JP6131921B2 - Heat pump hot water supply - Google Patents

Heat pump hot water supply Download PDF

Info

Publication number
JP6131921B2
JP6131921B2 JP2014183819A JP2014183819A JP6131921B2 JP 6131921 B2 JP6131921 B2 JP 6131921B2 JP 2014183819 A JP2014183819 A JP 2014183819A JP 2014183819 A JP2014183819 A JP 2014183819A JP 6131921 B2 JP6131921 B2 JP 6131921B2
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
water
refrigerant
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014183819A
Other languages
Japanese (ja)
Other versions
JP2016057003A (en
Inventor
一平 森下
一平 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014183819A priority Critical patent/JP6131921B2/en
Publication of JP2016057003A publication Critical patent/JP2016057003A/en
Application granted granted Critical
Publication of JP6131921B2 publication Critical patent/JP6131921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ式給湯に関する。   The present invention relates to a heat pump hot water supply.

一般的な、貯湯式ヒートポンプ給湯機の沸き上げ運転においては、貯湯タンク下部から供給される水と、圧縮機で圧縮された冷媒とを熱交換器(ガスクーラ)で熱交換して、高温の湯に沸き上げ、当該貯湯タンクの上部に戻して湯を貯めていく。それゆえ、沸き上げ開始時から所定期間内においては、貯湯タンクの下部側では低温水の層、上部側では高温湯の層になっている。沸上げ運転が進んで高温湯が貯湯タンクの下部まで貯まり始めると、熱交換器に供給される水の温度も急に上昇し始める。それに伴って熱交換器の冷媒出口温度の温度も急に上昇し始める。一般的に、熱交換器の冷媒出口温度が上昇すると、熱交換器における熱交換量が小さくなり、圧縮機の消費電力に対する沸き上げ能力が低下する。それ故、沸き上げがある程度進んだ段階で沸き上げ能力が急に低下し、沸き上がりまでに時間を要していた。   In general boiling operation of a hot water storage type heat pump water heater, the water supplied from the lower part of the hot water storage tank and the refrigerant compressed by the compressor are heat-exchanged by a heat exchanger (gas cooler), and hot water is supplied. Boil up and return to the top of the hot water storage tank to store hot water. Therefore, within a predetermined period from the start of boiling, a low temperature water layer is formed on the lower side of the hot water storage tank, and a high temperature hot water layer is formed on the upper side. As boiling operation proceeds and hot water begins to accumulate to the bottom of the hot water storage tank, the temperature of the water supplied to the heat exchanger also begins to rise suddenly. Along with this, the temperature of the refrigerant outlet temperature of the heat exchanger also starts to rise suddenly. Generally, when the refrigerant outlet temperature of the heat exchanger rises, the amount of heat exchange in the heat exchanger decreases, and the boiling capacity of the compressor with respect to the power consumption decreases. Therefore, when the boiling has progressed to some extent, the boiling ability suddenly decreases, and it takes time to boil.

湯加熱能力を調整する技術としては、運転中の湯加熱能力を、加熱前の低温水の温度と加熱後の高温水の温度との差に基づいて検知し、圧縮機の運転周波数を調整することにより、湯加熱能力を必要湯加熱能力に近づけるヒートポンプ式給湯機が知られている(特許文献1)。   The technology for adjusting the hot water heating capacity is to detect the hot water heating capacity during operation based on the difference between the temperature of the low-temperature water before heating and the temperature of the high-temperature water after heating, and adjust the operating frequency of the compressor. Therefore, there is known a heat pump type water heater that brings hot water heating capacity close to necessary hot water heating capacity (Patent Document 1).

特開2004−116891号公報Japanese Patent Application Laid-Open No. 2004-116891

しかしながら、特許文献1に記載されている技術のように給水温度と出湯温度との差に基づいて湯加熱能力を調整する場合、沸上げ運転が進んで高温湯が貯湯タンクの下部まで貯まり始めた時点から直ぐに湯加熱能力を上げることができない。つまり、熱交換器への給水温度が上昇すると熱交換器からの出湯温度も追随して上昇するので、高温湯が貯湯タンクの下部まで貯まり始めたこと、すなわち、沸き上げ能力が低下し始めたことが、給水温度と出湯温度との差に現れ難い。それゆえ、湯加熱能力の低下に伴って沸き上がりまでに時間を要してしまうという問題を解消することができなかった。   However, when adjusting the hot water heating capacity based on the difference between the feed water temperature and the tapping temperature as in the technique described in Patent Document 1, the boiling operation has progressed, and high temperature hot water has begun to accumulate to the bottom of the hot water storage tank. The hot water heating capacity cannot be increased immediately from that point. That is, when the temperature of the water supply to the heat exchanger rises, the temperature of the hot water from the heat exchanger rises accordingly, so that hot water has begun to accumulate to the bottom of the hot water storage tank, that is, the boiling capacity has begun to decline. This is unlikely to appear in the difference between the feed water temperature and the tapping temperature. Therefore, it has not been possible to solve the problem that it takes time to boil up as the hot water heating capacity decreases.

この発明は、上記のような課題を解決するためになされたもので、沸き上げがある程度進んだときにも沸き上げ能力を低下させず、短時間で沸き上げできるヒートポンプ給湯機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is intended to provide a heat pump water heater that can boil in a short time without lowering the boiling capacity even when the boiling proceeds to some extent. Objective.

この発明に係るヒートポンプ給湯機は、圧縮機、冷媒水熱交換器、膨張弁及び空気冷媒熱交換器が環状に接続された冷媒回路を有し、前記冷媒水熱交換器により水を加熱して温水を生成するヒートポンプと、前記ヒートポンプにより加熱された温水を貯留する貯湯タンクと、前記貯湯タンクと前記冷媒水熱交換器との間で湯水を循環させる送水ポンプと、前記冷媒水熱交換器に流入する水の温度である入口温度を検出する入口温度検出部と、を備え、前記入口温度の現在値と予め設定した期間における前記入口温度の平均値との差が予め設定した温度差閾値以上である場合における前記膨張弁の開度を、前記入口温度の現在値と前記入口温度の平均値との差が前記温度差閾値未満である場合における前記膨張弁の開度よりも小さくする開度変更手段を含むことを特徴とする。   The heat pump water heater according to the present invention has a refrigerant circuit in which a compressor, a refrigerant water heat exchanger, an expansion valve, and an air refrigerant heat exchanger are connected in an annular shape, and heats water by the refrigerant water heat exchanger. A heat pump for generating hot water, a hot water storage tank for storing hot water heated by the heat pump, a water supply pump for circulating hot water between the hot water storage tank and the refrigerant water heat exchanger, and the refrigerant water heat exchanger. An inlet temperature detection unit that detects an inlet temperature that is the temperature of the inflowing water, and a difference between a current value of the inlet temperature and an average value of the inlet temperature in a preset period is equal to or greater than a preset temperature difference threshold value The degree of opening of the expansion valve is smaller than the degree of opening of the expansion valve when the difference between the current value of the inlet temperature and the average value of the inlet temperature is less than the temperature difference threshold. Strange Characterized in that it comprises a means.

この発明のヒートポンプ給湯機によれば、沸き上げがある程度進んだときにも沸き上げ能力を低下させず、短時間で沸き上げできる。   According to the heat pump water heater of the present invention, it is possible to boil in a short time without lowering the boiling capacity even when the boiling proceeds to some extent.

この発明の実施の形態1におけるヒートポンプ給湯機の構成図である。It is a block diagram of the heat pump water heater in Embodiment 1 of this invention. 図1のヒートポンプ給湯機の沸き上げ運転時の給水温度の変化を示すタイムチャートである。It is a time chart which shows the change of the feed water temperature at the time of the boiling operation of the heat pump water heater of FIG. 図1のヒートポンプ給湯機の沸き上げ運転時における膨張弁3の開度制御を示すフローチャートである。It is a flowchart which shows the opening degree control of the expansion valve 3 at the time of the boiling operation of the heat pump water heater of FIG.

実施の形態1.
図1は、この発明の実施の形態1におけるヒートポンプ給湯機100の構成図である。ヒートポンプ給湯機100は、冷媒を圧縮する圧縮機1と、圧縮機1で圧縮した冷媒と水の熱交換を行う冷媒水熱交換器2と、冷媒水熱交換器2で放熱した冷媒を膨張させる膨張弁3と、膨張弁3で膨張した冷媒と外気の熱交換を行う空気冷媒熱交換器4とを備える。圧縮機1、冷媒水熱交換器2、膨張弁3、空気冷媒熱交換器4は冷媒配管によって環状に接続されヒートポンプ回路1〜4を形成している。また、空気冷媒熱交換器4に外気を送風する手段として送風ファン5を備える。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a heat pump water heater 100 according to Embodiment 1 of the present invention. The heat pump water heater 100 expands the compressor 1 that compresses the refrigerant, the refrigerant water heat exchanger 2 that exchanges heat between the refrigerant compressed by the compressor 1 and water, and the refrigerant that dissipates heat in the refrigerant water heat exchanger 2. An expansion valve 3 and an air refrigerant heat exchanger 4 that exchanges heat between the refrigerant expanded by the expansion valve 3 and the outside air are provided. The compressor 1, the refrigerant water heat exchanger 2, the expansion valve 3, and the air refrigerant heat exchanger 4 are annularly connected by a refrigerant pipe to form heat pump circuits 1 to 4. In addition, a blower fan 5 is provided as means for blowing outside air to the air refrigerant heat exchanger 4.

また、ヒートポンプ給湯機100は、冷媒と水の熱交換を行う冷媒水熱交換器2に供給する水及び沸き上げた湯を蓄える貯湯タンク6と、貯湯タンク6に貯留されている水を貯湯タンク6の下部から吸引して冷媒水熱交換器2に供給するとともに冷媒水熱交換器2から貯湯タンク6に湯を戻す、すなわち、貯湯タンク6と冷媒水熱交換器2との間で湯水を循環させる送水ポンプ7とを備える。貯湯タンク6と、送水ポンプ7と、冷媒水熱交換器2とは循環配管13によって環状に接続されている。給水配管15は、貯湯タンク6の下部に接続されており、水を貯湯タンク6に供給する。給水配管15は、貯湯タンク6の上流側で分岐され、給湯配管16と三方弁14を介して接続されている。給湯配管16は、貯湯タンク6の上部に接続されており、貯湯タンク6に貯留されている温水を例えば家屋内の浴槽(図示せず)に供給するために用いられる。   The heat pump water heater 100 also includes a hot water storage tank 6 that stores water supplied to the refrigerant water heat exchanger 2 that performs heat exchange between the refrigerant and water and water that has been boiled, and water stored in the hot water storage tank 6. 6 is supplied to the refrigerant water heat exchanger 2 and returned to the hot water storage tank 6 from the refrigerant water heat exchanger 2, that is, hot water is supplied between the hot water storage tank 6 and the refrigerant water heat exchanger 2. A water pump 7 for circulation; The hot water storage tank 6, the water pump 7, and the refrigerant water heat exchanger 2 are connected in a ring shape by a circulation pipe 13. The water supply pipe 15 is connected to the lower part of the hot water storage tank 6 and supplies water to the hot water storage tank 6. The water supply pipe 15 is branched on the upstream side of the hot water storage tank 6 and is connected to the hot water supply pipe 16 via the three-way valve 14. The hot water supply pipe 16 is connected to the upper part of the hot water storage tank 6 and is used to supply hot water stored in the hot water storage tank 6 to, for example, a bathtub (not shown) in the house.

制御装置8は、圧縮機1、膨張弁3、及び送風ファン5を制御する。制御装置8は、膨張弁3の開度を変更する開度変更手段を備える。吐出温度サーミスタ9は、圧縮機1から吐出される冷媒の温度すなわち圧縮機1の吐出温度を検出する。入水温度サーミスタ10は、貯湯タンク6から冷媒水熱交換器2に供給される水の温度すなわち冷媒水熱交換器2の入口温度を検出する。出湯温度サーミスタ11は、冷媒水熱交換器2で沸き上げられた湯の温度すなわち冷媒水熱交換器2の出口温度を検出する。外気温度サーミスタ12は、外気温度を検出する。   The control device 8 controls the compressor 1, the expansion valve 3, and the blower fan 5. The control device 8 includes opening degree changing means for changing the opening degree of the expansion valve 3. The discharge temperature thermistor 9 detects the temperature of the refrigerant discharged from the compressor 1, that is, the discharge temperature of the compressor 1. The incoming water temperature thermistor 10 detects the temperature of water supplied from the hot water storage tank 6 to the refrigerant water heat exchanger 2, that is, the inlet temperature of the refrigerant water heat exchanger 2. The hot water temperature thermistor 11 detects the temperature of hot water boiled by the refrigerant water heat exchanger 2, that is, the outlet temperature of the refrigerant water heat exchanger 2. The outside air temperature thermistor 12 detects the outside air temperature.

沸き上げ運転時には、送水ポンプ7によって貯湯タンク6から冷媒水熱交換器2へ送水される。水は冷媒水熱交換器2において、圧縮機1より吐出された高温高圧の冷媒と熱交換されて高温の湯となる。湯は貯湯タンク6に送られ、貯湯タンク6の上部から蓄えられていく。冷媒水熱交換器2において水と熱交換した冷媒は、膨張弁3によって膨張され、空気冷媒熱交換器4で外気と熱交換を行い、圧縮機1に吸入される。   During the boiling operation, water is supplied from the hot water storage tank 6 to the refrigerant water heat exchanger 2 by the water supply pump 7. In the refrigerant water heat exchanger 2, the water is heat-exchanged with the high-temperature and high-pressure refrigerant discharged from the compressor 1 to become high-temperature hot water. Hot water is sent to the hot water storage tank 6 and stored from the upper part of the hot water storage tank 6. The refrigerant that exchanges heat with water in the refrigerant water heat exchanger 2 is expanded by the expansion valve 3, exchanges heat with the outside air in the air refrigerant heat exchanger 4, and is sucked into the compressor 1.

以下、沸き上げ運転時におけるヒートポンプ給湯機100の動作について説明する。制御装置8は、沸き上げ運転時には、入水温度サーミスタ10によって検出された入口温度の現在値と予め設定された期間内における入口温度の平均値との差(以下、入口温度差と称する)が予め設定した温度差閾値以上である場合における膨張弁3の開度を、入口温度差が温度差閾値未満である場合における膨張弁3の開度よりも小さくする。当該期間は、例えば、現時点から過去10分間とすることができる。以下、沸き上げ運転のうち、入口温度差が温度差閾値未満であるときの運転を通常沸き上げ運転と称し、入口温度差が温度差閾値以上であるときの運転を強沸き上げ運転と称する。   Hereinafter, the operation of the heat pump water heater 100 during the boiling operation will be described. During the boiling operation, the control device 8 has a difference between the current value of the inlet temperature detected by the incoming water temperature thermistor 10 and the average value of the inlet temperatures within a preset period (hereinafter referred to as inlet temperature difference) in advance. The opening degree of the expansion valve 3 when it is equal to or larger than the set temperature difference threshold value is made smaller than the opening degree of the expansion valve 3 when the inlet temperature difference is less than the temperature difference threshold value. The period can be, for example, the past 10 minutes from the present time. Hereinafter, among the boiling operations, an operation when the inlet temperature difference is less than the temperature difference threshold is referred to as a normal boiling operation, and an operation when the inlet temperature difference is equal to or greater than the temperature difference threshold is referred to as a strong boiling operation.

また、制御装置8は、入口温度差が温度差閾値以上であり、且つ、一定期間内における入口温度の変化量が予め設定した変化量閾値以上である状態が予め設定した期間以上続いた場合に、膨張弁3の開度を小さくするようにすることもできる。制御装置8は、例えば、1分間における入口温度の上昇量が0.5℃である状態が5分以上続いた場合に、膨張弁3の開度を小さくするようにすることができる。   In addition, the control device 8 determines that the state where the inlet temperature difference is equal to or greater than the temperature difference threshold value and the change amount of the inlet temperature within a certain period is equal to or greater than a preset change amount threshold value continues for a preset period or more. The opening degree of the expansion valve 3 can be reduced. For example, the control device 8 can reduce the opening of the expansion valve 3 when the state in which the amount of increase in the inlet temperature in one minute is 0.5 ° C. continues for 5 minutes or more.

制御装置8は、沸き上げ運転時には、吐出サーミスタ9によって検出された吐出温度が膨張弁制御目標温度となるように膨張弁3の開閉を制御する。膨張弁制御目標温度の初期値は、沸き上げ運転開始時に外気温度サーミスタ12によって取得した外気温度と沸き上げ温度の目標値とに基づいて設定することができる。また、膨張弁制御目標温度の初期値は、外気温度サーミスタ12によって検出された外気温度と、必要な沸上げ能力とに基づいて設定することもできる。制御装置8は、強沸き上げ運転時には、膨張弁制御目標温度に補正温度を加算して膨張弁制御目標温度を更新する。制御装置8は、吐出温度が膨張弁制御目標温度に近づくように膨張弁3の開度を変更する。かかる動作によって、圧縮機1の吐出温度が上昇し、通常沸き上げ運転時に比較して沸き上げ能力の低下を防止することができる。膨張弁制御目標温度の設定詳細については後述する(図3)。   The controller 8 controls the opening and closing of the expansion valve 3 so that the discharge temperature detected by the discharge thermistor 9 becomes the expansion valve control target temperature during the boiling operation. The initial value of the expansion valve control target temperature can be set based on the outside air temperature obtained by the outside air temperature thermistor 12 at the start of the boiling operation and the target value of the boiling temperature. Further, the initial value of the expansion valve control target temperature can be set based on the outside air temperature detected by the outside air temperature thermistor 12 and the required boiling capacity. The control device 8 updates the expansion valve control target temperature by adding the correction temperature to the expansion valve control target temperature during the strong boiling operation. The control device 8 changes the opening degree of the expansion valve 3 so that the discharge temperature approaches the expansion valve control target temperature. By such an operation, the discharge temperature of the compressor 1 rises, and it is possible to prevent the boiling capacity from being lowered as compared with the normal boiling operation. Details of setting the expansion valve control target temperature will be described later (FIG. 3).

沸き上げ運転時のヒートポンプ給湯機100においては、貯湯タンク6の下部から供給される水を、冷媒水熱交換器2において、圧縮機1によって高温高圧に圧縮された冷媒と熱交換することで、高温(例えば65℃〜90℃)の湯に沸き上げ、貯湯タンク6の上部に戻して湯を貯めていく。沸き上げ運転が進み、貯湯タンク6に湯が貯まっていき、高温の湯が貯湯タンク6の下部まで貯まり始めると、冷媒水熱交換器2に供給される水の温度も上昇していく。   In the heat pump water heater 100 during the boiling operation, the water supplied from the lower part of the hot water storage tank 6 is heat-exchanged with the refrigerant compressed to high temperature and high pressure by the compressor 1 in the refrigerant water heat exchanger 2, The water is boiled in hot water (for example, 65 ° C. to 90 ° C.) and returned to the upper part of the hot water storage tank 6 to store the hot water. When the boiling operation proceeds, hot water is stored in the hot water storage tank 6 and hot water starts to be stored up to the lower part of the hot water storage tank 6, the temperature of the water supplied to the refrigerant water heat exchanger 2 also increases.

通常沸き上げ運転時においては、貯湯タンク6内の水の層は低温水の層と高温湯の層とからなり、冷媒水熱交換器2への供給が低温水から高温湯に変わる時点で、冷媒水熱交換器2への給水温度が急に上昇し始める。例えば、図2に示されるように、貯湯タンク全量の水を約10℃から約60℃に沸き上げるとして、全約5時間の沸上げ運転のうち開始から約3.3時間は冷媒水熱交換器2への給水温度はほぼ一定であるが、その後の約1.7時間において、約50℃上昇する。   In normal boiling operation, the water layer in the hot water storage tank 6 is composed of a low temperature water layer and a high temperature hot water layer, and when the supply to the refrigerant water heat exchanger 2 changes from low temperature water to high temperature hot water, The feed water temperature to the refrigerant water heat exchanger 2 starts to rise suddenly. For example, as shown in FIG. 2, assuming that the total amount of water in the hot water storage tank is boiled from about 10 ° C. to about 60 ° C., refrigerant water heat exchange is performed for about 3.3 hours from the start of the boiling operation for about 5 hours. The feed water temperature to the vessel 2 is almost constant, but rises by about 50 ° C. in about 1.7 hours thereafter.

供給される水の温度の上昇に伴い、冷媒水熱交換器2の冷媒出口温度も上昇する。冷媒水熱交換器2の冷媒出口温度が上昇し始めた後においても通常沸き上げ運転を続けた場合、冷媒水熱交換器2における熱交換量が小さくなり、圧縮機1の消費電力に対する沸き上げ能力が減少するため、沸き上げ運転の効率が低下する。そこで、ヒートポンプ給湯機100においては、強沸き上げ運転を行い、膨張弁3の開度を制御して圧縮機1の吐出温度を上昇させることによって、冷媒水熱交換器2における熱交換量の減少を抑制する。それによって、沸き上げ運転の効率低下を防止することができる。   As the temperature of the supplied water rises, the refrigerant outlet temperature of the refrigerant water heat exchanger 2 also rises. When the normal boiling operation is continued even after the refrigerant outlet temperature of the refrigerant water heat exchanger 2 starts to rise, the amount of heat exchange in the refrigerant water heat exchanger 2 decreases, and the boiler 1 heats up with respect to the power consumption of the compressor 1. Since the capacity is reduced, the efficiency of the boiling operation is lowered. Therefore, in the heat pump water heater 100, a strong boiling operation is performed, and the opening temperature of the expansion valve 3 is controlled to increase the discharge temperature of the compressor 1, thereby reducing the heat exchange amount in the refrigerant water heat exchanger 2. Suppress. Thereby, it is possible to prevent a decrease in efficiency of the boiling operation.

以下、図3を参照しつつ、ヒートポンプ給湯機100の制御装置8による沸き上げ運転時における膨張弁3の開度制御について説明する。   Hereinafter, the opening degree control of the expansion valve 3 during the boiling operation by the control device 8 of the heat pump water heater 100 will be described with reference to FIG. 3.

先ず、制御装置8は、外気温度サーミスタ12によって検知された現在の外気温度Taを取得する(ステップS1)。   First, the control device 8 acquires the current outside air temperature Ta detected by the outside air temperature thermistor 12 (step S1).

次に、制御装置8は、ユーザーによって設定された設定沸き上げ温度TPを取得する(ステップS2)。なお、ユーザーは、設定沸き上げ温度TPを、ヒートポンプ給湯機100の表面に設けられた設定パネル又はリモコン(図示せず)により設定できる。   Next, the control apparatus 8 acquires the setting boiling temperature TP set by the user (step S2). Note that the user can set the set boiling temperature TP using a setting panel provided on the surface of the heat pump water heater 100 or a remote controller (not shown).

次に、制御装置8は、ステップS1及びS2で取得した外気温度Ta及び設定沸き上げ温度TPに基づいて膨張弁制御目標温度Tdtを決定する(ステップS3)。例えば、Tdt=TP+(20−Ta)とすることができる。制御装置8は、圧縮機1の吐出温度が膨張弁制御目標温度Tdtとなるように膨張弁3の開度を調整し、沸き上げ運転を開始する。   Next, the control device 8 determines the expansion valve control target temperature Tdt based on the outside air temperature Ta and the set boiling temperature TP acquired in Steps S1 and S2 (Step S3). For example, Tdt = TP + (20−Ta). The control device 8 adjusts the opening degree of the expansion valve 3 so that the discharge temperature of the compressor 1 becomes the expansion valve control target temperature Tdt, and starts the boiling operation.

次に、制御装置8は、入水温サーミスタ10によって検知された入口温度の平均値Twi0を算出し、平均値Twi0と現在の値Twi1との差である入口温度差Tdiを算出して、入口温度差Tdiが温度差閾値Tha以上であるか否かを判別する(ステップS4)。当該判別は、沸き上げ運転開始時から例えば10分後などの予め設定された時間の経過後から開始される。平均値Twi0は、例えば10分などの予め設定された一定期間内における平均値であり、例えば1分間隔などの予め設定された間隔で算出される。この場合、制御装置8は、1分間隔で当該判別を行う。   Next, the control device 8 calculates the average value Twi0 of the inlet temperature detected by the incoming water temperature thermistor 10, calculates the inlet temperature difference Tdi that is the difference between the average value Twi0 and the current value Twi1, and calculates the inlet temperature. It is determined whether or not the difference Tdi is greater than or equal to the temperature difference threshold value Tha (step S4). The determination is started after elapse of a preset time such as 10 minutes after starting the boiling operation. The average value Twi0 is an average value within a preset fixed period such as 10 minutes, and is calculated at a preset interval such as 1 minute. In this case, the control device 8 performs the determination at an interval of 1 minute.

制御装置8は、入口温度差Tdiが閾値Tha以上である場合には補正温度Tdhを算出する。補正温度Tdhは、例えば式Tdh=(Twi1−Twi0)×αによって算出することができる。算出した補正温度Tdhを膨張弁制御目標温度Tdtに加算して膨張弁制御目標温度Tdtを更新する(ステップS5)。   The control device 8 calculates the correction temperature Tdh when the inlet temperature difference Tdi is equal to or greater than the threshold value Tha. The correction temperature Tdh can be calculated by, for example, the equation Tdh = (Twi1−Twi0) × α. The calculated correction temperature Tdh is added to the expansion valve control target temperature Tdt to update the expansion valve control target temperature Tdt (step S5).

なお、制御装置8は、入口温度差Tdiが温度差閾値Tha以上であり、且つ、一定期間内における入口温度の変化量が予め設定した変化量閾値以上である状態が予め設定した期間以上続いた場合に、膨張弁制御目標温度Tdtを更新するようにすることもできる。例えば、1分間における入口温度の上昇量が0.5℃である状態が5分以上続いた場合に、膨張弁制御目標温度Tdtを更新するようにすることもできる。かかる構成によれば、入水温度サーミスタ10による入口温度の誤検出によって入口温度が一時的に上昇して強沸き上げ運転に移行してしまうことを防止できる。   In addition, the controller 8 has the state where the inlet temperature difference Tdi is equal to or greater than the temperature difference threshold value Tha and the change amount of the inlet temperature within a certain period is equal to or greater than the preset change amount threshold value for a preset period or more. In this case, the expansion valve control target temperature Tdt can be updated. For example, the expansion valve control target temperature Tdt may be updated when a state where the amount of increase in the inlet temperature in one minute is 0.5 ° C. continues for 5 minutes or more. According to such a configuration, it is possible to prevent the inlet temperature from temporarily rising due to erroneous detection of the inlet temperature by the incoming water temperature thermistor 10 and shifting to the strong boiling operation.

また、冷媒圧力の過剰な上昇を防ぐため、膨張弁制御目標温度Tdtの上限値Tmを設けることもできる。上限値Tmは例えば20℃である。膨張弁制御目標温度Tdtの算出値が上限値Tmを超える場合には、制御装置8は、膨張弁制御目標温度Tdtを当該上限値Tmとする。   In order to prevent an excessive increase in the refrigerant pressure, an upper limit value Tm of the expansion valve control target temperature Tdt can also be provided. The upper limit value Tm is, for example, 20 ° C. When the calculated value of the expansion valve control target temperature Tdt exceeds the upper limit value Tm, the control device 8 sets the expansion valve control target temperature Tdt to the upper limit value Tm.

制御装置8は、膨張弁制御目標温度Tdtに基づいて膨張弁3の開度を変更する。例えば、制御装置8は、膨張弁3の開度を膨張弁制御目標温度Tdtに反比例するように変更することができる。また、制御装置8は、膨張弁制御目標温度Tdtと膨張弁3の開度との対応を予め設定したテーブルを備え、膨張弁3の開度を現在の膨張弁制御目標温度Tdtに対応する開度に変更することもできる。   The control device 8 changes the opening degree of the expansion valve 3 based on the expansion valve control target temperature Tdt. For example, the control device 8 can change the opening degree of the expansion valve 3 so as to be inversely proportional to the expansion valve control target temperature Tdt. Further, the control device 8 includes a table in which the correspondence between the expansion valve control target temperature Tdt and the opening degree of the expansion valve 3 is set in advance, and the opening degree of the expansion valve 3 is opened corresponding to the current expansion valve control target temperature Tdt. It can be changed at any time.

次に、制御装置8は、給水温度が設定沸き上げ温度TPに達した場合、又はユーザーからの沸き上げ終了指示があった場合に沸き上げ運転を終了し、それまではステップS4及びS5の制御を行う(ステップS6)。   Next, the control device 8 ends the boiling operation when the feed water temperature reaches the set boiling temperature TP or when there is a boiling end instruction from the user. Until then, the control of steps S4 and S5 is performed. (Step S6).

上記したように、本実施形態のヒートポンプ給湯機100においては、冷媒水熱交換器2の一定期間内の入口温度の平均値Twi0と現在の値Twi1との差である入口温度差Tdiが温度差閾値Tha以上である場合に膨張弁3の開度を小さくする。貯湯タンク6の上層から下層に向かって徐々に高温湯が貯まっていき、下層から冷媒水熱交換器2に供給されていくので、沸き上げ運転開始時から所定期間が経過するまでは、冷媒水熱交換器2の入口温度はほとんど変化しない。当該期間においては入口温度の平均値にほとんど変化がないので、制御装置8は、通常沸き上げ運転を行い、補正値Tdhを算出せず、膨張弁制御目標温度Tdtの更新も行わない。高温湯が貯湯タンク6の下層にまで貯まった時点すなわち冷媒水熱交換器2における熱交換量が減少して沸き上げ能力が低下し始める時点から、冷媒水熱交換器2の入口温度も上昇する。入口温度の上昇によって、入口温度の現在の値Twi1は、所定期間の平均値Twi0から乖離し始める。ヒートポンプ給湯機100においては、入口温度差Tdiが温度差閾値Tha以上となったときに補正温度Tdhを算出し、これを膨張弁制御一定温度Tdtに加算して膨張弁制御目標温度Tdtを更新する。圧縮機1の吐出温度が膨張弁制御目標温度Tdtに近づくように膨張弁3の開度を小さくすることによって、冷媒水熱交換器2に供給される冷媒の温度を上昇させて、強沸き上げ運転を行い、熱交換量が低下することを防止する。   As described above, in the heat pump water heater 100 of the present embodiment, the inlet temperature difference Tdi, which is the difference between the average value Twi0 of the refrigerant water heat exchanger 2 within a certain period and the current value Twi1, is a temperature difference. The opening degree of the expansion valve 3 is reduced when it is equal to or greater than the threshold Tha. Since hot water is gradually stored from the upper layer toward the lower layer of the hot water storage tank 6 and is supplied to the refrigerant water heat exchanger 2 from the lower layer, the refrigerant water is used until a predetermined period elapses from the start of the boiling operation. The inlet temperature of the heat exchanger 2 hardly changes. Since there is almost no change in the average value of the inlet temperature during this period, the control device 8 performs the normal boiling operation, does not calculate the correction value Tdh, and does not update the expansion valve control target temperature Tdt. The inlet temperature of the refrigerant water heat exchanger 2 also rises from the time when the hot water is stored in the lower layer of the hot water storage tank 6, that is, from the time when the amount of heat exchange in the refrigerant water heat exchanger 2 decreases and the boiling capacity starts to decrease. . As the inlet temperature rises, the current value Twi1 of the inlet temperature starts to deviate from the average value Twi0 for a predetermined period. In the heat pump water heater 100, the correction temperature Tdh is calculated when the inlet temperature difference Tdi becomes equal to or higher than the temperature difference threshold value Tha, and this is added to the expansion valve control constant temperature Tdt to update the expansion valve control target temperature Tdt. . By reducing the opening of the expansion valve 3 so that the discharge temperature of the compressor 1 approaches the expansion valve control target temperature Tdt, the temperature of the refrigerant supplied to the refrigerant water heat exchanger 2 is increased, and the boiling point is increased. Operate and prevent the heat exchange rate from decreasing.

このように、ヒートポンプ給湯機100においては、沸き上げ運転開始時からある程度の時間が経過して冷媒水熱交換器2における熱交換効率が低下し始めたことを、冷媒水熱交換器2の入口温度の現在の値Twi1が平均値Twi0から温度差閾値Tha以上離れたことをもって検出する。それ故、熱交換効率が低下し始めた時点から直ぐに圧縮機1の吐出温度を上昇させることができ、熱交換量が低下することを防止することができる。   As described above, in the heat pump water heater 100, the refrigerant water heat exchanger 2 has an inlet that the heat exchange efficiency in the refrigerant water heat exchanger 2 has started to decrease after a certain amount of time has elapsed since the start of the boiling operation. This is detected when the current temperature value Twi1 is more than the temperature difference threshold value Tha from the average value Twi0. Therefore, the discharge temperature of the compressor 1 can be increased immediately from the time when the heat exchange efficiency starts to decrease, and the heat exchange amount can be prevented from decreasing.

また、制御装置8は、一定期間内における入口温度の変化量が予め設定した変化量閾値以上である状態が予め設定した期間以上続いた場合に、膨張弁3の開度を小さくするようにすることもできる。かかる構成によれば、入水温度サーミスタ10による入口温度の誤検出によって入口温度が一時的に上昇した場合であっても、通常沸き上げ運転から強沸き上げ運転への移行の誤動作を防止することができる。   Further, the control device 8 reduces the opening degree of the expansion valve 3 when a state in which the amount of change in the inlet temperature within a certain period is equal to or greater than a preset change amount threshold value continues for a preset period. You can also. According to such a configuration, even when the inlet temperature temporarily rises due to erroneous detection of the inlet temperature by the incoming water temperature thermistor 10, it is possible to prevent a malfunction in the transition from the normal boiling operation to the strong boiling operation. it can.

また、補正温度Tdtに上限値を設けることもできる。かかる構成によれば、冷媒圧力の過剰な上昇を防いで、圧縮機1の故障を防止することができる。   In addition, an upper limit value can be set for the correction temperature Tdt. According to such a configuration, it is possible to prevent the compressor 1 from malfunctioning by preventing an excessive increase in the refrigerant pressure.

1 圧縮機
2 熱交換器
3 膨張弁
4 蒸発器
5 送風ファン
6 貯湯タンク
7 送水ポンプ
8 制御手段
9 吐出温度サーミスタ
10 入水温度サーミスタ
11 出湯温度サーミスタ
12 外気温度サーミスタ
13 循環配管
14 三方弁
15 給水配管
16 給湯配管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchanger 3 Expansion valve 4 Evaporator 5 Blower fan 6 Hot water storage tank 7 Water supply pump 8 Control means 9 Discharge temperature thermistor 10 Incoming temperature thermistor 11 Outlet temperature thermistor 12 Outside temperature thermistor 13 Circulation piping 14 Three-way valve 15 Supply piping 16 Hot water supply piping

Claims (4)

圧縮機、冷媒水熱交換器、膨張弁及び空気冷媒熱交換器が環状に接続された冷媒回路を有し、前記冷媒水熱交換器により水を加熱して温水を生成するヒートポンプと、
前記ヒートポンプにより加熱された温水を貯留する貯湯タンクと、
前記貯湯タンクと前記冷媒水熱交換器との間で湯水を循環させる送水ポンプと、
前記冷媒水熱交換器に流入する水の温度である入口温度を検出する入口温度検出部と、を備え、
前記入口温度の現在値と予め設定した期間における前記入口温度の平均値との差が予め設定した温度差閾値以上である場合における前記膨張弁の開度を、前記入口温度の現在値と前記入口温度の平均値との差が前記温度差閾値未満である場合における前記膨張弁の開度よりも小さくする開度変更手段を含むことを特徴とするヒートポンプ給湯機。
A heat pump that has a refrigerant circuit in which a compressor, a refrigerant water heat exchanger, an expansion valve, and an air refrigerant heat exchanger are annularly connected, and generates water by heating water by the refrigerant water heat exchanger;
A hot water storage tank for storing hot water heated by the heat pump;
A water supply pump for circulating hot water between the hot water storage tank and the refrigerant water heat exchanger;
An inlet temperature detection unit that detects an inlet temperature that is a temperature of water flowing into the refrigerant water heat exchanger,
The degree of opening of the expansion valve when the difference between the current value of the inlet temperature and the average value of the inlet temperature in a preset period is equal to or greater than a preset temperature difference threshold, the current value of the inlet temperature and the inlet A heat pump water heater, comprising: an opening changing means for making the difference between the average value of the temperatures smaller than the opening of the expansion valve when the difference is less than the temperature difference threshold.
前記開度変更手段は、一定期間内における前記入口温度の変化量が予め設定した変化量閾値以上である状態が予め設定した期間以上続いた場合に前記膨張弁の開度を小さくすることを特徴とする請求項1に記載のヒートポンプ給湯機。   The opening degree changing means reduces the opening degree of the expansion valve when a state in which the change amount of the inlet temperature within a certain period is equal to or greater than a preset change amount threshold value continues for a preset period or longer. The heat pump water heater according to claim 1. 前記圧縮機の吐出温度を検出する吐出温度サーミスタを含み、
前記開度変更手段は、前記入口温度の現在値と前記入口温度の平均値との差が前記温度差閾値以上である場合に補正値を算出して前記補正値を予め設定された膨張弁制御目標温度に加算して前記膨張弁制御目標温度を更新し、前記吐出温度が当該更新後の膨張弁制御目標温度となるように前記膨張弁の開度を小さくすることを特徴とする請求項1又は2に記載のヒートポンプ給湯機。
Including a discharge temperature thermistor for detecting the discharge temperature of the compressor;
The opening changing means calculates a correction value when the difference between the current value of the inlet temperature and the average value of the inlet temperature is equal to or greater than the temperature difference threshold value, and the correction value is set in advance by the expansion valve control. 2. The expansion valve control target temperature is updated by adding to a target temperature, and the opening degree of the expansion valve is decreased so that the discharge temperature becomes the updated expansion valve control target temperature. Or the heat pump hot-water supply apparatus of 2.
前記膨張弁制御目標温度には、予め上限値が設定されており、
前記開度変更手段は、前記補正値を前記膨張弁制御目標温度に加算して得られた値が前記上限値を超える場合には、前記上限値を前記膨張弁制御目標温度とすることを特徴とする請求項3に記載のヒートポンプ給湯機。
An upper limit value is set in advance for the expansion valve control target temperature,
The opening degree changing means sets the upper limit value as the expansion valve control target temperature when a value obtained by adding the correction value to the expansion valve control target temperature exceeds the upper limit value. The heat pump water heater according to claim 3.
JP2014183819A 2014-09-10 2014-09-10 Heat pump hot water supply Active JP6131921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183819A JP6131921B2 (en) 2014-09-10 2014-09-10 Heat pump hot water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183819A JP6131921B2 (en) 2014-09-10 2014-09-10 Heat pump hot water supply

Publications (2)

Publication Number Publication Date
JP2016057003A JP2016057003A (en) 2016-04-21
JP6131921B2 true JP6131921B2 (en) 2017-05-24

Family

ID=55756537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014183819A Active JP6131921B2 (en) 2014-09-10 2014-09-10 Heat pump hot water supply

Country Status (1)

Country Link
JP (1) JP6131921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7355476B2 (en) 2016-01-15 2023-10-03 ソニーグループ株式会社 cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739950B2 (en) * 2018-02-23 2023-08-29 Mitsubishi Electric Corporation Hot water supply apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659197B2 (en) * 2000-06-21 2005-06-15 松下電器産業株式会社 Heat pump water heater
JP3855902B2 (en) * 2002-09-26 2006-12-13 ダイキン工業株式会社 Heat pump water heater
JP2006177622A (en) * 2004-12-22 2006-07-06 Denso Corp Water heater
JP5426239B2 (en) * 2009-06-08 2014-02-26 株式会社前川製作所 Hot water supply apparatus and operation method thereof
JP5840062B2 (en) * 2012-04-09 2016-01-06 日立アプライアンス株式会社 Heat pump type liquid heating device and heat pump type water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7355476B2 (en) 2016-01-15 2023-10-03 ソニーグループ株式会社 cable

Also Published As

Publication number Publication date
JP2016057003A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5524571B2 (en) Heat pump equipment
JP2009281665A (en) Storage water heater and storage water heater heating device
JP6131921B2 (en) Heat pump hot water supply
JP2015055389A (en) Hot water system and control method thereof
JP2010266135A (en) Heat pump type water heater
JP5329245B2 (en) Water heater
JP2006266596A (en) Hot water storage type water heater
JP5176474B2 (en) Heat pump water heater
JP2007218485A (en) Heat pump type water heater and control device for heat pump type water heater
JP2005140439A (en) Heat pump water heater
JP2007078200A (en) Heat pump water heater
JP2008224067A (en) Heat pump hot water supply device
JP2005147437A (en) Heat pump device
JP2009287794A (en) Heat pump type water heater
JP6301847B2 (en) Heat pump type water heater
JP5254660B2 (en) Control method for hot water heater
JP5401913B2 (en) Heat pump water heater
JP2009063262A (en) Heat pump type water heater
JP5471552B2 (en) Hot water storage water heater
JP2005188923A (en) Heat pump water heater
JP2014016041A (en) Hot-water supply apparatus
JP5703849B2 (en) Heat pump type water heater
JP2009121704A (en) Heat pump type water heater
JP2009085476A (en) Heat pump water heater
JP5298813B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R151 Written notification of patent or utility model registration

Ref document number: 6131921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250