JP2004156847A - Hot-water supply device - Google Patents

Hot-water supply device Download PDF

Info

Publication number
JP2004156847A
JP2004156847A JP2002323455A JP2002323455A JP2004156847A JP 2004156847 A JP2004156847 A JP 2004156847A JP 2002323455 A JP2002323455 A JP 2002323455A JP 2002323455 A JP2002323455 A JP 2002323455A JP 2004156847 A JP2004156847 A JP 2004156847A
Authority
JP
Japan
Prior art keywords
heating
hot water
storage tank
amount
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002323455A
Other languages
Japanese (ja)
Other versions
JP3788419B2 (en
Inventor
Keijiro Kunimoto
啓次郎 國本
Takeji Watanabe
竹司 渡辺
Masahiro Ohama
昌宏 尾浜
Yoshitsugu Nishiyama
吉継 西山
Koji Oka
浩二 岡
Tetsuei Kuramoto
哲英 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002323455A priority Critical patent/JP3788419B2/en
Publication of JP2004156847A publication Critical patent/JP2004156847A/en
Application granted granted Critical
Publication of JP3788419B2 publication Critical patent/JP3788419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-water supply device carrying out heating of a hot water storage tank in a midnight power time zone wherein electricity cost is low. <P>SOLUTION: By providing a heating means 16 for heating water in the hot water storage tank 15 by a predetermined heating amount to carry out heating operation, and a heating control means 17 for changing the heating amount when there is operation other than the heating operation in a predetermined time, the hot water storage tank 15 can be heated in the predetermined time since the heating amount is corrected by the heating control means 17 so that the hot water storage tank 15 is heated in the predetermined time even when a heating operation condition of the hot water storage tank 15 changes, heating of the heating means 16 stops, and the heating amount changes within the predetermined time of the midnight power time zone. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、貯湯式の給湯装置に関するものである。
【0002】
【従来の技術】
従来の給湯装置としては、特許文献1に記載されているような給湯装置が提案されていた。この給湯装置は図4に示すように、大気から熱を汲み上げて貯湯タンク1の水を沸き上げるヒートポンプ回路2を備えた給湯機であり、ヒートポンプ回路2が、冷媒を圧縮する圧縮機3と、冷媒と貯湯タンク1からの水とを熱交換させる給湯側熱交換器4と、冷媒と浴槽5からの浴槽水とを熱交換させる外熱源側熱交換器6と、冷媒と大気とを熱交換させる大気側熱交換器7と、冷媒を減圧する第1および第2減圧器8、9と、冷媒循環路10を切替える冷媒循環路切替器11とを有し、この冷媒循環路切替器11は、貯湯タンク1の水を沸き上げる場合には、冷媒を圧縮機3、給湯側熱交換器4、第2減圧器9、大気側熱交換器7を順次循環するように冷媒循環路10を切替え、また浴槽水から熱を汲み上げる貯湯タンク1を沸き上げる、いわいる風呂廃熱回収運転をする場合には、冷媒を圧縮機3、給湯側熱交換器4、第1減圧器8、外熱源側熱交換器7を順次循環するように冷媒循環路10を切替え、また貯湯タンク1を沸き上げながら浴槽水追焚きする場合や貯湯タンク1を沸き上げながら除霜運転をする場合には、冷媒を圧縮機3、給湯側熱交換器4、外熱源側熱交換器6、第1減圧器8を順次循環するように冷媒循環路を切替えように作用する。このように、貯湯タンクを沸き上げたり、風呂の追焚きや除霜運転ができるようにしている。
【0003】
一般にヒートポンプにより貯湯タンクを沸き上げる給湯機は、料金が安くなる深夜電力を利用して1日に使用する温水を貯湯タンクに貯めていた。したがって定められた時間帯で加熱が終了するように加熱量が設定される。
【0004】
しかし、深夜電力時間帯に従来例のように風呂の追焚きや除霜運転を行うと、その間の貯湯タンクへの加熱量が無くなるか、大幅に抑制されるため、深夜電力時間帯での加熱が不足する場合が発生し、貯湯湯量が不足し湯切れが起こったり、料金の高い昼間の電力で貯湯タンクの沸き上げ行うことで電力料金が高くなってしまうなどの問題があった。
【0005】
この加熱量の不足は、風呂追焚きや、除霜運転や、風呂廃熱回収運転への切替え時のロスなどによっても発生する可能性がある。
【0006】
【特許文献1】
特開2001−91096号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記従来の課題を解決するもので、電気代の安い深夜電力時間帯に貯湯タンクの沸き上げをする給湯装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、本発明の給湯装置は、所定時間内において沸き上げ運転以外の動作が発生した場合に、沸き上げの加熱量を変更するように制御するものである。
【0009】
上記発明によれば、たとえば所定時間内で一時的に貯湯タンクの沸き上げ運転を停止する事態が生じても、この停止期間の不足熱量を補正して沸き上げ運転を再開するので、所定時間で貯湯タンク内の水を所定量沸かすことができる。
【0010】
【発明の実施の形態】
請求項1に記載の発明の給湯装置は、貯湯タンク内の水を予め定めた加熱量で加熱して沸き上げ運転する加熱手段と、所定時間内に前記沸き上げ運転以外の動作が発生した場合に前記加熱量を変更する加熱制御手段とを備えたものである。
【0011】
この発明によれば、深夜電力時間帯等の所定時間内で、貯湯タンクの沸き上げ運転状況に変化が生じて、加熱手段の加熱が停止したり、加熱量が変化しても、加熱量を加熱制御手段により所定時間で貯湯タンクが沸きあがるように補正するので、所定時間に貯湯タンクを沸き上げることができる。
【0012】
請求項2に記載の発明の給湯装置は、加熱手段には風呂水を加熱する風呂加熱運転を備え、請求項1に記載の加熱制御手段が、加熱手段が風呂加熱運転を行う場合に、前記風呂加熱運転に応じて加熱手段の加熱量を増加するものである。
【0013】
この発明によれば、所定時間内で風呂加熱運転をすることにより貯湯タンクの沸き上げが停止したり加熱量が抑制されるなどにより加熱量が不足しても、加熱制御手段により加熱量を補正して貯湯タンクの沸き上げを行うので、所定時間で貯湯タンクを沸き上げることができる。
【0014】
請求項3に記載の発明の給湯装置は、加熱手段には空調を行う空調運転を備え、請求項1に記載の加熱制御手段が、加熱手段が空調運転を行う場合に、前記空調運転に応じて加熱手段の加熱量を増加するものである。
【0015】
この発明によれば、所定時間内で加熱手段により暖房や冷房や乾燥といった空調運転をすることにより、貯湯タンクの沸き上げの加熱量が不足しても、加熱制御手段により加熱量を補正するので、所定時間で貯湯タンクを沸き上げることができる。
【0016】
請求項4に記載の発明の給湯装置は、請求項1に記載の加熱制御手段が、所定時間内に給湯運転が発生した場合に、前記給湯運転に応じて加熱手段の加熱量を増加するものである。
【0017】
この発明によれば、所定時間内での給湯により、貯湯タンクから湯が出湯されるために貯湯タンクの沸き上げの加熱量が不足しても、加熱制御手段により加熱量を補正するので、所定時間で貯湯タンクを沸き上げることができる。
【0018】
請求項5に記載の発明の給湯装置は、加熱手段をヒートポンプサイクルより構成し、前記ヒートポンプサイクルの蒸発器に発生する着霜に応じて除霜を行う除霜運転を備え、請求項1に記載の加熱制御手段が、加熱手段が除霜運転を行う場合に、前記除霜運転に応じて加熱手段の加熱量を増加するものである。
【0019】
この発明によれば、所定時間内で除霜運転により、貯湯タンクの沸き上げの加熱量が不足しても、加熱制御手段により加熱量を補正するので、所定時間で貯湯タンクを沸き上げることができる。
【0020】
請求項6に記載の発明の給湯装置は、請求項5に記載の加熱制御手段が、除霜運転を予測し、前記除霜運転の予測結果に応じて予め加熱手段の加熱量を増加するものである。
【0021】
この発明によれば、加熱制御手段により予め加熱量を補正して沸き上げ運転をするので、所定時間で一定の加熱量で沸き上げることができ、運転効率はよくなる。
【0022】
請求項7に記載の発明の給湯装置は、加熱手段を、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により貯湯タンク内の水を加熱するように構成している。
【0023】
この発明によれば、貯湯タンクの水と熱交換する冷媒は、臨界圧力以上に加圧されているので、貯湯タンクの水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0024】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。なお、各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。
【0025】
(実施例1)
図1は本発明の第1の実施例における給湯装置の構成図を示す。本実施例は一般家庭用の給湯装置で、主に割安な深夜電力を利用して給湯の湯を貯留するもので、貯湯タンク15と、この貯湯タンク15の水を加熱して沸き上げ運転をするヒートポンプサイクルである加熱手段16と、所定時間である深夜電力時間帯において、貯湯タンク15内の水を所定量すなわち貯湯タンク15に高温の湯を満たす量を沸かす加熱制御手段17とから構成される。
【0026】
加熱手段16は、圧縮機18、放熱器19、減圧手段20、吸熱器21が冷媒流路22により閉回路に接続されている。この加熱手段16は、例えば炭酸ガス(CO2)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機18は、内蔵する電動モータ(図示しない)によって駆動され、吸引した冷媒を臨界圧力を超える圧力まで圧縮して吐出する。また、23は放熱器19の冷媒と熱交換を行う水流路24を備えた熱交換器である。
【0027】
25は貯湯タンク15底部から給水し貯湯タンク15上部に戻す循環ポンプ26有した循環路で、貯湯タンク15内の沸き上げは、この循環路25の水を流す熱交換器23の水流路24に接続して流水を加熱して行う。
【0028】
加熱制御手段17は、予め定めた加熱量で加熱手段16を制御する通常の沸き上げ運転制御と、深夜電力時間帯に沸き上げ運転以外の動作が発生した場合に加熱量を変更して沸き上げ運転する補正沸き上げ運転制御を有する。
【0029】
加熱制御手段17における通常の沸き上げ運転制御は、水流路24の出口近傍に設け、流水の加熱温度を検出する加熱センサ28の検出値を入力して、循環ポンプ26と、圧縮機18と、減圧手段20を制御し、所定温度(例えば85℃)の湯が水流路24の出口から出湯するようにしている。これによって、貯湯タンク15内の上方が高温に、下方が低温に分かれ温度成層27が形成され、沸き上げ運転にしたがって温度成層27は貯湯タンク15の下方に移動し、最終は貯湯タンク15内が全て高温になる。この貯湯タンク15全体の沸き上げは深夜電力時間帯(例えば23時から翌朝の7まで)で沸きあがるように加熱量を予め定めている。そしてこの深夜電力時間帯以外の時間帯では貯湯タンク15の残湯を検知する残湯センサ29の検出値に応じて適宜沸き上げ運転が入るようになっている。
【0030】
加熱量は、冬場においても深夜電力時間帯(8時間)で貯湯タンク15内が全て所定温度に沸きあがるように次式により加熱量を設定する。
【0031】
Q=V×(Ts−Tw)/(8×860×η)
ただし、Q:加熱量(kW)
V:タンク容量(L)
Ts:沸き上げ温度(℃)
Tw:貯湯タンク内初期温度(℃)
η:加熱効率
例えば貯湯タンク15が370L、貯湯タンク15内の水が5℃、沸き上げ温度が85℃、加熱効率1.0とすると加熱量Qは4.3kWとなり、余裕をみて4.5kWで加熱量を設定する。そして、この加熱量は年間を通じて一定に定めることで、確実に沸き上げができる。
【0032】
加熱制御手段17の補正沸き上げ運転制御は、深夜電力時間帯に貯湯タンク15に給湯運転が発生した場合に、この給湯運転に応じて加熱手段16の加熱量Qを増加させ、沸き上げ運転を行う。
【0033】
給湯運転は、貯湯タンク15底部に接続される給水管30から水道水が供給され、貯湯タンク15上部に設けた出湯管31からから出湯される。32は混合弁で、出湯管31からの湯と水道水を混合して適温の湯を給湯管33に出湯する。加熱制御手段17は、給湯運転を給湯管33に設けられた流量センサ34によって検知し、給湯運転の終了時点で補正する加熱量Qcを次式により求める。
【0034】
Qc=(V−Vz)×(Ts−Tw)/(Tiz×860×η)
ただし、Vz:残湯量(L)
Tiz:深夜電力時間帯の残り時間(h)
ここで、残湯量Vzは残湯センサ29により検出される貯湯タンクの温度成層27の上方の高温の湯量のことである。ここで、QcがQよりも大きければ加熱量はQcに変更して沸き上げ運転を行い、QcがQより小さければ加熱量はQのまま運転する。
【0035】
たとえば、給湯運転により多量の湯が貯湯タンク15から出湯されると、温度成層27は貯湯タンク15上方に移動し、残湯量Vzが減少する。この結果Qcが大きくなると、この算定以降の貯湯タンク15の沸き上げ運転は、加熱量をQcに変更して行う。したがって、残り時間Tizで、所定の沸き上げ温度Tsに貯湯タンク15全体を沸かすことができる。
【0036】
加熱制御手段17の補正沸き上げ運転制御は、深夜電力時間帯に加熱手段16に除霜運転が発生した場合にも、この除霜運転に応じて加熱手段16の加熱量Qを増加させ、沸き上げ運転を行う。
【0037】
除霜運転は、冷媒流路22の放熱器19と減圧手段20とをバイパスするバイパス路34と、このバイパス路35に設けた開閉弁36を備え、冬期に沸き上げ運転を行って吸熱器21に霜が付着する場合に、開閉弁36を開き、圧縮機18と吸熱器20の間で冷媒循環を行い、圧縮機18の運転発熱により霜を溶かす除霜運転を行う。そして加熱制御手段17は、給湯運転時と同様に除霜運転の終了時点で補正する加熱量Qcを求め、残り時間Tizで貯湯タンク15全体が深夜電力時間帯で沸かせるように加熱量を増加する。
【0038】
なお、除霜運転は外気温度によって除霜運転の有無が予測できるので、深夜電力時間帯による沸き上げ運転開始時点の外気温度により除霜運転による不足熱量を想定して、最初から加熱量を増加させて運転してもよい。この方法によれば、沸き上げ運転時の加熱量を一定にできるので、加熱効率がよい。
【0039】
(実施例2)
図2は、本発明の第2の実施例の給湯装置の構成図である。なお、実施例1の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。
【0040】
図において、実施例1の構成と異なるところは、加熱手段16には浴槽40風呂水41を加熱する風呂加熱運転を備え、加熱制御手段17は加熱手段16が風呂加熱運転を行う場合に、風呂加熱運転に応じて加熱手段16の加熱量を増加するようにした点にある。
【0041】
具体的には風呂水41を加熱する風呂熱交換器42を備え、この風呂熱交換器42には風呂用放熱器43と風呂水を流す風呂用水流路44を備え、風呂用放熱器43の冷媒と風呂用水流路44の風呂水とを熱交換させる。浴槽40には、風呂水41を風呂用水流路43に循環する風呂循環回路45が接続され、風呂循環路45には循環用の風呂ポンプ46が備えられている。一方、風呂用放熱器42は放熱機19と並列に冷媒流路22に配置し、この両者を冷媒分岐弁47により切りかえるように構成している。
【0042】
そして風呂加熱運転を行う場合は、冷媒分岐弁47を切替えて冷媒が風呂用放熱器44に流れるようにする。そして、循環ポンプ26を停止し、風呂ポンプ46を駆動することにより、風呂用熱交換器42で風呂用水流路43が加熱されて風呂水41の温度が上昇する。
【0043】
加熱制御手段17は、深夜電力時間帯に風呂加熱運転が行われた場合は、風呂加熱運転終了時点で実施例1と同様に補正する加熱量Qcを求め、残り時間Tizで貯湯タンク15全体が深夜電力時間帯で沸かせるように加熱量を増加する。
【0044】
以上のように、実施例2の構成および作用にいよれば、深夜電力時間帯の沸き上げ運転中に、風呂加熱運転が割り込んできても、この風呂加熱運転の時間分だけ残り時間Tizが短くなり、それに応じて補正する加熱量Qcは大きくなる。その結果深夜電力時間帯で貯湯タンク15内の水を沸き上げ設定温度に沸かすことができるように補正される。
【0045】
(実施例3)
図3は、本発明の第3の実施例の給湯装置の構成図である。なお、実施例1および実施例2の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。
【0046】
図において、実施例1および実施例2の構成と異なるところは、加熱手段16に空調用の室内機50を接続し、暖房、浴室乾燥、冷房、除湿等の空調運転を備え、加熱制御手段17は加熱手段16が空調運転を行う場合に、この空調運転に応じて加熱手段16の加熱量を増加するようにした点にある。
【0047】
室内機50は、室内熱交換器51と送風機52を備え、この室内熱交換器51は冷媒と送風による室内空気とを熱交換させる。そしてこの室内熱交換器51は放熱機19と並列に冷媒流路22に配置し、この両者を冷媒分岐弁47により切りかえるように構成している。また、圧縮機18の入口と出口には冷媒の流れ方向を切りかえる切替え弁53が設けられ、暖房運転(実線)、冷房運転(点線)を切替える。
【0048】
そして空調運転を行う場合は、冷媒分岐弁47を切替えて冷媒が室内熱交換器51に流れるようにする。そして、循環ポンプ26を停止し、送風機52を駆動することにより、室内熱交換器51で室内空気が加熱または冷却されて空調される。
【0049】
加熱制御手段17は、深夜電力時間帯に空調運転が行われた場合は、空調運転終了時点で実施例1と同様に補正する加熱量Qcを求め、残り時間Tizで貯湯タンク15全体が深夜電力時間帯で沸かせるように加熱量を増加する。
【0050】
したがって深夜電力時間帯の沸き上げ運転中に、空調運転が割り込んできても、この風呂加熱運転の時間分だけ残り時間Tizが短くなり、それに応じて補正する加熱量Qcは大きくなる。その結果深夜電力時間帯で貯湯タンク15内の水を沸き上げ設定温度に沸かすことができるように補正される。
【0051】
ただし、加熱量Qcは能力に限界があるので、Qcが上限を超えた場合は上限の加熱量で沸き上げ運転を行い、不足分は深夜電力以外の時間帯で沸き上げることになる。
【0052】
なお、実施例では加熱手段に超臨界ヒートポンプサイクルを用いたが、もちろん通常のヒートポンプサイクルでも良いし、一般のヒータでも同様の効果が得られる。
【0053】
【発明の効果】
以上のように、本発明によれば、電気代の安い深夜電力時間帯に貯湯タンクの沸き上げをする給湯装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1における給湯装置の構成図
【図2】同実施例2における給湯装置の構成図
【図3】同実施例3における給湯装置の構成図
【図4】従来の給湯装置の構成図
【符号の説明】
15 貯湯タンク
16 加熱手段(ヒートポンプサイクル)
17 加熱制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot water supply type hot water supply apparatus.
[0002]
[Prior art]
As a conventional hot water supply device, a hot water supply device as described in Patent Document 1 has been proposed. As shown in FIG. 4, this water heater is a water heater provided with a heat pump circuit 2 that draws heat from the atmosphere to boil water in a hot water storage tank 1. The heat pump circuit 2 includes a compressor 3 that compresses a refrigerant, A hot water supply side heat exchanger 4 for exchanging heat between the refrigerant and water from the hot water storage tank 1, an external heat source side heat exchanger 6 for exchanging heat between the refrigerant and bathtub water from the bathtub 5, and a heat exchange between the refrigerant and the atmosphere. And a first and second decompressors 8 and 9 for decompressing the refrigerant, and a refrigerant circuit switching device 11 for switching the refrigerant circuit 10. The refrigerant circuit switching device 11 When the water in the hot water storage tank 1 is to be boiled, the refrigerant circulation path 10 is switched so that the refrigerant circulates through the compressor 3, the hot water supply side heat exchanger 4, the second decompressor 9, and the atmosphere side heat exchanger 7 sequentially. Boil the hot water storage tank 1 that draws heat from the bathtub water, When the bath waste heat recovery operation is performed, the refrigerant circulation path 10 is circulated through the compressor 3, the hot water supply side heat exchanger 4, the first decompressor 8, and the external heat source side heat exchanger 7 in order. In the case of switching, or when reheating the bathtub water while boiling the hot water storage tank 1 or performing the defrosting operation while boiling the hot water storage tank 1, the refrigerant is cooled by the compressor 3, the hot water supply side heat exchanger 4, and the external heat source side heat. The refrigerant circulation path is switched so that the exchanger 6 and the first decompressor 8 are sequentially circulated. In this way, the hot water storage tank can be boiled, the bath can be reheated, and the defrosting operation can be performed.
[0003]
Generally, a water heater that uses a heat pump to heat a hot water storage tank stores hot water used for one day in the hot water storage tank using late-night electric power, which is cheaper. Therefore, the heating amount is set so that the heating is completed in a predetermined time zone.
[0004]
However, if the additional heating or defrosting operation of the bath is performed during the midnight power hours as in the conventional example, the amount of heat to the hot water storage tank during that time will be lost or greatly reduced. There is a problem that the amount of hot water is insufficient and the amount of hot water is insufficient and the hot water runs out.
[0005]
The shortage of the heating amount may also occur due to a loss at the time of switching to a bath reheating, a defrosting operation, or a bath waste heat recovery operation.
[0006]
[Patent Document 1]
JP 2001-91096 A
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a hot water supply apparatus that heats a hot water storage tank during a late-night power time when electricity costs are low.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a hot water supply apparatus which controls so as to change a heating amount of boiling when an operation other than the boiling operation occurs within a predetermined time.
[0009]
According to the above invention, for example, even when the boiling operation of the hot water storage tank is temporarily stopped within a predetermined time, the boiling operation is restarted by correcting the insufficient heat amount during the stop period. A predetermined amount of water in the hot water storage tank can be boiled.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The hot water supply device according to the first aspect of the present invention provides a heating device that heats water in a hot water storage tank by a predetermined heating amount and performs a boiling operation, and an operation other than the boiling operation occurs within a predetermined time. And heating control means for changing the heating amount.
[0011]
According to the present invention, the heating amount of the heating means is stopped even if the heating operation of the heating means is stopped or the heating amount changes within a predetermined time period such as the midnight power time zone, and the heating amount is reduced. Since the heating control means corrects the hot water storage tank to boil in a predetermined time, the hot water storage tank can be heated in a predetermined time.
[0012]
The hot water supply apparatus of the invention according to claim 2 includes a heating unit having a bath heating operation of heating bath water, wherein the heating control unit according to claim 1 performs the heating when the heating unit performs a bath heating operation. The heating amount of the heating means is increased in accordance with the bath heating operation.
[0013]
According to the present invention, the heating amount is corrected by the heating control unit even if the heating amount is insufficient due to the stop of the boiling of the hot water storage tank or the suppression of the heating amount by performing the bath heating operation within the predetermined time. Then, the hot water storage tank is heated, so that the hot water storage tank can be heated for a predetermined time.
[0014]
According to a third aspect of the present invention, in the hot water supply apparatus, the heating unit includes an air conditioning operation for performing air conditioning, and the heating control unit according to the first embodiment responds to the air conditioning operation when the heating unit performs the air conditioning operation. Thus, the heating amount of the heating means is increased.
[0015]
According to this invention, the heating amount is corrected by the heating control unit by performing the air conditioning operation such as heating, cooling, and drying by the heating unit within the predetermined time, even if the heating amount for boiling the hot water storage tank is insufficient. Thus, the hot water storage tank can be heated for a predetermined time.
[0016]
According to a fourth aspect of the present invention, in the hot water supply apparatus, the heating control means according to the first aspect increases a heating amount of the heating means according to the hot water supply operation when the hot water supply operation occurs within a predetermined time. It is.
[0017]
According to the present invention, since the hot water is supplied from the hot water storage tank within a predetermined time, the heating amount is corrected by the heating control means even if the heating amount for boiling the hot water storage tank is insufficient because the hot water is discharged from the hot water storage tank. It can heat up the hot water tank in time.
[0018]
The hot water supply apparatus according to the fifth aspect of the present invention is characterized in that the heating means is constituted by a heat pump cycle, and includes a defrosting operation for performing defrosting in accordance with frost generated in an evaporator of the heat pump cycle. When the heating means performs a defrosting operation, the heating control means increases the heating amount of the heating means in accordance with the defrosting operation.
[0019]
According to the present invention, even if the heating amount for boiling the hot water storage tank is insufficient by the defrosting operation within the predetermined time, the heating amount is corrected by the heating control means, so that the hot water storage tank can be boiled for the predetermined time. it can.
[0020]
According to a sixth aspect of the present invention, in the hot water supply apparatus, the heating control unit according to the fifth aspect predicts a defrosting operation, and increases a heating amount of the heating unit in advance according to a prediction result of the defrosting operation. It is.
[0021]
According to the present invention, since the heating operation is performed in advance by correcting the heating amount by the heating control means, the heating can be performed with a constant heating amount in a predetermined time, and the operation efficiency is improved.
[0022]
In the hot water supply apparatus according to a seventh aspect of the present invention, the heating means is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and the water in the hot water storage tank is heated by the refrigerant pressurized to the critical pressure or higher. It is configured as follows.
[0023]
According to the present invention, since the refrigerant that exchanges heat with the water in the hot water storage tank is pressurized to a critical pressure or higher, the refrigerant is not condensed even if the temperature is lowered by the heat of the water in the hot water storage tank. Therefore, it becomes easy to form a temperature difference between the refrigerant and the water in the entire region of the heat exchanger, so that high-temperature hot water can be obtained and the heat exchange efficiency can be increased.
[0024]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, the same reference numerals are given to portions having the same configuration and the same operation, and a detailed description thereof will be omitted.
[0025]
(Example 1)
FIG. 1 shows a configuration diagram of a hot water supply apparatus according to a first embodiment of the present invention. The present embodiment is a general household hot water supply device for storing hot water for hot water mainly by using inexpensive late-night electric power. The hot water storage tank 15 and the water in the hot water storage tank 15 are heated to perform a boiling operation. The heating means 16 is a heat pump cycle to be performed, and a heating control means 17 for boiling a predetermined amount of water in the hot water storage tank 15, that is, an amount of filling the hot water storage tank 15 with high-temperature hot water in a late-night power time period that is a predetermined time. You.
[0026]
In the heating means 16, a compressor 18, a radiator 19, a decompression means 20, and a heat absorber 21 are connected to a closed circuit by a refrigerant channel 22. The heating means 16 uses, for example, a supercritical heat pump cycle in which carbon dioxide gas (CO2) is used as a refrigerant and the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 18 is driven by a built-in electric motor (not shown), compresses the sucked refrigerant to a pressure exceeding a critical pressure, and discharges the compressed refrigerant. Reference numeral 23 denotes a heat exchanger provided with a water flow path 24 for performing heat exchange with the refrigerant of the radiator 19.
[0027]
Reference numeral 25 denotes a circulation path having a circulation pump 26 that supplies water from the bottom of the hot water storage tank 15 and returns the water to the top of the hot water storage tank 15. The water in the hot water storage tank 15 is heated by the water flow path 24 of the heat exchanger 23 through which the water in the circulation path 25 flows. Connect and heat the running water.
[0028]
The heating control means 17 controls the normal heating operation for controlling the heating means 16 with a predetermined heating amount, and changes the heating amount when an operation other than the boiling operation occurs during the midnight power time period. It has a correct boiling operation control to operate.
[0029]
The normal boiling operation control by the heating control means 17 is provided near the outlet of the water flow path 24, inputs a detection value of a heating sensor 28 for detecting a heating temperature of flowing water, and supplies a circulation pump 26, a compressor 18, The decompression means 20 is controlled so that hot water at a predetermined temperature (for example, 85 ° C.) flows out of the outlet of the water flow path 24. As a result, a temperature stratification 27 is formed in which the upper portion of the hot water storage tank 15 is divided into a high temperature and the lower portion is divided into a low temperature, and the temperature stratification 27 moves below the hot water storage tank 15 according to the boiling operation. All become hot. The heating amount of the entire hot water storage tank 15 is determined in advance so that the hot water is heated in the midnight power time zone (for example, from 23:00 to 7 in the next morning). Then, in a time zone other than the midnight power time zone, a boiling operation is appropriately performed according to the detection value of the remaining hot water sensor 29 for detecting the remaining hot water in the hot water storage tank 15.
[0030]
The heating amount is set by the following formula so that the entire inside of the hot water storage tank 15 is heated to a predetermined temperature even in the wintertime in the midnight power time zone (8 hours).
[0031]
Q = V × (Ts−Tw) / (8 × 860 × η)
However, Q: heating amount (kW)
V: Tank capacity (L)
Ts: Boiling temperature (° C)
Tw: Initial temperature in the hot water storage tank (° C)
η: Heating efficiency For example, if the hot water storage tank 15 is 370 L, the water in the hot water storage tank 15 is 5 ° C., the boiling temperature is 85 ° C., and the heating efficiency is 1.0, the heating amount Q is 4.3 kW, and 4.5 kW with a margin. Set the heating amount with. Then, by setting this heating amount constant throughout the year, it is possible to surely boil it.
[0032]
The correction boiling operation control of the heating control means 17 is such that when a hot water supply operation occurs in the hot water storage tank 15 during the midnight power time zone, the heating amount Q of the heating means 16 is increased in accordance with the hot water supply operation, and the boiling operation is performed. Do.
[0033]
In the hot water supply operation, tap water is supplied from a water supply pipe 30 connected to the bottom of the hot water storage tank 15, and hot water is supplied from a hot water supply pipe 31 provided above the hot water storage tank 15. A mixing valve 32 mixes the hot water from the tapping pipe 31 and tap water to supply hot water at an appropriate temperature to the hot water supply pipe 33. The heating control means 17 detects the hot water supply operation by the flow rate sensor 34 provided in the hot water supply pipe 33, and obtains a heating amount Qc to be corrected at the end of the hot water supply operation by the following equation.
[0034]
Qc = (V−Vz) × (Ts−Tw) / (Tiz × 860 × η)
Here, Vz: remaining hot water amount (L)
Tiz: Remaining time (h) in the midnight power time zone
Here, the remaining hot water amount Vz is the amount of hot water above the temperature stratification 27 of the hot water storage tank detected by the remaining hot water sensor 29. Here, if Qc is larger than Q, the heating amount is changed to Qc and the boiling operation is performed, and if Qc is smaller than Q, the operation is performed with the heating amount being Q.
[0035]
For example, when a large amount of hot water is discharged from the hot water storage tank 15 by the hot water supply operation, the temperature stratification 27 moves above the hot water storage tank 15 and the remaining hot water amount Vz decreases. As a result, when Qc increases, the boiling operation of hot water storage tank 15 after this calculation is performed by changing the heating amount to Qc. Therefore, in the remaining time Tiz, the entire hot water storage tank 15 can be boiled to the predetermined boiling temperature Ts.
[0036]
The correction boiling operation control of the heating control means 17 is to increase the heating amount Q of the heating means 16 in accordance with the defrosting operation even when a defrosting operation occurs in the heating means 16 during the midnight power time period, Perform raising operation.
[0037]
The defrosting operation includes a bypass 34 that bypasses the radiator 19 and the pressure reducing means 20 in the refrigerant flow path 22 and an on-off valve 36 provided in the bypass 35, and performs a boiling operation in winter to perform the heat absorber 21. When frost adheres, the on-off valve 36 is opened, the refrigerant is circulated between the compressor 18 and the heat absorber 20, and a defrosting operation is performed in which the frost is melted by the operation heat of the compressor 18. Then, the heating control means 17 obtains the heating amount Qc to be corrected at the end of the defrosting operation in the same manner as in the hot water supply operation, and increases the heating amount so that the entire hot water storage tank 15 is boiled in the midnight power time zone in the remaining time Tiz. I do.
[0038]
In addition, since the presence or absence of the defrosting operation can be predicted by the outside air temperature in the defrosting operation, the heating amount is increased from the beginning by assuming the insufficient heat amount by the defrosting operation by the outside air temperature at the start of the boiling operation in the midnight power time zone. You may let it drive. According to this method, the heating amount at the time of the boiling operation can be made constant, so that the heating efficiency is good.
[0039]
(Example 2)
FIG. 2 is a configuration diagram of a hot water supply apparatus according to a second embodiment of the present invention. The same components as those of the hot water supply device of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0040]
In the figure, the difference from the configuration of the first embodiment is that the heating means 16 is provided with a bath heating operation for heating the bathtub 40 and the bath water 41, and the heating control means 17 is provided when the heating means 16 performs the bath heating operation. The point is that the heating amount of the heating means 16 is increased according to the heating operation.
[0041]
Specifically, a bath heat exchanger 42 for heating bath water 41 is provided. The bath heat exchanger 42 includes a bath radiator 43 and a bath water flow path 44 for flowing bath water. The refrigerant and the bath water in the bath water flow path 44 exchange heat. A bath circulation circuit 45 that circulates bath water 41 to a bath water flow path 43 is connected to the bathtub 40, and the bath circulation path 45 is provided with a bath pump 46 for circulation. On the other hand, the bath radiator 42 is arranged in the refrigerant flow path 22 in parallel with the radiator 19, and both are switched by a refrigerant branch valve 47.
[0042]
When the bath heating operation is performed, the refrigerant branch valve 47 is switched so that the refrigerant flows to the bath radiator 44. Then, by stopping the circulation pump 26 and driving the bath pump 46, the bath water flow path 43 is heated by the bath heat exchanger 42, and the temperature of the bath water 41 rises.
[0043]
When the bath heating operation is performed during the midnight power time zone, the heating control unit 17 obtains the heating amount Qc to be corrected at the end of the bath heating operation in the same manner as in the first embodiment. Increase the amount of heating so that it can be boiled during midnight power hours.
[0044]
As described above, according to the configuration and operation of the second embodiment, even if the bath heating operation is interrupted during the boiling operation in the midnight power time zone, the remaining time Tiz is shortened by the time of the bath heating operation. Therefore, the heating amount Qc to be corrected increases accordingly. As a result, it is corrected so that the water in the hot water storage tank 15 can be heated to the set temperature in the midnight power time zone.
[0045]
(Example 3)
FIG. 3 is a configuration diagram of a hot water supply apparatus according to a third embodiment of the present invention. The same components as those of the hot water supply apparatuses of the first and second embodiments are denoted by the same reference numerals, and description thereof will be omitted.
[0046]
In the drawing, what differs from the configurations of the first and second embodiments is that an air conditioning indoor unit 50 is connected to the heating means 16 and air conditioning operations such as heating, bathroom drying, cooling, and dehumidification are provided. Is that when the heating means 16 performs an air-conditioning operation, the amount of heating of the heating means 16 is increased in accordance with the air-conditioning operation.
[0047]
The indoor unit 50 includes an indoor heat exchanger 51 and a blower 52, and the indoor heat exchanger 51 exchanges heat between the refrigerant and indoor air by blowing. The indoor heat exchanger 51 is arranged in the refrigerant flow passage 22 in parallel with the radiator 19, and the two are switched by the refrigerant branch valve 47. A switching valve 53 for switching the flow direction of the refrigerant is provided at the inlet and the outlet of the compressor 18, and switches between a heating operation (solid line) and a cooling operation (dotted line).
[0048]
When the air conditioning operation is performed, the refrigerant branch valve 47 is switched so that the refrigerant flows to the indoor heat exchanger 51. Then, by stopping the circulation pump 26 and driving the blower 52, the indoor air is heated or cooled by the indoor heat exchanger 51 to be air-conditioned.
[0049]
When the air-conditioning operation is performed during the midnight power time period, the heating control unit 17 obtains the heating amount Qc to be corrected at the end of the air-conditioning operation in the same manner as in the first embodiment, and the entire hot water storage tank 15 performs the midnight power operation in the remaining time Tiz. Increase the amount of heating so that it can be boiled during the time period.
[0050]
Therefore, even if the air-conditioning operation is interrupted during the boiling operation in the midnight power time zone, the remaining time Tiz is shortened by the time of the bath heating operation, and the heating amount Qc corrected accordingly increases. As a result, it is corrected so that the water in the hot water storage tank 15 can be heated to the set temperature in the midnight power time zone.
[0051]
However, since the heating amount Qc has a limit in the capacity, when the Qc exceeds the upper limit, the boiling operation is performed with the upper limit heating amount, and the shortage is heated in a time zone other than the midnight power.
[0052]
In the embodiment, the supercritical heat pump cycle is used as the heating means. However, it is needless to say that a normal heat pump cycle may be used, and a similar effect can be obtained with a general heater.
[0053]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a hot water supply device that heats a hot water storage tank during a late-night power time period when electricity costs are low.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a hot water supply device according to a first embodiment of the present invention; FIG. 2 is a configuration diagram of a hot water supply device according to a second embodiment; FIG. 3 is a configuration diagram of a hot water supply device according to the third embodiment; Configuration diagram of hot water supply device [Description of reference numerals]
15 Hot water storage tank 16 Heating means (heat pump cycle)
17 Heating control means

Claims (7)

貯湯タンク内の水を予め定めた加熱量で加熱して沸き上げ運転する加熱手段と、所定時間内に前記沸き上げ運転以外の動作が発生した場合に前記加熱量を変更する加熱制御手段とを備えた給湯装置。Heating means for heating the water in the hot water storage tank at a predetermined heating amount and performing a boiling operation, and heating control means for changing the heating amount when an operation other than the boiling operation occurs within a predetermined time. Water heater equipped. 加熱手段には風呂水を加熱する風呂加熱運転を備え、加熱制御手段は加熱手段が風呂加熱運転を行う場合に、前記風呂加熱運転に応じて加熱手段の加熱量を増加する請求項1記載の給湯装置。The heating means includes a bath heating operation for heating bath water, and the heating control means increases a heating amount of the heating means according to the bath heating operation when the heating means performs the bath heating operation. Water heater. 加熱手段には空調を行う空調運転を備え、加熱制御手段は加熱手段が空調運転を行う場合に、前記空調運転に応じて加熱手段の加熱量を増加する請求項1記載の給湯装置。The hot water supply apparatus according to claim 1, wherein the heating means includes an air conditioning operation for performing air conditioning, and the heating control means increases a heating amount of the heating means in accordance with the air conditioning operation when the heating means performs the air conditioning operation. 加熱制御手段は、所定時間内に給湯運転が発生した場合に、前記給湯運転に応じて加熱手段の加熱量を増加する請求項1記載の給湯装置。The hot water supply apparatus according to claim 1, wherein the heating control means increases a heating amount of the heating means according to the hot water supply operation when the hot water supply operation occurs within a predetermined time. 加熱手段をヒートポンプサイクルより構成し、前記ヒートポンプサイクルの蒸発器に発生する着霜に応じて除霜を行う除霜運転を備え、加熱制御手段は加熱手段が除霜運転を行う場合に、前記除霜運転に応じて加熱手段の加熱量を増加する請求項1記載の給湯装置。The heating means includes a heat pump cycle, and includes a defrosting operation for performing defrosting according to frost generated in the evaporator of the heat pump cycle. The hot water supply apparatus according to claim 1, wherein the heating amount of the heating means is increased in accordance with the frost operation. 加熱制御手段は、除霜運転を予測し、前記除霜運転の予測結果に応じて予め加熱手段の加熱量を増加する請求項5に記載の給湯装置。The hot water supply apparatus according to claim 5, wherein the heating control unit predicts a defrosting operation, and increases a heating amount of the heating unit in advance according to a prediction result of the defrosting operation. 加熱手段は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により貯湯タンク内の水を加熱する請求項1〜5のいずれか1項に記載の給湯装置。The heating means is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and heats the water in the hot water storage tank with the refrigerant pressurized to the critical pressure or higher. Water heater.
JP2002323455A 2002-11-07 2002-11-07 Water heater Expired - Fee Related JP3788419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323455A JP3788419B2 (en) 2002-11-07 2002-11-07 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323455A JP3788419B2 (en) 2002-11-07 2002-11-07 Water heater

Publications (2)

Publication Number Publication Date
JP2004156847A true JP2004156847A (en) 2004-06-03
JP3788419B2 JP3788419B2 (en) 2006-06-21

Family

ID=32803316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323455A Expired - Fee Related JP3788419B2 (en) 2002-11-07 2002-11-07 Water heater

Country Status (1)

Country Link
JP (1) JP3788419B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087011A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Co2-refrigeration device with heat reclaim
EP1802922A1 (en) * 2004-09-30 2007-07-04 Carrier Corporation Refrigeration system and method with controllable heat recovery
JP2009047334A (en) * 2007-08-17 2009-03-05 Corona Corp Heat pump type water heater
JP2010014293A (en) * 2008-07-01 2010-01-21 Denso Corp Hot water supply device
JP2010159904A (en) * 2009-01-07 2010-07-22 Corona Corp Storage type hot-water supply heating device
JP2010216684A (en) * 2009-03-13 2010-09-30 Toshiba Carrier Corp Hot water supply system
JP2010243111A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Heat pump type water heater
JP2011058702A (en) * 2009-09-09 2011-03-24 Corona Corp Hot water storage type hot water supply heater
WO2013140479A1 (en) * 2012-03-21 2013-09-26 パナソニック株式会社 Method for controlling heating system, and heating system
WO2013160974A1 (en) * 2012-04-25 2013-10-31 パナソニック株式会社 Control method for heating system, and heating system
JP2014202378A (en) * 2013-04-01 2014-10-27 リンナイ株式会社 Hot water storage water heater
CN111664606A (en) * 2020-06-09 2020-09-15 青岛海尔新能源电器有限公司 Heat pump system and heat pump water heater
JP2021139555A (en) * 2020-03-05 2021-09-16 三菱電機株式会社 Heat pump water heater
WO2022168046A1 (en) * 2021-02-07 2022-08-11 Octopus Energy Group Limited Methods and systems and apparatus to support reduced energy and water usage
GB2612741A (en) * 2021-02-07 2023-05-10 Octopus Energy Heating Ltd Methods and systems and apparatus to support reduced energy and water usage
KR20230153394A (en) * 2021-02-07 2023-11-06 옥토퍼스 에너지 히팅 리미티드 Method and system for controlling energy usage
KR20230154023A (en) * 2021-02-07 2023-11-07 옥토퍼스 에너지 히팅 리미티드 How water systems regulate energy usage based on current rates

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1802922A1 (en) * 2004-09-30 2007-07-04 Carrier Corporation Refrigeration system and method with controllable heat recovery
EP1802922A4 (en) * 2004-09-30 2010-06-02 Carrier Corp Refrigeration system and method with controllable heat recovery
US8893520B2 (en) 2005-02-18 2014-11-25 Carrier Corporation CO2-refrigeration device with heat reclaim
WO2006087011A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Co2-refrigeration device with heat reclaim
JP2009047334A (en) * 2007-08-17 2009-03-05 Corona Corp Heat pump type water heater
JP2010014293A (en) * 2008-07-01 2010-01-21 Denso Corp Hot water supply device
JP2010159904A (en) * 2009-01-07 2010-07-22 Corona Corp Storage type hot-water supply heating device
JP2010216684A (en) * 2009-03-13 2010-09-30 Toshiba Carrier Corp Hot water supply system
JP2010243111A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Heat pump type water heater
JP2011058702A (en) * 2009-09-09 2011-03-24 Corona Corp Hot water storage type hot water supply heater
WO2013140479A1 (en) * 2012-03-21 2013-09-26 パナソニック株式会社 Method for controlling heating system, and heating system
JP2013195017A (en) * 2012-03-21 2013-09-30 Panasonic Corp Method of controlling heat pump heating system, and heating system
EP2829825A4 (en) * 2012-03-21 2015-06-17 Panasonic Ip Man Co Ltd Method for controlling heating system, and heating system
WO2013160974A1 (en) * 2012-04-25 2013-10-31 パナソニック株式会社 Control method for heating system, and heating system
JP2013228144A (en) * 2012-04-25 2013-11-07 Panasonic Corp Method for controlling heat pump heating system, and heating system
EP2843325A4 (en) * 2012-04-25 2015-06-17 Panasonic Ip Man Co Ltd Control method for heating system, and heating system
JP2014202378A (en) * 2013-04-01 2014-10-27 リンナイ株式会社 Hot water storage water heater
JP7251499B2 (en) 2020-03-05 2023-04-04 三菱電機株式会社 heat pump water heater
JP2021139555A (en) * 2020-03-05 2021-09-16 三菱電機株式会社 Heat pump water heater
CN111664606B (en) * 2020-06-09 2022-11-15 青岛海尔新能源电器有限公司 Heat pump system and heat pump water heater
CN111664606A (en) * 2020-06-09 2020-09-15 青岛海尔新能源电器有限公司 Heat pump system and heat pump water heater
WO2022168046A1 (en) * 2021-02-07 2022-08-11 Octopus Energy Group Limited Methods and systems and apparatus to support reduced energy and water usage
GB2612741A (en) * 2021-02-07 2023-05-10 Octopus Energy Heating Ltd Methods and systems and apparatus to support reduced energy and water usage
GB2612741B (en) * 2021-02-07 2023-11-01 Octopus Energy Heating Ltd Methods and systems and apparatus to support reduced energy and water usage
KR20230153394A (en) * 2021-02-07 2023-11-06 옥토퍼스 에너지 히팅 리미티드 Method and system for controlling energy usage
KR20230154023A (en) * 2021-02-07 2023-11-07 옥토퍼스 에너지 히팅 리미티드 How water systems regulate energy usage based on current rates
KR102647628B1 (en) 2021-02-07 2024-03-14 옥토퍼스 에너지 히팅 리미티드 Method and system for controlling energy usage
KR102647627B1 (en) 2021-02-07 2024-03-15 옥토퍼스 에너지 히팅 리미티드 How to adjust energy usage in your water system based on your current tariff

Also Published As

Publication number Publication date
JP3788419B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP3788419B2 (en) Water heater
CN103348200B (en) Air conditioning and hot-water supplying system
EP2381178B1 (en) Heat pump type heating apparatus
JP3918807B2 (en) Hot water storage type electric water heater
WO2016059837A1 (en) Heat pump heating apparatus
JP2016017725A (en) Air conditioner
JP2008057910A (en) Heat pump hot water supply device
JP2008096044A (en) Hot water reservoir type hot-water supply device
CN103415747A (en) Heat pump-type water heater
JP2002081768A5 (en)
JP3855695B2 (en) Heat pump water heater
JP2010236816A (en) Heat pump type air conditioner and method of controlling heat pump type air conditioner
JP3800497B2 (en) Water heater
JP3632306B2 (en) Heat pump bath water supply system
JP2004340535A (en) Heat pump water heater
JP5455338B2 (en) Cooling tower and heat source system
JP3985773B2 (en) Hot water storage water heater
CN201047687Y (en) Hot gas bypass back-out concurrent heating defrost constant temperature hot-water system
JP3703995B2 (en) Heat pump water heater
JP5097054B2 (en) Heat pump water heater
JP2005188923A (en) Heat pump water heater
JP6004177B2 (en) Hot water storage hot water supply system
JP2000346447A5 (en)
JP4251785B2 (en) Heat pump water heater
JP2002340440A (en) Heat pump hot-water supplier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees