状態と圧縮
機1の回転数と吐出圧力と貯湯槽5の下部温度とをとっ
て、運転時間に対する給湯運転の状態と圧縮機1の回転
数と吐出圧力と貯湯槽5の下部温度との関係を示したも
のである。冷媒対水熱交換器2に流入する水が湯水混合
層の部分になると、同図に示すように、運転時間ととも
に貯湯槽5の下部温度が上昇する。そして、沸き上げ完
了直前検出手段13である貯湯槽温度検出手段23が
(沸き上げ温度T1よりも低い温度である)沸き上げ完
了直前検出温度Thを検出すると、制御手段12は、圧
縮機駆動手段14に所定の回転数に対応する信号を送る
ことによって、圧縮機1の回転数を小さくして加熱能力
を落とす。この時、吐出圧力はP1からP2に減少す
る。その後、運転時間の経過とともに貯湯槽5の下部温
度が更に上昇し、それに従って吐出圧力が上昇する。そ
して、貯湯槽温度検出手段23が、常用上限圧力Pにな
る貯湯槽5の下部温度T3aを検出すると、圧縮機1を
停止し、加熱運転を終了する。なお、同図中の太い点線
は、圧縮機1の回転数の制御を行わない従来例の場合で
ある。運転限界の貯湯槽5の下部温度がT3からT3a
へと高くなり、運転範囲が大きくなることがわかる。
Next, the operation and operation will be described. FIG.
Takes the operation time on the horizontal axis, the hot water supply operation state, the rotation speed of the compressor 1, the discharge pressure, and the lower temperature of the hot water storage tank 5 on the vertical axis. It shows the relationship between the rotation speed, the discharge pressure, and the lower temperature of the hot water storage tank 5. When the water flowing into the refrigerant-to-water heat exchanger 2 becomes the portion of the hot and cold water mixing layer, as shown in the figure, the lower temperature of the hot water storage tank 5 increases with the operation time. When the hot water tank temperature detecting means 23, which is the detecting means 13 immediately before the completion of the boiling, detects the detected temperature Th immediately before the completion of the boiling (which is lower than the boiling temperature T1), the control means 12 controls the compressor driving means. By sending a signal corresponding to a predetermined number of revolutions to 14, the number of revolutions of the compressor 1 is reduced and the heating capacity is reduced. At this time, the discharge pressure decreases from P1 to P2. Thereafter, as the operation time elapses, the lower temperature of the hot water tank 5 further rises, and the discharge pressure rises accordingly. Then, when the hot water tank temperature detecting means 23 detects the lower temperature T3a of the hot water tank 5 at which the normal upper limit pressure P is reached, the compressor 1 is stopped, and the heating operation ends. It should be noted that the thick dotted line in the figure is the case of the conventional example in which the control of the rotation speed of the compressor 1 is not performed. The lower temperature of the hot water storage tank 5 at the operation limit is from T3 to T3a.
To a high, it can be seen that the operating range is large.

【0064】以上のように、本実施例においては、沸き
上げ完了直前検出手段13として貯湯槽温度検出手段2
3を用い、所定の貯湯槽5の下部温度以上になれば、圧
縮機の回転数を小さくするように制御する制御手段を備
えたことにより、貯湯槽5の湯容量を有効に利用でき、
かつ、直接貯湯槽5の下部温度を検出して制御するの
で、圧縮機のより確実な耐久性の向上になるものであ
る。
As described above, in this embodiment, the hot water tank temperature detecting means 2 is used as the detecting means 13 immediately before the completion of boiling.
3, the control means for controlling the rotation speed of the compressor to be reduced when the temperature becomes equal to or higher than the predetermined lower temperature of the hot water storage tank 5 enables the hot water capacity of the hot water storage tank 5 to be used effectively.
Further, since the lower temperature of the hot water storage tank 5 is directly detected and controlled, the durability of the compressor is more reliably improved.

【0065】[0065]

【発明の効果】以上のように、請求項1から請求項9に
記載の発明によれば、沸き上げ完了に近づき、圧縮機の
吐出圧力が上昇する場合に、能力可変な圧縮機の回転数
を小さくするように制御し、吐出圧力を低く押さえ、高
温の給水温度まで給湯加熱運転が可能となるので、有効
な湯として利用できない無駄な領域がより少なくなるた
め、貯湯槽の湯容量を有効に利用できる。その結果、従
来と同じ大きさの貯湯槽でより大きな給湯負荷を満足
し、逆に、従来と同じ大きさの給湯負荷を満足するため
には従来より小形の貯湯槽でよいので、設置の自由度が
大きく、コスト低減にもなる。さらに、効率の良い給湯
加熱運転ができるものである。
As described above, according to the first to ninth aspects of the present invention, when the completion of boiling is approached and the discharge pressure of the compressor rises, the rotational speed of the compressor with variable capacity is increased. Control, the discharge pressure is kept low, and the hot water supply heating operation can be performed up to the high water supply temperature.Therefore, there is less wasted area that cannot be used as effective hot water, so the hot water capacity of the hot water storage tank is effective. Available to As a result, a hot water tank of the same size as the conventional one can satisfy a larger hot water supply load, and conversely, to satisfy a hot water supply load of the same size as the conventional one, a smaller hot water tank can be used. The degree is large and the cost is reduced. Furthermore, an efficient hot water supply heating operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のヒートポンプ給湯機を示す
構成図
FIG. 1 is a configuration diagram illustrating a heat pump water heater according to a first embodiment of the present invention.

【図2】同ヒートポンプ給湯機の運転時間に対する給湯
運転の状態と圧縮機の回転数と吐出圧力と給水温度とを
示すグラフ
FIG. 2 is a graph showing a hot water supply operation state, a compressor rotation speed, a discharge pressure, and a water supply temperature with respect to an operation time of the heat pump water heater.

【図3】同ヒートポンプ給湯機の貯湯槽の温度分布を示
す説明図
FIG. 3 is an explanatory diagram showing a temperature distribution of a hot water storage tank of the heat pump water heater.

【図4】本発明の実施例2のヒートポンプ給湯機を示す
構成図
FIG. 4 is a configuration diagram illustrating a heat pump water heater according to a second embodiment of the present invention.

【図5】同ヒートポンプ給湯機の圧縮機の回転数に対す
る吐出圧力を示すグラフ
FIG. 5 is a graph showing a discharge pressure with respect to a rotation speed of a compressor of the heat pump water heater.

【図6】同ヒートポンプ給湯機の外気温度に対する沸き
上げ完了直前検出温度と圧縮機の回転数の変更量とを示
すグラフ
FIG. 6 is a graph showing the detected temperature immediately before the completion of boiling and the amount of change in the number of revolutions of the compressor with respect to the outside air temperature of the heat pump water heater.

【図7】本発明の実施例3のヒートポンプ給湯機を示す
構成図
FIG. 7 is a configuration diagram illustrating a heat pump water heater according to a third embodiment of the present invention.

【図8】同ヒートポンプ給湯機の運転時間に対する給湯
運転の状態と圧縮機の回転数と吐出圧力と給水温度とを
示すグラフ
FIG. 8 is a graph showing the state of hot water supply operation with respect to the operation time of the heat pump water heater, the number of rotations of the compressor, the discharge pressure, and the water supply temperature.

【図9】本発明の実施例4のヒートポンプ給湯機を示す
構成図
FIG. 9 is a configuration diagram illustrating a heat pump water heater according to a fourth embodiment of the present invention.

【図10】同ヒートポンプ給湯機の給水温度に対する圧
縮機の回転数と吐出圧力とを示すグラフ
FIG. 10 is a graph showing the rotation speed of the compressor and the discharge pressure with respect to the water supply temperature of the heat pump water heater.

【図11】同ヒートポンプ給湯機の給水温度に対する圧
縮機の回転数の変更量を示すグラフ
FIG. 11 is a graph showing the amount of change in the number of revolutions of the compressor with respect to the water supply temperature of the heat pump water heater.

【図12】本発明の実施例5のヒートポンプ給湯機を示
す構成図
FIG. 12 is a configuration diagram illustrating a heat pump water heater according to a fifth embodiment of the present invention.

【図13】同ヒートポンプ給湯機の運転時間に対する吐
出圧力と圧縮機の回転数と給水温度とを示すグラフ
FIG. 13 is a graph showing the discharge pressure, the number of revolutions of the compressor, and the feed water temperature with respect to the operation time of the heat pump water heater.

【図14】本発明の実施例6のヒートポンプ給湯機を示
す構成図
FIG. 14 is a configuration diagram showing a heat pump water heater according to Embodiment 6 of the present invention.

【図15】同ヒートポンプ給湯機の運転時間に対する吐
出圧力と圧縮機の回転数と給水温度とを示すグラフ
FIG. 15 is a graph showing the discharge pressure, the number of revolutions of the compressor, and the feed water temperature with respect to the operation time of the heat pump water heater.

【図16】本発明の実施例7のヒートポンプ給湯機を示
す構成図
FIG. 16 is a configuration diagram showing a heat pump water heater according to a seventh embodiment of the present invention.

【図17】同ヒートポンプ給湯機の運転時間に対する圧
縮機の回転数と吐出圧力と流量と流量調整弁の開度と給
水温度とを示すグラフ
FIG. 17 is a graph showing the number of revolutions of the compressor, the discharge pressure, the flow rate, the opening of the flow control valve, and the feed water temperature with respect to the operation time of the heat pump water heater.

【図18】本発明の実施例8のヒートポンプ給湯機を示
す構成図
FIG. 18 is a configuration diagram illustrating a heat pump water heater according to an eighth embodiment of the present invention.

【図19】同ヒートポンプ給湯機の運転時間に対する圧
縮機の回転数と吐出圧力と給水温度とを示すグラフ
FIG. 19 is a graph showing the rotation speed of the compressor, the discharge pressure, and the feed water temperature with respect to the operation time of the heat pump water heater.

【図20】本発明の実施例9のヒートポンプ給湯機を示
す構成図
FIG. 20 is a configuration diagram showing a heat pump water heater according to a ninth embodiment of the present invention.

【図21】同ヒートポンプ給湯機の運転時間に対する給
湯運転の状態と圧縮機の回転数と吐出圧力と貯湯槽の下
部温度とを示すグラフ
FIG. 21 is a graph showing the state of hot water supply operation with respect to the operation time of the heat pump water heater, the rotation speed of the compressor, the discharge pressure, and the lower temperature of the hot water tank.

【図22】従来例におけるヒートポンプ給湯機を示す構
成図
FIG. 22 is a configuration diagram showing a heat pump water heater in a conventional example.

【図23】同ヒートポンプ給湯機の貯湯槽の温度分布を
示す説明図
FIG. 23 is an explanatory diagram showing a temperature distribution of a hot water storage tank of the heat pump water heater.

【図24】同ヒートポンプ給湯機の給水温度に対する吐
出圧力を示すグラフ
FIG. 24 is a graph showing discharge pressure with respect to feed water temperature of the heat pump water heater.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 冷媒対水熱交換器 3 減圧装置 4 蒸発器 5 貯湯槽 6 循環ポンプ 10 流量制御手段 11 流量調整弁 12 制御手段 13 沸き上げ完了直前検出手段 DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant-water heat exchanger 3 Decompression device 4 Evaporator 5 Hot water storage tank 6 Circulation pump 10 Flow control means 11 Flow control valve 12 Control means 13 Detecting means just before completion of boiling

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 能力可変な圧縮機、冷媒対水熱交換器、
減圧装置、蒸発器を順次接続した冷媒循環回路と、貯湯
槽、循環ポンプ、前記冷媒対水熱交換器を順次接続した
給湯回路と、前記給湯回路において前記冷媒対水熱交換
器の水側出口水温である沸き上げ温度を一定にするため
に前記冷媒対水熱交換器の水側入口と前記貯湯槽との間
に、または、前記冷媒対水熱交換器の水側出口と前記貯
湯槽との間に設けられた流量調節弁を制御する流量制御
手段と、前記貯湯槽全体が沸き上がる直前を検出する沸
き上げ完了直前検出手段と、前記沸き上げ完了直前検出
手段からの信号が所定の信号になった時に前記圧縮機の
回転数を小さくするように制御する制御手段とを備えた
ヒートポンプ給湯機。
1. A variable capacity compressor, a refrigerant-to-water heat exchanger,
A refrigerant circuit in which a pressure reducing device and an evaporator are sequentially connected; a hot water supply circuit in which a hot water tank, a circulation pump, and the refrigerant-to-water heat exchanger are sequentially connected; and a water-side outlet of the refrigerant-to-water heat exchanger in the hot water supply circuit. In order to keep the boiling temperature that is the water temperature constant between the water-side inlet of the refrigerant-to-water heat exchanger and the hot water storage tank, or, the water-side outlet of the refrigerant-to-water heat exchanger and the hot water storage tank, A flow control means for controlling a flow control valve provided between the first and second hot water storage tanks; a detection means for immediately before the completion of boiling; and a signal from the detection means for immediately before the completion of boiling to a predetermined signal. A control means for controlling the rotation speed of the compressor to be reduced when the heat pump water heater is turned on.
【請求項2】 圧縮機の回転数の変更量は外気温度を検
出する外気温度検出手段から得た外気温度に応じて決定
する制御手段を備えたことを特徴とする請求項1記載の
ヒートポンプ給湯機。
2. The heat pump hot water supply according to claim 1, further comprising control means for determining the amount of change in the rotational speed of the compressor in accordance with the outside air temperature obtained from the outside air temperature detecting means for detecting the outside air temperature. Machine.
【請求項3】 沸き上げ完了直前検出手段として冷媒対
水熱交換器の水側入口水温である給水温度を検出する給
水温度検出手段を設け、前記給水温度検出手段が予め決
められた複数の給水温度を検出する毎に、圧縮機の回転
数を小さくするように制御する制御手段を備えたことを
特徴とする請求項1記載のヒートポンプ給湯機。
3. A water supply temperature detection means for detecting a water supply temperature which is a water-side inlet water temperature of a refrigerant-to-water heat exchanger as a detection means immediately before the completion of boiling, wherein the water supply temperature detection means comprises a plurality of predetermined water supply waters. 2. The heat pump water heater according to claim 1, further comprising control means for controlling so as to reduce the rotation speed of the compressor every time the temperature is detected.
【請求項4】 圧縮機の回転数の変更量は、給水温度が
高いほど大きくしたことを特徴とする請求項3記載のヒ
ートポンプ給湯機。
4. The heat pump water heater according to claim 3, wherein the amount of change in the number of revolutions of the compressor is increased as the feedwater temperature is increased.
【請求項5】 予め設定された時間間隔ごとに圧縮機の
回転数を変更する制御手段を備えたことを特徴とする請
求項1記載のヒートポンプ給湯機。
5. The heat pump water heater according to claim 1, further comprising control means for changing the rotation speed of the compressor at predetermined time intervals.
【請求項6】 圧縮機の回転数の変更の時間間隔は、沸
き上げ完了に近づくほど小さくすることを特徴とする請
求項5記載のヒートポンプ給湯機。
6. The heat pump water heater according to claim 5, wherein the time interval of the change in the number of revolutions of the compressor is reduced as the boiling is completed.
【請求項7】 沸き上げ完了直前検出手段として、流量
調節弁を通過する流量が最大流量になった時に、最大流
量になっている時間を計算する時間計測手段を備えたこ
とを特徴とする請求項1記載のヒートポンプ給湯機。
7. A time measuring means for calculating a time when the flow rate passing through the flow rate control valve reaches a maximum flow rate and calculating a time when the flow rate is the maximum flow rate is provided as a detection means immediately before completion of boiling. Item 2. The heat pump water heater according to Item 1.
【請求項8】 沸き上げ完了直前検出手段として吐出圧
力検出手段を備えたことを特徴とする請求項1記載のヒ
ートポンプ給湯機。
8. The heat pump water heater according to claim 1, further comprising a discharge pressure detecting means as the detecting means immediately before the completion of the heating.
【請求項9】 沸き上げ完了直前検出手段として貯湯槽
の下部温度を検出する貯湯槽温度検出手段を備えたこと
を特徴とする請求項1記載のヒートポンプ給湯機。
9. The heat pump water heater according to claim 1, further comprising a hot water tank temperature detecting means for detecting a lower temperature of the hot water tank as a means for detecting immediately before the completion of boiling.
JP2001149074A 2001-05-18 2001-05-18 Heat pump water heater Expired - Fee Related JP3912035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149074A JP3912035B2 (en) 2001-05-18 2001-05-18 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149074A JP3912035B2 (en) 2001-05-18 2001-05-18 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2002340402A true JP2002340402A (en) 2002-11-27
JP3912035B2 JP3912035B2 (en) 2007-05-09

Family

ID=18994290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149074A Expired - Fee Related JP3912035B2 (en) 2001-05-18 2001-05-18 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3912035B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010214A (en) * 2005-06-30 2007-01-18 Denso Corp Heat pump type water heater
JP2012017978A (en) * 2010-05-14 2012-01-26 Miura Co Ltd Steam system
JP2013170764A (en) * 2012-02-21 2013-09-02 Fujitsu General Ltd Heat pump cycle device
JP2015072102A (en) * 2013-10-03 2015-04-16 三菱電機株式会社 Water heater
WO2015151572A1 (en) * 2014-03-31 2015-10-08 ダイキン工業株式会社 Water heater
CN106288377A (en) * 2015-05-29 2017-01-04 青岛海尔新能源电器有限公司 The control method of Teat pump boiler, Teat pump boiler and source pump
WO2022230012A1 (en) * 2021-04-26 2022-11-03 三菱電機株式会社 Hot water storage type heat pump water heater
JP7310964B1 (en) 2022-03-28 2023-07-19 株式会社富士通ゼネラル heat pump equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010214A (en) * 2005-06-30 2007-01-18 Denso Corp Heat pump type water heater
JP2012017978A (en) * 2010-05-14 2012-01-26 Miura Co Ltd Steam system
JP2013170764A (en) * 2012-02-21 2013-09-02 Fujitsu General Ltd Heat pump cycle device
JP2015072102A (en) * 2013-10-03 2015-04-16 三菱電機株式会社 Water heater
WO2015151572A1 (en) * 2014-03-31 2015-10-08 ダイキン工業株式会社 Water heater
CN106288377B (en) * 2015-05-29 2019-10-18 青岛海尔新能源电器有限公司 Control method, Teat pump boiler and the heat pump unit of Teat pump boiler
CN106288377A (en) * 2015-05-29 2017-01-04 青岛海尔新能源电器有限公司 The control method of Teat pump boiler, Teat pump boiler and source pump
WO2022230012A1 (en) * 2021-04-26 2022-11-03 三菱電機株式会社 Hot water storage type heat pump water heater
JP7464192B2 (en) 2021-04-26 2024-04-09 三菱電機株式会社 Storage type heat pump water heater
EP4332456A4 (en) * 2021-04-26 2024-06-12 Mitsubishi Electric Corp Hot water storage type heat pump water heater
JP7310964B1 (en) 2022-03-28 2023-07-19 株式会社富士通ゼネラル heat pump equipment
WO2023190228A1 (en) * 2022-03-28 2023-10-05 株式会社富士通ゼネラル Heat pump device
JP2023145154A (en) * 2022-03-28 2023-10-11 株式会社富士通ゼネラル Heat pump device

Also Published As

Publication number Publication date
JP3912035B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP5626918B2 (en) Auxiliary heater control device, heating fluid utilization system, and auxiliary heater control method
JP5982839B2 (en) Heat pump cycle equipment
JP5034367B2 (en) Heat pump water heater
JP4104261B2 (en) Water heater
JP3855695B2 (en) Heat pump water heater
JP2002340402A (en) Heat pump type hot water supplier
JP3855795B2 (en) Heat pump water heater
JP3632645B2 (en) Heat pump water heater
JP2011089707A (en) Hot water storage type water heater, and control method of hot water storage type water heater
JP3755422B2 (en) Heat pump water heater
JP2002188860A5 (en)
JP3719155B2 (en) Heat pump water heater
JP2002340440A (en) Heat pump hot-water supplier
JP3900186B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP3633500B2 (en) Heat pump water heater
JP2005140439A (en) Heat pump water heater
JP4950004B2 (en) Heat pump type water heater
JP2000346447A5 (en)
JP3719162B2 (en) Heat pump water heater
JPH08296895A (en) Heat pump hot-water supply apparatus
JP3719161B2 (en) Heat pump water heater
JP2002286288A5 (en)
JP5741256B2 (en) Hot water storage water heater
JP2011252675A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R151 Written notification of patent or utility model registration

Ref document number: 3912035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees