JP4104261B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP4104261B2
JP4104261B2 JP33975099A JP33975099A JP4104261B2 JP 4104261 B2 JP4104261 B2 JP 4104261B2 JP 33975099 A JP33975099 A JP 33975099A JP 33975099 A JP33975099 A JP 33975099A JP 4104261 B2 JP4104261 B2 JP 4104261B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
heat storage
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33975099A
Other languages
Japanese (ja)
Other versions
JP2001153458A (en
Inventor
誠治 三輪
久介 榊原
忠幸 百瀬
正彦 伊藤
健一 藤原
智明 小早川
和俊 草刈
路之 斉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Tokyo Electric Power Co Inc
Denso Corp
Original Assignee
Central Research Institute of Electric Power Industry
Tokyo Electric Power Co Inc
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Tokyo Electric Power Co Inc, Denso Corp filed Critical Central Research Institute of Electric Power Industry
Priority to JP33975099A priority Critical patent/JP4104261B2/en
Priority to DE2000159134 priority patent/DE10059134B4/en
Publication of JP2001153458A publication Critical patent/JP2001153458A/en
Application granted granted Critical
Publication of JP4104261B2 publication Critical patent/JP4104261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱式の給湯装置に関する。
【0002】
【従来の技術】
従来技術として、例えば特開平5−99507号公報に開示された蓄熱式給湯装置がある。この給湯装置は、図13に示すように、蓄熱用流体を貯留するタンク100と、このタンク100の外部に設けられた熱交換器110を備え、タンク100内の蓄熱用流体をヒータ120で加熱し、その加熱された蓄熱用流体をポンプ130で熱交換器110に循環させ、蓄熱用流体に蓄熱された熱エネルギーで熱交換器110を流通する給湯用水を加熱するものである。
【0003】
【発明が解決しようとする課題】
ところが、上記の給湯装置では、熱交換器110で放熱した蓄熱用流体の温度と熱交換器110で加熱される前の給湯用水(未加熱の給湯用水)の温度との温度差ΔTが大きくなる。この温度差ΔTに相当する熱量は、熱交換に使われることなく捨てられる熱量であるため、効率の悪い給湯システムであった。
本発明は、上記事情に基づいて成されたもので、その目的は、熱交換能力に優れ、且つ効率の良い給湯装置を提供することにある。
【0004】
【課題を解決するための手段】
(請求項1の手段)
蓄熱用流体が流通する第1の配管と給湯用水が流通する第2の配管とを隣接して設け、且つ蓄熱用流体と給湯用水とが対向流となるように構成され、両者間で熱交換を行う対向流式熱交換器と、第2の配管と接続され、給湯用水を端末へと導く給湯管と、タンクの上部から加熱された蓄熱用流体を取り出し、第1の配管を通過させた後、タンクの下部に戻すための循環通路と、この循環通路に蓄熱用流体を循環させるポンプ手段と、循環通路を介して第1の配管を流通する蓄熱用流体の流量を制御する流量制御手段とを備えている。
この構成では、対向流式熱交換器を使用し、且つ第1の配管を流れる蓄熱用流体の流量を制御することにより、第1の配管を通過した後の蓄熱用流体の温度を加熱前の給湯用水の温度近傍まで低減できる。これにより、蓄熱用流体と給湯用水との熱交換時における熱ロスを極力小さくすることが可能となり、効率の良い給湯システムを実現できる。
【0005】
また、タンク内の下部から蓄熱用流体を取り出して加熱手段へ供給し、加熱手段で加熱された蓄熱用流体をタンク内の上部へ戻す流体加熱用通路を備えている。
タンク内の上部から蓄熱用流体を取り出して対向流式熱交換器の第1の配管へ流し、熱交換後の蓄熱用流体をタンク内の下部へ戻しているため、給湯用水との熱交換によって温度低下した蓄熱用流体をタンク内の下部から取り出して加熱手段で加熱し、タンク内の上部へ戻すことで効率的に蓄熱用流体に蓄熱することができる。
また、流量制御手段は、第2の配管に流入する給湯用水の温度を検出する第1の温度検出手段と、第2の配管を通過する給湯用水の流量を検出する流量検出手段とを備え、前記給湯管から出湯される給湯用水の目標温度、第1の温度検出手段によって検出される給湯用水の温度、及び流量検出手段によって検出される給湯用水の流量に基づいて、熱交換後の蓄熱用流体の温度と第2の配管に流入する給湯用水の温度との温度差が所定範囲となるように、第1の配管を流通する蓄熱用流体の流量を調節する。
この構成では、給湯用水の温度及び流量に応じて第1の配管を流通する蓄熱用流体の流量を調節することにより、給湯用水を目標温度まで加熱するために必要十分な流量の蓄熱用流体を第1の配管に流通させることができる。その結果、蓄熱用流体が第1の配管から流出するときには、この蓄熱用流体の温度を加熱前の給湯用水の温度近傍まで確実に低下させることができる。
そして、第1の配管を流通する前記蓄熱用流体と熱交換し、第2の配管から流出した給湯用水と未加熱の給湯用水とを混合する混合手段を備え、目標温度は、実際に給湯される温度よりも所定温度高い温度に設定され、この目標温度まで加熱された給湯用水を混合手段によって未加熱の給湯用水と混合することにより、給湯用水の温度を給湯すべき温度まで低下させる。流量制御手段の流量制御によって、直接、給湯用水の温度を調節すると、温度変化の応答性が遅いため、温度制御の精度が低下する場合がある。しかし、本手段に記載したように、混合手段を用いると、給湯用水の温度を実際に給湯される温度に精度よく調節できる。
【0006】
請求項の手段)
加熱手段は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、臨界圧力以上に昇圧された冷媒により蓄熱用流体を加熱する。
超臨界ヒートポンプサイクルにおいては、蓄熱用流体を目標温度(例えば65〜90度)まで加熱する場合、加熱前の給湯用水の温度が低いほど、高圧圧力が低くなることでサイクル効率(COP=加熱能力/消費電力)が向上する。従って、加熱前の給湯用水の温度近傍まで低減された蓄熱用流体を超臨界ヒートポンプサイクルにて加熱することにより、サイクル効率が向上し、省動力運転を行うことができる。
【0008】
(請求項の手段)
流量制御手段は、第2の配管から流出する給湯用水の温度を検出する第2の温度検出手段を備え、この第2の温度検出手段によって検出される給湯用水の温度が目標温度となるように、第1の配管を流通する蓄熱用流体の流量を補正する。
これにより、給湯用水の温度を目標温度に精度良く調節することができる。
【0010】
(請求項の手段)
目標温度は、通常使用される給湯水温度よりも高い一定温度に設定される。実際の設定給湯温度に関わらず、目標温度を一定温度にすることにより、混合手段による冷温水混合を精度良く行うことができる。
【0011】
(請求項の手段)
交換器がタンク内に配置されている。
この構成によれば、加熱された蓄熱用流体と給湯用水とをタンクの内部で熱交換できるので、放熱による熱損失が少なく、給湯能力を向上できる。
さらに、熱交換器で加熱された湯に熱交換器で加熱される前の水を混合して給湯用水の温度調節を行う給湯温度調節手段を具備している。この場合、循環通路を流れる流体流量を変更する必要がなく、流体流量を一定に保つことができるので、熱交換器で加熱された湯の温度変動を小さくできる。これにより、設定温度に対して給湯用水の温度制御を精度良く行うことができる。
【0012】
(請求項の手段)
循環通路及びポンプ手段は、タンク内に設けられている。この場合、加熱された蓄熱用流体がタンクの外部へ取り出されることがないため、熱交換器だけをタンク内に配置した場合より更に熱損失を少なくできる。
【0013】
(請求項の手段)
タンク内に貯留されている蓄熱用流体の温度がタンク内の上下方向で異なる場合(例えばタンク内の上部側では流体温度が高く、下部側では流体温度が低くなっている場合)は、熱交換器を断熱材で覆うことにより、熱交換器を流れる高温流体の熱がタンク内の低温流体へ放出されることを防止できる。
【0014】
(請求項の手段)
ポンプ手段は、給湯用配管を流れる給湯用水のエネルギーを受けて回転する第1の羽根車と、循環通路に設けられ、第1の羽根車の回転が伝達されて回転する第2の羽根車とを備え、この第2の羽根車の回転によって循環通路に蓄熱用流体を循環させることを特徴とする。この構成によれば、給水圧のエネルギーだけで潤滑通路に蓄熱用流体を流すことができるので、ポンプ手段として一般的な電動ポンプを用いた場合の駆動電力が不要となる。
【0015】
(請求項の手段)
大気開放型のタンクを使用することにより、有圧タンクのような耐圧設計が不要となるため、タンク自体を樹脂によって成形することができる。この場合、通常タンク材料として用いられるステンレス鋼加工に必要なプレス工程や溶接工程が不要となり、従来より製作コストを低く抑えることができる。
また、有圧タンクを使用する構成に必要となる減圧弁、圧力逃がし弁、負圧作動弁、缶体保護弁等の部品が不要となる。更に、有圧タンクのように、耐圧上から円筒形状とする必要がなく、タンク形状の設計自由度を高くできる。
【0018】
(請求項10の手段)
請求項に記載した給湯温度調節手段は、給湯用配管の熱交換器下流に設けられた混合弁と、熱交換器の上流で給湯用配管から分岐して混合弁に接続された分岐配管と、混合弁より下流の給湯用水温度を検出する水温センサとを有し、この水温センサの検出温度に基づいて混合弁での湯と水との混合割合を調節することができる。この構成によれば、混合弁で湯と水との混合割合を調節することで給湯用水の温度を制御できるので、設定温度に対する温度制御が容易である。
【0019】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて説明する。
(第1実施例)
図1は給湯装置の構成を示す模式図である。
本実施例の給湯装置1は、一般家庭用として使用されるもので、蓄熱用流体Wを貯留するタンク2、このタンク2内の蓄熱用流体Wを加熱する加熱手段(後述する)、タンク2内の蓄熱用流体Wを汲み上げる電動ポンプ3、この電動ポンプ3により汲み上げられた蓄熱用流体Wと給湯用配管(給水管4と給湯管5)に給水された給湯用水とを熱交換させる給湯用熱交換器6、及び本給湯システムの作動を制御する制御装置(ポンプ制御部7とサイクル制御部8)等より構成されている。
【0020】
a)タンク2は、空気孔2aを通じて大気に開放され、タンク2内部が大気圧に保たれている。このタンク2は、例えば樹脂材料で形成され、直方体形状に設けられている。また、タンク2内の蓄熱用流体Wに蓄えられた熱がタンク2の壁面より大気中へ放出されることを低減するために、タンク2の外周をグラスウールやウレタン等の断熱材で覆っても良い。
蓄熱用流体Wは、主成分が水であり、防腐剤、凍結防止剤、LLC等が必要に応じて添加されている。
【0021】
b)加熱手段は、例えば炭酸ガスを冷媒として使用することにより、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルCを使用している。
このヒートポンプサイクルCは、圧縮機9、蓄熱用熱交換器10、膨張弁11、蒸発器12、アキュムレータ13等の機能部品より構成されている。
圧縮機9は、内蔵する電動モータ(図示しない)によって駆動され、アキュムレータ13より吸引した気相冷媒を臨界圧力以上まで圧縮して吐出する。
【0022】
蓄熱用熱交換器10は、冷媒と蓄熱用流体Wとを熱交換するもので、例えば冷媒が流れる冷媒通路10aと蓄熱用流体Wが流れる蓄熱用流体通路10bとが二重管構造に設けられ、且つ冷媒の流れ方向と蓄熱用流体Wの流れ方向とが対向するように構成された対向流式の蓄熱用熱交換器10である。
膨張弁11は、蓄熱用熱交換器10から流出する冷媒を減圧して蒸発器12に供給する。
蒸発器12は、膨張弁11で減圧された冷媒を大気との熱交換によって蒸発させる。
アキュムレータ13は、蒸発器12より流出する冷媒を気液分離して、気相冷媒のみ圧縮機9に吸引させるとともに、サイクル中の余剰冷媒を蓄えている。
【0023】
蓄熱用熱交換器10の蓄熱用流体通路10bは、流入管14と流出管15を介してタンク2に接続され、流入管14に設けられた電動ポンプ16が作動することでタンク2内の蓄熱用流体Wが循環する。但し、流入管14の上流端はタンク2内の底部に開口し、流出管15の下流端はタンク2内の上部に開口している。これにより、蓄熱用熱交換器10で冷媒との熱交換により加熱された蓄熱用流体Wが流出管15を通じてタンク2内の上部へ送り込まれるため、タンク2内の上部側から下部側へ向かって順次蓄熱用流体Wに蓄熱されていく。なお、タンク2内の蓄熱用流体Wは、家庭の給湯使用量に応じた蓄熱量を確保できれば良いため、必ずしもタンク2内の蓄熱用流体全体が高温に維持されている必要はない。
【0024】
従って、給湯使用量が少ない家庭では、例えばタンク2内の半分程度の蓄熱用流体Wに蓄熱されていれば良い。この場合、タンク2内では、図1に示すように、蓄熱用流体Wの温度による比重差によって、タンク2内の上部側から下部側へ向かって温度の高い蓄熱用流体W1、中間温度の蓄熱用流体W2、温度の低い蓄熱用流体W3に自然に分離され、中間温度の蓄熱用流体W2は、温度の高い蓄熱用流体W1と温度の低い蓄熱用流体W3との間を断熱する役割も果たしており、その厚みは蓄熱用流体全体に比べれば僅かである。
【0025】
c)電動ポンプ3は、例えばタンク2の上部に設置されて、吸入管17を介してタンク2に接続され、吐出管18を介して給湯用熱交換器6に接続されている。なお、吸入管17は、その上流端(吸込口)がタンク2内の上部(温度の高い蓄熱用流体W1)に開口している。従って、電動ポンプ3が作動すると、温度の高い蓄熱用流体W1を汲み上げて給湯用熱交換器6へ圧送することができる。
【0026】
d)給湯用熱交換器6は、電動ポンプ3によって汲み上げられた蓄熱用流体Wが流れる一次側通路6aと、給湯用配管(給水管4と給湯管5)に接続された二次側通路6bとを有し、例えば図2に示すように、一次側通路6aを形成する外側管6Aの内部に二次側通路6bを形成する内側管6Bが挿通する二重管構造である。
ここで、外側管6Aは、熱ロスを低く抑えるために樹脂材を使用し、内側管6Bは熱伝導率の高い銅材を使用することが望ましい。また、内側管6Bは、外側管6Aと同様に円筒管でも良いが、例えば図2に示すように、その壁面に径方向の凹凸形状を設けても良い。この場合、一次側通路6aと二次側通路6bとの伝熱面積が増加して、蓄熱用流体Wと給湯用水との熱交換効率を向上できる。
【0027】
この給湯用熱交換器6は、図1に示すように、タンク2の内部で上下方向に配置されて、一次側通路6aの上端が吐出管18を介して電動ポンプ3に接続され、一次側通路6aの下端(流出口)がタンク2内の底部に開口している。また、二次側通路6bは、その下端がタンク2内の低部で給水管4に接続され、上端がタンク2の上部へ突出して給湯管5に接続されている。従って、給湯用熱交換器6は、図1に矢印で示すように、一次側通路6aを上から下へ向かって流れる蓄熱用流体Wの流れ方向と二次側通路6bを下から上へ向かって流れる給湯用水の流れ方向とが対向する対向流式として構成されている。なお、給水管4と給湯管5は、給湯用配管の一部である。
【0028】
e)制御装置は、電動ポンプ3の作動を制御するポンプ制御部7を有し、このポンプ制御部7に「水流」の有無を検出する給湯水検出センサ19及び給湯用水の温度を検出する水温センサ20の検出信号が入力され、給湯水検出センサ19の検出結果に基づいて電動ポンプ3のON/OFF制御を行い、水温センサ20の検出結果に基づいて電動ポンプ3の回転数制御を行う。なお、給湯水検出センサ19は、給水管4または給湯管5に設けられ、水温センサ20は、給湯管5に設けられている。
【0029】
また、制御装置は、ヒートポンプサイクルCの圧縮機9に内蔵されている電動モータ、及び流入管14に設けられている電動ポンプ16を制御するサイクル制御部8を有している。このサイクル制御部8は、蓄熱用熱交換器10で加熱された蓄熱用流体Wの温度を一定温度に保つために、加熱後の蓄熱用流体温度を検出する蓄熱温度センサ21の検出温度に基づいて電動ポンプ16の回転数制御を行っている。
【0030】
次に、本実施例の作動を説明する。
タンク2内の蓄熱用流体Wは、例えば深夜電力を利用してヒートポンプサイクルCと電動ポンプ16を作動させることにより、必要量だけ加熱されて蓄熱される。その後、使用者が給湯栓(図示しない)を開いて給湯用配管(給湯管5)に水流が生じると、給湯水検出センサ19によって「水流」が検出され、ポンプ制御部7より出力される制御信号(ON信号)を受けて電動ポンプ3が起動する。この電動ポンプ3が作動すると、タンク2内の上部から高温の蓄熱用流体Wが汲み上げられ、給湯用熱交換器6の一次側通路6aに蓄熱用流体Wの流れが生じる。これにより、給湯用熱交換器6の二次側通路6bを流れる給湯用水が蓄熱用流体Wの熱エネルギーを受けて加熱される。
【0031】
ここで、ポンプ制御部7は、水温センサ20によって検出される湯の温度が所望の給湯温度(使用者によって設定される給湯温度)になるように電動ポンプ3の駆動状態(回転数)を制御する。即ち、水温センサ20によって検出される湯の温度が所望の給湯温度より低い時は、電動ポンプ3の回転数を大きくして一次側通路6aを流れる蓄熱用流体Wの循環量を増加させる。これにより、一次側通路6aを流れる蓄熱用流体Wと二次側通路6bを流れる給湯用水との熱交換量が増加するため、湯の温度が上昇する。また、水温センサ20によって検出される湯の温度が所望の給湯温度より高い時は、電動ポンプ3の回転数を小さくして一次側通路6aを流れる蓄熱用流体Wの循環量を減少させる。これにより、一次側通路6aを流れる蓄熱用流体Wと二次側通路6bを流れる給湯用水との熱交換量が減少するため、湯の温度が低下する。
【0032】
(第1実施例の効果)
本実施例の給湯装置1は、給湯用熱交換器6をタンク2内に配置しているので、蓄熱用流体Wと給湯用水との熱交換をタンク2の内部で行うことができる。この結果、大気への放熱による熱損失が少なくなるため、その分、給湯能力を向上できる。また、給湯用熱交換器6をタンク2の外部に配置した場合と比較して省スペースが可能となる。
【0033】
本実施例では、大気開放型のタンク2を使用しているので、有圧タンク(密閉型タンク)のような耐圧設計が不要となるため、タンク2を樹脂によって成形することができる。この場合、通常タンク材料として用いられるステンレス鋼加工に必要なプレス工程や溶接工程が不要となり、従来より製作コストを低く抑えることができる。また、有圧タンクを使用する構成に必要となる減圧弁、圧力逃がし弁、負圧作動弁、缶体保護弁等の部品が不要となる。更に、有圧タンクのように、耐圧上から円筒形状とする必要がなく、タンク形状の設計自由度を高くできる効果がある。
【0034】
給湯用熱交換器6の内側管6Bを凹凸形状とすることにより、蓄熱用流体Wが流れる一次側通路6aと給湯用水が流れる二次側通路6bとの熱交換面積を大きく取ることができる。このため、内側管6Bを丸管で構成した場合より熱交換能力が向上し、給湯用熱交換器6の全長を短くすることが可能である。
蓄熱用流体Wの加熱手段としてヒートポンプサイクルCを用いているので、ガス式や灯油式の加熱手段と比較してランニングコスト(主に電気代)が格段に安価である。
なお、加熱された蓄熱用流体Wは、給湯用だけでなく、床暖房用、室内空調用としても使用できる。また、蓄熱用流体Wを風呂のお湯として使用することもできる。この場合、蓄熱用流体Wを熱ロス無しで使用できるので、全体の蓄熱量を有効に活用することができる。
【0035】
(第2実施例)
本実施例は、給湯用熱交換器6に蓄熱用流体Wを循環させる手段としてタービンを用いた一例である。
タービンは、図3に示すように、給湯用水の流れを受けて回転する第1の羽根車22と、この第1の羽根車22の回転が伝達されて回転する第2の羽根車23より構成される。
【0036】
第1の羽根車22は、給湯管5に設けられた収納室24に収納され、給湯管5に水流が生じると、その流量に応じた回転数で回転することができる。
第2の羽根車23は、吸入管17と吐出管18との間に設けられた収納室25に収納され、自身の回転により汲み上げた蓄熱用流体Wを一次側通路6aへ圧送することができる。
第1の羽根車22と第2の羽根車23は、それぞれに埋設された磁石(図示しない)の吸引力によって連動することができる。この構成では、第1の羽根車22と第2の羽根車23とをシャフト等によって連結する必要がないので、収納室24と収納室25とを完全に隔離することができ、給湯用水と蓄熱用流体Wとが混合することは起こり得ない。
【0037】
本実施例の構成によれば、給湯管5に生じる水流のエネルギーだけで蓄熱用流体Wを一次側通路6aに循環させることができるので、第1実施例に示した電動ポンプ3を使用する必要がなく、電動ポンプ3を駆動するための電力が不要となる。
また、予め給湯用水流量と各羽根車22、23の回転数と一次側通路6aを流れる蓄熱用流体Wの流量とが目的の給湯温度となるように配管圧損を付ける設計をすれば、第1実施例に示した給湯水検出センサ19、水温センサ20、及びポンプ制御部7が不要となるため、安価なシステムを提供できる。
【0038】
(第3実施例)
本実施例は、図4に示すように、一次側通路6aを流れる蓄熱用流体Wの流量を電動式流量制御弁26によって制御する一例である。
電動式流量制御弁26は、電動ポンプ3の前後どちらかに設置され、ポンプ制御部7からの指令を受けて蓄熱用流体流量を可変する。
この構成によれば、電動式流量制御弁26によって蓄熱用流体流量を可変するので、電動ポンプ3の回転数を一定にできる。第1実施例のように電動ポンプ3の回転数を変更する場合は、交流であればインバータ等の速度可変回路が必要であるが、電動ポンプ3の回転数を一定にすることで速度可変回路が不要となる。
なお、本実施例の構成(電動式流量制御弁26)は、第2実施例に示したタービンを使用するシステムにも適用できる。
【0039】
(第4実施例)
本実施例は、図5に示すように、一次側通路6aを流れる蓄熱用流体Wの流量を温度検知式流量制御弁27によって制御する一例である。
温度検知式流量制御弁27は、不活性ガスが封入されたガス封入部27aを有し、このガス封入部27aの内部圧力に応じて弁開度を可変する構造であり、そのガス封入部27aは、給湯用熱交換器6で加熱された給湯用水の温度を感知できる位置に設置されている。
この温度検知式流量制御弁27は、例えば給湯温度が低くなると、ガス封入部27aの内部圧力が低下することで弁開度が大きくなり、蓄熱用流体流量を増やして給湯温度を上げようとする。また、給湯温度が高くなると、ガス封入部27aの内部圧力が上昇することで弁開度が小さくなり、蓄熱用流体流量を減らして給湯温度を下げようとする。
【0040】
本実施例の構成によれば、温度検知式流量制御弁27が機械的に給湯温度を所望の設定温度に維持しようと働くため、第3実施例の場合と同様に、電動ポンプ3の回転数を一定にでき、インバータ等の速度可変回路が不要となる。
また、温度検知式流量制御弁27は、ガス封入部27aの内部圧力に応じて弁開度を可変する構造であるため、給湯用水の温度を検出する水温センサ20が不要である。
なお、本実施例の構成(温度検知式流量制御弁27)は、第2実施例に示したタービンを使用するシステムにも適用できる。
【0041】
(第5実施例)
本実施例は、給湯用熱交換器6で加熱された湯に給湯用熱交換器6で加熱される前の水を混合して給湯用水の温度調節を行う一例である。具体的には、図6に示すように、給水管4に分岐接続された分岐配管28を有し、この分岐配管28の下流端を給湯管5に設けられた混合弁29に接続して構成される。
混合弁29は、分岐配管28より流入する水の量を可変し、水温センサ20で検出される給湯用水の温度が設定された給湯温度になるように、ポンプ制御部7からの指令を受けて水量を調節している。
【0042】
この構成によれば、混合弁29によって給湯用水の温度を調節できるので、給湯用熱交換器6で加熱された湯に多少の温度変動があっても、設定温度に対して給湯用水の温度制御をより精度良く行うことができる。
なお、本実施例の構成は、第2実施例に示したタービンを使用するシステムにも適用できる。
【0043】
(第6実施例)
本実施例は、図7に示すように、加熱手段であるヒートポンプサイクルCの蓄熱用熱交換器10をタンク2内に配置した一例である。また、蓄熱用熱交換器10の移動に伴って、電動ポンプ16を流出管15に設けている。この電動ポンプ16は、第1実施例と同様に、蓄熱温度センサ21で検出される蓄熱用流体温度が一定となるように、サイクル制御部8によって回転数制御される。
【0044】
この構成によれば、蓄熱用熱交換器10をタンク2内に配置するため、タンク2の外部に構成されるヒートポンプサイクルCの必要体積を減らしてコンパクトにできる。また、蓄熱用熱交換器10から大気中への熱ロスが無くなるため、蓄熱能力が向上する。
本実施例の構成は、第2実施例に示したタービンを使用するシステムにも適用できる。
【0045】
(第7実施例)
本実施例は、図8に示すように、給湯用熱交換器6に蓄熱用流体Wを循環させるポンプ機能と、蓄熱用熱交換器10に蓄熱用流体Wを循環させるポンプ機能を1つの電動ポンプ30で行う一例である。なお、ヒートポンプサイクルCは、第6実施例と同様に、蓄熱用熱交換器10をタンク2内に配置した構成である。
この場合、1つの電動ポンプ30で蓄熱動作と給湯動作を行うため、蓄熱動作を行う場合と給湯動作を行う場合とで、蓄熱用流体Wの循環通路を切り替える必要が生じる。そこで、図8に示すように、電動ポンプ30の前後にそれぞれ三方弁31、32を配置し、制御装置50(ポンプ制御部、サイクル制御部)の指令によって各三方弁31、32の通路方向を切り替えている。
【0046】
ここで、各三方弁31、32の通路方向を切り替えた場合の蓄熱用流体Wの流れを説明する。
a)蓄熱時
タンク2内下部(低温蓄熱用流体W3)→蓄熱用熱交換器10の蓄熱用流体通路10b→第1流出管15a→三方弁31→共通配管33→電動ポンプ30→共通配管34→三方弁32→第2流出管15b→タンク2内上部(高温蓄熱用流体W1)へと蓄熱用流体Wが流れる。
【0047】
b)給湯時
タンク2内上部(高温蓄熱用流体W1)→吸入管17→三方弁31→共通配管33→電動ポンプ30→共通配管34→三方弁32→吐出管18→給湯用熱交換器6の一次側通路6a→タンク2内下部(低温蓄熱用流体W3)へと蓄熱用流体Wが流れる。
本実施例の構成によれば、蓄熱動作と給湯動作を1つの電動ポンプ30で行うことができるため、電動ポンプを2個使用する場合と比較してコストダウンを図ることができる。
【0048】
(第8実施例)
本実施例は、第7実施例と同様に、給湯用熱交換器6に蓄熱用流体Wを循環させるポンプ機能と、蓄熱用熱交換器10に蓄熱用流体Wを循環させるポンプ機能を1つの電動ポンプ30で行うもので、図9に示すように、ヒートポンプサイクルCの蓄熱用熱交換器10をタンク2の外部に配置した構成(第1実施例と同じ)である。この場合も、第7実施例と同じ作用及び効果を得ることができる。
【0049】
(第9実施例)
本実施例は、図10に示すように、電動ポンプ3をタンク2内に配置した一例である。この場合、加熱された蓄熱用流体Wがタンク2の外部へ取り出されることがないため、給湯用熱交換器6だけをタンク2内に配置した場合より更に熱損失を少なくできる効果がある。
なお、本実施例では、給湯用熱交換器6の一次側通路6aに蓄熱用流体Wを循環させる手段として電動ポンプ3を使用しているが、第2実施例で説明したタービンを使用する場合でも、同様にタービン(第1の羽根車22と第2の羽根車23)をタンク2内に配置しても良い。
【0050】
(第10実施例)
本実施例は、図11に示すように、給湯用熱交換器6をタンク2の外部に配置した給湯システムの一例である。
本実施例の給湯装置1は、蓄熱用流体Wを貯留するタンク2、蓄熱用流体Wを加熱する加熱手段(後述する)、タンク2内の蓄熱用流体Wを汲み上げる電動ポンプ3、この電動ポンプ3により汲み上げられた蓄熱用流体Wと給湯用水とを熱交換させる給湯用熱交換器6、給湯用熱交換器6で加熱された給湯用水と加熱される前の給湯用水とを混合させる混合弁29、及び給湯装置1の作動を制御する制御装置(下述する)等より構成される。
【0051】
タンク2は、空気孔2aを通じて大気に開放され、タンク2の内部が大気圧に保たれている。
加熱手段は、第1実施例と同じく、例えば炭酸ガスを冷媒として使用する超臨界ヒートポンプサイクルCであり、第1実施例と同様に、流入管14と流出管15を介してタンク2に接続されている。なお、本発明の流体加熱用通路は、タンク2内の底部から電動ポンプ16の作動によって蓄熱用流体WをヒートポンプサイクルCに供給する流入管14と、ヒートポンプサイクルCで加熱された蓄熱用流体Wをタンク2内の上部に戻す流出管15とで構成される。
【0052】
電動ポンプ3は、吸入管17を通じてタンク2内の上部から蓄熱用流体Wを汲み上げて、給湯用熱交換器6へ圧送し、給湯用熱交換器6で給湯用水と熱交換された蓄熱用流体Wをタンク2内の下部へ戻している。なお、本実施例では電動ポンプ3を給湯用熱交換器6の上流側(圧送する側)に設置しているが、給湯用熱交換器6の下流側(吸込み側)に設置しても良い。
【0053】
給湯用熱交換器6は、図2に示したように、外側管6A(第1の配管)と内側管6B(第2の配管)から成る二重管構造に設けられ、内側管6Bと外側管6Aの間に形成される環状の一次側通路6aを蓄熱用流体Wが流通し、内側管6Bの内部に形成される二次側通路6bを給湯用水が流通する。但し、一次側通路6aを流れる蓄熱用流体Wの流れ方向と二次側通路6bを流れる給湯用水の流れ方向とが互いに反対方向となる対向流式として構成されている。
給湯用水が流通する給湯用配管は、第5実施例と同様に、給湯管5に混合弁29が設けられ、この混合弁29に給水管4から分岐接続された分岐配管28の下流端が接続されている。
【0054】
制御装置は、電動ポンプ3の作動を制御するポンプ制御部7と、ヒートポンプサイクルCの作動を制御するサイクル制御部8を有している。
ポンプ制御部7では、給水管4に設けられた第1の温度センサ51と流量センサ54、給湯管5に設けられた第2の温度センサ52と第3の温度センサ53よりそれぞれ信号を入力し、これらの信号を基に、予めインプットされたプログラムに沿って所定の演算を行い、その演算結果に従って電動ポンプ3の回転数を制御している。
【0055】
なお、第1の温度センサ51は、給水管4に供給される給湯用水(未加熱の給湯用水)の温度T2iを検出し、第2の温度センサ52は、給湯用熱交換器6を通って加熱された給湯用水の温度T2oを検出し、第3の温度センサ53は、未加熱の給湯用水と加熱された給湯用水とを混合弁29で混合して得られる給湯用水の温度T2 を検出する。また、流量センサ54は、給水管4に供給される給湯用水の流量を検出する。
サイクル制御部8では、加熱後の蓄熱用流体Wの温度を検出する蓄熱温度センサ21の検出温度に基づいて電動ポンプ16の回転数制御を行っている。
【0056】
次に、本システムの作動を説明する。
給湯装置1の設定温度は、35〜50℃(通常の使用温度)の範囲で1℃刻みに設定可能であり、給湯用熱交換器6から流出する給湯水温度は50℃を目標温度とされる。なお、設定温度は50℃以上にも設定可能であるが、その場合は、設定温度+αの温度を目標温度とするか、もしくは設定温度そのものを目標温度とする。また、通常の使用温度において、目標温度を設定温度+αの温度(変動値)とすることも可能である。
【0057】
一定の給湯水温度を得るためには、第1の温度センサ51で検出される給水温度、流量センサ54で検出される給水流量、蓄熱温度センサ21で検出される蓄熱用流体Wの温度をパラメータとする関係式から蓄熱用流体Wの流量を算出する。この場合、給水温度が低くなるほど、給水流量が増加するほど、また蓄熱用流体Wの温度が低くなるほど、蓄熱用流体Wの流量が増加するように、蓄熱用流体Wの流量が計算される。このようにして得られた流量の蓄熱用流体Wから給湯用水へ熱が十分に移動することにより、熱交換後の蓄熱用流体Wの温度T1oを給湯用水の温度T2i近傍まで低下させることが可能である(例えば温度差ΔTが5℃以内)。
もちろん、前提として、給湯用熱交換器6は、蓄熱用流体Wから給湯用水へ熱を十分に移動させることができるだけの熱交換能力を有する必要があり、そのために、蓄熱用流体Wの流れ方向と給湯用水の流れ方向とが対向する対向流式熱交換器として構成されている。
【0058】
上記の制御は、ある流量及び温度を有する給湯用水を目標温度まで加熱するための必要な蓄熱用流体Wの流量及び温度を考慮して求めるものであり、所謂フィードフォワード制御である。
このため、実際に演算した蓄熱用流体Wの流量では、目標温度に対して給湯用水の加熱温度が高過ぎたり、低過ぎたりする場合が生じる。このため、第2の温度センサ52によって実際に加熱された給湯用水の温度T2oを検出し、その温度が目標温度となるように、蓄熱用流体Wの流量を補正しても良い。
【0059】
また、目標温度を通常使用される給湯水温度より所定温度高い温度に設定することにより、給湯用水の温度を実際の給湯温度に精度良く調節することができる。即ち、ポンプ制御部7(流量制御手段)の流量制御によって、直接、給湯用水の温度を調節すると、温度変化の応答性が遅いため、温度制御の精度が低下する場合がある。しかし、本実施例のように、混合弁29を用いて給湯用熱交換器6で加熱された温水と加熱される前の冷水とを混合させると、給湯用水の温度を実際に給湯される温度に精度よく調節できる。この場合、実際に使用される給湯用水の温度T2 を第3の温度センサ53で検出しながら、目標温度まで加熱された給湯用水と未加熱の給湯用水とを混合弁29で混合することにより、給湯用水の温度を給湯すべき温度まで低下させることができる。
また、目標温度を通常使用される給湯水温度より高い一定温度にすることで、冷温水の混合を安定して精度良く行うことができる。
【0060】
本給湯システムでは、蓄熱用流体Wの加熱手段として超臨界ヒートポンプサイクルCを使用しているが、この超臨界ヒートポンプサイクルCでは、蓄熱用流体Wの温度によって高圧圧力(圧縮機9の吐出圧力)が決まるため、蓄熱用流体Wの温度が低下するほど、高圧圧力が低下してサイクル効率の良い領域で運転することができる。従って、上述の流量制御によってタンク2内の下部に溜められる蓄熱用流体Wの温度を給湯用水の温度近傍まで低下させ、その蓄熱用流体Wをタンク2内の下部から導入してヒートポンプサイクルCにより加熱し、タンク2内の上部に戻すことにより、ヒートポンプサイクルCのサイクル効率が向上し、省動力運転を行うことが可能になる。
【0061】
なお、給水温度は、第1の温度センサ51によって直接給水管4の水温を検出しても良いし、水温に関連する他のパラメータから水温を推定することにより、間接的に求めても良い。例えば、外気温度と水温とは関連性があるため、外気温度から水温を推定しても良いし、一年間における平均水温の変化を記憶し、カレンダー機能を有するタイマにより給水温度と見做すべき水温を演算しても良い。
また、蓄熱用流体Wの温度は、ヒートポンプサイクルC側において、所定の目標温度となるように蓄熱用流体Wを加熱しているので、ヒートポンプサイクルC側から蓄熱用流体Wの温度を得ることが可能である。
【0062】
蓄熱用流体Wの温度として、予め一年を通じて目標温度が設定されていれば、その設定目標温度を蓄熱用流体Wの温度として利用すれば良い。
流量センサ54は、給水管4と分岐配管28との分岐点の上流側、もしくは混合弁29の下流側に設置して、全体の給湯流量を検出しても良い。この場合、温度センサ51、52、53の値より、給湯用熱交換器6と分岐配管28の流量を各々熱量計算により推定することができる。
【0063】
(変形例)
各実施例に示すタンク2は、必ずしも樹脂材料を使用する必要はなく、金属材料で成形しても良い。また、タンク2の形状は、直方体形状でなくても、例えば円筒形状でも良い。
第1実施例で説明した給湯用熱交換器6は、一次側通路6aの内側に二次側通路6bを設けているが、その逆に一次側通路6aの外側に二次側通路6bを設けても良い。また、上述した内側管6B及び外側管6Aに使用される材料は一例であり、例えば内側管6Bは熱伝導率の高いアルミニウムを使用することができ、外側管6Aは金属製でも良い。更に、給湯用熱交換器6の外周面を断熱材35で覆っても良い(図2参照)。
【0064】
また、各実施例に示す給湯用熱交換器6は、内側管6Bと外側管6Aから成る二重管構造に限定されるものではなく、例えば図12に示すような多穴管構造でも良い。これは、複数の一次側通路6aが形成された一次側プレート36と、同様に複数の二次側通路6bが形成された二次側プレート37とを接着剤等で貼り合わせて構成される。各プレート36、37は、熱伝導率の高い銅、アルミニウム等を使用することができ、貼り合わせた2枚のプレート36、37の周囲を断熱材38で覆っても良い。
各実施例に示した電動ポンプ3及びタービンをタンク2内に配置しても良い。この場合、加熱された蓄熱用流体Wがタンク2の外部へ取り出されることがないため、給湯用熱交換器6だけをタンク2内に配置した場合より更に熱ロスを少なくできる。
【図面の簡単な説明】
【図1】給湯装置の構成を示す全体図である(第1実施例)。
【図2】給湯用熱交換器を構成する外側管と内側管の断面図である。
【図3】給湯装置の構成を示す全体図である(第2実施例)。
【図4】蓄熱用流体の流量制御機構を示す構成図である(第3実施例)。
【図5】蓄熱用流体の流量制御機構を示す構成図である(第4実施例)。
【図6】給湯装置の構成を示す全体図である(第5実施例)。
【図7】給湯装置の構成を示す全体図である(第6実施例)。
【図8】給湯装置の構成を示す全体図である(第7実施例)。
【図9】給湯装置の構成を示す全体図である(第8実施例)。
【図10】給湯装置の構成を示す全体図である(第9実施例)。
【図11】給湯装置の構成を示す全体図である(第10実施例)。
【図12】給湯用熱交換器の断面図である(変形例)。
【図13】従来の給湯装置の断面図である。
【符号の説明】
1 給湯装置
2 タンク
3 電動ポンプ(ポンプ手段)
4 給水管(給湯用配管)
5 給湯管(給湯用配管)
6 給湯用熱交換器(対向流式熱交換器)
6A 外側管(第1の配管)
6B 内側管(第2の配管)
7 ポンプ制御部(流量制御手段)
14 流入管(流体加熱用通路)
15 流出管(流体加熱用通路)
17 吸入管(循環通路)
18 吐出管(循環通路)
20 水温センサ(給湯温度調節手段)
22 第1の羽根車(ポンプ手段)
23 第2の羽根車(ポンプ手段)
26 電動式流量制御弁(流量制御弁)
27 温度検知式流量制御弁(流量制御弁)
28 分岐配管(給湯温度調節手段)
29 混合弁(給湯温度調節手段)
35 断熱材
51 第1の温度センサ(第1の温度検出手段)
52 第2の温度センサ(第2の温度検出手段)
54 流量センサ(流量検出手段)
C ヒートポンプサイクル(加熱手段)
W 蓄熱用流体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage type hot water supply apparatus.
[0002]
[Prior art]
As a conventional technique, for example, there is a regenerative hot water supply apparatus disclosed in Japanese Patent Laid-Open No. 5-99507. As shown in FIG. 13, this hot water supply apparatus includes a tank 100 for storing heat storage fluid and a heat exchanger 110 provided outside the tank 100, and heat storage fluid in the tank 100 is heated by a heater 120. Then, the heated heat storage fluid is circulated to the heat exchanger 110 by the pump 130, and the hot water supply water flowing through the heat exchanger 110 is heated by the heat energy stored in the heat storage fluid.
[0003]
[Problems to be solved by the invention]
However, in the hot water supply apparatus described above, the temperature difference ΔT between the temperature of the heat storage fluid radiated by the heat exchanger 110 and the temperature of hot water before being heated by the heat exchanger 110 (unheated hot water) increases. . Since the amount of heat corresponding to this temperature difference ΔT is the amount of heat that is discarded without being used for heat exchange, it is an inefficient hot water supply system.
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a hot water supply apparatus that is excellent in heat exchange capability and efficient.
[0004]
[Means for Solving the Problems]
(Means of Claim 1)
The first pipe through which the heat storage fluid flows and the second pipe through which the hot water supply water are provided are adjacent to each other, and the heat storage fluid and the hot water supply are configured to face each other, and heat exchange is performed between the two. A counter-flow heat exchanger that performs A hot water pipe connected to the second pipe and leading hot water to the terminal; A circulation passage for taking out the heat storage fluid heated from the upper portion of the tank and passing it through the first pipe, and then returning it to the lower portion of the tank; pump means for circulating the heat storage fluid in the circulation passage; and circulation passage And a flow rate control means for controlling the flow rate of the heat storage fluid flowing through the first pipe.
In this configuration, the temperature of the heat storage fluid after passing through the first pipe is adjusted by using a counter-flow heat exchanger and controlling the flow rate of the heat storage fluid flowing through the first pipe before heating. It can be reduced to near the temperature of hot water. As a result, it is possible to minimize heat loss during heat exchange between the heat storage fluid and the hot water supply water, thereby realizing an efficient hot water supply system.
[0005]
Also, a fluid heating passage is provided that takes out the heat storage fluid from the lower part in the tank and supplies it to the heating means, and returns the heat storage fluid heated by the heating means to the upper part in the tank.
The heat storage fluid is taken out from the upper part of the tank and flows to the first pipe of the counter flow heat exchanger, and the heat storage fluid after the heat exchange is returned to the lower part of the tank. The heat storage fluid whose temperature has been lowered is taken out from the lower part in the tank, heated by the heating means, and returned to the upper part in the tank, whereby heat can be efficiently stored in the heat storage fluid.
The flow rate control means includes first temperature detection means for detecting the temperature of the hot water for water flowing into the second pipe, and flow rate detection means for detecting the flow of the hot water for water passing through the second pipe, Based on the target temperature of hot water discharged from the hot water pipe, the temperature of hot water detected by the first temperature detection means, and the flow rate of hot water detected by the flow rate detection means, The temperature difference between the temperature of the heat storage fluid after heat exchange and the temperature of the hot water supply water flowing into the second pipe is within a predetermined range. The flow rate of the heat storage fluid flowing through the first pipe is adjusted.
In this configuration, by adjusting the flow rate of the heat storage fluid flowing through the first pipe in accordance with the temperature and flow rate of the hot water supply water, the heat storage fluid having a flow rate sufficient to heat the hot water supply water to the target temperature is obtained. It can be made to distribute | circulate to 1st piping. As a result, when the heat storage fluid flows out from the first pipe, the temperature of the heat storage fluid can be reliably lowered to the vicinity of the temperature of the hot water supply water before heating.
And 1st piping Heat mixing with the heat storage fluid flowing through the second pipe and mixing means for mixing hot water and unheated hot water flowing out from the second pipe, and the target temperature is a predetermined temperature higher than the temperature at which the hot water is actually supplied The hot water supply water set to a high temperature and heated to the target temperature is mixed with the unheated hot water supply water by the mixing means, thereby lowering the temperature of the hot water supply water to a temperature at which the hot water is to be supplied. If the temperature of the hot water supply water is directly adjusted by the flow rate control of the flow rate control means, the responsiveness of the temperature change is slow, so the accuracy of the temperature control may be reduced. However, as described in this means, when the mixing means is used, the temperature of the hot water supply water can be accurately adjusted to the temperature at which the hot water is actually supplied.
[0006]
( Claim 2 Means)
The heating means is a supercritical heat pump cycle in which the pressure of the refrigerant becomes equal to or higher than the critical pressure, and heats the heat storage fluid with the refrigerant whose pressure is increased to the critical pressure or higher.
In the supercritical heat pump cycle, when the heat storage fluid is heated to a target temperature (for example, 65 to 90 degrees), the lower the temperature of the hot water supply water before heating, the lower the high-pressure pressure, and thus the cycle efficiency (COP = heating capacity) / Power consumption) is improved. Therefore, by heating the heat storage fluid reduced to near the temperature of hot water before heating with a supercritical heat pump cycle, cycle efficiency is improved and power saving operation can be performed.
[0008]
(Claims 3 Means)
The flow rate control means includes second temperature detection means for detecting the temperature of the hot water for water flowing out from the second pipe, so that the temperature of the hot water for water detected by the second temperature detection means becomes the target temperature. The flow rate of the heat storage fluid flowing through the first pipe is corrected.
Thereby, the temperature of the hot water supply water can be accurately adjusted to the target temperature.
[0010]
(Claims 4 Means)
The target temperature is set to a constant temperature higher than the normally used hot water temperature. Regardless of the actual set hot water supply temperature, by making the target temperature constant, cold / hot water mixing by the mixing means can be performed with high accuracy.
[0011]
(Claims 5 Means)
heat An exchanger is located in the tank.
According to this configuration, since heat can be exchanged between the heated heat storage fluid and hot water supply water inside the tank, heat loss due to heat radiation is small, and hot water supply capability can be improved.
Furthermore, the hot water heated by the heat exchanger is mixed with the water before being heated by the heat exchanger, and hot water supply temperature adjusting means for adjusting the temperature of the hot water is provided. In this case, it is not necessary to change the flow rate of the fluid flowing through the circulation passage, and the fluid flow rate can be kept constant, so that the temperature fluctuation of the hot water heated by the heat exchanger can be reduced. Thereby, the temperature control of the hot water supply water can be accurately performed with respect to the set temperature.
[0012]
(Claims 6 Means)
The circulation passage and the pump means are provided in the tank. In this case, since the heated heat storage fluid is not taken out of the tank, heat loss can be further reduced as compared with the case where only the heat exchanger is arranged in the tank.
[0013]
(Claims 7 Means)
When the temperature of the heat storage fluid stored in the tank differs in the vertical direction in the tank (for example, when the fluid temperature is high on the upper side and the fluid temperature is low on the lower side), heat exchange is performed. By covering the vessel with a heat insulating material, it is possible to prevent the heat of the high-temperature fluid flowing through the heat exchanger from being released to the low-temperature fluid in the tank.
[0014]
(Claims 8 Means)
The pump means includes a first impeller that rotates in response to the energy of the hot water flowing through the hot water supply pipe, a second impeller that is provided in the circulation passage, and that rotates by transmitting the rotation of the first impeller. The heat storage fluid is circulated in the circulation passage by the rotation of the second impeller. According to this configuration, since the heat storage fluid can be caused to flow through the lubrication passage only by the energy of the supply water pressure, the driving power in the case where a general electric pump is used as the pump means becomes unnecessary.
[0015]
(Claims 9 Means)
By using a tank that is open to the atmosphere, a pressure-resistant design like a pressurized tank is not required, so that the tank itself can be molded from resin. In this case, a pressing process and a welding process necessary for processing stainless steel, which is usually used as a tank material, are unnecessary, and the manufacturing cost can be kept lower than before.
In addition, parts such as a pressure reducing valve, a pressure relief valve, a negative pressure operation valve, and a can body protection valve, which are necessary for a configuration using a pressure tank, are not necessary. Further, unlike the pressure tank, it is not necessary to form a cylindrical shape from the viewpoint of pressure resistance, and the degree of freedom in designing the tank shape can be increased.
[0018]
(Claims 10 Means)
Claim 5 The hot water supply temperature adjusting means described in 1 is a mixing valve provided downstream of the heat exchanger of the hot water supply pipe, a branch pipe branched from the hot water supply pipe upstream of the heat exchanger and connected to the mixing valve, and a mixing valve A water temperature sensor that detects the temperature of the hot water supply water downstream is provided, and the mixing ratio of hot water and water in the mixing valve can be adjusted based on the temperature detected by the water temperature sensor. According to this configuration, since the temperature of the hot water supply water can be controlled by adjusting the mixing ratio of hot water and water with the mixing valve, temperature control with respect to the set temperature is easy.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic diagram showing a configuration of a hot water supply apparatus.
The hot water supply apparatus 1 of this embodiment is used for general household use, and includes a tank 2 for storing a heat storage fluid W, a heating means (to be described later) for heating the heat storage fluid W in the tank 2, and a tank 2 The electric pump 3 for pumping up the heat storage fluid W in the inside, and for hot water supply for exchanging heat between the heat storage fluid W pumped up by the electric pump 3 and the hot water supplied to the hot water supply pipes (the water supply pipe 4 and the hot water supply pipe 5) It is comprised from the heat exchanger 6, the control apparatus (pump control part 7 and cycle control part 8) etc. which control the action | operation of this hot water supply system.
[0020]
a) The tank 2 is opened to the atmosphere through the air hole 2a, and the inside of the tank 2 is maintained at atmospheric pressure. The tank 2 is formed of a resin material, for example, and is provided in a rectangular parallelepiped shape. In order to reduce the heat stored in the heat storage fluid W in the tank 2 from being released into the atmosphere from the wall surface of the tank 2, the outer periphery of the tank 2 may be covered with a heat insulating material such as glass wool or urethane. good.
The main component of the heat storage fluid W is water, and a preservative, an antifreezing agent, LLC, and the like are added as necessary.
[0021]
b) The heating means uses a supercritical heat pump cycle C in which, for example, carbon dioxide gas is used as a refrigerant, so that the refrigerant pressure on the high pressure side becomes equal to or higher than the critical pressure of the refrigerant.
The heat pump cycle C includes functional parts such as a compressor 9, a heat storage heat exchanger 10, an expansion valve 11, an evaporator 12, and an accumulator 13.
The compressor 9 is driven by a built-in electric motor (not shown), and compresses and discharges the gas-phase refrigerant sucked from the accumulator 13 to a critical pressure or higher.
[0022]
The heat storage heat exchanger 10 exchanges heat between the refrigerant and the heat storage fluid W. For example, a refrigerant passage 10a through which the refrigerant flows and a heat storage fluid passage 10b through which the heat storage fluid W flows are provided in a double tube structure. The counter flow type heat storage heat exchanger 10 is configured so that the flow direction of the refrigerant and the flow direction of the heat storage fluid W are opposed to each other.
The expansion valve 11 decompresses the refrigerant flowing out from the heat storage heat exchanger 10 and supplies the decompressed refrigerant to the evaporator 12.
The evaporator 12 evaporates the refrigerant decompressed by the expansion valve 11 by heat exchange with the atmosphere.
The accumulator 13 gas-liquid separates the refrigerant flowing out from the evaporator 12 and causes the compressor 9 to suck only the gas-phase refrigerant and stores excess refrigerant in the cycle.
[0023]
The heat storage fluid passage 10b of the heat storage heat exchanger 10 is connected to the tank 2 via an inflow pipe 14 and an outflow pipe 15, and the electric pump 16 provided in the inflow pipe 14 is activated to store heat in the tank 2. The working fluid W circulates. However, the upstream end of the inflow pipe 14 opens at the bottom of the tank 2, and the downstream end of the outflow pipe 15 opens at the top of the tank 2. As a result, the heat storage fluid W heated by heat exchange with the refrigerant in the heat storage heat exchanger 10 is sent to the upper part of the tank 2 through the outflow pipe 15, so that the upper part in the tank 2 moves from the lower side toward the lower side. The heat is sequentially stored in the heat storage fluid W. In addition, since the heat storage fluid W in the tank 2 only needs to secure a heat storage amount corresponding to the amount of hot water used in the home, the entire heat storage fluid in the tank 2 is not necessarily maintained at a high temperature.
[0024]
Therefore, in a home where the amount of hot water used is small, for example, heat may be stored in about half of the heat storage fluid W in the tank 2. In this case, in the tank 2, as shown in FIG. 1, due to the specific gravity difference due to the temperature of the heat storage fluid W, the heat storage fluid W <b> 1 having a higher temperature from the upper side toward the lower side in the tank 2, the heat storage at the intermediate temperature Naturally separated into a heat storage fluid W3 and a low temperature heat storage fluid W3, the intermediate temperature heat storage fluid W2 also serves to insulate between the high temperature heat storage fluid W1 and the low temperature heat storage fluid W3. The thickness is small compared to the entire heat storage fluid.
[0025]
c) The electric pump 3 is installed, for example, in the upper part of the tank 2, connected to the tank 2 through the suction pipe 17, and connected to the hot water supply heat exchanger 6 through the discharge pipe 18. In addition, the upstream end (suction port) of the suction pipe 17 is open to the upper part (high temperature heat storage fluid W1) in the tank 2. Therefore, when the electric pump 3 is operated, the heat storage fluid W1 having a high temperature can be pumped and pumped to the hot water supply heat exchanger 6.
[0026]
d) The hot water supply heat exchanger 6 includes a primary side passage 6a through which the heat storage fluid W pumped up by the electric pump 3 flows, and a secondary side passage 6b connected to the hot water supply pipes (the water supply pipe 4 and the hot water supply pipe 5). For example, as shown in FIG. 2, the inner tube 6B that forms the secondary passage 6b is inserted into the outer tube 6A that forms the primary passage 6a.
Here, the outer tube 6A preferably uses a resin material in order to keep heat loss low, and the inner tube 6B preferably uses a copper material having a high thermal conductivity. Further, the inner tube 6B may be a cylindrical tube as with the outer tube 6A. However, for example, as shown in FIG. In this case, the heat transfer area between the primary side passage 6a and the secondary side passage 6b increases, and the heat exchange efficiency between the heat storage fluid W and the hot water supply water can be improved.
[0027]
As shown in FIG. 1, the hot water supply heat exchanger 6 is arranged in the vertical direction inside the tank 2, and the upper end of the primary passage 6 a is connected to the electric pump 3 via the discharge pipe 18. The lower end (outlet) of the passage 6 a is open at the bottom of the tank 2. Further, the lower end of the secondary passage 6 b is connected to the water supply pipe 4 at the lower part in the tank 2, and the upper end protrudes to the upper part of the tank 2 and is connected to the hot water supply pipe 5. Accordingly, the hot water supply heat exchanger 6 has a flow direction of the heat storage fluid W flowing from the top to the bottom in the primary passage 6a and a secondary passage 6b from the bottom to the top, as indicated by arrows in FIG. It is configured as a counterflow type in which the flow direction of hot water for water flowing in the opposite direction. The water supply pipe 4 and the hot water supply pipe 5 are part of the hot water supply pipe.
[0028]
e) The control device includes a pump control unit 7 that controls the operation of the electric pump 3, and the pump control unit 7 detects hot water supply sensor 19 that detects the presence or absence of “water flow” and a water temperature that detects the temperature of hot water supply water. The detection signal of the sensor 20 is input, the ON / OFF control of the electric pump 3 is performed based on the detection result of the hot water detection sensor 19, and the rotation speed control of the electric pump 3 is performed based on the detection result of the water temperature sensor 20. The hot water detection sensor 19 is provided in the hot water supply pipe 4 or the hot water supply pipe 5, and the water temperature sensor 20 is provided in the hot water supply pipe 5.
[0029]
Further, the control device includes a cycle control unit 8 that controls an electric motor built in the compressor 9 of the heat pump cycle C and an electric pump 16 provided in the inflow pipe 14. The cycle control unit 8 is based on the detected temperature of the heat storage temperature sensor 21 that detects the temperature of the heat storage fluid after heating in order to keep the temperature of the heat storage fluid W heated by the heat storage heat exchanger 10 at a constant temperature. Thus, the rotational speed of the electric pump 16 is controlled.
[0030]
Next, the operation of this embodiment will be described.
The heat storage fluid W in the tank 2 is heated and stored by a necessary amount, for example, by operating the heat pump cycle C and the electric pump 16 using midnight power. Thereafter, when the user opens the hot water tap (not shown) and a water flow is generated in the hot water supply pipe (hot water supply pipe 5), a “water flow” is detected by the hot water detection sensor 19 and is output from the pump control unit 7. The electric pump 3 is activated in response to the signal (ON signal). When the electric pump 3 is operated, a high-temperature heat storage fluid W is pumped from the upper portion of the tank 2, and a flow of the heat storage fluid W is generated in the primary passage 6 a of the hot water supply heat exchanger 6. Thereby, the hot water supply water flowing through the secondary side passage 6b of the hot water supply heat exchanger 6 receives the heat energy of the heat storage fluid W and is heated.
[0031]
Here, the pump control unit 7 controls the driving state (the number of rotations) of the electric pump 3 so that the temperature of the hot water detected by the water temperature sensor 20 becomes a desired hot water supply temperature (a hot water supply temperature set by the user). To do. That is, when the hot water temperature detected by the water temperature sensor 20 is lower than the desired hot water supply temperature, the rotational speed of the electric pump 3 is increased to increase the circulation amount of the heat storage fluid W flowing through the primary passage 6a. As a result, the amount of heat exchange between the heat storage fluid W flowing through the primary passage 6a and the hot water supply water flowing through the secondary passage 6b increases, and the temperature of the hot water rises. When the temperature of the hot water detected by the water temperature sensor 20 is higher than the desired hot water supply temperature, the rotational speed of the electric pump 3 is reduced to reduce the circulation amount of the heat storage fluid W flowing through the primary side passage 6a. As a result, the amount of heat exchange between the heat storage fluid W flowing through the primary side passage 6a and the hot water supply water flowing through the secondary side passage 6b is reduced, so that the temperature of the hot water is lowered.
[0032]
(Effects of the first embodiment)
Since the hot water supply device 1 of the present embodiment has the hot water supply heat exchanger 6 disposed in the tank 2, heat exchange between the heat storage fluid W and the hot water supply water can be performed inside the tank 2. As a result, since heat loss due to heat radiation to the atmosphere is reduced, the hot water supply capacity can be improved accordingly. In addition, space can be saved as compared with the case where the hot water heat exchanger 6 is disposed outside the tank 2.
[0033]
In the present embodiment, since the atmosphere open type tank 2 is used, the pressure resistance design such as a pressure tank (sealed type tank) is not required, and therefore the tank 2 can be formed of resin. In this case, a pressing process and a welding process necessary for processing stainless steel, which is usually used as a tank material, are unnecessary, and the manufacturing cost can be kept lower than before. In addition, parts such as a pressure reducing valve, a pressure relief valve, a negative pressure operation valve, and a can body protection valve, which are necessary for a configuration using a pressure tank, are not necessary. Further, unlike the pressure tank, it is not necessary to form a cylindrical shape from the viewpoint of pressure resistance, and there is an effect that the degree of freedom in designing the tank shape can be increased.
[0034]
By making the inner pipe 6B of the hot water supply heat exchanger 6 uneven, it is possible to increase the heat exchange area between the primary side passage 6a through which the heat storage fluid W flows and the secondary side passage 6b through which hot water supply water flows. For this reason, heat exchange capability improves compared with the case where the inner side pipe 6B is comprised with a round tube, and it is possible to shorten the full length of the heat exchanger 6 for hot water supply.
Since the heat pump cycle C is used as the heating means for the heat storage fluid W, the running cost (mainly electricity bill) is much lower than that of the gas type or kerosene type heating means.
The heated heat storage fluid W can be used not only for hot water supply but also for floor heating and indoor air conditioning. Further, the heat storage fluid W can be used as hot water for a bath. In this case, since the heat storage fluid W can be used without heat loss, the entire heat storage amount can be effectively utilized.
[0035]
(Second embodiment)
This embodiment is an example in which a turbine is used as means for circulating the heat storage fluid W in the hot water supply heat exchanger 6.
As shown in FIG. 3, the turbine includes a first impeller 22 that rotates in response to the flow of hot water supply water, and a second impeller 23 that rotates by transmitting the rotation of the first impeller 22. Is done.
[0036]
The first impeller 22 is stored in a storage chamber 24 provided in the hot water supply pipe 5, and when a water flow is generated in the hot water supply pipe 5, the first impeller 22 can rotate at a rotation speed corresponding to the flow rate.
The second impeller 23 is accommodated in a storage chamber 25 provided between the suction pipe 17 and the discharge pipe 18 and can pump the heat storage fluid W pumped up by its own rotation to the primary passage 6a. .
The first impeller 22 and the second impeller 23 can be interlocked by the attractive force of a magnet (not shown) embedded in each. In this configuration, since it is not necessary to connect the first impeller 22 and the second impeller 23 by a shaft or the like, the storage chamber 24 and the storage chamber 25 can be completely separated, and hot water supply water and heat storage Mixing with the working fluid W cannot occur.
[0037]
According to the configuration of the present embodiment, the heat storage fluid W can be circulated to the primary side passage 6a only by the energy of the water flow generated in the hot water supply pipe 5, and therefore it is necessary to use the electric pump 3 shown in the first embodiment. There is no need for electric power for driving the electric pump 3.
In addition, if the piping pressure loss is designed so that the hot water flow rate, the rotational speed of each impeller 22 and 23, and the flow rate of the heat storage fluid W flowing through the primary passage 6a are the target hot water temperature, the first is performed. Since the hot water detection sensor 19, the water temperature sensor 20, and the pump controller 7 shown in the embodiment are not required, an inexpensive system can be provided.
[0038]
(Third embodiment)
In this embodiment, as shown in FIG. 4, the flow rate of the heat storage fluid W flowing through the primary passage 6 a is controlled by an electric flow control valve 26.
The electric flow control valve 26 is installed either before or after the electric pump 3, and receives a command from the pump control unit 7 to vary the heat storage fluid flow rate.
According to this configuration, since the heat storage fluid flow rate is varied by the electric flow control valve 26, the rotational speed of the electric pump 3 can be made constant. When the rotational speed of the electric pump 3 is changed as in the first embodiment, a speed variable circuit such as an inverter is required if it is alternating current. However, the speed variable circuit is made constant by making the rotational speed of the electric pump 3 constant. Is no longer necessary.
The configuration of the present embodiment (electric flow control valve 26) can also be applied to a system that uses the turbine shown in the second embodiment.
[0039]
(Fourth embodiment)
In the present embodiment, as shown in FIG. 5, the flow rate of the heat storage fluid W flowing through the primary passage 6 a is controlled by the temperature detection type flow control valve 27.
The temperature detection type flow control valve 27 has a gas sealing part 27a in which an inert gas is sealed, and has a structure in which the valve opening degree is varied according to the internal pressure of the gas sealing part 27a. Is installed at a position where the temperature of the hot water heated by the hot water heat exchanger 6 can be sensed.
For example, when the hot water supply temperature decreases, the temperature detection type flow control valve 27 increases the valve opening degree by decreasing the internal pressure of the gas sealing portion 27a, and increases the heat storage fluid flow rate to increase the hot water supply temperature. . Further, when the hot water supply temperature is increased, the internal pressure of the gas sealing portion 27a is increased so that the valve opening is reduced, and the hot water supply temperature is decreased by reducing the heat storage fluid flow rate.
[0040]
According to the configuration of the present embodiment, the temperature detection type flow control valve 27 works to maintain the hot water supply temperature at a desired set temperature mechanically, so that the rotational speed of the electric pump 3 is the same as in the third embodiment. Can be kept constant, and a speed variable circuit such as an inverter becomes unnecessary.
Moreover, since the temperature detection type flow control valve 27 has a structure in which the valve opening degree is varied in accordance with the internal pressure of the gas sealing portion 27a, the water temperature sensor 20 for detecting the temperature of the hot water supply water is unnecessary.
In addition, the structure (temperature detection type flow control valve 27) of a present Example is applicable also to the system which uses the turbine shown in 2nd Example.
[0041]
(5th Example)
The present embodiment is an example in which the temperature of hot water supply water is adjusted by mixing hot water heated by the hot water supply heat exchanger 6 with water before being heated by the hot water supply heat exchanger 6. Specifically, as shown in FIG. 6, it has a branch pipe 28 branchedly connected to the water supply pipe 4, and the downstream end of the branch pipe 28 is connected to a mixing valve 29 provided in the hot water supply pipe 5. Is done.
The mixing valve 29 varies the amount of water flowing from the branch pipe 28 and receives a command from the pump control unit 7 so that the temperature of the hot water supply water detected by the water temperature sensor 20 becomes the set hot water supply temperature. The amount of water is adjusted.
[0042]
According to this configuration, since the temperature of the hot water supply water can be adjusted by the mixing valve 29, the temperature control of the hot water supply water with respect to the set temperature is possible even if there is some temperature fluctuation in the hot water heated by the hot water supply heat exchanger 6. Can be performed with higher accuracy.
The configuration of this embodiment can also be applied to a system that uses the turbine shown in the second embodiment.
[0043]
(Sixth embodiment)
In this embodiment, as shown in FIG. 7, the heat storage heat exchanger 10 of the heat pump cycle C, which is a heating means, is arranged in the tank 2. Moreover, the electric pump 16 is provided in the outflow pipe 15 with the movement of the heat storage heat exchanger 10. As in the first embodiment, the rotational speed of the electric pump 16 is controlled by the cycle control unit 8 so that the heat storage fluid temperature detected by the heat storage temperature sensor 21 is constant.
[0044]
According to this configuration, since the heat storage heat exchanger 10 is arranged in the tank 2, the required volume of the heat pump cycle C configured outside the tank 2 can be reduced and the heat exchanger cycle can be made compact. Moreover, since the heat loss from the heat storage heat exchanger 10 to the atmosphere is eliminated, the heat storage capacity is improved.
The configuration of this embodiment can also be applied to a system using the turbine shown in the second embodiment.
[0045]
(Seventh embodiment)
In this embodiment, as shown in FIG. 8, the pump function for circulating the heat storage fluid W in the hot water supply heat exchanger 6 and the pump function for circulating the heat storage fluid W in the heat storage heat exchanger 10 are electrically operated. This is an example performed by the pump 30. In addition, the heat pump cycle C is the structure which has arrange | positioned the heat exchanger 10 for thermal storage in the tank 2 similarly to 6th Example.
In this case, since the heat storage operation and the hot water supply operation are performed by one electric pump 30, it is necessary to switch the circulation path of the heat storage fluid W between the case of performing the heat storage operation and the case of performing the hot water supply operation. Therefore, as shown in FIG. 8, three-way valves 31 and 32 are respectively arranged before and after the electric pump 30, and the passage directions of the three-way valves 31 and 32 are determined according to instructions from the control device 50 (pump control unit, cycle control unit). Switching.
[0046]
Here, the flow of the heat storage fluid W when the passage directions of the three-way valves 31 and 32 are switched will be described.
a) When storing heat
Lower part in tank 2 (low temperature heat storage fluid W3) → heat storage fluid passage 10b of the heat storage heat exchanger 10 → first outlet pipe 15a → three-way valve 31 → common pipe 33 → electric pump 30 → common pipe 34 → three-way valve 32 → The second outflow pipe 15b → the heat storage fluid W flows into the upper part of the tank 2 (high temperature heat storage fluid W1).
[0047]
b) During hot water supply
Upper part of tank 2 (high temperature heat storage fluid W1) → suction pipe 17 → three-way valve 31 → common pipe 33 → electric pump 30 → common pipe 34 → three-way valve 32 → discharge pipe 18 → primary side passage of hot water supply heat exchanger 6 6a → The heat storage fluid W flows to the lower part of the tank 2 (low temperature heat storage fluid W3).
According to the configuration of the present embodiment, the heat storage operation and the hot water supply operation can be performed by one electric pump 30, so that the cost can be reduced compared to the case where two electric pumps are used.
[0048]
(Eighth embodiment)
As in the seventh embodiment, the present embodiment has one pump function for circulating the heat storage fluid W in the hot water supply heat exchanger 6 and one pump function for circulating the heat storage fluid W in the heat storage heat exchanger 10. As shown in FIG. 9, the heat storage heat exchanger 10 of the heat pump cycle C is arranged outside the tank 2 (the same as in the first embodiment). In this case, the same operation and effect as the seventh embodiment can be obtained.
[0049]
(Ninth embodiment)
This embodiment is an example in which the electric pump 3 is disposed in the tank 2 as shown in FIG. In this case, since the heated heat storage fluid W is not taken out of the tank 2, the heat loss can be further reduced as compared with the case where only the hot water supply heat exchanger 6 is disposed in the tank 2.
In this embodiment, the electric pump 3 is used as a means for circulating the heat storage fluid W in the primary passage 6a of the hot water supply heat exchanger 6. However, when the turbine described in the second embodiment is used. However, the turbine (the first impeller 22 and the second impeller 23) may be disposed in the tank 2 in the same manner.
[0050]
(Tenth embodiment)
The present embodiment is an example of a hot water supply system in which a hot water supply heat exchanger 6 is arranged outside the tank 2 as shown in FIG.
The hot water supply apparatus 1 of the present embodiment includes a tank 2 for storing the heat storage fluid W, a heating means (to be described later) for heating the heat storage fluid W, an electric pump 3 for pumping up the heat storage fluid W in the tank 2, and this electric pump. 3 for mixing the heat storage fluid W pumped up by the heat storage water 6 and the hot water supply water, the hot water supply water heated by the hot water supply heat exchanger 6 and the hot water supply water before being heated. 29 and a control device (described below) for controlling the operation of the hot water supply device 1.
[0051]
The tank 2 is opened to the atmosphere through the air hole 2a, and the inside of the tank 2 is maintained at atmospheric pressure.
The heating means is, for example, a supercritical heat pump cycle C that uses carbon dioxide as a refrigerant, as in the first embodiment, and is connected to the tank 2 via the inflow pipe 14 and the outflow pipe 15 as in the first embodiment. ing. The fluid heating passage of the present invention includes the inflow pipe 14 that supplies the heat storage fluid W to the heat pump cycle C by the operation of the electric pump 16 from the bottom of the tank 2, and the heat storage fluid W heated in the heat pump cycle C. And an outflow pipe 15 for returning the gas to the upper part in the tank 2.
[0052]
The electric pump 3 pumps the heat storage fluid W from the upper part of the tank 2 through the suction pipe 17, pumps it to the hot water supply heat exchanger 6, and exchanges heat with the hot water supply water in the hot water supply heat exchanger 6. W is returned to the lower part in the tank 2. In this embodiment, the electric pump 3 is installed on the upstream side (pressure feeding side) of the hot water supply heat exchanger 6, but may be installed on the downstream side (suction side) of the hot water supply heat exchanger 6. .
[0053]
As shown in FIG. 2, the hot water supply heat exchanger 6 is provided in a double-pipe structure including an outer pipe 6A (first pipe) and an inner pipe 6B (second pipe). The heat storage fluid W flows through the annular primary passage 6a formed between the pipes 6A, and hot water supply water flows through the secondary passage 6b formed inside the inner pipe 6B. However, the flow direction of the heat storage fluid W flowing through the primary side passage 6a and the flow direction of the hot water supply water flowing through the secondary side passage 6b are configured as opposite flow types.
As with the fifth embodiment, the hot water supply pipe through which the hot water supply circulates is provided with a mixing valve 29 in the hot water supply pipe 5, and the downstream end of the branch pipe 28 branched from the water supply pipe 4 is connected to the mixing valve 29. Has been.
[0054]
The control device includes a pump control unit 7 that controls the operation of the electric pump 3 and a cycle control unit 8 that controls the operation of the heat pump cycle C.
In the pump control unit 7, signals are input from a first temperature sensor 51 and a flow rate sensor 54 provided in the water supply pipe 4, and a second temperature sensor 52 and a third temperature sensor 53 provided in the hot water supply pipe 5, respectively. Based on these signals, a predetermined calculation is performed in accordance with a program inputted in advance, and the rotational speed of the electric pump 3 is controlled according to the calculation result.
[0055]
The first temperature sensor 51 detects the temperature T2i of the hot water supply water (unheated hot water supply water) supplied to the water supply pipe 4, and the second temperature sensor 52 passes through the hot water supply heat exchanger 6. The temperature T2o of the heated hot water supply water is detected, and the third temperature sensor 53 detects the temperature T2 of the hot water supply water obtained by mixing the unheated hot water supply water and the heated hot water supply water with the mixing valve 29. . The flow rate sensor 54 detects the flow rate of hot water supplied to the water supply pipe 4.
In the cycle control unit 8, the rotational speed of the electric pump 16 is controlled based on the temperature detected by the heat storage temperature sensor 21 that detects the temperature of the heat storage fluid W after heating.
[0056]
Next, the operation of this system will be described.
The set temperature of the hot water supply device 1 can be set in increments of 1 ° C. within a range of 35 to 50 ° C. (normal use temperature), and the temperature of the hot water flowing out from the hot water heat exchanger 6 is set to 50 ° C. as a target temperature. The Note that the set temperature can be set to 50 ° C. or more. In this case, the set temperature + α is set as the target temperature, or the set temperature itself is set as the target temperature. In addition, the target temperature can be set to a set temperature + α (variation value) at a normal use temperature.
[0057]
In order to obtain a constant hot water supply water temperature, the feed water temperature detected by the first temperature sensor 51, the feed water flow rate detected by the flow sensor 54, and the temperature of the heat storage fluid W detected by the heat storage temperature sensor 21 are parameters. The flow rate of the heat storage fluid W is calculated from the relational expression In this case, the flow rate of the heat storage fluid W is calculated such that the lower the feed water temperature, the higher the feed water flow rate, and the lower the temperature of the heat storage fluid W, the greater the flow rate of the heat storage fluid W. By sufficiently transferring heat from the heat storage fluid W having the flow rate thus obtained to the hot water supply water, the temperature T1o of the heat storage fluid W after heat exchange can be lowered to the vicinity of the temperature T2i of the hot water supply water. (For example, the temperature difference ΔT is within 5 ° C.).
Of course, as a premise, the heat exchanger for hot water supply 6 needs to have a heat exchanging capacity capable of sufficiently transferring heat from the heat storage fluid W to the hot water supply water, and for that reason, the flow direction of the heat storage fluid W It is comprised as a counterflow type heat exchanger with which the flow direction of hot water supply water opposes.
[0058]
The above control is so-called feedforward control, which is obtained in consideration of the flow rate and temperature of the heat storage fluid W necessary for heating hot water having a certain flow rate and temperature to the target temperature.
For this reason, in the flow volume of the heat storage fluid W actually calculated, the heating temperature of the hot water supply water may be too high or too low with respect to the target temperature. For this reason, the temperature T2o of hot water actually heated by the second temperature sensor 52 may be detected, and the flow rate of the heat storage fluid W may be corrected so that the temperature becomes the target temperature.
[0059]
In addition, by setting the target temperature to a temperature that is a predetermined temperature higher than the normally used hot water temperature, the temperature of the hot water can be accurately adjusted to the actual hot water temperature. That is, if the temperature of the hot water supply water is directly adjusted by the flow rate control of the pump control unit 7 (flow rate control means), the temperature control accuracy may be lowered because the responsiveness of the temperature change is slow. However, when the hot water heated by the hot water supply heat exchanger 6 and the cold water before being heated are mixed using the mixing valve 29 as in the present embodiment, the temperature of the hot water is actually set to the temperature at which the hot water is supplied. Can be adjusted accurately. In this case, while the temperature T2 of the hot water supply actually used is detected by the third temperature sensor 53, the hot water supply water heated to the target temperature and the unheated hot water supply water are mixed by the mixing valve 29. The temperature of the hot water supply water can be lowered to the temperature at which hot water should be supplied.
Moreover, by setting the target temperature to a constant temperature higher than the normally used hot water temperature, it is possible to stably and accurately mix cold / hot water.
[0060]
In this hot water supply system, a supercritical heat pump cycle C is used as a heating means for the heat storage fluid W. In this supercritical heat pump cycle C, a high pressure (the discharge pressure of the compressor 9) depends on the temperature of the heat storage fluid W. Therefore, as the temperature of the heat storage fluid W decreases, the high pressure decreases and the operation can be performed in a region where the cycle efficiency is good. Therefore, the temperature of the heat storage fluid W stored in the lower part of the tank 2 is lowered to the vicinity of the temperature of the hot water supply water by the flow rate control described above, and the heat storage fluid W is introduced from the lower part of the tank 2 to By heating and returning to the upper part in the tank 2, the cycle efficiency of the heat pump cycle C is improved, and a power saving operation can be performed.
[0061]
The water supply temperature may be directly detected by the first temperature sensor 51, or may be obtained indirectly by estimating the water temperature from other parameters related to the water temperature. For example, since the outside air temperature and the water temperature are related, the water temperature may be estimated from the outside air temperature, the change in the average water temperature over the course of one year is memorized, and the water supply temperature should be regarded as a calendar function. The water temperature may be calculated.
Moreover, since the heat storage fluid W is heated so that the temperature of the heat storage fluid W becomes a predetermined target temperature on the heat pump cycle C side, the temperature of the heat storage fluid W can be obtained from the heat pump cycle C side. Is possible.
[0062]
If the target temperature is set in advance throughout the year as the temperature of the heat storage fluid W, the set target temperature may be used as the temperature of the heat storage fluid W.
The flow rate sensor 54 may be installed upstream of the branch point between the water supply pipe 4 and the branch pipe 28 or downstream of the mixing valve 29 to detect the entire hot water supply flow rate. In this case, from the values of the temperature sensors 51, 52, and 53, the flow rates of the hot water supply heat exchanger 6 and the branch pipe 28 can be estimated by calorie calculation.
[0063]
(Modification)
The tank 2 shown in each embodiment does not necessarily need to use a resin material, and may be formed of a metal material. Moreover, the shape of the tank 2 may not be a rectangular parallelepiped shape but may be a cylindrical shape, for example.
In the hot water supply heat exchanger 6 described in the first embodiment, the secondary side passage 6b is provided inside the primary side passage 6a, but conversely, the secondary side passage 6b is provided outside the primary side passage 6a. May be. Moreover, the material used for the inner tube 6B and the outer tube 6A described above is an example. For example, the inner tube 6B can use aluminum having high thermal conductivity, and the outer tube 6A can be made of metal. Furthermore, you may cover the outer peripheral surface of the heat exchanger 6 for hot water supply with the heat insulating material 35 (refer FIG. 2).
[0064]
Further, the hot water supply heat exchanger 6 shown in each embodiment is not limited to the double tube structure including the inner tube 6B and the outer tube 6A, and may be a multi-hole tube structure as shown in FIG. 12, for example. This is configured by adhering a primary side plate 36 in which a plurality of primary side passages 6a are formed and a secondary side plate 37 in which a plurality of secondary side passages 6b are similarly formed with an adhesive or the like. Each of the plates 36 and 37 can be made of copper, aluminum, or the like having high thermal conductivity, and the periphery of the two plates 36 and 37 that are bonded together may be covered with a heat insulating material 38.
The electric pump 3 and the turbine shown in each embodiment may be arranged in the tank 2. In this case, since the heated heat storage fluid W is not taken out of the tank 2, the heat loss can be further reduced as compared with the case where only the hot water supply heat exchanger 6 is disposed in the tank 2.
[Brief description of the drawings]
FIG. 1 is an overall view showing a configuration of a hot water supply apparatus (first embodiment).
FIG. 2 is a cross-sectional view of an outer tube and an inner tube that constitute a heat exchanger for hot water supply.
FIG. 3 is an overall view showing the configuration of a hot water supply apparatus (second embodiment).
FIG. 4 is a configuration diagram showing a flow rate control mechanism for a heat storage fluid (third embodiment).
FIG. 5 is a configuration diagram showing a flow rate control mechanism for a heat storage fluid (fourth embodiment).
FIG. 6 is an overall view showing a configuration of a hot water supply apparatus (fifth embodiment).
FIG. 7 is an overall view showing the configuration of a hot water supply apparatus (sixth embodiment).
FIG. 8 is an overall view showing the configuration of a hot water supply apparatus (seventh embodiment).
FIG. 9 is an overall view showing the configuration of a hot water supply apparatus (eighth embodiment).
FIG. 10 is an overall view showing a configuration of a hot water supply apparatus (9th embodiment).
FIG. 11 is an overall view showing the configuration of a hot water supply apparatus (a tenth embodiment).
FIG. 12 is a cross-sectional view of a heat exchanger for hot water supply (modified example).
FIG. 13 is a cross-sectional view of a conventional hot water supply apparatus.
[Explanation of symbols]
1 Water heater
2 tanks
3 Electric pump (pump means)
4 Water supply pipe (pipe for hot water supply)
5 Hot water supply pipe (Pipe for hot water supply)
6 Heat exchanger for hot water supply (opposite flow heat exchanger)
6A Outer pipe (first pipe)
6B Inner pipe (second pipe)
7 Pump controller (flow rate control means)
14 Inflow pipe (fluid heating passage)
15 Outflow pipe (fluid heating passage)
17 Suction pipe (circulation passage)
18 Discharge pipe (circulation passage)
20 Water temperature sensor (hot water temperature control means)
22 First impeller (pump means)
23 Second impeller (pump means)
26 Electric flow control valve (flow control valve)
27 Temperature detection flow control valve (flow control valve)
28 Branch piping (hot water temperature control means)
29 Mixing valve (hot water temperature control means)
35 Insulation
51 1st temperature sensor (1st temperature detection means)
52 2nd temperature sensor (2nd temperature detection means)
54 Flow rate sensor (flow rate detection means)
C heat pump cycle (heating means)
W Heat storage fluid

Claims (10)

蓄熱用流体を貯留するタンクと、
このタンク内の蓄熱用流体を加熱する加熱手段と、
前記蓄熱用流体が流通する第1の配管と給湯用水が流通する第2の配管とを隣接して設け、且つ前記蓄熱用流体と給湯用水とが対向流となるように構成され、両者間で熱交換を行う対向流式熱交換器と、
前記第2の配管と接続され、給湯用水を端末へと導く給湯管と、
前記タンク内の上部から加熱された前記蓄熱用流体を取り出し、前記第1の配管を通過させた後、前記タンク内の下部に戻すための循環通路と、
この循環通路に前記蓄熱用流体を循環させるポンプ手段と、
前記循環通路を介して前記第1の配管を流通する前記蓄熱用流体の流量を制御する流量制御手段と、
前記タンク内の下部から前記蓄熱用流体を取り出して前記加熱手段へ供給し、前記加熱手段で加熱された蓄熱用流体を前記タンク内の上部へ戻す流体加熱用通路と、
前記第1の配管を流通する前記蓄熱用流体と熱交換し、前記第2の配管から流出した給湯用水と未加熱の給湯用水とを混合する混合手段とを備え、
前記流量制御手段は、
前記第2の配管に流入する給湯用水の温度を検出する第1の温度検出手段と、
前記第2の配管を通過する給湯用水の流量を検出する流量検出手段とを備え、
前記給湯管から出湯される給湯用水の目標温度、前記第1の温度検出手段によって検出される給湯用水の温度、及び前記流量検出手段によって検出される給湯用水の流量に基づいて、熱交換後の前記蓄熱用流体の温度と前記第2の配管に流入する給湯用水の温度との温度差が所定範囲となるように、前記第1の配管を流通する蓄熱用流体の流量を調節し、
前記目標温度は、実際に給湯される温度よりも所定温度高い温度に設定され、この目標温度まで加熱された給湯用水を前記混合手段によって未加熱の給湯用水と混合することにより、給湯用水の温度を給湯すべき温度まで低下することを特徴とする給湯装置。
A tank for storing heat storage fluid;
Heating means for heating the heat storage fluid in the tank;
A first pipe through which the heat storage fluid circulates and a second pipe through which hot water supply water flows are provided adjacent to each other, and the heat storage fluid and hot water supply water are opposed to each other. A counter-flow heat exchanger that performs heat exchange;
A hot water supply pipe connected to the second pipe and leading hot water supply water to the terminal;
A circulation path for taking out the heat storage fluid heated from the upper part in the tank, passing the first pipe, and returning it to the lower part in the tank;
Pump means for circulating the heat storage fluid in the circulation passage;
Flow rate control means for controlling the flow rate of the heat storage fluid flowing through the first pipe through the circulation passage;
A fluid heating passage for taking out the heat storage fluid from the lower part in the tank and supplying it to the heating means, and returning the heat storage fluid heated by the heating means to the upper part in the tank;
Heat exchange with the heat storage fluid flowing through the first pipe, and mixing means for mixing the hot water and the unheated hot water flowing out of the second pipe,
The flow rate control means is
First temperature detecting means for detecting the temperature of hot water for water flowing into the second pipe;
Flow rate detecting means for detecting the flow rate of hot water for water passing through the second pipe,
Based on the target temperature of hot water supplied from the hot water pipe, the temperature of hot water detected by the first temperature detecting means, and the flow rate of hot water detected by the flow rate detecting means , Adjusting the flow rate of the heat storage fluid flowing through the first pipe so that the temperature difference between the temperature of the heat storage fluid and the temperature of the hot water supply water flowing into the second pipe falls within a predetermined range ;
The target temperature is set to a temperature that is higher by a predetermined temperature than the temperature at which hot water is actually supplied, and hot water heated up to the target temperature is mixed with unheated hot water by the mixing means, so that the temperature of the hot water is increased. The hot water supply device is characterized in that the temperature is lowered to a temperature at which the hot water should be supplied.
前記加熱手段は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により前記蓄熱用流体を加熱することを特徴とする請求項1に記載した給湯装置。 2. The hot water supply according to claim 1, wherein the heating means is a supercritical heat pump cycle in which a pressure of the refrigerant is equal to or higher than a critical pressure, and the heat storage fluid is heated by the refrigerant whose pressure is increased to the critical pressure or higher. apparatus. 前記流量制御手段は、前記第2の配管から流出する給湯用水の温度を検出する第2の温度検出手段を備え、
この第2の温度検出手段によって検出される給湯用水の温度が前記目標温度となるように、前記第1の配管を流通する蓄熱用流体の流量を補正することを特徴とする請求項1に記載した給湯装置。
The flow rate control means includes second temperature detection means for detecting the temperature of hot water for water flowing out from the second pipe,
As the temperature of the water for hot water supply to be detected by the second temperature detecting means becomes the target temperature, according to claim 1, characterized in that to correct the flow rate of the heat storage fluid flowing through the first pipe Water heater.
前記目標温度は、通常使用される給湯水温度よりも高い一定温度に設定されることを特徴とする請求項1〜3のいずれか1つに記載した給湯装置。 The hot water supply apparatus according to any one of claims 1 to 3, wherein the target temperature is set to a constant temperature higher than a normally used hot water temperature . 前記熱交換器で加熱された湯に前記熱交換器で加熱される前の水を混合して給湯用水の温度調節を行う給湯温度調節手段を備え、
前記熱交換器が前記タンク内に配置されていることを特徴とする請求項1〜4のいずれか1つに記載した給湯装置。
Hot water supply temperature adjustment means for adjusting the temperature of hot water for hot water supply by mixing the water heated by the heat exchanger with the hot water heated by the heat exchanger,
The hot water supply apparatus according to any one of claims 1 to 4, wherein the heat exchanger is disposed in the tank .
前記循環通路及びポンプ手段は、前記タンク内に設けられていることを特徴とする請求項5に記載した給湯装置。 The hot water supply apparatus according to claim 5, wherein the circulation passage and the pump means are provided in the tank . 前記熱交換器は、断熱材で覆われていることを特徴とする請求項5または6に記載した給湯装置。 The hot water supply apparatus according to claim 5 or 6, wherein the heat exchanger is covered with a heat insulating material . 前記ポンプ手段は、給湯用配管を流れる給湯用水のエネルギーを受けて回転する第1の羽根車と、前記循環通路に設けられ、前記第1の羽根車の回転が伝達されて回転する第2の羽根車とを備え、この第2の羽根車の回転によって前記循環通路に蓄熱用流体を循環させることを特徴とする請求項5〜7のいずれか1つに記載した給湯装置。 The pump means is provided with a first impeller that rotates in response to the energy of hot water flowing through the hot water supply pipe, and a second impeller that is provided in the circulation passage and is rotated by transmission of rotation of the first impeller. The hot water supply device according to any one of claims 5 to 7, further comprising an impeller, wherein the heat storage fluid is circulated through the circulation passage by the rotation of the second impeller . 前記タンクは、大気圧に開放されていることを特徴とする請求項〜8のいずれか1つに記載した給湯装置。 The hot water supply apparatus according to any one of claims 1 to 8, wherein the tank is open to an atmospheric pressure . 前記給湯温度調節手段は、
給湯用配管の前記熱交換器下流に設けられた混合弁と、
前記熱交換器の上流で前記給湯用配管から分岐して前記混合弁に接続された分岐配管と、
前記混合弁より下流の給湯用水温度を検出する水温センサとを有し、
この水温センサの検出温度に基づいて前記混合弁での湯と水との混合割合を調節することを特徴とする請求項に記載した給湯装置
The hot water supply temperature adjusting means includes:
A mixing valve provided downstream of the heat exchanger in the hot water supply pipe;
A branch pipe branched from the hot water supply pipe upstream of the heat exchanger and connected to the mixing valve;
A water temperature sensor that detects the temperature of the hot water supply downstream from the mixing valve;
6. The hot water supply apparatus according to claim 5 , wherein a mixing ratio of hot water and water in the mixing valve is adjusted based on a temperature detected by the water temperature sensor .
JP33975099A 1999-11-30 1999-11-30 Water heater Expired - Fee Related JP4104261B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33975099A JP4104261B2 (en) 1999-11-30 1999-11-30 Water heater
DE2000159134 DE10059134B4 (en) 1999-11-30 2000-11-29 water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33975099A JP4104261B2 (en) 1999-11-30 1999-11-30 Water heater

Publications (2)

Publication Number Publication Date
JP2001153458A JP2001153458A (en) 2001-06-08
JP4104261B2 true JP4104261B2 (en) 2008-06-18

Family

ID=18330465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33975099A Expired - Fee Related JP4104261B2 (en) 1999-11-30 1999-11-30 Water heater

Country Status (1)

Country Link
JP (1) JP4104261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631503B1 (en) 2014-07-07 2016-06-22 원철호 Heating and cooling and hot water supplying apparatus using geothermy

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4302654B2 (en) * 2005-03-29 2009-07-29 株式会社コロナ Water heater
JP4485406B2 (en) * 2005-04-25 2010-06-23 株式会社デンソー Hot water storage water heater
JP2006322644A (en) * 2005-05-18 2006-11-30 Matsushita Electric Ind Co Ltd Heat exchanger
JP4926620B2 (en) * 2006-03-31 2012-05-09 大阪瓦斯株式会社 Open air storage tank
JP5325281B2 (en) * 2006-03-31 2013-10-23 大阪瓦斯株式会社 Open air storage tank
JP2008082664A (en) * 2006-09-28 2008-04-10 Daikin Ind Ltd Hot water circulating heating system
JP2008138991A (en) * 2006-12-05 2008-06-19 Sanyo Electric Co Ltd Heating tank and hot water storage tank
JP4787284B2 (en) * 2007-03-27 2011-10-05 ダイキン工業株式会社 Heat pump type water heater
JP2008275302A (en) * 2007-03-30 2008-11-13 Daikin Ind Ltd Heating hot water supply apparatus
JP2009074750A (en) * 2007-09-21 2009-04-09 Tokyo Electric Power Co Inc:The Hot water supply system
JP4539777B2 (en) * 2008-02-01 2010-09-08 ダイキン工業株式会社 Hot water storage water heater and hot water heater
JP2009250542A (en) * 2008-04-08 2009-10-29 Hitachi Appliances Inc Water heater
JP4746078B2 (en) * 2008-07-31 2011-08-10 三菱電機株式会社 Heat pump water heater
CN107726599A (en) * 2017-09-26 2018-02-23 优晖科技(北京)有限公司 Electric heat accumulation hot-water supply system
JP7224504B2 (en) * 2020-02-03 2023-02-17 三菱電機株式会社 Heat storage water heater
WO2022185530A1 (en) * 2021-03-05 2022-09-09 三菱電機株式会社 Water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631503B1 (en) 2014-07-07 2016-06-22 원철호 Heating and cooling and hot water supplying apparatus using geothermy

Also Published As

Publication number Publication date
JP2001153458A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
JP4104261B2 (en) Water heater
KR101222331B1 (en) Heat-pump hot water apparatus
EP1450110B1 (en) Hot water supply system with storing tank
US8549870B2 (en) Water circulation system associated with refrigerant cycle
JP4485406B2 (en) Hot water storage water heater
EP1972858A2 (en) Hot water supply apparatus
JP5782572B2 (en) Instant water heater
JP2006266665A (en) Heat pump type heating device
JP3887781B2 (en) Heat pump water heater
JP2007232345A (en) Storage type hot water supply heating device
JPH10141831A (en) Circulation apparatus for constant temperature refrigerant fluid
JP3985773B2 (en) Hot water storage water heater
JP4790538B2 (en) Hot water storage hot water heater
EP3922920A1 (en) Water heater, control method for water heater and storage medium
JP2004198055A (en) Hot water supply type heating device
KR20100016752A (en) Hot water circulation system associated with heat pump and method for controlling the same
JP4101190B2 (en) Hot water storage water heater
JP3719161B2 (en) Heat pump water heater
KR20100029374A (en) Hot water circulation system associated with heat pump and method for controlling the same
JP3719162B2 (en) Heat pump water heater
JP2002310532A (en) Heat pump hot water feeding apparatus
JP2004232912A (en) Heat pump water heater
CN214746484U (en) Air energy water heater
JP2005207672A (en) Hot water storage type water heater
CN112984799A (en) Air energy water heater and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Ref document number: 4104261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees