JP2002338300A - Inorganic fiber soluble in pysiological salt water - Google Patents

Inorganic fiber soluble in pysiological salt water

Info

Publication number
JP2002338300A
JP2002338300A JP2001212471A JP2001212471A JP2002338300A JP 2002338300 A JP2002338300 A JP 2002338300A JP 2001212471 A JP2001212471 A JP 2001212471A JP 2001212471 A JP2001212471 A JP 2001212471A JP 2002338300 A JP2002338300 A JP 2002338300A
Authority
JP
Japan
Prior art keywords
inorganic fiber
fiber
sro
weight
pysiological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001212471A
Other languages
Japanese (ja)
Other versions
JP3938671B2 (en
Inventor
Masato Osawa
正人 大沢
Yasuo Misu
安雄 三須
Shuji Omiya
修史 大宮
Koji Nemoto
孝司 根本
Masaru Sugiyama
勝 杉山
Kimio Hirata
公男 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP2001212471A priority Critical patent/JP3938671B2/en
Publication of JP2002338300A publication Critical patent/JP2002338300A/en
Application granted granted Critical
Publication of JP3938671B2 publication Critical patent/JP3938671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Abstract

PROBLEM TO BE SOLVED: To provide inorganic fiber which is soluble in pysiological salt water while maintaining heat resistance comfarable to that of alumina-silica fiber, and further has high solubility in pysiological salt water even after the application of heat history. SOLUTION: In the inorganic fiber containing MaO, SrO and SiO2 as essential components, a vacuum-formed preform of the same fiber exhibits the coefficient of linear contraction of <=3.5% before and after heating at 1,260 deg.C for 24 hr. The inorganic fiber contains, by weight, 70.0 to 88.5% SiO2 , 11.0 to 29.5% MgO, 0.5 to 15.0% SrO, 74.0 to 84.5% SiO2 , 11.0 to 25.5% MgO, and 0.5 to 15.0% SrO. Its solubility in pysiological salt water is >=1%, and the solubility in pysiological salt water is >=1% even after the fiber has heat history.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミナシリカ繊
維と同等の耐熱性を有し、生理食塩水に可溶な無機繊維
に関する。
[0001] The present invention relates to an inorganic fiber having the same heat resistance as alumina silica fiber and soluble in physiological saline.

【0002】[0002]

【従来の技術】無機繊維の使用は、工業材料として多岐
にわたっている。例えば、バルク状、フェルト状、ブラ
ンケット状での断熱材や吸音材として、耐火断熱を目的
としたボードやペーパーなどの真空成形体として、建材
や車両のブレーキの補強材として、広く使用されてい
る。
BACKGROUND OF THE INVENTION The use of inorganic fibers is diversified as an industrial material. For example, it is widely used as a heat-insulating material or sound-absorbing material in the form of bulk, felt, or blanket, as a vacuum formed body such as a board or paper for fire-resistant heat insulation, or as a reinforcing material for building materials or vehicle brakes. .

【0003】アスベストは、天然の無機繊維であるが、
その一形態は、呼吸器疾患、さらには、肺組織の癌に深
い関連があるとされている。
[0003] Asbestos is a natural inorganic fiber,
One form has been implicated in respiratory disease, and furthermore, cancer of lung tissue.

【0004】一方、人工の無機繊維については、明確で
はないものの、動物実験などの研究から、疾患発生の危
険性が指摘されている。無機繊維の毒性に関する実験的
研究を通して、無機繊維の吸入による疾患の発生に大き
く関連する重要な要因、すなわち、1)繊維の吸入量、
2)吸入繊維の寸法、3)肺の中での繊維の持続性、が
挙げられている。近年、特に、このうちの3)肺の中で
の繊維の持続性という点に関心が集まっている。
[0004] On the other hand, artificial inorganic fibers are not clear, but studies such as animal experiments have pointed out the danger of developing diseases. Through experimental studies on the toxicity of inorganic fibers, important factors greatly related to the occurrence of diseases caused by inhalation of inorganic fibers: 1) fiber inhalation volume,
2) the size of the inhaled fiber and 3) the persistence of the fiber in the lung. In recent years, in particular, attention has been focused on 3) the sustainability of fibers in the lungs.

【0005】肺の中での繊維の持続性を低くする手段と
して、体液中での繊維の溶解性を高くする方法が挙げら
れる。すなわち、吸入した繊維が体液で溶解しやすけれ
ば、その繊維の吸入による人体への毒性は低減すると考
えられる。このような背景から、体液すなわち生理食塩
水に対する溶解性が高い無機繊維が望まれている。
As a means of reducing the persistence of fibers in the lung, there is a method of increasing the solubility of fibers in body fluids. That is, if the inhaled fiber is easily dissolved in the body fluid, it is considered that toxicity to the human body due to inhalation of the fiber is reduced. From such a background, an inorganic fiber having high solubility in a body fluid, that is, a physiological saline is desired.

【0006】このような要望に対して、従来のアルミナ
シリカ繊維に準ずる耐熱性を有し、生理食塩水中での持
続性が小さい無機繊維が、例えば、特表平8−5065
1号や特表平10−512232号公報に開示され、市
販されている。しかしながら、人体に吸入されたとき、
肺内での繊維の持続性は少しでも短いことが望ましい。
すなわち、耐熱性を有し、且つ、生理食塩水への溶解性
が少しでも高い無機繊維が要求されている。
In response to such demands, inorganic fibers having heat resistance equivalent to that of conventional alumina silica fibers and having low durability in physiological saline are disclosed, for example, in JP-T-8-5065.
No. 1 and Japanese Patent Application Laid-Open No. 10-512232, and are commercially available. However, when inhaled by the human body,
Desirably, the persistence of the fibers in the lungs is as short as possible.
That is, there is a demand for inorganic fibers having heat resistance and at least slightly high solubility in physiological saline.

【0007】また、特表平8−50651号や特表平1
0−512232号公報に開示された、無機繊維の生体
溶解性の評価は、主として、その繊維が熱履歴を持って
いない状態でなされた。
Further, Japanese Patent Application Laid-Open No. Hei 8-50651 and Japanese Patent Application Laid-Open No.
The evaluation of the biosolubility of the inorganic fiber disclosed in Japanese Patent Publication No. 0-512232 was mainly performed in a state where the fiber had no heat history.

【0008】しかしながら、無機繊維が使用された後
に、人体に吸入される場合を想定すると、無機繊維が熱
履歴を有した後も、生理食塩水に高い溶解性を発現する
ことが要求される。特に、無機繊維が非晶質である場合
には、熱履歴を持った後には結晶化し、熱履歴を持つ前
とは、その溶解性が著しく変化することが予想される。
However, assuming that the inorganic fiber is inhaled into the human body after being used, it is required that the inorganic fiber exhibit high solubility in physiological saline even after having a heat history. In particular, when the inorganic fiber is amorphous, it is expected that the inorganic fiber will crystallize after having a thermal history, and its solubility will be significantly changed from that before having the thermal history.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明は、ア
ルミナシリカ繊維と同水準の耐熱性を有していながら、
生理食塩水に可溶であることに加え、熱履歴を持った後
も生理食塩水に高い溶解性を維持する無機繊維を提供す
ることを目的としている。
Therefore, the present invention has the same heat resistance as alumina silica fiber,
An object of the present invention is to provide an inorganic fiber that is soluble in physiological saline and maintains high solubility in physiological saline even after having a heat history.

【0010】[0010]

【課題を解決するための手段】本発明の解決手段を例示
すると、請求項1〜5に記載の無機繊維である。
Means for Solving the Problems An example of the solution of the present invention is an inorganic fiber according to claims 1 to 5.

【0011】たとえば、本発明の無機繊維においては、
SiO2 およびMgOを主成分とし、SrOを導入する
ことにより、アルミナシリカ繊維と同水準の高い耐熱性
を維持しながらも、生理食塩水への高い溶解性を有する
という特性が得られる。さらに、本発明の無機繊維は、
熱履歴を持つことによって結晶化した後も、生理食塩水
への高い溶解性を有する。
For example, in the inorganic fiber of the present invention,
By introducing SiO 2 and MgO as main components and introducing SrO, it is possible to obtain a property of having high solubility in physiological saline while maintaining high heat resistance at the same level as alumina silica fiber. Further, the inorganic fiber of the present invention,
Even after crystallization by having a thermal history, it has high solubility in physiological saline.

【0012】[0012]

【発明の実施の形態】本発明の無機繊維は、例えば、所
定の配合に基づいて原料を混合し、電気溶融した後、そ
の溶融物を吹精し繊維化することによって得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The inorganic fiber of the present invention can be obtained, for example, by mixing raw materials based on a prescribed blend, electro-melting, and then blowing and fusing the melt.

【0013】溶融物を吹精することによって繊維化する
場合、溶融物の粘度が重要である。すなわち、繊維化に
おいて最適な溶融物の粘度範囲が存在する。溶融物の粘
度は、温度の低下にしたがって高くなる。そのため、溶
融物の温度降下による粘度の変化が鈍感であることが望
ましい。温度変化による粘度の変化が鈍感であれば、繊
維化が可能となる温度範囲が大きくなる。溶融物の、温
度降下による粘度の変化は、溶融物の化学組成に大きく
依存する。
[0013] When fiberizing a melt by blowing it, the viscosity of the melt is important. That is, there is an optimal melt viscosity range for fiberization. The viscosity of the melt increases with decreasing temperature. Therefore, it is desirable that the change in viscosity due to the temperature drop of the melt is insensitive. If the change in viscosity due to the temperature change is insensitive, the temperature range in which fiberization is possible becomes large. The change in viscosity of the melt due to the temperature drop largely depends on the chemical composition of the melt.

【0014】本発明者らは、MgO−SiO2 系組成の
溶融物の場合には、その系にSrO成分を導入すること
によって、溶融物の、温度変化による粘度の変化が鈍感
になり、繊維化が可能となる温度範囲が大きくなること
を見出した。すなわち、SrO成分は、MgO−SiO
2 系組成の溶融物において、繊維化の“粘度調節剤”と
して機能する。
The inventors of the present invention have found that, in the case of a melt having an MgO—SiO 2 composition, a change in viscosity of the melt due to a temperature change becomes insensitive by introducing an SrO component into the system, and the fiber It has been found that the temperature range in which conversion can be performed is increased. That is, the SrO component is MgO-SiO
In the melt of the binary composition, it functions as a "viscosity modifier" for fiberization.

【0015】SrOの濃度は、0.5〜15.0重量%
が望ましい。SrOが0.5重量%未満であると、粘度
調節剤としての効果が小さくなることがある。また、S
rOは、原料として、その炭酸塩を多量に使用した場合
には、電気溶融の際にガスの発生を伴い、電流の変動を
もたらす。この理由から、SrOは、15.0重量%以
下が望ましい。
The concentration of SrO is 0.5-15.0% by weight.
Is desirable. If SrO is less than 0.5% by weight, the effect as a viscosity modifier may be reduced. Also, S
When a large amount of its carbonate is used as a raw material, rO is accompanied by generation of gas at the time of electric melting, and causes fluctuation of current. For this reason, SrO is desirably 15.0% by weight or less.

【0016】次に、MgO−SiO2 系組成にSrOを
導入した無機繊維の耐熱性の評価を行った。
Next, the heat resistance of the inorganic fiber obtained by introducing SrO into the MgO—SiO 2 composition was evaluated.

【0017】耐熱性の評価方法は以下の通りである。The method for evaluating heat resistance is as follows.

【0018】まず、表1に示す化学組成(重量%)を有
する各無機繊維200gを0.04%澱粉溶液10リッ
トル中で撹拌して分散させた後、脱水成形器により成形
する。これを110℃で十分乾燥させた後、所定の寸法
に切断し、プリフォームを作製する。これを1200℃
で24時間加熱し、加熱前後での線収縮率(以下収縮率
という)を求めた。これを加熱収縮率として表1に示
す。加熱収縮率が小さい程、耐熱性に優れている。
First, 200 g of each inorganic fiber having the chemical composition (% by weight) shown in Table 1 is stirred and dispersed in 10 liters of a 0.04% starch solution, and then molded by a dehydration molding machine. After this is sufficiently dried at 110 ° C., it is cut into a predetermined size to produce a preform. This is 1200 ° C
For 24 hours, and the linear shrinkage before and after heating (hereinafter referred to as shrinkage) was determined. This is shown in Table 1 as the heat shrinkage. The smaller the heat shrinkage, the better the heat resistance.

【0019】[0019]

【表1】 図1は、耐熱性評価のSiO2 濃度(重量%)と加熱収
縮率との関係を示す。
[Table 1] FIG. 1 shows the relationship between the SiO 2 concentration (% by weight) in the heat resistance evaluation and the heat shrinkage.

【0020】図1から、SiO2 が70.0重量%未満
になると、加熱収縮率が急激に上昇することが明らかで
ある。
It is apparent from FIG. 1 that when SiO 2 is less than 70.0% by weight, the heat shrinkage sharply increases.

【0021】これらの結果から、無機繊維に優れた耐熱
性を発現させるためのSiO2 の範囲は、好ましくは7
0.0重量%以上であり、より好ましくは74.0重量
%以上である。
From these results, the range of SiO 2 for exhibiting excellent heat resistance to inorganic fibers is preferably 7
It is at least 0.0% by weight, more preferably at least 74.0% by weight.

【0022】しかし、SiO2 が多すぎると、繊維製造
の際に、原料の溶融が困難となり、また、生理食塩水へ
の溶解性に劣ることとなる。そこで好ましい含有量は8
8.5重量%以下であり、より好ましくは84.5重量
%以下である。
However, if the content of SiO 2 is too large, it becomes difficult to melt the raw materials during fiber production, and the solubility in physiological saline is poor. Therefore, the preferred content is 8
It is at most 8.5% by weight, more preferably at most 84.5% by weight.

【0023】次に、無機繊維の生体溶解性の評価を行っ
た。体液の本質は生理食塩水である。そこで、生体溶解
性を評価する溶液として生理食塩水を用いた。
Next, the biosolubility of the inorganic fiber was evaluated. The essence of body fluids is physiological saline. Therefore, physiological saline was used as a solution for evaluating the biosolubility.

【0024】評価方法は以下の通りである、まず、20
0メッシュ(目開き0.075mm)の篩いを通過する
まで解砕した繊維試料1gを精秤する。それを300m
lのコニカルビーカーにとり、生理食塩水150mlを
加え、栓をする。それを、温度40℃の恒温水槽に設置
して、毎分120回転の速度で50時間水平振とうを行
う。その後、ガラス濾過器による濾過および乾燥を行
い、不溶解繊維を精秤して、溶解による繊維の減量を求
める。繊維の減量から算出した重量減少率を、その繊維
の生理食塩水溶解率とする。
The evaluation method is as follows.
1 g of the crushed fiber sample is precisely weighed until it passes through a sieve of 0 mesh (mesh size 0.075 mm). 300m for it
Put in a 1-liter conical beaker, add 150 ml of physiological saline, and stopper. It is placed in a constant temperature water bath at a temperature of 40 ° C. and horizontally shaken at a speed of 120 revolutions per minute for 50 hours. Thereafter, filtration and drying with a glass filter are performed, and the undissolved fibers are precisely weighed to determine the weight loss of the fibers due to dissolution. The weight loss rate calculated from the weight loss of the fiber is defined as the physiological saline dissolution rate of the fiber.

【0025】この無機繊維の化学組成(モル%)と生理
食塩水溶解率を表2に示す。
Table 2 shows the chemical composition (mol%) and the physiological saline dissolution rate of the inorganic fiber.

【0026】[0026]

【表2】 また、図2は、無機繊維のSrO/MgOモル濃度比と
生理食塩水溶解率との関係を示す。
[Table 2] FIG. 2 shows the relationship between the SrO / MgO molar concentration ratio of the inorganic fiber and the physiological saline dissolution rate.

【0027】図2より、MgOに対するSrOの濃度比
が大きくなるにつれて、生理食塩水溶解率が上昇する傾
向があることがわかる。すなわち、無機繊維に導入する
アルカリ土類金属酸化物がMgOだけでは、その溶解率
は低いが、SrOを導入すると、生理食塩水への溶解率
が増大し、無機繊維が優れた生体溶解性を示す。SrO
/MgOモル濃度比は、0.03以上が特に好ましい。
FIG. 2 shows that as the concentration ratio of SrO to MgO increases, the physiological saline dissolution rate tends to increase. That is, when MgO is the only alkaline earth metal oxide to be introduced into the inorganic fiber, its solubility is low. However, when SrO is introduced, the solubility in physiological saline increases, and the inorganic fiber exhibits excellent biosolubility. Show. SrO
The / MgO molar concentration ratio is particularly preferably 0.03 or more.

【0028】本発明の無機繊維の溶解率は、肺の中での
持続性を低くするために少なくとも1%以上が望まし
い。
The dissolution rate of the inorganic fiber of the present invention is desirably at least 1% or more in order to reduce the persistence in the lung.

【0029】また、後述するように、本発明の無機繊維
は、SrOを導入することにより、熱履歴を有した後
も、高い生理食塩水溶解率を示し、優れた生体溶解性を
維持する。例えば、1100℃で24時間加熱された後
も、1%以上の溶解率を維持する。
As will be described later, the inorganic fiber of the present invention shows a high physiological saline dissolution rate even after having a heat history and maintains excellent biosolubility by introducing SrO. For example, even after heating at 1100 ° C. for 24 hours, a dissolution rate of 1% or more is maintained.

【0030】本発明の無機繊維に含まれるMgOは、生
理食塩水へ溶解する働きを有する主要成分である。Mg
Oは多く含有するほど溶解率は増大するが、耐熱性が低
下する。そこでMgOの含有率は、好ましくは11.0
〜29.5重量%であり、より好ましくは、11.0〜
25.5重量%である。
MgO contained in the inorganic fiber of the present invention is a main component having a function of dissolving in physiological saline. Mg
As the O content increases, the dissolution rate increases, but the heat resistance decreases. Therefore, the content of MgO is preferably 11.0.
To 29.5% by weight, more preferably 11.0 to
25.5% by weight.

【0031】このようにして、熱履歴を有する前後での
優れた生体溶解性と、アルミナシリカ繊維と同等の高い
耐熱性とを併せもつ無機繊維が完成された。
Thus, an inorganic fiber having both excellent biosolubility before and after having a heat history and high heat resistance equivalent to alumina silica fiber was completed.

【0032】SiO2 とアルカリ土類金属酸化物を含む
無機繊維は、他にも、特表平10−504272号公報
に開示されている。しかし、ここでは、CaO−SrO
−SiO2 系が優れているとされている。そして、Mg
O及びSrOは明らかに調和しないとし、さらに、Mg
O含量はできるだけ低く抑制することがよいとされてい
る。
Other inorganic fibers containing SiO 2 and an alkaline earth metal oxide are disclosed in Japanese Patent Application Laid-Open No. 10-504272. However, here, CaO-SrO
There is a -SiO 2 system is excellent. And Mg
O and SrO are clearly out of harmony, and furthermore, Mg
It is said that the O content should be kept as low as possible.

【0033】また、これは、繊維の耐熱性すなわち加熱
収縮率の点から記述がなされたものである。しかしなが
ら、評価が行われた繊維のSiO2 成分濃度は、50〜
67モル%の範囲である。本発明者らは、繊維のSiO
2 成分濃度をこれよりも高くすることによって、繊維の
耐熱性が飛躍的に向上することを見いだした。
This is described in terms of the heat resistance of the fiber, that is, the heat shrinkage. However, the SiO 2 component concentration of the evaluated fiber is 50 to
It is in the range of 67 mol%. We have found that the fiber SiO
It has been found that the heat resistance of the fiber is dramatically improved by increasing the concentration of the two components.

【0034】[0034]

【実施例】以下、実施例1により本発明をさらに明確に
する。
EXAMPLES The present invention will be further clarified by Example 1.

【0035】原料として、珪石、マグネシアクリンカー
および炭酸ストロンチウムを使用し、表3に示す化学組
成になるように混合した。それを、電気溶融した後、溶
融物を吹精することによって繊維化を行い、集綿した。
As raw materials, silica stone, magnesia clinker and strontium carbonate were used and mixed so as to have a chemical composition shown in Table 3. It was electrofused, fiberized by blowing the melt, and collected.

【0036】得られた繊維について、下記の方法で耐熱
性および生理食塩水溶解性の評価を行った。
The resulting fibers were evaluated for heat resistance and solubility in physiological saline in the following manner.

【0037】耐熱性 前述の耐熱性評価方法と同様にしてプリフォームを作製
する。これを、1100℃、1200℃および1260
℃の各温度で24時間加熱し、加熱前後での収縮率を求
めた。収縮率が小さいほど耐熱性に優れている。
Heat resistance A preform is prepared in the same manner as in the heat resistance evaluation method described above. This is done at 1100 ° C, 1200 ° C and 1260
It heated at each temperature of 24 degreeC for 24 hours, and the shrinkage rate before and behind heating was calculated | required. The smaller the shrinkage, the better the heat resistance.

【0038】生理食塩水溶解性 前述の生体溶解性の評価方法と同様にして評価した。溶
解性の評価は、未加熱の繊維の他に、それぞれ900
℃、1000℃および1100℃で24時間加熱した繊
維についても行った。溶解率が大きいほど生体溶解性に
優れている。
Physiological saline solubility The evaluation was made in the same manner as in the above-mentioned method for evaluating the solubility in living organisms. Solubility was evaluated for each of the unheated fibers, 900
Fibers heated at 24 ° C., 1000 ° C. and 1100 ° C. for 24 hours were also tested. The higher the dissolution rate, the better the biosolubility.

【0039】比較のため、比較例1及び2についても、
実施例1と同様にして評価試験を行った。
For comparison, Comparative Examples 1 and 2 were also
An evaluation test was performed in the same manner as in Example 1.

【0040】比較例1は市販されているMgO−SiO
2 系の無機繊維である。
Comparative Example 1 is a commercially available MgO-SiO
It is a 2- system inorganic fiber.

【0041】比較例2は市販されているCaO−MgO
−SiO2 系の無機繊維である。
Comparative Example 2 is a commercially available CaO--MgO
Inorganic fibers -SiO 2 system.

【0042】実施例1および比較例1、2の評価結果
を、耐熱性は収縮率として表3に示し、生理食塩水溶解
性は溶解率として表3に示す。
The evaluation results of Example 1 and Comparative Examples 1 and 2 are shown in Table 3 as heat resistance as a shrinkage ratio, and Table 3 as physiological saline solubility as a dissolution ratio.

【0043】[0043]

【表3】 収縮率の結果について表3を参照して説明する。[Table 3] The result of the shrinkage ratio will be described with reference to Table 3.

【0044】比較例2は、1200℃以下の温度では、
1%程度の小さい収縮率を示す。しかしながら、126
0℃での収縮率は8%程度にまで達している。したがっ
て、1200℃以上になると、収縮率が急激に大きくな
り、これ以上の温度域での耐熱性を維持することは困難
である。
In Comparative Example 2, at a temperature of 1200 ° C. or less,
It shows a small shrinkage of about 1%. However, 126
The shrinkage at 0 ° C. has reached about 8%. Therefore, when the temperature exceeds 1200 ° C., the shrinkage rate sharply increases, and it is difficult to maintain heat resistance in a temperature range higher than this.

【0045】比較例1は、1260℃において収縮率が
急激に大きくなることはない。1260℃での収縮率は
5%程度の値を示している。
In Comparative Example 1, the shrinkage at 1260 ° C. does not increase sharply. The shrinkage at 1260 ° C. shows a value of about 5%.

【0046】本発明の範囲内である実施例1も、126
0℃において収縮率が急激に大きくなることはない。1
260℃における収縮率は3%以下の値であり、優れた
耐熱性を有している。
Embodiment 1 which is within the scope of the present invention also
At 0 ° C., the shrinkage does not increase sharply. 1
The shrinkage at 260 ° C. is 3% or less, and has excellent heat resistance.

【0047】次に、溶解率の結果について表3および図
3を参照して説明する。
Next, the results of the dissolution rate will be described with reference to Table 3 and FIG.

【0048】比較例2は、未加熱の状態では、溶解率が
7%程度の値を示し、優れた生体溶解性を有している。
しかしながら、900℃以上の熱履歴を持つと、生理食
塩水溶解率が1%程度まで小さくなり、生体溶解性が急
激に低下してしまう。
In Comparative Example 2, the dissolution rate shows a value of about 7% in an unheated state, and has excellent biosolubility.
However, if it has a heat history of 900 ° C. or higher, the physiological saline dissolution rate decreases to about 1%, and the biosolubility rapidly decreases.

【0049】比較例1は、未加熱の状態では、溶解率は
2%程度の値を示す。そして、900℃以上の熱履歴を
持つと、溶解率は1%以下になり、生体溶解性をほとん
ど失ってしまう。
In Comparative Example 1, the dissolution rate shows a value of about 2% in an unheated state. When the heat history is 900 ° C. or more, the dissolution rate becomes 1% or less, and the biosolubility is almost lost.

【0050】本発明の範囲内である実施例1は、未加熱
の状態では、溶解率は4%程度の値を示す。更に、90
0℃以上の熱履歴を持った後も、溶解率は2%程度の値
を示し、熱履歴を持った後も、本発明の無機繊維が優れ
た生体溶解性を維持していることがわかる。この優れた
特性は、SrOを導入することにより達成できたもので
ある。
Example 1, which is within the scope of the present invention, shows a dissolution rate of about 4% in the unheated state. In addition, 90
Even after having a heat history of 0 ° C. or more, the dissolution rate shows a value of about 2%, indicating that the inorganic fiber of the present invention maintains excellent biosolubility even after having a heat history. . This excellent characteristic has been achieved by introducing SrO.

【0051】さらに1100℃で24時間加熱された後
の実施例1が、未加熱の比較例1と同等の溶解率を示す
ことは注目に値する。
It is noteworthy that Example 1 after further heating at 1100 ° C. for 24 hours shows a dissolution rate equivalent to that of Comparative Example 1 which was not heated.

【0052】[0052]

【発明の効果】本発明の無機繊維は、従来のセラミック
繊維と同水準の高い耐熱性と、従来のセラミック繊維に
はなかった優れた生体溶解性とを併せ持っている。さら
に、本発明の無機繊維は、熱履歴を持った後も、優れた
生体溶解性を維持する。
The inorganic fiber of the present invention has the same high heat resistance as the conventional ceramic fiber and the excellent biosolubility which has not been obtained by the conventional ceramic fiber. Furthermore, the inorganic fiber of the present invention maintains excellent biosolubility even after having a heat history.

【0053】従って、本発明の無機繊維は、従来のアル
ミナシリカ繊維と同様の耐熱材として使用できる。ま
た、加熱前はもちろんのこと、加熱後においても、例え
ば、耐火材として使用した後においても、繊維の吸入に
よる人体への毒性が低減できる。
Therefore, the inorganic fiber of the present invention can be used as a heat-resistant material similar to the conventional alumina silica fiber. Moreover, not only before heating but also after heating, for example, after using as a refractory material, toxicity to the human body due to inhalation of fibers can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】MgO−SrO−SiO2 系無機繊維のSiO
2 濃度(重量%)と1200℃で24時間加熱後の収縮
率との関係を示すグラフである。
FIG. 1 SiO of MgO—SrO—SiO 2 based inorganic fiber
2 is a graph showing the relationship between the concentration (% by weight) and the shrinkage after heating at 1200 ° C. for 24 hours.

【図2】MgO−SrO−SiO2 系無機繊維のSrO
/MgOモル比と生理食塩水溶解率との関係を示すグラ
フである。
FIG. 2 SrO of MgO—SrO—SiO 2 based inorganic fiber
It is a graph which shows the relationship between / MgO molar ratio and physiological saline solution rate.

【図3】本発明の無機繊維および市販されている無機繊
維の熱履歴が、生理食塩水溶解率に及ぼす影響を示した
グラフである。
FIG. 3 is a graph showing the effect of the thermal history of the inorganic fiber of the present invention and a commercially available inorganic fiber on the physiological saline dissolution rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大宮 修史 東京都中央区日本橋久松町4番4号 糸重 ビル 東芝モノフラックス株式会社内 (72)発明者 根本 孝司 東京都中央区日本橋久松町4番4号 糸重 ビル 東芝モノフラックス株式会社内 (72)発明者 杉山 勝 東京都中央区日本橋久松町4番4号 糸重 ビル 東芝モノフラックス株式会社内 (72)発明者 平田 公男 東京都中央区日本橋久松町4番4号 糸重 ビル 東芝モノフラックス株式会社内 Fターム(参考) 4G062 AA05 BB01 DA07 DB01 DB02 DC01 DD01 DE01 DF01 EA01 EB01 EC01 ED04 EE01 EE02 EF02 EF03 EF04 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM18 NN40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Osamu Omiya 4-4 Nihonbashi Hisamatsucho, Chuo-ku, Tokyo Itoshige Building Inside Toshiba Monoflux Co., Ltd. (72) Inventor Takashi Nemoto 4th Nihonbashi Hisamatsucho, Chuo-ku, Tokyo No.4 In Itoshige Building Toshiba Monoflux Co., Ltd. (72) Inventor Masaru Sugiyama 4-4, Nihonbashi Hisamatsucho, Chuo-ku, Tokyo Into Itoshige Building Toshiba Monoflux Co., Ltd. (72) Inventor Kimio Hirata Nihonbashi, Chuo-ku, Tokyo 4-4 Hisamatsucho Itoishi Building Toshiba Monoflux Corporation F-term (reference) 4G062 AA05 BB01 DA07 DB01 DB02 DC01 DD01 DE01 DF01 EA01 EB01 EC01 ED04 EE01 EE02 EF02 EF03 EF04 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 J J03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM18 NN40

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 MgO、SrOおよびSiO2 を必須成
分とした無機繊維であって、該繊維の真空成形プリフォ
ームが1260℃で24時間加熱された前後で3.5%
以下の線収縮率を示すことを特徴とする無機繊維。
1. An inorganic fiber containing MgO, SrO and SiO 2 as essential components, wherein 3.5% is obtained before and after a vacuum-formed preform of the fiber is heated at 1260 ° C. for 24 hours.
An inorganic fiber having the following linear shrinkage.
【請求項2】 SiO2 が70.0〜88.5重量%で
あり、MgOが11.0〜29.5重量%であり、Sr
Oが0.5〜15.0重量%であることを特徴とする請
求項1に記載の無機繊維。
2. The composition according to claim 1, wherein the content of SiO 2 is 70.0 to 88.5% by weight, the content of MgO is 11.0 to 29.5% by weight,
The inorganic fiber according to claim 1, wherein O is 0.5 to 15.0% by weight.
【請求項3】 SiO2 が74.0〜84.5重量%で
あり、MgOが11.0〜25.5重量%であり、Sr
Oが0.5〜15.0重量%であることを特徴とする請
求項1または2に記載の無機繊維。
3. The composition according to claim 1, wherein the content of SiO 2 is 74.0 to 84.5% by weight, the content of MgO is 11.0 to 25.5% by weight,
The inorganic fiber according to claim 1 or 2, wherein O is 0.5 to 15.0% by weight.
【請求項4】 生理食塩水溶解率が1%以上であること
を特徴とする請求項1乃至3の何れか1項に記載の無機
繊維。
4. The inorganic fiber according to claim 1, wherein a physiological saline dissolution rate is 1% or more.
【請求項5】 繊維が熱履歴を持った後も、生理食塩水
溶解率が1%以上であることを特徴とする請求項1乃至
4の何れか1項に記載の無機繊維。
5. The inorganic fiber according to claim 1, wherein a physiological saline dissolution rate is 1% or more even after the fiber has a heat history.
JP2001212471A 2001-03-08 2001-07-12 Inorganic fiber soluble in physiological saline Expired - Lifetime JP3938671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212471A JP3938671B2 (en) 2001-03-08 2001-07-12 Inorganic fiber soluble in physiological saline

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-65131 2001-03-08
JP2001065131 2001-03-08
JP2001212471A JP3938671B2 (en) 2001-03-08 2001-07-12 Inorganic fiber soluble in physiological saline

Publications (2)

Publication Number Publication Date
JP2002338300A true JP2002338300A (en) 2002-11-27
JP3938671B2 JP3938671B2 (en) 2007-06-27

Family

ID=26610880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212471A Expired - Lifetime JP3938671B2 (en) 2001-03-08 2001-07-12 Inorganic fiber soluble in physiological saline

Country Status (1)

Country Link
JP (1) JP3938671B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183154A (en) * 2002-12-04 2004-07-02 Saint-Gobain Tm Kk Biosoluble inorganic fiber not producing free silicic acid after heating and method for producing the same
JP2004183153A (en) * 2002-12-04 2004-07-02 Saint-Gobain Tm Kk Biosoluble inorganic fiber not producing free silicic acid after heating
JP2012514721A (en) * 2009-01-05 2012-06-28 ユニフラックス ワン リミテッド ライアビリティ カンパニー High-strength biosoluble inorganic fiber insulation mat
EP2794982A4 (en) * 2011-12-19 2015-08-05 Unifrax I Llc High temperature resistant inorganic fiber
WO2016010579A1 (en) 2014-07-17 2016-01-21 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
JP2016520499A (en) * 2013-03-15 2016-07-14 ユニフラックス ワン リミテッド ライアビリティ カンパニー Inorganic fiber
US9452719B2 (en) 2015-02-24 2016-09-27 Unifrax I Llc High temperature resistant insulation mat
US9919957B2 (en) 2016-01-19 2018-03-20 Unifrax I Llc Inorganic fiber
US10023491B2 (en) 2014-07-16 2018-07-17 Unifrax I Llc Inorganic fiber
EP3087042B1 (en) * 2013-12-23 2021-02-17 Unifrax I LLC Non-biopersistent inorganic glass fiber with improved shrinkage and strength
US11203551B2 (en) 2017-10-10 2021-12-21 Unifrax I Llc Low biopersistence inorganic fiber free of crystalline silica

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014400797A1 (en) 2014-07-16 2017-02-02 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183153A (en) * 2002-12-04 2004-07-02 Saint-Gobain Tm Kk Biosoluble inorganic fiber not producing free silicic acid after heating
JP2004183154A (en) * 2002-12-04 2004-07-02 Saint-Gobain Tm Kk Biosoluble inorganic fiber not producing free silicic acid after heating and method for producing the same
JP2012514721A (en) * 2009-01-05 2012-06-28 ユニフラックス ワン リミテッド ライアビリティ カンパニー High-strength biosoluble inorganic fiber insulation mat
EP2794982A4 (en) * 2011-12-19 2015-08-05 Unifrax I Llc High temperature resistant inorganic fiber
JP2016520499A (en) * 2013-03-15 2016-07-14 ユニフラックス ワン リミテッド ライアビリティ カンパニー Inorganic fiber
EP3087042B1 (en) * 2013-12-23 2021-02-17 Unifrax I LLC Non-biopersistent inorganic glass fiber with improved shrinkage and strength
US10023491B2 (en) 2014-07-16 2018-07-17 Unifrax I Llc Inorganic fiber
WO2016010579A1 (en) 2014-07-17 2016-01-21 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US9556063B2 (en) 2014-07-17 2017-01-31 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
EP3169637A4 (en) * 2014-07-17 2017-12-27 Unifrax I LLC Inorganic fiber with improved shrinkage and strength
US9926224B2 (en) 2014-07-17 2018-03-27 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US9452719B2 (en) 2015-02-24 2016-09-27 Unifrax I Llc High temperature resistant insulation mat
US9919957B2 (en) 2016-01-19 2018-03-20 Unifrax I Llc Inorganic fiber
US11203551B2 (en) 2017-10-10 2021-12-21 Unifrax I Llc Low biopersistence inorganic fiber free of crystalline silica

Also Published As

Publication number Publication date
JP3938671B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
AU590393B2 (en) Inorganic fiber composition
RU2302392C2 (en) Vitreous inorganic fiber resistant to the action of the high temperature
JP3786424B2 (en) Artificial glass fiber
KR100773602B1 (en) Biosoluble ceramic fiber composition with improved solubility in a physiological saline solution for a high temperature insulation material
CA1338340C (en) Inorganic fiber composition
JP2002338300A (en) Inorganic fiber soluble in pysiological salt water
JP4317218B2 (en) High temperature resistant glassy inorganic fiber
RU2521205C2 (en) Salt-soluble composition of ceramic fibre
HU212914B (en) Mineral fiber capable dissolving in a physiological medium and heat-insulating and/or sound-proofing material made up of such fibres
EP1979284A1 (en) A biodegradable ceramic fiber composition for a heat insulating material
JP2002266169A (en) Heat-resistant inorganic fiber and inorganic fiber product
CA2790090C (en) A composition for preparing ceramic fiber and a biosoluble ceramic fiber prepared therefrom for heat insulating material at high temperature
AU741801B2 (en) Artificial mineral wool composition
JP3995084B2 (en) Inorganic fiber having water resistance and biosolubility and production method thereof
US7468336B2 (en) High temperature resistant vitreous inorganic fiber
US6034014A (en) Glass fiber composition
JP4019111B2 (en) Inorganic fiber soluble in physiological saline and method for producing the same
JP2003003335A (en) Inorganic fiber
EP1288172A1 (en) Inorganic fiber and process of producing the same
KR101531633B1 (en) A composition for preparing ceramic fiber and a saline soluble ceramic fiber prepared therefrom for heat insulating material at high temperature
JP2004183154A (en) Biosoluble inorganic fiber not producing free silicic acid after heating and method for producing the same
WO2000017116A1 (en) GLASS FIBERS WITH IMPROVED DURABILITY VIA LOW MgO AND Al2O¿3?

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3938671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term