JP3855795B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3855795B2
JP3855795B2 JP2002047417A JP2002047417A JP3855795B2 JP 3855795 B2 JP3855795 B2 JP 3855795B2 JP 2002047417 A JP2002047417 A JP 2002047417A JP 2002047417 A JP2002047417 A JP 2002047417A JP 3855795 B2 JP3855795 B2 JP 3855795B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
compressor
water
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002047417A
Other languages
Japanese (ja)
Other versions
JP2003247759A5 (en
JP2003247759A (en
Inventor
敏 今林
竹司 渡辺
啓次郎 國本
龍太 近藤
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002047417A priority Critical patent/JP3855795B2/en
Publication of JP2003247759A publication Critical patent/JP2003247759A/en
Publication of JP2003247759A5 publication Critical patent/JP2003247759A5/ja
Application granted granted Critical
Publication of JP3855795B2 publication Critical patent/JP3855795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯機に関するものである。
【0002】
【従来の技術】
従来、この種のヒートポンプ給湯機としては、例えば、特開昭60−221661号公報、特開平9−68369号公報、特開2001−201177公報に示す如きものがある。図6は前記特開昭60−221661号公報に記載された従来のヒートポンプ給湯機を示すものである。
【0003】
図6において、圧縮機1、熱交換機2、減圧装置3、蒸発器4からなるヒートポンプ回路5と貯湯槽7の水を熱交換機2へ送る循環ポンプ6、圧縮機1の電源変換装置8、外気温度センサー9,熱交換器入口水温度センサー10、給水温度センサー11、回転数検知器12、演算制御装置13を備え、演算制御装置13は各センサーからの信号をうけ、給湯負荷、必要加熱能力、加熱能力、消費電力、効率を演算し、加熱能力が必要加熱能力に等しくなる最低回転数を求め、この最低回転数以上で効率が最大となる最適圧縮機回転数を決定する。そしてこの最適回転数を回転数検知器12と演算制御装置13とにより電源変換装置8を介して維持する。以上のように、特開昭60−221661号公報は外気温度と給水温度に基づいて圧縮機の回転数を設定している。また、特開平9−68369号公報(図示せず)は貯湯槽内の残湯量から必要加熱量を求めて、圧縮機の回転数を設定している。また、特開2001−201177公報は(図示せず)外気温度と時間帯の双方に基づいて圧縮機の回転数を設定している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記各従来例とも圧縮機の回転数設定は、必要加熱能力を得ることを目的とするものであり、必ずしも、最高の効率で運転できるものではないといった課題がある。
【0005】
本発明は、前記従来の課題を解決するもので、つねに最高効率で運転することにより省エネルギー効果の高いヒートポンプ給湯機を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するために、圧縮機、放熱器、減圧装置、蒸発器を接続して冷媒回路を構成するヒートポンプと、貯湯槽と、前記貯湯槽の下部と上部を連通する水循環路に設けた循環手段、前記放熱器と熱交換をおこなう水熱交換器を接続した水循環回路と、前記貯湯槽に貯湯する沸き上げ湯温を設定する湯温設定手段と、外気温度検出手段とを有し、前記水交換器の出口側に設けられた温度検知器の検知する媒体温度に関係なく前記湯温設定手段により発信された設定信号と前記外気温度検出手段からの信号に対して予め 設定された回転数で圧縮機を運転するとともに、前記貯湯槽に貯えられる湯が前記湯温設定手段で設定した湯温となるように前記循環手段を制御するヒートポンプ給湯機とする。
【0007】
これによって、沸き上げ設定温度に対して最高効率の得られる回転数を求めて設定するので、つねに最高効率で運転することができ、省エネルギーとなるものである。
【0008】
【発明の実施の形態】
請求項1に記載の発明は、圧縮機、放熱器、減圧装置、蒸発器を接続して冷媒回路を構成するヒートポンプと、貯湯槽と、前記貯湯槽の下部と上部を連通する水循環路に設けた循環手段、前記放熱器と熱交換をおこなう水熱交換器を接続した水循環回路と、前記貯湯槽に貯湯する沸き上げ湯温を設定する湯温設定手段と、外気温度検出手段とを有し、前記水交換器の出口側に設けられた温度検知器の検知する媒体温度に関係なく前記湯温設定手段により発信された設定信号と前記外気温度検出手段からの信号に対して予め設定された回転数で圧縮機を運転するとともに、前記貯湯槽に貯えられる湯が前記湯温設定手段で設定した湯温となるように前記循環手段を制御するヒートポンプ給湯機とする。
【0009】
これによって、外気温度と沸き上げ設定温度に対して最高効率の得られる回転数を求めて設定するので、つねに最高効率で運転するので、省エネルギーとなるものである。
【0010】
【実施例】
以下、本発明の実施例について図面を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をするものについては同一符号を付し、一部説明を省略する。
【0011】
(実施例1)
図1は、本発明の第1の実施例におけるヒートポンプ給湯機の構成説明図、図2は同ヒートポンプ給湯機の圧縮機の回転数に対する効率と加熱能力を示す説明図、図3は同ヒートポンプ給湯機の沸き上げ温度に対する回転数と加熱能力と必要加熱能力を示す説明図である。図1において、1は圧縮機、2は放熱器、3は減圧装置、4は蒸発器であり、前記圧縮機1、前記放熱器2、前記減圧装置3、前記蒸発器4は順次接続され、ヒートポンプ5の冷媒回路を構成する。6は循環ポンプ(循環手段)、7は貯湯槽、14は前記放熱器2と熱交換する水熱交換器であり、前記循環ポンプ6および前記水熱交換器14は貯湯槽7の下部と上部を連通する水循環路を構成する。15は温度検知器であり、水熱交換器14の出口に設けられ、媒体温度を検出して、信号を発する。16は湯温設定手段であり、自動または手動で沸き上げ湯温を設定する。17は循環量制御部であり、前記温度検知器15の信号が前記湯温設定手段16の信号に一致するように前記循環ポンプ6の回転数を制御する。18は回転数設定手段で、前記湯温設定手段16の信号に基づき前記圧縮機1の回転数を設定する。19は圧縮機制御部で前記回転数設定手段18の信号を受け、設定された回転数で圧縮機1を運転する。
【0012】
以上のように構成されたヒートポンプ給湯機について、以下その動作、作用を説明する。
【0013】
前記湯温設定手段16で自動または手動で沸き上げ温度が設定されると、前記水交換器14の出口側に設けられた温度検知器15の検知する媒体温度に関係なくその設定信号が発信され、回転数設定手段18は前記発信された設定信号を受け、沸き上げ設定温度に対して予め設定された最高効率の得られる回転数を選択し、その選択された回転数となるように圧縮機制御部19で圧縮機1を運転する。そして、前記圧縮機1から吐出された高温高圧の過熱ガス冷媒は前記熱交換器2に流入し、ここで前記循環ポンプ6から送られ前記水熱交換器14に流入した水を加熱する。その際に、放熱冷却された冷媒は、前記減圧装置3に流入し、ここで減圧されて前記蒸発器4に流入する。そして大気熱を吸熱して蒸発ガス化し、前記圧縮機1に戻る。一方、前記貯湯槽7の下部から前記循環ポンプ6によって前記水熱交換器14に流入した水は冷媒の熱で加熱され、前記湯温設定手段16で設定された湯温と一致するように、循環流量制御部17により循環ポンプ6の回転数を制御して、前記貯湯槽7の上部に貯えられる。この運転を繰り返しながら前記貯湯槽7の上部から全体に貯湯する。通常、貯湯槽7内の残湯量がある量以下になると前記沸き上げ運転がおこなわれる。
【0014】
図2は横軸に圧縮機の回転数をとり、縦軸にヒートポンプの効率(COP)と加熱能力を取って、ある外気温度のときの回転数に対する効率と加熱能力の関係を沸き上げ温度をパラメータとして示したものである。図2でわかるように、効率は沸き上げ温度が一定の場合はある回転数で最高を有し、沸き上げ温度が高くなると最高効率となる回転数は高くなる特性がある。一方、加熱能力は回転数に対してほぼ比例しており、沸き上げ温度が高くなると、低下するが、その差は大きくない。図2の加熱能力は、放熱器2の冷媒状態が超臨界以下で使用される場合の一般的な特性として表しているが、放熱器2の冷媒状態が超臨界以上で使用される場合は、沸き上げ温度による差はほとんどなくなる傾向にある。
【0015】
図3は横軸に沸き上げ温度をとり、縦軸に図2の各沸き上げ温度に対して最高効率となる回転数とそのときの加熱能力、および、必要加熱能力を示したグラフである。必要加熱能力とは、例えば、所定の貯湯槽内の水を初期水温から沸き上げ温度まで全量沸き上げるに必要な熱量を所定時間内に沸き上げるに必要な加熱能力であり、例えば、300Lの水を20℃から60℃ないし90℃まで沸き上げるに必要な熱量を8時間で沸き上げるのに必要な加熱能力のことである。図3でわかるように、沸き上げ温度が高くなると最高効率となる回転数は高くなり、加熱能力も大きくなる。同じように、必要加熱能力も大きくなる。即ち、上記特性を利用して、沸き上げ設定温度に対して最高効率の得られる回転数を予め設定しておき運転することで、必要な加熱能力に見合った運転ができる効果もある。
【0016】
以上のように、本実施例においては、圧縮機1、放熱器2、減圧装置3、蒸発器4を順次接続して冷媒回路を構成するヒートポンプ5と、貯湯槽7と、前記貯湯槽7の下部と上部を連通する水循環路に設けた循環手段6、前記放熱器2と熱交換をおこなう水熱交換器14を順次接続した水循環回路と、前記水熱交換器14の出口に設けた温度検知器15と、沸き上げ湯温を設定する湯温設定手段16と、前記湯温設定手段16の信号に基づき前記圧縮機1の回転数を設定する回転数設定手段18を備えたことにより、沸き上げ設定温度に対して最高効率の得られる回転数を求めて設定するので、常に最高効率で運転することになり、省エネルギーとなるものである。さらに、必要な加熱能力に見合った運転ができる効果もある。
【0017】
また、圧縮機1の回転数を沸き上げ設定温度が高くなるほど大きくする圧縮機回転数設定手段18を備えたことにより、沸き上げ温度が高くなるほど最高効率を得られる回転数は大きくなる特性と一致するので、つねに最高効率で運転することができて、省エネルギーとなるものである。
【0018】
(実施例2)
図4は、本発明の第2の実施例におけるヒートポンプ給湯機の構成説明図、図5は同ヒートポンプ給湯機の外気温度に対する回転数と加熱能力と必要加熱能力を示す説明図である。図4において、実施例1と異なる点は、外気温度検知手段20を設けた構成としている点である。なお、第1の実施例と同じ構成、動作するものについては、同一符号とし、説明を省略する。
【0019】
以上のように構成されたヒートポンプ給湯機について、以下その動作、作用を説明する。図5は横軸に外気温度をとり、縦軸に、ある沸き上げ温度での最高効率となる回転数とそのときの加熱能力、および、必要加熱能力を示したグラフである。図5でわかるように、沸き上げ温度が一定の場合、外気温度が高くなると最高効率となる回転数は低くなり、加熱能力も小さくなる。同じように、必要加熱能力も小さくなる。ただし、必要加熱能力の低下よりも加熱能力の低下度合いが少ないが、外気温度の低いところで加熱能力を設定しておけば、外気温度の高いところでは加熱能力に余裕が生じるため必要加熱量を得るために問題は生じない。即ち、上記特性を利用して、外気温度と沸き上げ設定温度に対して最高効率の得られる回転数を予め設定しておき運転することで、必要な加熱能力に見合った運転ができる効果もある。
【0020】
以上のように、本実施例においては、外気温度検知手段20の信号と、湯温設定手段16の信号とに基づき前記圧縮機1の回転数を設定する回転数設定手段18を備えたことにより、外気温度と沸き上げ温度に対して最高効率の得られる回転数を求めて設定するので、つねに最高効率で運転することができて、省エネルギーとなるものである。さらに、必要な加熱能力以上の能力で運転ができるので、湯量不足の心配もないといった効果もある。
【0021】
また、圧縮機の回転数を外気温度が高くなるほど小さくすることにより、図5でわかるように、外気温度が高くなるほど圧縮機の回転数が小さくなる特性と一致するので、常に最高効率で運転することができて、省エネルギーとなるものである。
【0022】
【発明の効果】
以上のように、外気温度と沸き上げ設定温度に対して最高効率の得られる回転数を求めて設定するので、つねに最高効率で運転することができて、省エネルギーとなるものである。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるヒートポンプ給湯機の構成説明図
【図2】 同ヒートポンプ給湯機の圧縮機の回転数に対する効率と加熱能力を示す説明図
【図3】 同ヒートポンプ給湯機の沸き上げ温度に対する回転数と加熱能力と必要加熱能力を示す説明図
【図4】 本発明の第2の実施例におけるヒートポンプ給湯機の構成説明図
【図5】 同ヒートポンプ給湯機の外気温度に対する回転数と加熱能力と必要加熱能力を示す説明図
【図6】 従来のヒートポンプ給湯機の構成図
【符号の説明】
1 圧縮機
2 放熱器
3 減圧装置
4 蒸発器
5 ヒートポンプ
6 循環ポンプ(循環手段)
7 貯湯槽
14 水熱交換器
15 温度検知器
16 湯温設定手段
18 回転数設定手段
20 外気温度検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater.
[0002]
[Prior art]
Conventionally, this type of heat pump water heater includes, for example, those disclosed in JP-A-60-221661, JP-A-9-68369, and JP-A-2001-201177. FIG. 6 shows a conventional heat pump water heater described in JP-A-60-221661.
[0003]
In FIG. 6, a heat pump circuit 5 comprising a compressor 1, a heat exchanger 2, a pressure reducing device 3, an evaporator 4 and a circulation pump 6 for sending water from a hot water tank 7 to the heat exchanger 2, a power converter 8 for the compressor 1, and outside air A temperature sensor 9, a heat exchanger inlet water temperature sensor 10, a feed water temperature sensor 11, a rotation speed detector 12, and a calculation control device 13 are provided. The calculation control device 13 receives a signal from each sensor, and supplies a hot water supply load and required heating capacity. Then, the heating capacity, power consumption, and efficiency are calculated, the minimum rotation speed at which the heating capacity is equal to the required heating capacity is obtained, and the optimum compressor rotation speed at which the efficiency is maximum at the minimum rotation speed or more is determined. The optimum rotational speed is maintained by the rotational speed detector 12 and the arithmetic control device 13 via the power conversion device 8. As described above, Japanese Patent Laid-Open No. 60-221661 sets the rotational speed of the compressor based on the outside air temperature and the feed water temperature. Japanese Patent Laid-Open No. 9-68369 (not shown) obtains the required heating amount from the amount of remaining hot water in the hot water tank and sets the rotation speed of the compressor. Japanese Patent Laid-Open No. 2001-201177 (not shown) sets the rotational speed of the compressor based on both the outside air temperature and the time zone.
[0004]
[Problems to be solved by the invention]
However, in each of the above conventional examples, the setting of the rotational speed of the compressor is intended to obtain the required heating capacity, and there is a problem that it cannot always be operated at the highest efficiency.
[0005]
This invention solves the said conventional subject, and it aims at providing the heat pump water heater with a high energy-saving effect by always operating at the highest efficiency.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a heat pump that connects a compressor, a radiator, a decompressor, and an evaporator to form a refrigerant circuit, a hot water storage tank, and a water circulation path that communicates the lower and upper parts of the hot water storage tank. A circulation means provided in the water circuit, a water circulation circuit connected to the water heat exchanger for exchanging heat with the radiator, a hot water temperature setting means for setting the boiling water temperature to be stored in the hot water storage tank, and an outside air temperature detection means . a preset for a signal from a transmitter has been set signal and the outside air temperature detection means by the hot water temperature setting means regardless of the medium temperature detected temperature detector provided on the outlet side of the water exchanger The compressor is operated at the set number of revolutions, and the heat pump water heater is configured to control the circulation means so that the hot water stored in the hot water storage tank becomes the hot water temperature set by the hot water temperature setting means.
[0007]
As a result, the rotational speed at which the maximum efficiency can be obtained is obtained and set with respect to the boiling set temperature, so that it is always possible to operate at the maximum efficiency and to save energy.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is provided in a heat pump that connects a compressor, a radiator, a decompressor, and an evaporator to form a refrigerant circuit, a hot water storage tank, and a water circulation path that communicates the lower and upper portions of the hot water storage tank. A circulation circuit, a water circulation circuit connected to a water heat exchanger for exchanging heat with the radiator, a hot water temperature setting means for setting boiling water temperature to be stored in the hot water storage tank, and an outside air temperature detection means. Regardless of the medium temperature detected by the temperature detector provided on the outlet side of the water exchanger, the setting signal transmitted by the hot water temperature setting means and the signal from the outside air temperature detection means are set in advance. The compressor is operated at the number of revolutions, and the heat pump water heater is configured to control the circulation means so that the hot water stored in the hot water storage tank becomes the hot water temperature set by the hot water temperature setting means.
[0009]
As a result, the rotational speed at which the highest efficiency can be obtained is obtained and set with respect to the outside air temperature and the boiling set temperature, so that the engine is always operated at the highest efficiency, thereby saving energy.
[0010]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In addition, in a prior art example and each Example, the same code | symbol is attached | subjected about what has the same structure and the same operation | movement, and description is partially abbreviate | omitted.
[0011]
Example 1
FIG. 1 is a diagram illustrating the configuration of the heat pump water heater in the first embodiment of the present invention, FIG. 2 is a diagram illustrating the efficiency and heating capacity with respect to the rotational speed of the compressor of the heat pump water heater, and FIG. 3 is the heat pump water heater. It is explanatory drawing which shows the rotation speed with respect to the boiling temperature of a machine, heating capability, and required heating capability. In FIG. 1, 1 is a compressor, 2 is a radiator, 3 is a decompression device, 4 is an evaporator, and the compressor 1, the radiator 2, the decompression device 3, and the evaporator 4 are sequentially connected, A refrigerant circuit of the heat pump 5 is configured. 6 is a circulation pump (circulation means), 7 is a hot water storage tank, 14 is a water heat exchanger for exchanging heat with the radiator 2, and the circulation pump 6 and the water heat exchanger 14 are below and above the hot water tank 7. A water circulation path that communicates with each other is constructed. A temperature detector 15 is provided at the outlet of the water heat exchanger 14 and detects a medium temperature to generate a signal. Reference numeral 16 denotes hot water temperature setting means, which sets the boiling hot water temperature automatically or manually. A circulation amount control unit 17 controls the rotational speed of the circulation pump 6 so that the signal from the temperature detector 15 matches the signal from the hot water temperature setting means 16. Reference numeral 18 denotes a rotation speed setting means for setting the rotation speed of the compressor 1 based on a signal from the hot water temperature setting means 16. A compressor control unit 19 receives a signal from the rotation speed setting means 18 and operates the compressor 1 at the set rotation speed.
[0012]
About the heat pump water heater comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0013]
When the boiling temperature is set automatically or manually by the hot water temperature setting means 16, the setting signal is transmitted regardless of the medium temperature detected by the temperature detector 15 provided on the outlet side of the water exchanger 14. The rotational speed setting means 18 receives the transmitted setting signal, selects the rotational speed at which the highest efficiency is preset with respect to the boiling set temperature, and selects the rotational speed to be the selected rotational speed. The compressor 19 is operated by the control unit 19. Then, the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the heat exchanger 2 where the water sent from the circulation pump 6 and flowing into the water heat exchanger 14 is heated. At that time, the heat-cooled refrigerant flows into the decompression device 3, where the refrigerant is decompressed and flows into the evaporator 4. Then, it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the water flowing into the water heat exchanger 14 from the lower part of the hot water tank 7 by the circulation pump 6 is heated by the heat of the refrigerant, and matches the hot water temperature set by the hot water temperature setting means 16. The circulation flow rate controller 17 controls the number of revolutions of the circulation pump 6 and stores it in the upper part of the hot water tank 7. Hot water is stored from the upper part of the hot water tank 7 while repeating this operation. Usually, when the amount of remaining hot water in the hot water storage tank 7 falls below a certain amount, the boiling operation is performed.
[0014]
2 shows the compressor rotation speed on the horizontal axis and the heat pump efficiency (COP) and heating capacity on the vertical axis. The relationship between the efficiency and the heating capacity with respect to the rotation speed at a certain outside temperature is the boiling temperature. It is shown as a parameter. As can be seen from FIG. 2, the efficiency has the highest value at a certain number of rotations when the boiling temperature is constant, and the number of rotations at which the maximum efficiency increases as the boiling temperature increases. On the other hand, the heating capacity is almost proportional to the number of revolutions, and decreases as the boiling temperature increases, but the difference is not large. The heating capability in FIG. 2 is expressed as a general characteristic when the refrigerant state of the radiator 2 is used in a supercritical state or lower, but when the refrigerant state of the radiator 2 is used in a supercritical state or higher, The difference due to boiling temperature tends to be almost eliminated.
[0015]
FIG. 3 is a graph showing the boiling temperature on the horizontal axis and the rotational speed at which the maximum efficiency is obtained for each boiling temperature in FIG. 2, the heating capacity at that time, and the required heating capacity on the vertical axis. The required heating capacity is, for example, the heating capacity required to boil the amount of heat necessary for boiling all the water in a predetermined hot water storage tank from the initial water temperature to the boiling temperature within a predetermined time. For example, 300 L of water Is the heating capacity required to boil the amount of heat required to boil from 20 ° C. to 60 ° C. to 90 ° C. in 8 hours. As can be seen from FIG. 3, the higher the boiling temperature, the higher the number of revolutions that achieves the highest efficiency, and the greater the heating capacity. Similarly, the required heating capacity is also increased. In other words, by utilizing the above characteristics and setting the number of rotations at which the highest efficiency can be obtained with respect to the set boiling temperature in advance, there is also an effect that the operation can be performed in accordance with the required heating capacity.
[0016]
As described above, in the present embodiment, the compressor 1, the radiator 2, the decompression device 3, and the evaporator 4 are sequentially connected to form the heat pump 5, the hot water tank 7, and the hot water tank 7 that constitute the refrigerant circuit. A circulation means 6 provided in a water circulation path communicating with the lower part and the upper part, a water circulation circuit in which a water heat exchanger 14 for heat exchange with the radiator 2 is connected in sequence, and a temperature detection provided at the outlet of the water heat exchanger 14 By providing a vessel 15, a hot water temperature setting means 16 for setting the boiling water temperature, and a rotation speed setting means 18 for setting the rotation speed of the compressor 1 based on a signal from the hot water temperature setting means 16. Since the rotational speed at which the maximum efficiency can be obtained is obtained and set with respect to the raised set temperature, the operation is always performed at the maximum efficiency, which saves energy. Furthermore, there is an effect that the operation corresponding to the required heating capacity can be performed.
[0017]
Further, by providing the compressor rotation speed setting means 18 that increases the rotation speed of the compressor 1 as the boiling setting temperature increases, the rotation speed at which the highest efficiency can be obtained as the boiling temperature increases increases. Therefore, it is always possible to operate at the highest efficiency and save energy.
[0018]
(Example 2)
FIG. 4 is an explanatory diagram showing the configuration of the heat pump water heater in the second embodiment of the present invention, and FIG. 5 is an explanatory diagram showing the rotational speed, heating capability, and required heating capability with respect to the outside air temperature of the heat pump water heater. In FIG. 4, the difference from the first embodiment is that an outside air temperature detection means 20 is provided. In addition, about the same structure and operation | movement as a 1st Example, the same code | symbol is used, and description is abbreviate | omitted.
[0019]
About the heat pump water heater comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. FIG. 5 is a graph showing the outside air temperature on the horizontal axis and the rotational speed at which the maximum efficiency is obtained at a certain boiling temperature, the heating capacity at that time, and the required heating capacity on the vertical axis. As can be seen from FIG. 5, when the boiling temperature is constant, the higher the outside air temperature, the lower the maximum rotational speed and the lower the heating capacity. Similarly, the required heating capacity is also reduced. However, although the degree of decrease in the heating capacity is less than the decrease in the required heating capacity, if the heating capacity is set at a low outside air temperature, there is a margin in the heating capacity at a high outside air temperature, so the necessary heating amount is obtained. Therefore, no problem arises. That is, using the above characteristics, there is an effect that an operation corresponding to the required heating capacity can be performed by setting the rotation speed at which the highest efficiency can be obtained with respect to the outside air temperature and the boiling set temperature in advance. .
[0020]
As described above, in this embodiment, the rotation speed setting means 18 for setting the rotation speed of the compressor 1 based on the signal of the outside air temperature detection means 20 and the signal of the hot water temperature setting means 16 is provided. Since the rotation speed at which the maximum efficiency is obtained is obtained and set with respect to the outside air temperature and the boiling temperature, it is always possible to operate at the maximum efficiency and save energy. Furthermore, since it can be operated at a capacity higher than the required heating capacity, there is also an effect that there is no fear of a shortage of hot water.
[0021]
Further, by reducing the rotation speed of the compressor as the outside air temperature increases, as shown in FIG. 5, the compressor rotation speed coincides with the characteristic that the rotation speed of the compressor decreases as the outside air temperature increases. It is possible to save energy.
[0022]
【The invention's effect】
As described above, the rotational speed at which the highest efficiency can be obtained is obtained and set with respect to the outside air temperature and the boiling set temperature, so that it is always possible to operate at the highest efficiency and save energy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the configuration of a heat pump water heater in Embodiment 1 of the present invention. FIG. 2 is an explanatory diagram showing efficiency and heating capacity with respect to the rotation speed of a compressor of the heat pump water heater. Explanatory diagram showing the number of rotations, heating capacity and required heating capacity with respect to the boiling temperature FIG. 4 is a diagram illustrating the configuration of the heat pump water heater in the second embodiment of the present invention. Explanatory diagram showing number, heating capacity and required heating capacity [Fig. 6] Configuration diagram of conventional heat pump water heater [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Pressure reducing device 4 Evaporator 5 Heat pump 6 Circulation pump (circulation means)
7 Hot water storage tank 14 Water heat exchanger 15 Temperature detector 16 Hot water temperature setting means 18 Rotation speed setting means 20 Outside air temperature detection means

Claims (1)

圧縮機、放熱器、減圧装置、蒸発器を接続して冷媒回路を構成するヒートポンプと、貯湯槽と、前記貯湯槽の下部と上部を連通する水循環路に設けた循環手段、前記放熱器と熱交換をおこなう水熱交換器を接続した水循環回路と、前記貯湯槽に貯湯する沸き上げ湯温を設定する湯温設定手段と、外気温度検出手段とを有し、前記水交換器の出口側に設けられた温度検知器の検知する媒体温度に関係なく前記湯温設定手段により発信された設定信号と前記外気温度検出手段からの信号に対して予め設定された回転数で圧縮機を運転するとともに、前記貯湯槽に貯えられる湯が前記湯温設定手段で設定した湯温となるように前記循環手段を制御するヒートポンプ給湯機。A compressor, a radiator, a decompression device, a heat pump that connects the evaporator to form a refrigerant circuit, a hot water storage tank, circulation means provided in a water circulation path that communicates the lower and upper parts of the hot water storage tank, the radiator and heat A water circulation circuit connected to the water heat exchanger for exchanging, a hot water temperature setting means for setting the boiling water temperature to be stored in the hot water storage tank, and an outside air temperature detection means, on the outlet side of the water exchanger The compressor is operated at a rotation speed set in advance for the setting signal transmitted by the hot water temperature setting means and the signal from the outside air temperature detection means regardless of the medium temperature detected by the provided temperature detector. heat pump water heater hot water is stored in the hot water storage tank to control said circulation means so that the hot water temperature set by said hot water temperature setting means.
JP2002047417A 2002-02-25 2002-02-25 Heat pump water heater Expired - Fee Related JP3855795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002047417A JP3855795B2 (en) 2002-02-25 2002-02-25 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047417A JP3855795B2 (en) 2002-02-25 2002-02-25 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2003247759A JP2003247759A (en) 2003-09-05
JP2003247759A5 JP2003247759A5 (en) 2005-06-23
JP3855795B2 true JP3855795B2 (en) 2006-12-13

Family

ID=28660478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002047417A Expired - Fee Related JP3855795B2 (en) 2002-02-25 2002-02-25 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3855795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173269A1 (en) * 2013-04-23 2014-10-30 珠海格力电器股份有限公司 Variable-frequency water heater and control method and apparatus thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701816B2 (en) * 2005-04-27 2011-06-15 東京電力株式会社 Steam supply system
JP4552836B2 (en) * 2005-11-16 2010-09-29 株式会社デンソー Heat pump type water heater
JP4920316B2 (en) * 2006-06-16 2012-04-18 株式会社コロナ Heat pump water heater
JP4837453B2 (en) * 2006-06-27 2011-12-14 三菱電機株式会社 Hot water storage hot water supply system
JP5159719B2 (en) * 2009-07-16 2013-03-13 三菱電機株式会社 Heat pump water heater
JP4975067B2 (en) * 2009-07-16 2012-07-11 三菱電機株式会社 Heat pump water heater
JP5159857B2 (en) * 2010-10-01 2013-03-13 三菱電機株式会社 Heat pump water heater
JP2013079760A (en) * 2011-10-04 2013-05-02 Hitachi Appliances Inc Heat pump type liquid supply device
JP2013079770A (en) * 2011-10-05 2013-05-02 Hitachi Appliances Inc Heat pump type water heater
KR101321200B1 (en) 2011-11-28 2013-10-23 엘지전자 주식회사 A heat pump system and a control method the same
JP6043954B2 (en) * 2012-11-02 2016-12-14 パナソニックIpマネジメント株式会社 Heat pump water heater
CN111649490B (en) * 2020-06-12 2021-07-23 佛山市顺德区资乐电器有限公司 Control system and control method of heat pump water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173269A1 (en) * 2013-04-23 2014-10-30 珠海格力电器股份有限公司 Variable-frequency water heater and control method and apparatus thereof

Also Published As

Publication number Publication date
JP2003247759A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
JP3855795B2 (en) Heat pump water heater
WO2011064840A1 (en) Auxiliary heater control device and heated fluid using system and auxiliary heater control method
JP5034367B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP2002081768A5 (en)
JP3855695B2 (en) Heat pump water heater
JP2004347148A (en) Heat pump hot water supply device
JP3755422B2 (en) Heat pump water heater
JP2001041574A (en) Hot-water supplier
JP3912035B2 (en) Heat pump water heater
JP2011075257A (en) Heat pump type water heater
JP3800862B2 (en) Heat pump water heater
JP2002188859A (en) Heat pump water heater
JP3700474B2 (en) Heat pump water heater
JP3937715B2 (en) Heat pump water heater
JP3632306B2 (en) Heat pump bath water supply system
JP3719155B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JP5478403B2 (en) Heat pump water heater
JPH08296895A (en) Heat pump hot-water supply apparatus
JP3633500B2 (en) Heat pump water heater
JP2000346447A5 (en)
JP3856025B2 (en) Heat pump water heater
JP3801169B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees