JP2002081768A5 - - Google Patents

Download PDF

Info

Publication number
JP2002081768A5
JP2002081768A5 JP2001186155A JP2001186155A JP2002081768A5 JP 2002081768 A5 JP2002081768 A5 JP 2002081768A5 JP 2001186155 A JP2001186155 A JP 2001186155A JP 2001186155 A JP2001186155 A JP 2001186155A JP 2002081768 A5 JP2002081768 A5 JP 2002081768A5
Authority
JP
Japan
Prior art keywords
temperature
discharge
discharge temperature
pressure
reducing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001186155A
Other languages
Japanese (ja)
Other versions
JP2002081768A (en
JP3659197B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2001186155A priority Critical patent/JP3659197B2/en
Priority claimed from JP2001186155A external-priority patent/JP3659197B2/en
Publication of JP2002081768A publication Critical patent/JP2002081768A/en
Publication of JP2002081768A5 publication Critical patent/JP2002081768A5/ja
Application granted granted Critical
Publication of JP3659197B2 publication Critical patent/JP3659197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 ヒートポンプ給湯機
【特許請求の範囲】
【請求項1】 圧縮機、冷媒対水熱交換器、減圧装置、蒸発器を設けた冷凍サイクルと、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を設けた給湯回路と、給水温度を検出する給水温度検出手段と、前記圧縮機の吐出温度を検出する吐出温度検出手段とを有し、前記圧縮機の吐出温度が給水温度に対して給湯運転の効率をよくするように設定された目標吐出温度になるように減圧装置の開度を制御するヒートポンプ給湯機。
【請求項2】 圧縮機、冷媒対水熱交換器、減圧装置、蒸発器を設けた冷凍サイクルと、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を設けた給湯回路と、給水温度を検出する給水温度検出手段と、前記圧縮機の吐出温度を検出する吐出温度検出手段とを有し、前記圧縮機の吐出温度は給水温度に対して給湯運転の効率が極大近傍に設定された目標吐出温度になるように減圧装置の開度を制御するヒートポンプ給湯機。
【請求項 縮機の吐出圧力が、圧力検出手段からの信号によって予め設定された常用最大吐出圧力を越えないように、減圧装置の開度を制御する請求項1または2記載のヒートポンプ給湯機。
【請求項】 圧力検出手段は、給水温度検出手段と、吐出温度検出手段と、給水温度に対して目標吐出温度を記憶している第二の記憶手段とを備えた請求項記載のヒートポンプ給湯機。
【請求項 縮機の吐出温度が、吐出温度検出手段からの信号によって予め設定された常用最大吐出温度を越えないように、減圧装置の開度を制御する制御手段を備えた請求項1または2記載のヒートポンプ給湯機。
【請求項】 減圧装置の開度の下限値を有する制御手段を備えた請求項1または2記載のヒートポンプ給湯機。
【請求項】 冷凍サイクルは圧縮機の吐出圧力が超臨界圧力となる超臨界冷凍サイクルであることを特徴とする請求項1〜6いずれか1項に記載のヒートポンプ給湯機。
【請求項】 冷凍サイクルに用いられる冷媒は二酸化炭素であることを特徴とする請求項1〜7いずれか1項に記載のヒートポンプ給湯機。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は貯湯式のヒートポンプ給湯機に関するものである。
【0002】
【従来の技術】
従来のこの種のヒートポンプ給湯機は特開昭60−164157号公報に示すようなものがある。図16は従来のヒートポンプ給湯機の構成図である。図16において、圧縮機1、冷媒対水熱交換器2、減圧装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、冷媒対水熱交換器2、補助加熱器7を接続した給湯回路とからなり、圧縮機1より吐出された高温高圧の過熱ガス冷媒は冷媒対水熱交換器2に流入し、ここで循環ポンプ6から送られてきた水を加熱する。そして、冷媒対水熱交換器2で放熱した冷媒は減圧装置3で減圧され、蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、圧縮機1に戻る。一方、冷媒対水熱交換器2で加熱された湯は貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、冷媒対水熱交換器2の入口水温が設定値に達すると水温度検出手段8が検知し、圧縮機1によるヒートポンプ運転を停止して、補助加熱器7の単独運転に切り換えるものである。
【0003】
【発明が解決しようとする課題】
上記図16に示す従来例のヒートポンプ給湯機では、減圧装置3としてキャピラリーチューブや温度式膨張弁を用いていた。減圧装置3としてキャピラリーチューブを用いる場合、一般的に、冷媒循環量の多い夏季の温度条件を基準にキャピラリーチューブの仕様を設計する。そのため、夏季以外の特に給湯負荷の大きい冬季には運転の効率が悪くなるという課題を有していた。また、同様に夏季以外の特に外気温度の低い冬季には冷媒循環回路に必要以上の冷媒が循環するため、圧縮機1に液冷媒が吸い込まれ、その結果、液圧縮となり圧縮機の耐久性が悪くなるという課題を有していた。
【0004】
他方、減圧装置3として温度式膨張弁を用いる場合、一般的に、蒸発器4の出口の冷媒は過熱度がとれた過熱ガス状態となるように、減圧装置3としての温度式膨張弁の仕様を設計する。そのため、外気温度条件によっては吐出圧力が上昇したり、または、吐出温度が上昇したりして圧縮機の耐久性が悪くなるという課題を有していた。そして、この課題を避けるために設計すると冷媒対水熱交換器2の出口水温である沸き上げ温度を多角することができないという課題を有していた。さらに、冬季において蒸発器4に着霜したときも、蒸発器4の出口の冷媒状態を過熱度がとれるように制御するため、いっそう着霜が進み、運転の効率が悪くなるという課題を有していた。特に、一日のうで、明け方など急激に外気温度が低下するときには不必要に蒸発器4の出口の冷媒状態を過熱度がとれるように制御するため、さらに運転の効率が悪くなるという課題を有していた。
【0005】
本発明の目的は圧縮機の異常温度上昇ならびに異常圧力上昇がない、効率の良い給湯加熱運転を実現することである。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するため、圧縮機、冷媒対水熱交換器、減圧装置、蒸発器を設けた冷凍サイクルと、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を設けた給湯回路と、給水温度を検出する給水温度検出手段と、前記圧縮機の吐出温度を検出する吐出温度検出手段とを有し、前記圧縮機の吐出温度が給水温度に対して給湯運転の効率をよくするように設定された目標吐出温度になるように減圧装置の開度を制御すヒートポンプ給湯機とする。
【0007】
また、圧縮機、冷媒対水熱交換器、減圧装置、蒸発器を設けた冷凍サイクルと、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を設けた給湯回路と、給水温度を検出する給水温度検出手段と、前記圧縮機の吐出温度を検出する吐出温度検出手段とを有し、前記圧縮機の吐出温度は給水温度に対して給湯運転の効率が極大近傍に設定された目標吐出温度になるように減圧装置の開度を制御するヒートポンプ給湯機とする。
【0008】
た、圧縮機の吐出圧力が、圧力検出手段からの信号によって予め設定された常用最大吐出圧力を越えないように、減圧装置の開度を制御する制御手段を具備したものである。
【0009】
さらに、圧縮機の吐出温度が、吐出温度検出手段からの信号によって予め設定された常用最大吐出温度を越えないように、減圧装置の開度を制御する制御手段を具備したものである。
【0010】
上記発明において、給水温度に対して給湯運転の効率が最も良い吐出温度を予め求めておいて、これを目標吐出温度として設定する。そして、給湯運転を行う場合に給水温度と圧縮機の吐出温度とを検出して、この目標吐出温度になるように減圧装置の開度を制御するので、年間を通じて、効率の良い給湯加熱運転ができる。
【0011】
また、圧力検出手段からの信号によって、常用最大吐出圧力を越えないように、減圧装置の開度を制御するので、圧縮機の異常圧力上昇がなく、さらに、吐出温度検出手段からの信号によって、常用最大吐出温度を越えないように、減圧装置の開度を制御するので、圧縮機の異常温度上昇もない、耐久性の高いヒートポンプ給湯機が実現できる。
【0012】
【発明の実施の形態】
本発明は各請求項に記載の形態で実施できるものであり、請求項1記載のように、圧縮機、冷媒対水熱交換器、減圧装置、蒸発器を設けた冷媒循環回路と、貯湯槽、循環ポンプ、冷媒対水熱交換器を設けた給湯回路と、給水温度を検出する給水温度検出手段と、圧縮機の吐出温度を検出する吐出温度検出手段と、、前記圧縮機の吐出温度が給水温度に対して給湯運転の効率をよくするように設定された目標吐出温度になるように減圧装置の開度を制御すること、さらには、請求項2のように、圧縮機、冷媒対水熱交換器、減圧装置、蒸発器を設けた冷凍サイクルと、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を設けた給湯回路と、給水温度を検出する給水温度検出手段と、前記圧縮機の吐出温度を検出する吐出温度検出手段とを有し、前記圧縮機の吐出温度は給水温度に対して給湯運転の効率が極大近傍に設定された目標吐出温度になるように減圧装置の開度を制御することにより、給水温度に対して給湯運転の効率が最も良い吐出温度を予め求めておいて、これを目標吐出温度として設定するので、年間を通じて、効率の良い給湯加熱運転ができる。さらに、給水温度を用いるので、外気温度のように一日のうちで大きな変化をしないため、安定した運転制御ができ、効率が良くなる。
【0013】
また、請求項記載のように、圧縮機の吐出圧力が、圧力検出手段からの信号によって予め設定された常用最大吐出圧力を越えないように、減圧装置の開度を制御する制御手段を設けた構成とすることにより、圧縮機の異常圧力上昇がない、耐久性の高いヒートポンプ給湯機が実現できる。
【0014】
また、請求項記載のように、圧力検出手段、給水温度検出手段と、前記吐出温度検出手段と、給水温度に対する目標吐出温度を記憶している第二の記憶手段を有するようにすることができる。
【0015】
また、請求項記載のように、圧縮機の吐出温度が、吐出温度検出手段からの信号によって予め設定された常用最大吐出温度を越えないように、減圧装置の開度を制御する制御手段を設けた構成とすることにより、圧縮機の異常温度上昇がない、耐久性の高いヒートポンプ給湯機が実現できる。
【0016】
また、請求項記載のように、減圧装置の開度の下限値を有する制御手段を設けた構成とすることにより、着霜時にも減圧装置の最低の開度が維持されるので、蒸発器4の蒸発温度の低下が押さえられて、従来よりも効率の良い給湯加熱運転ができる。
【0017】
また、請求項記載のように、圧縮機の吐出圧力が超臨界圧力となる超臨界冷凍サイクルにおいても、高温の沸き上げ温度を得ることができる。
【0018】
また、請求項記載のように、冷凍サイクルの冷媒として二酸化炭素を用いる。
【0019】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0020】
(実施例1)
図1は本発明の実施例1のヒートポンプ給湯機の構成図、図2は同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図、図3は同ヒートポンプ給湯機の給水温度と平均外気温度との関係を示す説明図、図4は同ヒートポンプ給湯機の給水温度に対する目標吐出温度を示す説明図である。なお、従来例で説明した図16と同じ構成部材には同一符号を用い説明を省略する。
【0021】
図1において、冷媒対水熱交換器2の水側出口に設けられた沸き上げ温度検出手段9からの信号で回転数制御手段10は循環ポンプ6の回転数を制御して、冷媒対水熱交換器2の出口水温(沸き上げ温度)をほぼ一定になるように沸き上げる。また、制御手段11は、給水温度を検出する給水温度検出手段12と圧縮機1の吐出温度を検出する吐出温度検出手段13からの信号で減圧装置3を制御する。14は給水温度に対する目標吐出温度を記憶している第一の記憶手段である。なお、減圧装置3として電動膨張弁(図示せず)等がある。
【0022】
次に動作、作用について説明する。図2は横軸に減圧装置3の開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある外気温度と給水温度時の減圧装置3の開度に対する吐出温度と吐出圧力と効率の関係を示したものである。また、図3は横軸に給水温度をとり、縦軸に平均外気温度をとって、給水温度と平均外気温度との関係を示したものである。この時の平均外気温度としては、例えば、数日から1週間程度の平均の外気温度を用いる。そいて、予め、給水温度と平均外気温度紙の関係を求めておけば、同図からわかるように給水温度がわかれば、平均外気温度を推定することができる。さて、図2において、効率は減圧装置3の開度に対して極大値がある。また、同図において、一点鎖線は圧縮機の通常使用時の最大温度(常用最大吐出温度)であり、二点鎖線は圧縮機の通常使用時の最大圧力(常用最大吐出圧力)である。ここで、効率が極大になる減圧装置3の開度Xに対する吐出温度を目標吐出温度Yとする。そして、各給水温度に対して、この目標吐出温度Yを求めると、図4のようになる。この給水温度に対する目標吐出温度の関係を第一の記憶手段14に予め記憶させる。
【0023】
つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は給水温度検出手段12と吐出温度検出手段13からの信号で給水温度と吐出温度と検出する。そして、給水温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる)ように制御する。
【0024】
上記のように、制御手段11による吐出温度制御をある時間毎に行えば、給水温度(平均外気温度)が変化しても常に効率の良い給湯運転が可能となる。さらに、給水温度を用いるので、一日のうちで大きな変化をしないため、安定した運転制御ができ、効率が良くなる。また、圧縮機1の吐出温度を成り行きでなく、目標吐出温度になるように制御しているので、高温の沸き上げ温度も得ることができる。
【0025】
なお、給水温度検出手段として、水温度検出手段8を用いても同様に実施することができる。
【0026】
(実施例2)
図5は本発明の実施例2のヒートポンプ給湯機の構成図、図6は同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図、図7は同ヒートポンプ給湯機の給水温度に対する吐出圧力と減圧装置の開度を示す説明図である。
【0027】
本実施例において、実施例1と異なる点は、圧縮機1の吐出側に圧力検出手段15を設けた構成としていることである。なお、実施例1と同符号の部分は同一構成を有し、説明は省略する。
【0028】
次に動作、作用について説明する。図6は横軸に減圧装置3の開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある給水温度の高い場合(外気温度の高い場合)の減圧装置3の開度に対する吐出温度と吐出圧力と効率の関係を示したものである。同図に示すように、給水温度がかなり高くなると、効率が極大値になる減圧装置3の開度において吐出圧力が常用最大吐出圧力を越えるときがある。この場合、減圧装置3の開度をAからBに変更すると吐出圧力はCからDに減少することになる。
【0029】
つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は圧力検出手段15からの信号で吐出圧力を検出する。この吐出圧力が常用最大吐出圧力よりも低ければ、制御手段11は給水温度検出手段12と吐出温度検出手段13からの信号で給水温度と吐出温度と検出し、そして、給水温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる)ように制御する。
【0030】
他方、圧力検出手段15からの信号で検出した吐出圧力が常用最大吐出圧力よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。
【0031】
図7は横軸に給水温度をとり、縦軸に吐出圧力と減圧装置3の開度をとって、給水温度に対する吐出圧力と減圧装置3の開度の変化を示したものである。同図において、給水温度が高くなれば、上記説明のように吐出圧力による制御を行うことによって吐出圧力が常用最大吐出圧力を越えないようにすることができるので、この吐出圧力制御をある時間毎に行えば、異常圧力上昇のない給湯運転が可能となる。なお、図中の点線は実施例1で説明した吐出温度による制御の場合であり、記号A、B、C、Dは図6の同記号に対応する。
【0032】
(実施例3)
図8は本発明の実施例3のヒートポンプ給湯機の構成図、図9は同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図、図10は同ヒートポンプ給湯機の給水温度に対する目標吐出温度を示す説明図である。
【0033】
本実施例において、実施例2と異なる点は、圧力検出手段として給水温度検出手段12と吐出温度検出手段13を用い、さらに第二の記憶手段16を設けた構成としていることである。なお、実施例2と同符号の部分は同一構成を有し、説明は省略する。
【0034】
次に動作、作用について説明する。図9は横軸に減圧装置3の開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある給水温度の高い場合(外気温度の高い場合)の減圧装置3の開度に対する吐出温度と吐出圧力と効率の関係を示したものである。同図に示すように、給水温度がかなり高くなると、効率が極大値になる減圧装置3の開度において吐出圧力が常用最大吐出圧力(例えば2.4MPa)を越えるときがある。この場合、減圧装置3の開度をAからBに変更すると吐出圧力はCからDに減少し、吐出温度はEからFは減少する。結局、同図に示す給水温度の場合には吐出圧力をDにするためには吐出温度をFにすればよいことになる。この減圧装置3の開度Bに対する吐出温度を目標吐出温度Zとする。そして、各給水温度に対して、この目標吐出温度Zを求めると、図10の実線のようになる。この給水温度に対する目標吐出温度Zの関係を第二の記憶手段16に予め記憶させる。同図において、点線は実施例1で説明した吐出温度による制御の場合であり、実線と点線の交点の給水温度を高温側限界給水温度Tuとする。
【0035】
つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は給水温度検出手段12からの信号で給水温度を検出する。この給水温度が高温側限界給水温度Tuよりも低ければ、さらに、制御手段11は給水温度検出手段12と吐出温度検出手段13からの信号で給水温度と吐出温度と検出し、そして、給水温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる)ように制御する。
【0036】
他方、給水温度検出手段12からの信号で検出した給水温度が高温側限界給水温度Tuよりも高ければ、吐出温度検出手段13からの信号で吐出温度を検出し、そして、第二の記憶手段16からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる)ように制御する。
【0037】
上記のように制御手段11による吐出温度制御をある時間毎に行えば、吐出温度による制御を行うことによって吐出圧力が常用最大吐出圧力を越えないようにすることができるので、異常圧力上昇のない給湯運転が可能となる。
【0038】
(実施例4)
図11は本発明の実施例4のヒートポンプ給湯機の構成図、図12は同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図、図13は同ヒートポンプ給湯機の給水温度に対する目標吐出温度を示す説明図である。
【0039】
本実施例において、実施例1と異なる点は第三の記憶手段17を設けた構成としていることである。なお、実施例1と同符号の部分は同一構成を有し、説明は省略する。
【0040】
次に動作、作用について説明する。図12は横軸に減圧装置3の開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある給水温度の低い場合(外気温度の低い場合)の減圧装置3の開度に対する吐出温度と吐出圧力と効率の関係を示したものである。同図に示すように、給水温度がかなり低くなると、効率が極大値になる減圧装置3の開度において吐出温度が常用最大吐出温度(例えば105゜C)を越えるときがある。この場合、減圧装置3の開度をAからBに変更すると吐出温度はCからDに減少することになる。また、図13は横軸に給水温度をとり、縦軸に目標吐出温度をとって、給水温度に対する目標吐出温度Wの関係を示したものである。同図中の実線で示すように、低給水温度の場合の目標吐出温度Wは常用最大吐出温度(例えば105゜C)一定となる。この給水温度に対する目標吐出温度Wの関係を第三の記憶手段17に予め記憶させる。また、同図の点線は実施例1で説明した吐出温度による制御の場合であり、実線と点線の交点の給水温度を低温側限界給水温度Tlとする。
【0041】
つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は給水温度検出手段12からの信号で給水温度を検出する。この給水温度が低温側限界給水温度Tlよりも高ければ、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出し、そして、給水温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる)ように制御する。
【0042】
他方、給水温度検出手段12からの信号で検出した給水温度が低温側限界給水温度Tlよりも低ければ、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出し、そして、給水温度と目標吐出温度との関係を記憶している第三の記憶手段17からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる)ように制御する。
【0043】
上記のように制御手段11による吐出温度制御をある時間毎に行えば、吐出温度が常用最大吐出温度を越えないようにすることができるので、異常温度上昇のない給湯運転が可能となる。
【0044】
(実施例5)
図14は本発明の実施例5のヒートポンプ給湯機の構成図である。
【0045】
本実施例において、実施例1と異なる点は減圧装置3の最小開度を記憶している最小開度記憶手段18を設けた構成としていることである。なお、実施例1と同符号の部分は同一構成を有し、説明は省略する。
【0046】
次に動作、作用について説明する。給湯運転が始まり圧縮機1が起動すると、制御手段11は給水温度検出手段12と吐出温度検出手段13からの信号で給水温度と吐出温度と検出する。そして、給水温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は最小開度記憶手段18からの信号で得た減圧装置3の最小開度と現在の減圧装置3の開度とを比較する。そして、現在の減圧装置3の開度のほうが前記最小開度よりも大きければ、減圧装置3の開度を前記最小開度を下まわらない範囲で小さくする(閉じる)ように制御する。また、現在の減圧装置3の開度のほうが前記最小開度よりも小さいか等しければ、減圧装置3の開度を前記最小開度になるように制御する。
【0047】
このようにすれば、給水温度が低い(外気温度が低い)場合に蒸発器4に霜が付着して吐出温度や蒸発温度が低下しても減圧装置3の開度を必要以上に小さくすることがないので、効率の良い給湯加熱運転が維持できる。
【0048】
(実施例6)
本発明の実施例6のヒートポンプ給湯機の冷凍サイクルは圧縮機1の吐出圧力が超臨界圧力となる超臨界冷凍サイクルである。
【0049】
図15は横軸に冷媒のエンタルピをとり、縦軸に圧力をとって、冷凍サイクルの動作点を示したものである。同図において、点線は等温線を示し、エンタルピが増す方向に高温となる。
【0050】
まず、吐出温度の制御を行わない場合について説明をする。この場合、給水温度が低いときには、実線で示す冷凍サイクルになり、吐出冷媒は点Aに示す状態であるので、吐出温度はT1となる。一方、給水温度が高いときには、一点鎖線で示す冷凍サイクルになり、吐出冷媒は点Bに示す状態であるので、吐出温度はT2となる(T1>T2)。このように、給水温度が高くなると、吐出温度が下がり、そのため、沸き上げ温度を高くすることが難しい場合があった。
【0051】
そこで、本実施例では吐出温度が目標吐出温度(この場合はT1)になるように、減圧装置3の開度を制御する。その結果、二点鎖線で示す冷凍サイクルになり、吐出冷媒は点B'になるので、吐出温度はT1となる。
【0052】
上述のように、超臨界冷凍サイクルで給水温度が高い場合にも、吐出温度を目標吐出温度に制御するので、高温の沸き上げ温度を得ることができる。
【0053】
(実施例7)
本発明の実施例7のヒートポンプ給湯機の冷凍サイクルに用いられる冷媒は二酸化炭素である。この場合の作用、効果は実施例6と同様なので、説明は省略する。
【0054】
【発明の効果】
以上説明したように本発明によれば、年間を通じて、効率の良い給湯加熱運転ができるという効果を有する。特に、給水温度を用いて制御するので、一日のうで、明け方など急激に外気温度が低下するときにも不必要に蒸発器出口の冷媒過熱度を大きく取らないように制御するため、安定した運転制御ができ、効率が良くなるという効果を有する。
【図面の簡単な説明】
【図1】
本発明の実施例1のヒートポンプ給湯機を示す構成図
【図2】
同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す特性図
【図3】
同ヒートポンプ給湯機の給水温度と平均外気温度との関係を示す特性図
【図4】
同ヒートポンプ給湯機の給水温度に対する目標吐出温度を示す特性図
【図5】
本発明の実施例2のヒートポンプ給湯機の構成図
【図6】
同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す特性図
【図7】
同ヒートポンプ給湯機の給水温度に対する吐出圧力と減圧装置の開度を示す特性図
【図8】
本発明の実施例3のヒートポンプ給湯機の構成図
【図9】
同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す特性図
【図10】
同ヒートポンプ給湯機の給水温度に対する目標吐出温度を示す特性図
【図11】
本発明の実施例4のヒートポンプ給湯機の構成図
【図12】
同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す特性図
【図13】
同ヒートポンプ給湯機の給水温度に対する目標吐出温度を示す特性図
【図14】
本発明の実施例5のヒートポンプ給湯機の構成図
【図15】
本発明の実施例6のヒートポンプ給湯機の冷凍サイクルの動作点を示す説明図
【図16】
従来例におけるヒートポンプ給湯機の構成図
【符号の説明】
1 圧縮機
2 冷媒対水熱交換器
3 減圧装置
4 蒸発器
5 貯湯槽
6 循環ポンプ
11 制御手段
12 給水温度検出手段
13 吐出温度検出手段
[Document name] statement
Patent application title: Heat pump water heater
[Claim of claim]
  1. A compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporatorProvidedA refrigeration cycle, a hot water storage tank, a circulation pump, and the refrigerant-to-water heat exchangerProvidedHot water supply circuit, feed water temperature detection means for detecting feed water temperature, and discharge temperature detection means for detecting discharge temperature of the compressorAnd the discharge temperature of the compressor is set to improve the efficiency of the hot water supply operation with respect to the feed water temperature.Control the degree of opening of the pressure reducing device to achieve the target discharge temperature.RuiPump water heater.
  [Claim 2] A refrigeration cycle provided with a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, an evaporator, a hot water storage tank, a circulating pump, a hot water supply circuit provided with the refrigerant-to-water heat exchanger, and a feed water temperature detection detecting feed water temperature Means and discharge temperature detection means for detecting the discharge temperature of the compressor, wherein the discharge temperature of the compressor is the target discharge temperature at which the efficiency of the hot water supply operation is set near the maximum with respect to the water supply temperature. Control the opening of the pressure reducing devicePump water heater.
  [Claim3] PressureThe opening degree of the pressure reducing device is controlled so that the discharge pressure of the compressor does not exceed the normal maximum discharge pressure preset by the signal from the pressure detecting means.RequestClaim 1Or 2Heat pump water heater as described.
  [Claim4Pressure detection meansIsClaim: A water supply temperature detection means, a discharge temperature detection means, and a second storage means for storing a target discharge temperature with respect to the water supply temperature.3Heat pump water heater as described.
  [Claim5] PressureThe control device controls the opening degree of the pressure reducing device such that the discharge temperature of the compressor does not exceed the normal maximum discharge temperature preset by the signal from the discharge temperature detection device.Or 2Heat pump water heater as described.
  [Claim6A control means having a lower limit of the opening of the pressure reducing device is provided.Or 2Heat pump water heater as described.
  [Claim7A refrigeration cycle is a supercritical refrigeration cycle in which the discharge pressure of the compressor becomes a supercritical pressure.To any one of ~ 6Heat pump water heater as described.
  [Claim8A refrigerant used in a refrigeration cycle is carbon dioxide.1 to 7Heat pump water heater as described.
Detailed Description of the Invention
      [0001]
  Field of the Invention
  The present invention relates to a hot water storage type heat pump water heater.
      [0002]
  [Prior Art]
  A conventional heat pump water heater of this type is disclosed in Japanese Patent Application Laid-Open No. 60-164157. FIG. 16 is a block diagram of a conventional heat pump water heater. In FIG. 16, a refrigerant circulation circuit consisting of compressor 1, refrigerant-to-water heat exchanger 2, pressure reducing device 3, and evaporator 4, hot water storage tank 5, circulation pump 6, refrigerant-to-water heat exchanger 2, auxiliary heater 7. The high temperature and high pressure superheated gas refrigerant discharged from the compressor 1 flows into the refrigerant-to-water heat exchanger 2, where it heats the water sent from the circulation pump 6. Then, the refrigerant that has dissipated heat in the refrigerant-to-water heat exchanger 2 is decompressed by the pressure reducing device 3 and flows into the evaporator 4, where it absorbs the heat of the atmosphere to be vaporized gas and returns to the compressor 1. On the other hand, the hot water heated by the refrigerant-to-water heat exchanger 2 flows into the upper portion of the hot water storage tank 5 and is gradually stored from the top. Then, when the inlet water temperature of the refrigerant-to-water heat exchanger 2 reaches the set value, the water temperature detection means 8 detects it, and stops the heat pump operation by the compressor 1 and switches to the independent operation of the auxiliary heater 7 .
      [0003]
  [Problems to be solved by the invention]
  In the heat pump water heater of the conventional example shown in FIG. 16, a capillary tube or a thermal expansion valve is used as the pressure reducing device 3. When a capillary tube is used as the decompression device 3, generally, the specifications of the capillary tube are designed based on the temperature conditions of summer when the amount of refrigerant circulation is large. Therefore, it had the subject that the efficiency of driving | operation worsens in winter with especially large hot water supply load except summer. In addition, since the refrigerant more than necessary circulates in the refrigerant circulation circuit in winter having particularly low outside air temperature except summer, the liquid refrigerant is sucked into the compressor 1, and as a result, it becomes liquid compression and the durability of the compressor is increased. I had the problem of getting worse.
      [0004]
  On the other hand, when a thermal expansion valve is used as the decompression device 3, generally, the specification of the thermal expansion valve as the decompression device 3 so that the refrigerant at the outlet of the evaporator 4 is in the superheated gas state with a superheat degree. Design. Therefore, there has been a problem that the discharge pressure is increased or the discharge temperature is increased depending on the outside air temperature condition to deteriorate the durability of the compressor. And if it designed in order to avoid this subject, it had the subject that the boiling temperature which is the exit water temperature of the refrigerant to water heat exchanger 2 can not be diversified. Furthermore, even when frost is formed on the evaporator 4 in winter, since the refrigerant state at the outlet of the evaporator 4 is controlled so that the degree of superheat can be taken, frost formation further progresses, and the operation efficiency becomes worse. It was In particular, when the temperature of the outside air drops sharply, for example, during the day, the refrigerant state at the outlet of the evaporator 4 is unnecessarily controlled so that the degree of superheat can be obtained, so that the operation efficiency is further deteriorated. I had it.
      [0005]
  An object of the present invention is to realize an efficient hot water supply heating operation without an abnormal temperature rise and an abnormal pressure rise of a compressor.
      [0006]
  [Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator.ProvidedA refrigeration cycle, a hot water storage tank, a circulation pump, and the refrigerant-to-water heat exchangerProvidedHot water supply circuit, feed water temperature detection means for detecting feed water temperature, and discharge temperature detection means for detecting discharge temperature of the compressorAnd the discharge temperature of the compressor is set to improve the efficiency of the hot water supply operation with respect to the feed water temperature.Control the degree of opening of the pressure reducing device to achieve the target discharge temperature.RuHeat pump water heater.
      [0007]
In addition, a refrigeration cycle provided with a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, an evaporator, a hot water storage tank, a circulating pump, a hot water supply circuit provided with the refrigerant-to-water heat exchanger, and water supply detecting the water supply temperature. A temperature detection means and a discharge temperature detection means for detecting the discharge temperature of the compressor, wherein the discharge temperature of the compressor is a target discharge temperature at which the efficiency of the hot water supply operation is set near the maximum with respect to the water supply temperature. It is set as a heat pump water heater which controls the opening degree of a decompression device so that it becomes.
      [0008]
  ThePressureControl means is provided to control the opening degree of the pressure reducing device so that the discharge pressure of the compressor does not exceed the normal maximum discharge pressure preset by the signal from the pressure detection means.
      [0009]
  FurtherPressureControl means is provided for controlling the opening degree of the pressure reducing device so that the discharge temperature of the compressor does not exceed the normal maximum discharge temperature preset by the signal from the discharge temperature detection means.
      [0010]
  In the above invention, the discharge temperature at which the efficiency of the hot water supply operation is the best with respect to the water supply temperature is determined in advance, and this is set as the target discharge temperature. Then, when the hot water supply operation is performed, the feed water temperature and the discharge temperature of the compressor are detected, and the opening degree of the pressure reducing device is controlled to reach the target discharge temperature. it can.
      [0011]
  Further, since the opening degree of the pressure reducing device is controlled by the signal from the pressure detecting means so as not to exceed the normal maximum discharge pressure, there is no abnormal pressure increase of the compressor, and further, by the signal from the discharge temperature detecting means. Since the opening degree of the pressure reducing device is controlled so as not to exceed the normal maximum discharge temperature, a highly durable heat pump water heater without abnormal temperature rise of the compressor can be realized.
      [0012]
  BEST MODE FOR CARRYING OUT THE INVENTION
  The present invention can be practiced in the form described in each claim, and as described in claim 1, the compressor, the refrigerant-to-water heat exchanger, the pressure reducing device, and the evaporator are provided.ProvidedRefrigerant circulation circuit, hot water storage tank, circulation pump, refrigerant to water heat exchangerProvidedA hot water supply circuit, a feed water temperature detection means for detecting a feed water temperature, and a discharge temperature detection means for detecting a discharge temperature of a compressor;The discharge temperature of the compressor is set to improve the efficiency of the hot water supply operation with respect to the water supply temperatureControl the degree of opening of the pressure reducing device to achieve the target discharge temperature.RukoWhen,Furthermore, according to claim 2, a refrigeration cycle provided with a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, an evaporator, a hot water storage tank, a circulating pump, and a hot water supply circuit provided with the refrigerant-to-water heat exchanger The feed water temperature detection means for detecting the feed water temperature, and the discharge temperature detection means for detecting the discharge temperature of the compressor, wherein the discharge temperature of the compressor is such that the efficiency of the hot water supply operation is near maximum relative to the water supply temperature. Control the opening degree of the pressure reducing device so as to reach the target discharge temperature set inThus, the discharge temperature at which the efficiency of the hot-water supply operation is the best with respect to the water supply temperature is determined in advance, and this is set as the target discharge temperature. Furthermore, since the feed water temperature is used, it does not change significantly within a day like the outside air temperature, so stable operation control can be performed and the efficiency is improved.
      [0013]
  Also, claims3As statedPressureThe compressor is provided with control means for controlling the degree of opening of the pressure reducing device such that the discharge pressure of the compressor does not exceed the normal maximum discharge pressure preset by the signal from the pressure detection means. A highly durable heat pump water heater without abnormal pressure rise can be realized.
      [0014]
  Also, claims4As described, pressure detection meansIsThe feed water temperature detection means, the discharge temperature detection means, and the second storage means for storing the target discharge temperature with respect to the water supply temperature can be provided.
      [0015]
  Also, claims5As statedPressureThe compressor is provided with control means for controlling the opening degree of the pressure reducing device such that the discharge temperature of the compressor does not exceed the normal maximum discharge temperature preset by the signal from the discharge temperature detection means. It is possible to realize a highly durable heat pump water heater without an abnormal temperature rise.
      [0016]
  Also, claims6As described above, by providing the control means having the lower limit value of the opening degree of the pressure reducing device, the minimum opening degree of the pressure reducing device is maintained even at the time of frost formation. The decrease is suppressed and hot water supply heating operation more efficient than before can be performed.
      [0017]
  Also, claims7As described, a high boiling temperature can be obtained even in a supercritical refrigeration cycle in which the discharge pressure of the compressor is a supercritical pressure.
      [0018]
  Also, claims8As described, carbon dioxide is used as the refrigerant of the refrigeration cycle.
      [0019]
  【Example】
  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
      [0020]
  Example 1
  1 is a block diagram of the heat pump water heater according to the first embodiment of the present invention, FIG. 2 is an explanatory view showing the discharge temperature, the discharge pressure and the efficiency with respect to the opening degree of the pressure reducing device of the heat pump water heater. FIG. 4 is an explanatory view showing a relationship between a water supply temperature and an average outside air temperature, and FIG. 4 is an explanatory view showing a target discharge temperature with respect to a water supply temperature of the heat pump water heater. The same components as those in FIG. 16 described in the conventional example will be assigned the same reference numerals and descriptions thereof will be omitted.
      [0021]
  In FIG. 1, the rotational speed control means 10 controls the rotational speed of the circulation pump 6 by the signal from the boiling temperature detection means 9 provided at the water side outlet of the refrigerant to water heat exchanger 2, and the refrigerant to water heat is The outlet water temperature (boiling temperature) of the exchanger 2 is boiled to be substantially constant. Further, the control means 11 controls the pressure reducing device 3 by the signals from the feed water temperature detection means 12 for detecting the feed water temperature and the discharge temperature detection means 13 for detecting the discharge temperature of the compressor 1. Reference numeral 14 denotes a first storage unit that stores a target discharge temperature with respect to the water supply temperature. There is an electric expansion valve (not shown) or the like as the pressure reducing device 3.
      [0022]
  Next, the operation and action will be described. In FIG. 2, the abscissa represents the opening degree of the pressure reducing device 3 and the ordinate axis represents the discharge temperature and the discharge pressure, and the discharge temperature and the discharge pressure with respect to the opening degree of the pressure reducing device 3 at the outside air temperature and the water supply temperature. It shows the relationship of efficiency. Further, FIG. 3 shows the relationship between the feed water temperature and the average outside air temperature, with the water supply temperature on the horizontal axis and the average outside air temperature on the vertical axis. As the average outside air temperature at this time, for example, an average outside air temperature of several days to about one week is used. Then, if the relationship between the water supply temperature and the average outside air temperature paper is obtained in advance, the average outside air temperature can be estimated if the water supply temperature is known as can be understood from the figure. Now, in FIG. 2, the efficiency has a maximum value with respect to the opening degree of the pressure reducing device 3. Further, in the figure, the alternate long and short dash line indicates the maximum temperature (normal maximum discharge temperature) during normal use of the compressor, and the two-dot chain line indicates the maximum pressure during normal use of the compressor (normal maximum discharge pressure). Here, the discharge temperature with respect to the opening degree X of the pressure reducing device 3 at which the efficiency is maximized is set as the target discharge temperature Y. And if this target discharge temperature Y is calculated | required with respect to each feed water temperature, it will become like FIG. The relationship of the target discharge temperature to the water supply temperature is stored in advance in the first storage means 14.
      [0023]
  That is, when the hot water supply operation starts and the compressor 1 starts up, the control means 11 detects the water supply temperature and the discharge temperature based on the signals from the water supply temperature detection means 12 and the discharge temperature detection means 13. Then, in the information from the first storage means 14 storing the relationship between the feed water temperature and the target discharge temperature, if the current discharge temperature is higher than the target discharge temperature, the control means 11 opens the pressure reducing device 3 Control to make it larger (open). Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the pressure reducing device 3 to reduce (close) the opening degree.
      [0024]
  As described above, if the discharge temperature control by the control unit 11 is performed at certain intervals, efficient hot water supply operation can be performed even if the water supply temperature (average outside air temperature) changes. Furthermore, since the feed water temperature is used, stable operation control can be performed and efficiency is improved because there is no large change in one day. Further, since the discharge temperature of the compressor 1 is controlled so as not to reach the target value but to become the target discharge temperature, a high boiling temperature can also be obtained.
      [0025]
  In addition, it can implement similarly, even if it uses the water temperature detection means 8 as a water supply temperature detection means.
      [0026]
  (Example 2)
  5 is a block diagram of the heat pump water heater according to the second embodiment of the present invention, FIG. 6 is an explanatory view showing the discharge temperature, the discharge pressure and the efficiency with respect to the opening of the pressure reducing device of the heat pump water heater. It is explanatory drawing which shows the discharge pressure with respect to the feed water temperature, and the opening degree of a pressure-reduction apparatus.
      [0027]
  The present embodiment differs from the first embodiment in that the pressure detection means 15 is provided on the discharge side of the compressor 1. In addition, the part of the same code as Example 1 has the same structure, and description is abbreviate | omitted.
      [0028]
  Next, the operation and action will be described. In FIG. 6, the abscissa represents the opening degree of the pressure reducing device 3 and the ordinate axis represents the discharge temperature and the discharge pressure, and the efficiency relative to the opening degree of the pressure reducing device 3 when the water supply temperature is high (when the outside air temperature is high). The relationship between the discharge temperature, the discharge pressure, and the efficiency is shown. As shown in the figure, when the water supply temperature becomes considerably high, the discharge pressure may exceed the normal maximum discharge pressure at the opening degree of the pressure reducing device 3 at which the efficiency reaches the maximum value. In this case, when the opening degree of the decompression device 3 is changed from A to B, the discharge pressure is reduced from C to D.
      [0029]
  That is, when the hot water supply operation starts and the compressor 1 is activated, the control means 11 detects the discharge pressure by the signal from the pressure detection means 15. If the discharge pressure is lower than the normal maximum discharge pressure, the control means 11 detects the feed water temperature and the discharge temperature by the signals from the feed water temperature detection means 12 and the discharge temperature detection means 13, and the feed water temperature and the target discharge temperature The control unit 11 controls the pressure reducing device 3 to increase (open) the opening degree of the pressure reducing device 3 if the current discharge temperature is higher than the target discharge temperature. Do. Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the pressure reducing device 3 to reduce (close) the opening degree.
      [0030]
  On the other hand, if the discharge pressure detected by the signal from the pressure detection means 15 is higher than the normal maximum discharge pressure, the control means 11 controls the pressure reducing device 3 to increase (open) the opening degree.
      [0031]
  FIG. 7 shows the changes of the discharge pressure and the opening degree of the pressure reducing device 3 with respect to the water supply temperature, with the water supply temperature taken on the horizontal axis and the discharge pressure and the opening degree of the pressure reducing device 3 taken on the vertical axis. In the same figure, if the feed water temperature becomes high, the discharge pressure can be controlled not to exceed the normal maximum discharge pressure by performing control based on the discharge pressure as described above. By doing this, it is possible to perform the hot water supply operation without an abnormal pressure rise. The dotted lines in the figure are for the control based on the discharge temperature described in the first embodiment, and the symbols A, B, C, and D correspond to the same symbols in FIG.
      [0032]
  (Example 3)
  8 is a block diagram of a heat pump water heater according to a third embodiment of the present invention, FIG. 9 is an explanatory view showing the discharge temperature, the discharge pressure and the efficiency with respect to the opening of the pressure reducing device of the heat pump water heater. It is explanatory drawing which shows the target discharge temperature with respect to the water supply temperature of.
      [0033]
  The present embodiment differs from the second embodiment in that a feed water temperature detection unit 12 and a discharge temperature detection unit 13 are used as a pressure detection unit, and a second storage unit 16 is further provided. In addition, the part of the same code as Example 2 has the same structure, and description is abbreviate | omitted.
      [0034]
  Next, the operation and action will be described. In FIG. 9, the abscissa represents the opening degree of the pressure reducing device 3 and the ordinate axis represents the discharge temperature and the discharge pressure, and the efficiency relative to the opening degree of the pressure reducing device 3 when the water supply temperature is high (when the outside air temperature is high). The relationship between the discharge temperature, the discharge pressure, and the efficiency is shown. As shown in the figure, when the feed water temperature becomes considerably high, the discharge pressure may exceed the common maximum discharge pressure (for example, 2.4 MPa) at the opening degree of the pressure reducing device 3 at which the efficiency reaches the maximum value. In this case, when the opening degree of the decompression device 3 is changed from A to B, the discharge pressure decreases from C to D, and the discharge temperature decreases from E to F. As a result, in the case of the water supply temperature shown in the figure, the discharge temperature may be set to F in order to set the discharge pressure to D. The discharge temperature with respect to the opening degree B of the pressure reducing device 3 is taken as a target discharge temperature Z. And if this target discharge temperature Z is calculated | required with respect to each feed water temperature, it will become like the continuous line of FIG. The relationship of the target discharge temperature Z with respect to the water supply temperature is stored in advance in the second storage unit 16. In the same figure, a dotted line is a case of control by discharge temperature explained in Example 1, and let the feed water temperature of the intersection of a solid line and a dotted line be high temperature side limit feed water temperature Tu.
      [0035]
  That is, when the hot water supply operation starts and the compressor 1 starts up, the control means 11 detects the water supply temperature by the signal from the water supply temperature detection means 12. If the feed water temperature is lower than the high temperature side limit feed water temperature Tu, the control means 11 further detects the feed water temperature and the discharge temperature by the signals from the feed water temperature detection means 12 and the discharge temperature detection means 13 and In the information from the first storage means 14 storing the relationship with the target discharge temperature, if the current discharge temperature is higher than the target discharge temperature, the control means 11 increases the opening degree of the pressure reducing device 3 (open ) To control. Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the pressure reducing device 3 to reduce (close) the opening degree.
      [0036]
  On the other hand, if the feed water temperature detected by the signal from the feed water temperature detection means 12 is higher than the high temperature side limit feed water temperature Tu, the discharge temperature is detected by the signal from the discharge temperature detection means 13, and the second storage means 16 If the current discharge temperature is higher than the target discharge temperature according to the information from the controller 11, the control means 11 controls the pressure reducing device 3 to increase (open) the opening degree. Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the pressure reducing device 3 to reduce (close) the opening degree.
      [0037]
  As described above, if the discharge temperature control by the control means 11 is performed at certain time intervals, the discharge pressure can be prevented from exceeding the normal maximum discharge pressure by performing the control based on the discharge temperature, so there is no abnormal pressure rise. Hot water supply operation becomes possible.
      [0038]
  (Example 4)
  11 is a block diagram of the heat pump water heater according to the fourth embodiment of the present invention, FIG. 12 is an explanatory view showing the discharge temperature, the discharge pressure and the efficiency with respect to the opening of the pressure reducing device of the heat pump water heater. It is explanatory drawing which shows the target discharge temperature with respect to the water supply temperature of.
      [0039]
  The present embodiment differs from the first embodiment in that a third storage unit 17 is provided. In addition, the part of the same code as Example 1 has the same structure, and description is abbreviate | omitted.
      [0040]
  Next, the operation and action will be described. In FIG. 12, the abscissa represents the opening degree of the pressure reducing device 3 and the ordinate axis represents the discharge temperature and the discharge pressure, and the efficiency relative to the opening degree of the pressure reducing device 3 when the supplied water temperature is low (when the outside air temperature is low). The relationship between the discharge temperature, the discharge pressure, and the efficiency is shown. As shown in the figure, when the feed water temperature becomes considerably low, the discharge temperature may exceed the common maximum discharge temperature (for example, 105 ° C.) at the opening degree of the pressure reducing device 3 at which the efficiency reaches the maximum value. In this case, when the opening degree of the decompression device 3 is changed from A to B, the discharge temperature is reduced from C to D. Further, FIG. 13 shows the relationship between the feed water temperature and the target discharge temperature W with the feed water temperature taken along the horizontal axis and the target discharge temperature taken along the vertical axis. As indicated by the solid line in the figure, the target discharge temperature W in the case of the low feed water temperature is constant at the normal maximum discharge temperature (for example, 105 ° C.). The relationship of the target discharge temperature W to the feed water temperature is stored in advance in the third storage unit 17. Further, the dotted line in the figure is the case of control based on the discharge temperature described in the first embodiment, and the feed water temperature at the intersection of the solid line and the dotted line is taken as the low temperature side limit feed water temperature Tl.
      [0041]
  That is, when the hot water supply operation starts and the compressor 1 starts up, the control means 11 detects the water supply temperature by the signal from the water supply temperature detection means 12. If the feed water temperature is higher than the low temperature side limit feed water temperature Tl, the control means 11 detects the discharge temperature by the signal from the discharge temperature detection means 13 and stores the relationship between the water supply temperature and the target discharge temperature. If the current discharge temperature is higher than the target discharge temperature by the information from the first storage unit 14, the control unit 11 controls the pressure reducing device 3 to increase (open) the opening degree. Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the pressure reducing device 3 to reduce (close) the opening degree.
      [0042]
  On the other hand, if the feed water temperature detected by the signal from the feed water temperature detection means 12 is lower than the low temperature side limit feed water temperature Tl, the control means 11 detects the discharge temperature by the signal from the discharge temperature detection means 13 and the feed water temperature In the information from the third storage unit 17 storing the relationship between the target discharge temperature and the target discharge temperature, the control unit 11 increases the opening degree of the pressure reducing device 3 if the current discharge temperature is higher than the target discharge temperature. Control to open). Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 controls the pressure reducing device 3 to reduce (close) the opening degree.
      [0043]
  As described above, if the discharge temperature control by the control means 11 is performed every certain time, the discharge temperature can be made not to exceed the normal maximum discharge temperature, so that the hot water supply operation without abnormal temperature rise can be performed.
      [0044]
  (Example 5)
  FIG. 14 is a block diagram of a heat pump water heater according to a fifth embodiment of the present invention.
      [0045]
  The present embodiment differs from the first embodiment in that a minimum opening storage means 18 is provided which stores the minimum opening of the pressure reducing device 3. In addition, the part of the same code as Example 1 has the same structure, and description is abbreviate | omitted.
      [0046]
  Next, the operation and action will be described. When the hot water supply operation starts and the compressor 1 starts up, the control means 11 detects the water supply temperature and the discharge temperature based on the signals from the water supply temperature detection means 12 and the discharge temperature detection means 13. Then, in the information from the first storage means 14 storing the relationship between the feed water temperature and the target discharge temperature, if the current discharge temperature is higher than the target discharge temperature, the control means 11 opens the pressure reducing device 3 Control to make it larger (open). On the contrary, if the present discharge temperature is lower than the target discharge temperature, the control means 11 obtains the minimum opening degree of the pressure reducing device 3 obtained by the signal from the minimum opening degree storing means 18 and the opening degree of the current pressure reducing device 3 Compare. Then, if the current opening degree of the pressure reducing device 3 is larger than the minimum opening degree, the opening degree of the pressure reducing device 3 is controlled to be reduced (closed) within a range not falling below the minimum opening degree. If the current opening degree of the pressure reducing device 3 is smaller than or equal to the minimum opening degree, the opening degree of the pressure reducing device 3 is controlled to be the minimum opening degree.
      [0047]
  In this way, when the feed water temperature is low (the outside air temperature is low), the degree of opening of the pressure reducing device 3 is made smaller than necessary even if frost adheres to the evaporator 4 and the discharge temperature or evaporation temperature decreases. Because there is no need, efficient hot water supply heating operation can be maintained.
      [0048]
  (Example 6)
  The refrigeration cycle of the heat pump water heater according to the sixth embodiment of the present invention is a supercritical refrigeration cycle in which the discharge pressure of the compressor 1 is a supercritical pressure.
      [0049]
  In FIG. 15, the abscissa represents enthalpy of the refrigerant and the ordinate represents the pressure, showing the operating point of the refrigeration cycle. In the figure, dotted lines indicate isotherms, and the temperature increases as enthalpy increases.
      [0050]
  First, the case where control of discharge temperature is not performed will be described. In this case, when the feed water temperature is low, the refrigeration cycle is indicated by a solid line, and the discharge refrigerant is in a state indicated by point A, so the discharge temperature is T1. On the other hand, when the feed water temperature is high, the refrigeration cycle is indicated by the alternate long and short dash line, and the discharge refrigerant is in the state indicated by point B, so the discharge temperature is T2 (T1> T2). As described above, when the feed water temperature is increased, the discharge temperature is decreased, which may make it difficult to increase the boiling temperature.
      [0051]
  Therefore, in the present embodiment, the opening degree of the pressure reducing device 3 is controlled so that the discharge temperature becomes the target discharge temperature (in this case, T1). As a result, the refrigeration cycle is indicated by a two-dot chain line, and the discharge refrigerant is at point B ', so the discharge temperature is T1.
      [0052]
  As described above, even when the feed water temperature is high in the supercritical refrigeration cycle, the discharge temperature is controlled to the target discharge temperature, so a high boiling temperature can be obtained.
      [0053]
  (Example 7)
  The refrigerant used in the refrigeration cycle of the heat pump water heater of Embodiment 7 of the present invention is carbon dioxide. The operation and effect in this case are the same as in the sixth embodiment, so the description will be omitted.
      [0054]
  【Effect of the invention】
  As described above, the present inventionAccording toIt has the effect of being able to perform efficient hot water supply heating operation throughout the year. In particular, since the control is performed using the feed water temperature, it is stable in order to control the superheat degree of the refrigerant at the outlet of the evaporator not to be unnecessarily large even when the outside air temperature falls suddenly such as the morning Operation control can be performed, and the efficiency is improved.
Brief Description of the Drawings
  [Fig. 1]
  The block diagram which shows the heat pump water heater of Example 1 of this invention.
  [Fig. 2]
  A characteristic chart showing discharge temperature, discharge pressure and efficiency with respect to the opening degree of the decompression device of the same heat pump water heater
  [Fig. 3]
  Characteristic chart showing the relationship between the water supply temperature of the heat pump water heater and the average outside air temperature
  [Fig. 4]
  Characteristic diagram showing the target discharge temperature to the water supply temperature of the heat pump water heater
  [Fig. 5]
  The block diagram of the heat pump water heater of Example 2 of this invention
  [Fig. 6]
  A characteristic chart showing discharge temperature, discharge pressure and efficiency with respect to the opening degree of the decompression device of the same heat pump water heater
  [Fig. 7]
  The characteristic chart which shows the discharge pressure to the feed water temperature of the heat pump water heater, and the opening degree of the decompression device
  [Fig. 8]
  The block diagram of the heat pump water heater of Example 3 of this invention
  [Fig. 9]
  A characteristic chart showing discharge temperature, discharge pressure and efficiency with respect to the opening degree of the decompression device of the same heat pump water heater
  [Fig. 10]
  Characteristic diagram showing the target discharge temperature to the water supply temperature of the heat pump water heater
  [Fig. 11]
  The block diagram of the heat pump water heater of Example 4 of this invention
  [Fig. 12]
  A characteristic chart showing discharge temperature, discharge pressure and efficiency with respect to the opening degree of the decompression device of the same heat pump water heater
  [Fig. 13]
  Characteristic diagram showing the target discharge temperature to the water supply temperature of the heat pump water heater
  [Fig. 14]
  The block diagram of the heat pump water heater of Example 5 of this invention
  [Fig. 15]
  Explanatory drawing which shows the operating point of the refrigerating cycle of the heat pump water heater of Example 6 of this invention.
  [Fig. 16]
  Diagram of heat pump water heater in prior art
  [Description of the code]
  1 Compressor
  2 Refrigerant to water heat exchanger
  3 Pressure reducing device
  4 evaporator
  5 hot water storage tank
  6 Circulating pump
  11 Control means
  12 Water supply temperature detection means
  13 Discharge temperature detection means

JP2001186155A 2000-06-21 2001-06-20 Heat pump water heater Expired - Fee Related JP3659197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186155A JP3659197B2 (en) 2000-06-21 2001-06-20 Heat pump water heater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-185826 2000-06-21
JP2000185826 2000-06-21
JP2001186155A JP3659197B2 (en) 2000-06-21 2001-06-20 Heat pump water heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004302608A Division JP3856025B2 (en) 2000-06-21 2004-10-18 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2002081768A JP2002081768A (en) 2002-03-22
JP2002081768A5 true JP2002081768A5 (en) 2005-04-14
JP3659197B2 JP3659197B2 (en) 2005-06-15

Family

ID=26594340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186155A Expired - Fee Related JP3659197B2 (en) 2000-06-21 2001-06-20 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3659197B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6568199B1 (en) * 2002-01-22 2003-05-27 Carrier Corporation Method for optimizing coefficient of performance in a transcritical vapor compression system
CN1610809A (en) * 2002-03-28 2005-04-27 松下电器产业株式会社 Refrigerating cycle device
US6907923B2 (en) 2003-01-13 2005-06-21 Carrier Corporation Storage tank for hot water systems
JP3858015B2 (en) * 2003-09-30 2006-12-13 三洋電機株式会社 Refrigerant circuit and heat pump water heater
JP5011713B2 (en) * 2005-11-22 2012-08-29 株式会社デンソー Heat pump type water heater
NZ597673A (en) * 2009-07-27 2014-03-28 Ecolactis Method and device for heat recovery on a vapour refrigeration system
CN102235746B (en) * 2010-04-30 2014-05-21 浙江康泉电器有限公司 Quick water heating device for heat pump
CN102269457A (en) * 2011-07-15 2011-12-07 广东同益电器有限公司 Direct current heat exchange full effective hot water air conditioning system
JP5802514B2 (en) * 2011-10-19 2015-10-28 日立アプライアンス株式会社 Heat pump water heater
JP5840062B2 (en) * 2012-04-09 2016-01-06 日立アプライアンス株式会社 Heat pump type liquid heating device and heat pump type water heater
JP5856042B2 (en) * 2012-12-11 2016-02-09 日立アプライアンス株式会社 Heat pump water heater
JP6131921B2 (en) * 2014-09-10 2017-05-24 三菱電機株式会社 Heat pump hot water supply
WO2018163345A1 (en) * 2017-03-09 2018-09-13 三菱電機株式会社 Heat pump hot water supply device
CN111238075B (en) * 2020-01-15 2021-12-07 广东芬尼克兹节能设备有限公司 Variable-frequency CO2Control method and device for direct-heating electronic expansion valve and heat pump unit
IT202100001262A1 (en) * 2021-01-25 2022-07-25 S I M Eng S R L REFRIGERANT CYCLE DEHUMIDIFIER AND DEHUMIDIFICATION PROCEDURE
CN112984614A (en) * 2021-03-04 2021-06-18 长春工程学院 Method and device for regulating and controlling supply and return water temperature of heating system by using Carnot cooler

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
JP3227651B2 (en) Water heater
JP4517529B2 (en) Heat pump cycle, heating device, vehicle heating device, heating device, and vapor compression refrigeration cycle
KR102189464B1 (en) Heating system
JP2002081768A5 (en)
JP4337880B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP2004156847A (en) Hot-water supply device
JP3737357B2 (en) Water heater
JP3740380B2 (en) Heat pump water heater
JP3632645B2 (en) Heat pump water heater
JP2007139275A (en) Heat pump type water heater
JP3700474B2 (en) Heat pump water heater
JP2002188860A5 (en)
JP2000346447A5 (en)
JP3703995B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JP2003035454A (en) Heat pump hot water supply apparatus
JP3937715B2 (en) Heat pump water heater
JP2000346449A (en) Heat pump hot-water supplier
JP3856025B2 (en) Heat pump water heater
JP3690229B2 (en) Heat pump water heater
JP4251785B2 (en) Heat pump water heater
JP4867925B2 (en) Heat pump type water heater
JP4465986B2 (en) Heat pump type water heater