JP3995084B2 - Inorganic fiber having water resistance and biosolubility and production method thereof - Google Patents

Inorganic fiber having water resistance and biosolubility and production method thereof Download PDF

Info

Publication number
JP3995084B2
JP3995084B2 JP2002196906A JP2002196906A JP3995084B2 JP 3995084 B2 JP3995084 B2 JP 3995084B2 JP 2002196906 A JP2002196906 A JP 2002196906A JP 2002196906 A JP2002196906 A JP 2002196906A JP 3995084 B2 JP3995084 B2 JP 3995084B2
Authority
JP
Japan
Prior art keywords
inorganic fiber
alkaline earth
inorganic
sio
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002196906A
Other languages
Japanese (ja)
Other versions
JP2004036050A (en
Inventor
正人 大沢
孝司 根本
安雄 三須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Saint Gobain TM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain TM KK filed Critical Saint Gobain TM KK
Priority to JP2002196906A priority Critical patent/JP3995084B2/en
Publication of JP2004036050A publication Critical patent/JP2004036050A/en
Application granted granted Critical
Publication of JP3995084B2 publication Critical patent/JP3995084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、生体溶解性および耐水性を有する無機繊維に関するものである。
【0002】
【従来の技術】
無機繊維の使用は、耐火断熱材、吸音材や補強材などの工業材料として多岐にわたっている。アスベストは天然無機繊維であるが、その吸入は、呼吸器疾患や癌に深い関連があると見なされている。一方、人工の無機繊維については、その吸入による有害性の疫学的な実証は完全にはなされていないものが多いが、動物による実験的研究から、そのうちのいくつかは、アスベストと同様な疾患発生の可能性が指摘されている。
【0003】
無機繊維の毒性に関しては、1)繊維の吸入量、2)吸入繊維の寸法、3)体内での吸入繊維の耐久性、という3つの要因との関連性が挙げられている。近年、有害性の低い無機繊維を開発するためのひとつの方向性として、特に、上記3)の、体内での吸入繊維の耐久性という点に着目した繊維の有害性の評価研究が数多くなされている。
【0004】
体内での吸入繊維の耐久性を低くするための方法として、繊維の体内での溶解性を高くすることが挙げられる。これは、肺の中に吸入された繊維が、体液中で溶解し、かつ、溶解した成分が無害であるならば、その繊維の有害性は小さいという考え方である。
【0005】
このような背景から、ある程度の耐熱性を有しながら、体内での耐久性を低くした、いわゆる“生体溶解性ファイバー”の発明がなされ、そのうちの数種類は既に市販もされている。
【0006】
例えば、特表平8―506561号公報や特表平10―504272号公報には、生理学的塩類溶液に可溶な、すなわち、生体溶解性を有する無機繊維が開示されている。
【0007】
特表平8―506561号公報は、添加成分として、アルミナ、ジルコニア、チタニアを含む、カルシア−マグネシア−シリカ系の繊維を開示している。また、特表平10―504272号公報は、シリカ、マグネシアを必須成分とし、かつジルコニアを任意に含むガラス繊維を開示している。
【0008】
【発明が解決しようとする課題】
一方、無機繊維が製造され、最終的に工業材料の製品として加工される過程において、無機繊維は、水中で分散・凝集させた状態で処理されることも多く、そのため、少なくとも、このような水中での処理が可能な程度の耐水性が要求される。
【0009】
しかしながら、生体溶解性と耐水性は相反する特性である。生体溶解性に優れていることは、水にも溶解しやすく、即ち、耐水性が劣るということである。特表平8―506561号公報や特表平10―504272号公報に示された生体溶解性を有する無機繊維は、生体溶解性には優れてはいるものの耐水性に乏しく、繊維を水中で分散・凝集させる処理や、高温多湿地域における貯蔵・保管に問題がある。一方、無機繊維は耐火断熱材として耐熱性を要求されている。前記、特表平8―506561号公報や特表平10―504272号公報に示された生体溶解性を有する無機繊維は、現在、耐火断熱材として広く使用されているアルミナシリカ繊維と比較した場合、1200℃を超える温度での耐熱性において、同等とは言い難く、むしろやや劣っている。
【0010】
そこで本発明は、アルミナシリカ繊維と同等な優れた耐熱性を有し、さらに、優れた生体溶解性、並びに、水中で繊維を分散・凝集させる処理が可能な程度の耐水性を有する無機繊維を提供することを目的としている。
【0011】
【課題を解決するための手段】
本願発明者は、無機繊維の生体溶解性と耐水性について鋭意検討した結果、SiO2を主成分とする無機繊維中に、アルカリ土類酸化物を含有させ、かつ、含 有させるアルカリ土類の加重平均イオン半径を所定の範囲に制御することによって、優れた耐熱性に加え、生体溶解性と耐水性を併せ持つ無機繊維を完成させた。
【0012】
本発明による解決手段の1つは、ブローイング法またはスピニング法によって溶融物の繊維化された無機繊維であって、SiO、MgO、SrOを必須成分とし、SiOが70〜80重量%であり、必要に応じて、CaOおよび/またはBaOを含み、繊維中に含むアルカリ土類の加重平均イオン半径が66〜90pm(ピコメートル)であることを特徴とする無機繊維である。
【0013】
本発明による他の解決手段は、無機繊維およびその製造方法として各請求項に記載されている。
【0014】
【発明の実施の形態】
次に、本発明の実施の形態を詳細に説明する。なお、本明細書においてアルカリ土類とは、Mg、Sr、CaおよびBaを意味する。
【0015】
まず、無機繊維に含有させるアルカリ土類について説明する。
【0016】
アルカリ土類は、元素周期律表のIIa族のうちBe、Mg、Ca、Sr、Ba、およびRaの総称を指し、特にはCa、Sr、Ba、およびRaを指すこともある。本発明においては、前述のように、アルカリ土類はMg、Sr、CaおよびBaを意味する。他のIIa族のうち、Beは強い毒性、またRaは強い放射性を有するため使用することは不適当だからである。
【0017】
本発明による無機繊維は、SiO2を主成分として、アルカリ土類の酸化物を 含有させた組成の無機繊維である。これらアルカリ土類の酸化物は、SiO2に 含有されることで網目形成成分であるSiO2に対して網目修飾成分として作用 する。これにより組成中に非架橋酸素が増加して、生体溶解性が大きくなる。含有させ得るアルカリ土類酸化物としては、MgO、SrO、CaO、BaOが挙げられるが、後述の理由によって、MgO、SrOは必須成分である。
【0018】
本願発明者は、SiO2を主成分とした無機繊維に含有させる成分としてMg O、SrO、CaOおよびBaOに着目し、実験を重ねて、表1の結果を得た。
【0019】
【表1】

Figure 0003995084
即ち、RO―SiO2系組成(Rはアルカリ土類)の無機繊維について、化学 組成、含有するアルカリ土類の加重平均イオン半径、生体溶解性および耐水性の関係を詳細に検討した。生体溶解性の評価においては、無機繊維の生理食塩水に対する溶解率を測定することにより、また耐水性の評価においては、無機繊維の蒸留水に対する溶解率を測定することによって評価した。即ち、無機繊維の生理食塩水に対する溶解率が大きければ、生体溶解性が大きく、無機繊維の蒸留水に対する溶解率が大きければ、耐水性が小さいことになる。
【0020】
溶解率の測定方法は以下の通りである。まず、200メッシュ(目開き0.075mm)の篩いを通過するまで解砕した繊維試料を1g精秤する。それを300mlのコニカルビーカーにとり、生理食塩水あるいは蒸留水を150ml加え、栓をする。それを40℃の恒温水槽に設置して、120rpmの速度で50時間水平振とうを行う。その後、ガラスろ過器によるろ過および乾燥を行い、不溶解繊維を精秤して、溶解による繊維の減量を求める。溶解による繊維の減量から算出した重量減少率を、その繊維の溶解率とする。
【0021】
さらに加重平均イオン半径について説明する。本発明では、繊維に含まれるアルカリ土類の加重平均イオン半径として、各アルカリ土類のイオン半径を加重平均した値を算出して利用している。イオン半径は物質の構造を論じる際等にしばしば用いられるものであり、端的に言えば、イオンを球と考えたとき、その半径をイオン半径という。例えば、SiO2ガラスは、Siの周囲に4個の酸素を配 位し、SiO4四面体を基本とする網目構造を有する。網目の中心がSi4+イオンであり、ここで正、負のイオン間の化学結合は、(この場合負イオンはO2-)両者間の静電気的引力で生じるが、正、負のイオン同士が極端に近づいていくと、今度はイオンの原子核が持つ正電荷により相互の反発力が生じる。この静電気的引力と、反発力が釣り合う位置で、両者の間隔は定まり、それぞれのイオンがあたかも一定の半径をもった剛体の球であるかのように、これ以上は接近でない状態となる。この球の半径がイオン半径と呼ばれている。
【0022】
加重平均イオン半径は、本発明では、繊維に含まれる各アルカリ土類のイオン半径を、繊維中の各アルカリ土類酸化物のモル分率によって加重平均し、こうして得られた値を繊維中のアルカリ土類の加重平均イオン半径とした。加重平均イオン半径の算出方法は、まず繊維に含まれるアルカリ土類酸化物の総量を1とした場合の各アルカリ土類酸化物のモル分率を算出する。算出した各モル分率に、それぞれのアルカリ土類のイオン半径を乗じた値の総和を加重平均イオン半径とした。加重平均イオン半径の算出式を以下に示す。
【0023】
AVG = Σr1・R1
ここで、rAVGは、無機繊維に含まれるアルカリ土類の加重平均イオン半径、r1は各アルカリ土類のイオン半径、R1は、無機繊維に含まれるアルカリ土類酸化 物の総量を1とした場合の各アルカリ土類酸化物のモル分率とする。計算に使用したアルカリ土類のイオン半径を表2に示す。(出典 山根正之:「はじめてガラスを作る人のために」、セラミックス基礎講座4、P82、内田老鶴圃(1996))
【表2】
Figure 0003995084
表1において、#04〜#16、#23〜#28および、#37〜#42は、本発明により製造された無機繊維の好適例を示すものである。
【0024】
表1に示す無機繊維に含まれるアルカリ土類の加重平均イオン半径と、繊維の生理食塩水または蒸留水中での溶解率との関係を図1に示す。図1から、無機繊維に含まれるアルカリ土類の加重平均イオン半径と溶解率には、生理食塩水および蒸留水どちらの場合も、1次式に近似することができる正の相関関係があることがわかる。
【0025】
無機繊維の生体溶解性は、大きい方が健康への影響が少ないと考えられており、好ましい。即ち、生理食塩水中での溶解率が、大きい方が好ましい。この観点から、生理食塩水中での溶解率は、少なくとも1%以上とすることが好ましい。
【0026】
図1より、無機繊維の生理食塩水中での溶解率を1%以上とするには、無機繊維に含まれるアルカリ土類の加重平均イオン半径が66pm以上になるように、アルカリ土類酸化物の種類と量を調整すれば良い。
【0027】
前述のように、無機繊維の耐水性は、大きい方が好ましい。しかしながら、無機繊維の生体溶解性と耐水性は相反する特性である。即ち、耐水性に優れた無機繊維を得ようとすると、生体溶解性は劣ってしまう。そこで、発明者は、種々検討を行い、無機繊維が持つべき耐水性は、どの程度必要であるのかを見出した。その結果、蒸留水中での溶解率が4%を越える無機繊維は、その無機繊維を水中で分散・凝集させて処理を行う場合や、高温多湿環境で繊維を貯蔵・保管している間に、繊維表面に水和層が形成され、繊維どうしが膠結して、繊維としての使用が困難になる場合があった。ここで膠結とは、前述のように繊維表面に水和層が形成されたことで、繊維の表面状態は初期の滑らかな状態に比べ、乱れた状態になっており、繊維が、繊維表面の水和層の部分で互いに付着し合ったような状態である。このような状態になることを避けるため、繊維の蒸留水への溶解率は4%以下が好ましい。
【0028】
無機繊維の蒸留水中での溶解率を4%以下にするためには、図1より、無機繊維に含まれるアルカリ土類の加重平均イオン半径を90pm以下になるようにアルカリ土類酸化物の種類と量を調整すれば良い。即ち、90pm以下にすることによって、耐水性に優れた無機繊維が得られる。
【0029】
従って、生体溶解性に優れ、耐水性を併せ持つ無機繊維を得るには、無機繊維に含まれるアルカリ土類の加重平均イオン半径が、66〜90pmになるようにアルカリ土類酸化物の種類と量を調整すれば良い。
【0030】
ここで、RO−SiO2系組成(Rはアルカリ土類)の無機繊維に含まれるア ルカリ土類の加重平均イオン半径を90pm以下とするためには、MgOを必須成分とする必要がある。詳しく説明すると、表2から、各アルカリ土類のうち、イオン半径が90pmより小さいものはMg2+(66pm)のみである。従って、前記式rAVG = Σr1・R1から無機繊維に含有させるアルカリ土類の加重 平均イオン半径rAVGを90pm以下とするためには、Mgを単独で含有させる 場合はもちろん、Mg以外のアルカリ土類を含有させる場合には、Mgは必須成分となる。
【0031】
無機繊維に含まれるアルカリ土類の加重平均イオン半径を好ましい範囲内に制御するためには、MgO―SiO2系組成に、SrO、CaOおよびBaO成分 を導入するのが好ましい。Sr、CaやBaは、Mgよりもイオン半径が大きいため、無機繊維に含まれるアルカリ土類の、加重平均イオン半径を制御するのに有効だからである。
【0032】
本発明による無機繊維を作成するためには、公知の方法を部分的に利用することができる。例えば、所望の配合に基づいて原料を混合し、電気炉で溶融した後、流下させた溶融物に高圧の空気(または水蒸気)を噴射して繊維化するブローイング法、あるいは、高速回転する円板上に溶融物を流下させて繊維化するスピニング法等によって得られる。
【0033】
また、溶融物を繊維化する場合、繊維化するための最適な溶融物の粘度範囲、言い換えると、歩留り良く繊維化が良好に行える粘度範囲が存在するため、溶融物の粘度は非常に重要である。一般的に、溶融物の粘度は、温度の低下にしたがって高くなる傾向がある。このため、前述の方法で繊維を工業的に生産する場合は、その溶融物の、温度変化による粘度の変化が鈍感であることが望ましい。溶融物の、温度変化による粘度変化が鈍感であれば、繊維化が可能である温度範囲が大きくなる。
【0034】
本発明者は、MgO―SiO2系組成の溶融物にSrO成分を添加すると、溶 融物の温度変化による粘度変化が鈍感になることを見出した。すなわち、SrO成分が溶融物の粘度調節剤として機能することを見出した。
【0035】
上述のように、SrOは無機繊維に含まれるアルカリ土類の加重平均イオン半径を好ましい範囲に効果的に制御でき、かつ、溶融物の繊維化において粘度調節剤として機能するため、本発明においては、SrO成分は必須成分となっている。SrO成分のこのような効果を得るには、0.2重量%以上が好ましい。より好ましくは、1.0重量%以上である。
【0036】
また、無機繊維のSiO2成分濃度は70〜80重量%の範囲である。耐熱性 の面から見て、SiO2成分濃度が70重量%未満となると、繊維の耐熱性が小 さくなることがあるためである。ここで耐熱性について説明すると、耐熱性の評価は、繊維で作成したプリフォームを所定温度で加熱し、加熱前後のプリフォーム寸法の収縮率を測定して行う方法がある。現在、耐火断熱材として広く使用されている非晶質アルミナシリカ繊維(1260℃グレード)では、1260℃で24時間加熱後の収縮率は、3.5%以下が標準的である。アルミナシリカ繊維と同等の耐熱性を実現するため、本発明の無機繊維では、SiO2成分濃度は7 0重量%以上である。しかし一方で、本発明の繊維を製造するときの操業の容易さから言うと、SiO2成分濃度が80重量%を越えると、溶融物の粘度が大き くなり繊維化が困難になることがある。従って、本発明の無機繊維のSiO2成 分濃度は70〜80重量%の範囲とする。
【0037】
生体溶解性と耐水性は、基本的に相反する性質である。そこで、繊維の生体溶解性と耐水性という2つの特性の均衡を、その繊維の使用方法、用途毎に制御することがしばしば必要となる。その際、本発明のように、繊維に含まれるアルカリ土類の加重平均イオン半径というパラメータを制御することによって、その使用方法、用途に応じた、生体溶解性と耐水性という2つの特性の均衡に優れた繊維を化学的に設計することが可能となる。
【0038】
例えば、本発明による無機繊維の設計方法は、SiO2、MgO、SrOを必 須成分とし、SiO2が70〜80重量%であり、SiO2を除いた残分がアルカリ土類の酸化物で、他に不可避の不純物を含む無機繊維を作製する際に、無機繊維に含有させるアルカリ土類の種類および量を決定し、次に示すa)〜d)によって無機繊維の生体溶解性および耐水性を制御することを特徴としている。
【0039】
a)無機繊維の、生理食塩水あるいは蒸留水への溶解率の設定値から、無機繊維に含有させるアルカリ土類の加重平均イオン半径を図1の近似直線より読み取り、b)次に無機繊維の生理食塩水あるいは蒸留水への溶解率の目的とする大きさに応じて、無機繊維に含有させるアルカリ土類を、Mg、Srの他に必要に応じてCa、Baの一種以上から選択する。c)選択した各アルカリ土類のイオン半径から計算される、アルカリ土類の加重平均イオン半径の値が、先に図1より読み取った値とほぼ同じになるように、アルカリ土類の種類と割合を組み合わせる。d)無機繊維に含まれるSiO2の含有量は、70〜80重量%の範囲で任 意に設定して良く、SiO2を除いた残分を、前記c)で決定したアルカリ土類 の種類と割合で割り当てる。
【0040】
発明者は、このようにして、優れた耐熱性をもち、かつ、生体溶解性と耐水性を併せもつ無機繊維を完成した。
【0041】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。
【0042】
原料として、珪石、マグネシアクリンカー、炭酸ストロンチウム、必要に応じてウォラストナイトおよび/または炭酸バリウムを使用した。これらの原料を所定量混合する。それを電気炉で溶融した後、溶融物を常法に従って繊維化し、集綿して、表3に示す化学組成の無機繊維を得た。
【0043】
【表3】
Figure 0003995084
得られた繊維について、まず、耐熱性の評価を行った。耐熱性の評価方法は次の通りである。得られた各無機繊維200gを、0.04%澱粉溶液10リットル中で撹枠して分散させた後、脱水成形器により成形した(成形モールドを用いたいわゆる真空成形)。これを110℃で十分乾燥させた後、所定の寸法に切断し耐熱性評価用のプリフォームを作成した。このプリフォームを1260℃で24時間加熱し、加熱前後に寸法測定を行って収縮率を求めた。収縮率が小さいほど、繊維は耐熱性に優れている。
【0044】
次に、得られた繊維の生体溶解性と耐水性の評価を行った。溶解率の測定は、前述した繊維の溶解率(繊維の溶解による重量減少率)測定方法によって行い、得られた溶解率で繊維の評価を行った。生理食塩水中での溶解率が大きいほど、その繊維は生体溶解性に優れている。また、蒸留水中での溶解率が小さいほど、その繊維は耐水性に優れている。
【0045】
実施例および比較例の、耐熱性、生体溶解性および耐水性の評価結果を、溶融物の繊維化の容易性と併せて表3に示す。繊維化の容易性は、○が容易、×が困難を表す。
【0046】
また、表3内の「実施例」の記載は、対応する欄の無機繊維が本発明の権利範囲内にあることを示し、「比較例」の記載は、権利範囲外にあることを示している。
【0047】
実施例1〜7は、いずれもMgO、SrO、SiO2を含む組成であり、実施 例5および6はさらにCaOを含み、実施例7はさらにCaO、BaOを含む無機繊維の例である。また、実施例1〜7はいずれも、繊維に含まれるアルカリ土類の加重平均イオン半径が66〜90pmの範囲内である。また、これらの繊維は、生理食塩水への溶解率が1%以上であった。また、蒸留水への溶解率は4%以下であり、蒸留水中での溶解実験終了後の繊維は膠結していなかった。従って、実施例1〜7の無機繊維は、生体溶解性と耐水性という双方の特性に優れている。また、これらの繊維は、粘度調節剤としての機能を有するSrO成分を含むことによって、溶融物からの繊維化が容易であった。また、実施例1〜7いずれの繊維も、SiO2成分濃度が70重量%以上であり、耐熱性の評価では、12 60℃で24時間加熱処理した際の加熱収縮率が3.5%以下であり、アルミナシリカ繊維と同水準であった。
【0048】
比較例1は、MgO―SiO2組成に、CaOを含む無機繊維の例である。生 体溶解性および耐水性は優れているが、SrO成分を含んでいないため、温度変化による溶融物の粘度変化が顕著であり、繊維化が困難で、ごく少量しか繊維を得ることができなかった。また、少量得られた繊維は、収縮率が大きく、耐熱性は低かった。
【0049】
比較例2は、CaO―SiO2組成にMgOを含む無機繊維の例である。この 繊維に含まれるアルカリ土類の加重平均イオン半径は90pmより大きい。この繊維は、生理食塩水への溶解率が大きく生体溶解性には優れていた。しかしながら、蒸留水への溶解率も大きく、蒸留水中での溶解実験終了後の繊維どうしの膠結が顕著であり、耐水性に劣っていた。また、SiO2成分濃度が70重量%未 満であり、耐熱性に乏しく、1260℃で24時間加熱後には溶融してしまった。
【0050】
比較例3は、MgO、SrO、SiO2にCaOを含む組成の無機繊維の例で ある。この繊維に含まれるアルカリ土類の加重平均イオン半径は71pmで、66〜90pmの範囲に入っているため、生理食塩水への溶解率が大きく生体溶解性に優れ、蒸留水への溶解率も小さく、耐水性にも優れていたが、SiO2成分 濃度が70重量%未満であり、耐熱性が著しく小さく、実用に耐えないものであった。
【0051】
比較例4は、CaO―SiO2組成にMgO、SrOを含む無機繊維の例であ る。比較例4では、SiO2成分濃度が80重量%を超えているため溶融物の粘 度が高く、繊維化が困難であり、ごく少量しか繊維を得ることができなかった。
【0052】
比較例5は、耐熱性に優れたアルミナシリカ繊維である。蒸留水へ溶解せず、耐水性は良好であったが、同時に、生理食塩水へほとんど溶解せず、生体溶解性を有していなかった。
【0053】
【発明の効果】
上述のように、本発明の無機繊維は、アルミナシリカ繊維と同水準の優れた耐熱性に加え、生体溶解性と耐水性という基本的に相反する2つの特性をバランス良く備えている。従って、本発明の無機繊維は、使用に際して、人の健康に対して影響が少なく、アルミナシリカ繊維と同等の耐火材として使用でき、かつ、水中での処理が可能であり、高温多湿地域において貯蔵・保管しても、その後に使用する際に何ら問題を生じることがない。
【図面の簡単な説明】
【図1】無機繊維に含まれるアルカリ土類の加重平均イオン半径と、繊維の生理食塩水および蒸留水中での溶解率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inorganic fiber having heat resistance, biosolubility and water resistance.
[0002]
[Prior art]
Inorganic fibers are widely used as industrial materials such as refractory heat insulating materials, sound absorbing materials and reinforcing materials. Asbestos is a natural inorganic fiber, but its inhalation is considered to be closely related to respiratory diseases and cancer. On the other hand, many of the artificial inorganic fibers have not been fully epidemiologically confirmed to be harmful by inhalation, but some of them have been found to cause diseases similar to asbestos based on experimental studies with animals. The possibility of is pointed out.
[0003]
Regarding the toxicity of inorganic fibers, there are three factors related to 1) the amount of inhaled fiber, 2) the size of the inhaled fiber, and 3) the durability of the inhaled fiber in the body. In recent years, as one of the directions for developing inorganic fibers with low toxicity, many studies have been made on the evaluation of the toxicity of fibers focusing on the durability of inhaled fibers in the body, especially in 3) above. Yes.
[0004]
As a method for reducing the durability of inhaled fibers in the body, increasing the solubility of the fibers in the body can be mentioned. This is the idea that if the fiber inhaled into the lung dissolves in body fluids and the dissolved components are harmless, the fiber is less harmful.
[0005]
Against this background, inventions of so-called “biosoluble fibers” have been made, which have a certain degree of heat resistance and low durability in the body, and several of them have already been marketed.
[0006]
For example, JP-A-8-506561 and JP-A-10-504272 disclose inorganic fibers that are soluble in physiological salt solutions, that is, have biosolubility.
[0007]
Japanese National Publication No. 8-506561 discloses calcia-magnesia-silica fiber containing alumina, zirconia, and titania as additive components. Japanese Patent Application Laid-Open No. 10-504272 discloses a glass fiber containing silica and magnesia as essential components and optionally containing zirconia.
[0008]
[Problems to be solved by the invention]
On the other hand, in the process in which inorganic fibers are manufactured and finally processed as products of industrial materials, inorganic fibers are often treated in a state of being dispersed and aggregated in water. Water resistance to the extent that it can be treated with is required.
[0009]
However, biosolubility and water resistance are contradictory properties. What is excellent in biosolubility is that it is easily dissolved in water, that is, its water resistance is poor. Inorganic fibers having biosolubilities disclosed in JP-A-8-506561 and JP-A-10-504272 are excellent in biosolubility but have poor water resistance, and the fibers are dispersed in water.・ There are problems with the agglomeration treatment and storage and storage in high temperature and high humidity areas. On the other hand, inorganic fibers are required to have heat resistance as a fireproof heat insulating material. The inorganic fibers having biosolubilities disclosed in JP-A-8-506561 and JP-A-10-504272 are compared with alumina silica fibers that are currently widely used as fireproof insulation materials. In terms of heat resistance at temperatures exceeding 1200 ° C., it is difficult to say that they are equivalent, and they are rather inferior.
[0010]
Therefore, the present invention provides an inorganic fiber having excellent heat resistance equivalent to that of alumina silica fiber, excellent biosolubility, and water resistance enough to disperse and aggregate the fiber in water. It is intended to provide.
[0011]
[Means for Solving the Problems]
The present inventor has intensively studied biosoluble and water resistance of the inorganic fibers, inorganic fibers composed mainly of SiO 2, containing an alkali earth oxides, and alkaline earth for containing Yes By controlling the weighted average ionic radius within a predetermined range, an inorganic fiber having both biosolubility and water resistance in addition to excellent heat resistance was completed.
[0012]
One of the solutions according to the present invention is an inorganic fiber obtained by fiberizing a melt by a blowing method or a spinning method, wherein SiO 2 , MgO, SrO are essential components, and SiO 2 is 70 to 80% by weight. The inorganic fiber is characterized by containing CaO and / or BaO, if necessary, and having a weighted average ionic radius of 66 to 90 pm (picometers) of alkaline earth contained in the fiber.
[0013]
Other solutions according to the invention are described in the respective claims as inorganic fibers and methods for their production.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail. In this specification, alkaline earth means Mg, Sr, Ca and Ba.
[0015]
First, the alkaline earth contained in the inorganic fiber will be described.
[0016]
Alkaline earth refers to the generic name of Be, Mg, Ca, Sr, Ba, and Ra in the group IIa of the periodic table of elements, and may particularly refer to Ca, Sr, Ba, and Ra. In the present invention, as described above, the alkaline earth means Mg, Sr, Ca and Ba. Of the other IIa groups, Be is highly toxic and Ra is highly radioactive, so it is inappropriate to use.
[0017]
The inorganic fiber according to the present invention is an inorganic fiber having a composition containing SiO 2 as a main component and an alkaline earth oxide. When these alkaline earth oxides are contained in SiO 2, they act as a network modifying component on SiO 2 which is a network forming component. This increases non-crosslinked oxygen in the composition and increases biosolubility. Examples of the alkaline earth oxide that can be contained include MgO, SrO, CaO, and BaO. For the reasons described later, MgO and SrO are essential components.
[0018]
The inventor of the present application paid attention to Mg 2 O, SrO, CaO and BaO as components to be incorporated into inorganic fibers containing SiO 2 as a main component, and repeated experiments to obtain the results shown in Table 1.
[0019]
[Table 1]
Figure 0003995084
That is, regarding the inorganic fibers of the RO—SiO 2 composition (R is alkaline earth), the chemical composition, the weighted average ionic radius of the alkaline earth contained, the relationship between biosolubility and water resistance were examined in detail. In the evaluation of biological solubility, the dissolution rate of inorganic fibers in physiological saline was measured, and in the evaluation of water resistance, the dissolution rate of inorganic fibers in distilled water was measured. That is, if the dissolution rate of the inorganic fiber in physiological saline is large, the solubility in the living body is large, and if the dissolution rate of the inorganic fiber in distilled water is large, the water resistance is small.
[0020]
The method for measuring the dissolution rate is as follows. First, 1 g of a fiber sample that has been crushed until it passes through a sieve of 200 mesh (aperture 0.075 mm) is precisely weighed. Take it into a 300 ml conical beaker, add 150 ml of physiological saline or distilled water, and plug. It is placed in a constant temperature water bath at 40 ° C. and horizontally shaken at a speed of 120 rpm for 50 hours. Thereafter, filtration and drying with a glass filter are performed, the insoluble fiber is precisely weighed, and the weight loss of the fiber due to dissolution is obtained. The weight reduction rate calculated from the weight loss of the fiber due to dissolution is taken as the dissolution rate of the fiber.
[0021]
Further, the weighted average ion radius will be described. In the present invention, a weighted average value of the ionic radii of each alkaline earth is calculated and used as the weighted average ionic radius of the alkaline earth contained in the fiber. The ionic radius is often used when discussing the structure of a substance. In short, when an ion is considered as a sphere, the radius is called an ionic radius. For example, SiO 2 glass has a network structure in which four oxygens are coordinated around Si and is based on a SiO 4 tetrahedron. The center of the network is Si 4 + ions, where chemical bonds between positive and negative ions (in this case, negative ions are O 2− ) are caused by electrostatic attraction between them, but positive and negative ions are As they become extremely close to each other, mutual repulsive force is generated due to the positive charge of the ion nucleus. At a position where the electrostatic attractive force and the repulsive force are balanced, the distance between the two is determined, and each ion is in a state of no closer approach as if it is a rigid sphere having a certain radius. The radius of this sphere is called the ion radius.
[0022]
In the present invention, the weighted average ionic radius is a weighted average of the ionic radii of each alkaline earth contained in the fiber by the molar fraction of each alkaline earth oxide in the fiber, and the value thus obtained is used in the fiber. The weighted average ionic radius of alkaline earth was used. The weighted average ionic radius is calculated by first calculating the molar fraction of each alkaline earth oxide when the total amount of alkaline earth oxide contained in the fiber is 1. The sum of the values obtained by multiplying each calculated molar fraction by the ionic radius of each alkaline earth was defined as the weighted average ionic radius. The formula for calculating the weighted average ionic radius is shown below.
[0023]
r AVG = Σr 1・ R 1
Here, r AVG is the weighted average ionic radius of the alkaline earth contained in the inorganic fiber, r 1 is the ionic radius of each alkaline earth, and R 1 is the total amount of the alkaline earth oxide contained in the inorganic fiber. And the molar fraction of each alkaline earth oxide. Table 2 shows the ionic radius of the alkaline earth used for the calculation. (Source: Masayuki Yamane: “For the first person to make glass”, Ceramics Basic Course 4, P82, Uchida Otsukuru (1996))
[Table 2]
Figure 0003995084
In Table 1, # 04 to # 16, # 23 to # 28, and # 37 to # 42 indicate preferred examples of the inorganic fibers produced according to the present invention.
[0024]
The relationship between the weighted average ionic radius of alkaline earth contained in the inorganic fibers shown in Table 1 and the dissolution rate of the fibers in physiological saline or distilled water is shown in FIG. From FIG. 1, the weighted average ionic radius and dissolution rate of alkaline earth contained in inorganic fibers have a positive correlation that can be approximated by a linear equation in both physiological saline and distilled water. I understand.
[0025]
It is considered that the larger the biosolubility of the inorganic fiber is, the less the effect on health is. That is, it is preferable that the dissolution rate in physiological saline is large. From this viewpoint, the dissolution rate in physiological saline is preferably at least 1% or more.
[0026]
From FIG. 1, in order to make the dissolution rate of the inorganic fiber in physiological saline 1% or more, the alkaline earth oxide is adjusted so that the weighted average ionic radius of the alkaline earth contained in the inorganic fiber is 66 pm or more. Adjust the type and amount.
[0027]
As described above, the water resistance of the inorganic fiber is preferably large. However, biological solubility and water resistance of inorganic fibers are contradictory properties. That is, if an inorganic fiber excellent in water resistance is to be obtained, the biosolubility is inferior. Therefore, the inventor conducted various studies and found out how much water resistance the inorganic fiber should have is necessary. As a result, inorganic fibers with a dissolution rate in distilled water exceeding 4% can be processed by dispersing and aggregating the inorganic fibers in water, or while storing and storing the fibers in a high-temperature and high-humidity environment. In some cases, a hydrated layer is formed on the fiber surface, and the fibers are agglomerated, making it difficult to use as a fiber. Here, the caking is the formation of a hydration layer on the fiber surface as described above, and the surface state of the fiber is more disturbed than the initial smooth state. It is in a state where they adhere to each other at the hydration layer. In order to avoid such a state, the dissolution rate of the fibers in distilled water is preferably 4% or less.
[0028]
In order to reduce the dissolution rate of inorganic fibers in distilled water to 4% or less, as shown in FIG. 1, the kind of alkaline earth oxide is set so that the weighted average ionic radius of alkaline earth contained in inorganic fibers is 90 pm or less. And adjust the amount. That is, the inorganic fiber excellent in water resistance is obtained by setting it as 90 pm or less.
[0029]
Therefore, in order to obtain an inorganic fiber having excellent biosolubility and water resistance, the kind and amount of alkaline earth oxide so that the weighted average ionic radius of the alkaline earth contained in the inorganic fiber is 66 to 90 pm. You can adjust.
[0030]
Here, in order to make the weighted average ionic radius of the alkaline earth contained in the inorganic fiber of the RO—SiO 2 composition (R is alkaline earth) 90 μm or less, MgO needs to be an essential component. More specifically, from Table 2, Mg 2+ (66 pm) is the only alkaline earth having an ionic radius smaller than 90 pm. Therefore, in order to set the weighted average ionic radius r AVG of the alkaline earth contained in the inorganic fiber from the formula r AVG = Σr 1 · R 1 to 90 pm or less, of course, when Mg is contained alone, other than Mg When alkaline earth is included, Mg becomes an essential component.
[0031]
In order to control the weighted average ionic radius of the alkaline earth contained in the inorganic fiber within a preferable range, it is preferable to introduce SrO, CaO and BaO components into the MgO—SiO 2 composition. This is because Sr, Ca and Ba have an ionic radius larger than that of Mg, and are effective in controlling the weighted average ionic radius of alkaline earth contained in the inorganic fiber.
[0032]
In order to produce the inorganic fibers according to the present invention, known methods can be partially utilized. For example, a raw material is mixed based on a desired composition, melted in an electric furnace, and then blown by spraying high-pressure air (or water vapor) into the molten material to flow down, or a disk rotating at high speed It is obtained by a spinning method or the like in which the melt is made to flow down and fiberized.
[0033]
In addition, when the melt is fiberized, the viscosity of the melt is very important because there is an optimum melt viscosity range for fiberizing, in other words, there is a viscosity range in which fiberization can be performed with good yield. is there. In general, the viscosity of the melt tends to increase with decreasing temperature. For this reason, when a fiber is industrially produced by the above-described method, it is desirable that the viscosity of the melt is insensitive to changes in temperature. If the viscosity change of the melt due to temperature change is insensitive, the temperature range in which fiberization is possible increases.
[0034]
The present inventor has found that when a SrO component is added to a melt having an MgO—SiO 2 composition, viscosity change due to temperature change of the melt becomes insensitive. That is, it was found that the SrO component functions as a viscosity modifier for the melt.
[0035]
As described above, SrO can effectively control the weighted average ionic radius of alkaline earth contained in inorganic fibers within a preferable range, and functions as a viscosity modifier in melt fiberization. The SrO component is an essential component. In order to obtain such an effect of the SrO component, 0.2% by weight or more is preferable. More preferably, it is 1.0% by weight or more.
[0036]
Further, SiO 2 component concentration of the inorganic fibers is in the range of 70 to 80 wt%. This is because, from the viewpoint of heat resistance, when the SiO 2 component concentration is less than 70% by weight, the heat resistance of the fiber may be reduced. Here, the heat resistance will be described. The heat resistance is evaluated by heating a preform made of fibers at a predetermined temperature and measuring the shrinkage ratio of the preform dimensions before and after heating. At present, the amorphous alumina silica fiber (1260 ° C. grade) widely used as a refractory heat insulating material has a standard shrinkage ratio of 3.5% or less after heating at 1260 ° C. for 24 hours. In order to achieve heat resistance equivalent to that of alumina silica fiber, the inorganic fiber of the present invention has a SiO 2 component concentration of 70% by weight or more. On the other hand, however, from the viewpoint of ease of operation when producing the fiber of the present invention, if the SiO 2 component concentration exceeds 80% by weight, the melt viscosity may increase and fiberization may become difficult. . Therefore, the SiO 2 component concentration of the inorganic fiber of the present invention is in the range of 70 to 80% by weight.
[0037]
Biological solubility and water resistance are basically contradictory properties. Therefore, it is often necessary to control the balance between the two properties of the fiber, ie, biosolubility and water resistance, for each method and application of the fiber. At that time, as in the present invention, by controlling the parameter of the weighted average ionic radius of the alkaline earth contained in the fiber, the balance between the two characteristics of biosolubility and water resistance depending on the method of use and application It is possible to chemically design excellent fibers.
[0038]
For example, the method for designing an inorganic fiber according to the present invention includes SiO 2 , MgO, and SrO as essential components, SiO 2 is 70 to 80% by weight, and the remainder excluding SiO 2 is an alkaline earth oxide. In addition, when producing inorganic fibers containing other inevitable impurities, the kind and amount of alkaline earth to be contained in the inorganic fibers are determined, and the biosolubility and water resistance of the inorganic fibers are determined by the following a) to d). It is characterized by controlling.
[0039]
a) Read the weighted average ionic radius of the alkaline earth contained in the inorganic fiber from the set value of the dissolution rate of the inorganic fiber in physiological saline or distilled water from the approximate straight line in FIG. Depending on the desired size of the dissolution rate in physiological saline or distilled water, the alkaline earth contained in the inorganic fiber is selected from one or more of Ca and Ba as required in addition to Mg and Sr. c) The type of alkaline earth so that the value of the weighted average ionic radius of the alkaline earth calculated from the ionic radius of each selected alkaline earth is substantially the same as the value read from FIG. Combine proportions. d) The content of SiO 2 contained in the inorganic fibers may be arbitrarily set in the range of 70 to 80% by weight, and the type of alkaline earth determined in the above c) is the remainder excluding SiO 2. And assign by percentage.
[0040]
The inventor thus completed an inorganic fiber having excellent heat resistance and having both biosolubility and water resistance.
[0041]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0042]
As raw materials, silica, magnesia clinker, strontium carbonate, and if necessary wollastonite and / or barium carbonate were used. A predetermined amount of these raw materials are mixed. After melting it in an electric furnace, the melt was fibrillated according to a conventional method and collected to obtain inorganic fibers having chemical compositions shown in Table 3.
[0043]
[Table 3]
Figure 0003995084
The obtained fiber was first evaluated for heat resistance. The evaluation method of heat resistance is as follows. 200 g of each of the obtained inorganic fibers was stirred and dispersed in 10 liters of a 0.04% starch solution, and then molded with a dehydration molding machine (so-called vacuum molding using a molding mold). This was sufficiently dried at 110 ° C. and then cut into predetermined dimensions to prepare a preform for heat resistance evaluation. This preform was heated at 1260 ° C. for 24 hours, and dimension measurement was performed before and after heating to obtain a shrinkage rate. The smaller the shrinkage, the better the heat resistance of the fiber.
[0044]
Next, biological solubility and water resistance of the obtained fiber were evaluated. The dissolution rate was measured by the fiber dissolution rate (weight reduction rate due to fiber dissolution) measurement method described above, and the fiber was evaluated based on the obtained dissolution rate. The greater the dissolution rate in physiological saline, the better the fiber is in biological solubility. Moreover, the smaller the dissolution rate in distilled water, the better the water resistance.
[0045]
Table 3 shows the evaluation results of heat resistance, biosolubility and water resistance of Examples and Comparative Examples together with the ease of fiberization of the melt. As for the ease of fiber formation, ○ indicates easy and × indicates difficulty.
[0046]
Moreover, the description of “Example” in Table 3 indicates that the inorganic fiber in the corresponding column is within the scope of the right of the present invention, and the description of “Comparative Example” indicates that it is outside the scope of the right. Yes.
[0047]
Examples 1 to 7 are compositions containing MgO, SrO and SiO 2 , Examples 5 and 6 are examples of inorganic fibers further containing CaO, and Example 7 is an example of inorganic fibers further containing CaO and BaO. In all of Examples 1 to 7, the weighted average ionic radius of the alkaline earth contained in the fiber is in the range of 66 to 90 pm. Moreover, these fibers had a dissolution rate in physiological saline of 1% or more. Moreover, the dissolution rate in distilled water was 4% or less, and the fibers after the dissolution experiment in distilled water were not agglomerated. Therefore, the inorganic fibers of Examples 1 to 7 are excellent in both properties of biosolubility and water resistance. Moreover, since these fibers contain a SrO component having a function as a viscosity modifier, fiberization from the melt was easy. In addition, the fibers of Examples 1 to 7 each have a SiO 2 component concentration of 70% by weight or more, and in heat resistance evaluation, the heat shrinkage rate when heated at 1260 ° C. for 24 hours is 3.5% or less. It was the same level as alumina silica fiber.
[0048]
Comparative Example 1 is an example of inorganic fibers containing CaO in the MgO—SiO 2 composition. Although it has excellent biosolubility and water resistance, it contains no SrO component, so the viscosity change of the melt due to temperature change is significant, making fiberization difficult, and only a small amount of fiber can be obtained. It was. In addition, the fiber obtained in a small amount had a large shrinkage and low heat resistance.
[0049]
Comparative Example 2 is an example of inorganic fibers containing MgO in the CaO—SiO 2 composition. The weighted average ionic radius of the alkaline earth contained in this fiber is greater than 90 pm. This fiber had a high dissolution rate in physiological saline and was excellent in biosolubility. However, the dissolution rate in distilled water was also large, the caking of the fibers after the completion of the dissolution experiment in distilled water was remarkable, and the water resistance was poor. Further, the SiO 2 component concentration was less than 70% by weight, the heat resistance was poor, and it melted after being heated at 1260 ° C. for 24 hours.
[0050]
Comparative Example 3 is an example of an inorganic fiber having a composition containing CaO in MgO, SrO, and SiO 2 . The weighted average ionic radius of the alkaline earth contained in this fiber is 71 pm, and it is in the range of 66 to 90 pm. Therefore, the dissolution rate in physiological saline is large, the biological solubility is excellent, and the dissolution rate in distilled water is also high. Although it was small and excellent in water resistance, the SiO 2 component concentration was less than 70% by weight, the heat resistance was remarkably small, and it was not practical.
[0051]
Comparative Example 4 is an example of inorganic fibers containing MgO and SrO in the CaO—SiO 2 composition. In Comparative Example 4, since the SiO 2 component concentration exceeded 80% by weight, the viscosity of the melt was high, making fiberization difficult, and only a very small amount of fiber could be obtained.
[0052]
Comparative Example 5 is an alumina silica fiber excellent in heat resistance. Although it did not dissolve in distilled water and water resistance was good, at the same time, it hardly dissolved in physiological saline and did not have biosolubility.
[0053]
【The invention's effect】
As described above, the inorganic fiber of the present invention has two properties that are basically contradictory to each other, namely, biosolubility and water resistance, in addition to excellent heat resistance at the same level as alumina silica fiber. Therefore, the inorganic fiber of the present invention has little influence on human health when used, can be used as a refractory material equivalent to alumina silica fiber, can be treated in water, and is stored in a hot and humid area. -Even if it is stored, it will not cause any problems in subsequent use.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the weighted average ionic radius of alkaline earth contained in inorganic fibers and the dissolution rate of the fibers in physiological saline and distilled water.

Claims (11)

ブローイング法またはスピニング法によって溶融物の繊維化された無機繊維であって、SiO、MgO、SrOを必須成分とし、無機繊維に含まれるアルカリ土類の加重平均イオン半径が66〜90pmであり、SiOが70〜80重量%であることを特徴とする無機繊維。 An inorganic fiber obtained by fiberizing a melt by a blowing method or a spinning method, wherein SiO 2 , MgO, SrO are essential components, and a weighted average ionic radius of an alkaline earth contained in the inorganic fiber is 66 to 90 pm, An inorganic fiber characterized in that SiO 2 is 70 to 80% by weight. CaOおよび/またはBaOを含むことを特徴とする請求項1に記載の無機繊維。  The inorganic fiber according to claim 1, comprising CaO and / or BaO. 生理食塩水中での溶解率が1%以上であり、かつ、蒸留水中での溶解率が4%以下であることを特徴とする請求項1または2に記載の無機繊維。  The inorganic fiber according to claim 1 or 2, wherein the dissolution rate in physiological saline is 1% or more and the dissolution rate in distilled water is 4% or less. 無機繊維で真空成形プリフォームを作ったとき、そのプリフォームが1260℃で24時間加熱された前後で3.5%以下の収縮率を示すことを特徴とする請求項1〜3のいずれか1項に記載の無機繊維。  When a vacuum-molded preform is made of inorganic fibers, the preform exhibits a shrinkage ratio of 3.5% or less before and after being heated at 1260 ° C for 24 hours. The inorganic fiber according to Item. SrOが、0.2重量%以上であることを特徴とする請求項1〜4のいずれか1項に記載の無機繊維。  SrO is 0.2 weight% or more, The inorganic fiber of any one of Claims 1-4 characterized by the above-mentioned. SrOが、1.0重量%以上であることを特徴とする請求項1〜4のいずれか1項に記載の無機繊維。  SrO is 1.0 weight% or more, The inorganic fiber of any one of Claims 1-4 characterized by the above-mentioned. ブローイング法またはスピニング法によって溶融物の繊維化された無機繊維であって、SiO、MgO、SrOを必須成分とし、SiOが70〜80重量%であり、SiOを除いた残分がアルカリ土類の酸化物で、他に不可避の不純物を含む無機繊維の製造方法であって、
a)無機繊維の、生理食塩水あるいは蒸留水への溶解率の設定値から、無機繊維に含有させるアルカリ土類の加重平均イオン半径をアルカリ土類の加重平均イオン半径と生理食塩水あるいは蒸留水への溶解率の1次近似直線より読み取り、
b)次に無機繊維の生理食塩水あるいは蒸留水への溶解率の目的とする大きさに応じて、無機繊維に含有させるアルカリ土類としてMgおよびSrを必須成分とし、
c)選択した各アルカリ土類のイオン半径から計算される、アルカリ土類の加重平均イオン半径の値が、前述の近似直線より読み取った値とほぼ同じになるように、アルカリ土類の種類と割合を組み合わせ、
d)無機繊維に含まれるSiOの含有量は、70〜80重量%の範囲で任意に設定し、SiOを除いた残分を、前記c)で決定したアルカリ土類の種類と割合で割り当てる
ことを特徴とする無機繊維の製造方法。
An inorganic fiber that is made into a melt by a blowing method or a spinning method, and contains SiO 2 , MgO, SrO as essential components, SiO 2 is 70 to 80 wt%, and the remainder excluding SiO 2 is alkaline A method for producing an inorganic fiber that is an earthen oxide and contains other inevitable impurities,
a) From the set value of the dissolution rate of the inorganic fiber in physiological saline or distilled water, the weighted average ionic radius of the alkaline earth contained in the inorganic fiber is changed from the weighted average ionic radius of the alkaline earth to the physiological saline or distilled water. Read from the first-order approximation line of the dissolution rate in
b) Next, depending on the desired size of the dissolution rate of the inorganic fiber in physiological saline or distilled water, Mg and Sr are essential components as alkaline earth to be contained in the inorganic fiber,
c) The type of alkaline earth so that the value of the weighted average ionic radius of the alkaline earth calculated from the ionic radius of each selected alkaline earth is substantially the same as the value read from the above approximate line. Combine proportions,
d) The content of SiO 2 contained in the inorganic fibers is arbitrarily set in the range of 70 to 80% by weight, and the residue excluding SiO 2 is determined by the type and proportion of the alkaline earth determined in c). A method for producing inorganic fibers, characterized by allocating.
生理食塩水中での溶解率が1%以上であり、かつ、蒸留水中での溶解率が4%以下であることを特徴とする請求項7に記載の無機繊維の製造方法。  The method for producing inorganic fibers according to claim 7, wherein the dissolution rate in physiological saline is 1% or more and the dissolution rate in distilled water is 4% or less. 無機繊維で真空成形プリフォームを作ったとき、そのプリフォームが1260℃で24時間加熱された前後で3.5%以下の収縮率を示すことを特徴とする請求項7または8に記載の無機繊維の製造方法。  9. The inorganic material according to claim 7, wherein when the vacuum-formed preform is made of an inorganic fiber, the preform exhibits a shrinkage ratio of 3.5% or less before and after being heated at 1260 ° C. for 24 hours. A method for producing fibers. Srの酸化物の含有率が、0.2重量%以上であることを特徴とする請求項7〜9のいずれか1項に記載の無機繊維の製造方法。  The method for producing an inorganic fiber according to any one of claims 7 to 9, wherein the content of the oxide of Sr is 0.2% by weight or more. Srの酸化物の含有率が、1.0重量%以上であることを特徴とする請求項7〜9のいずれか1項に記載の無機繊維の製造方法。  The method for producing an inorganic fiber according to any one of claims 7 to 9, wherein the content of the oxide of Sr is 1.0% by weight or more.
JP2002196906A 2002-07-05 2002-07-05 Inorganic fiber having water resistance and biosolubility and production method thereof Expired - Lifetime JP3995084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196906A JP3995084B2 (en) 2002-07-05 2002-07-05 Inorganic fiber having water resistance and biosolubility and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196906A JP3995084B2 (en) 2002-07-05 2002-07-05 Inorganic fiber having water resistance and biosolubility and production method thereof

Publications (2)

Publication Number Publication Date
JP2004036050A JP2004036050A (en) 2004-02-05
JP3995084B2 true JP3995084B2 (en) 2007-10-24

Family

ID=31704811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196906A Expired - Lifetime JP3995084B2 (en) 2002-07-05 2002-07-05 Inorganic fiber having water resistance and biosolubility and production method thereof

Country Status (1)

Country Link
JP (1) JP3995084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339323A (en) * 2011-03-30 2013-10-02 霓佳斯株式会社 Inorganic fibrous paper, and method and equipment for manufacturing same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089881A (en) * 2004-09-24 2006-04-06 Saint-Gobain Tm Kk Inorganic fiber and method for producing the same
JP5015336B1 (en) * 2011-03-31 2012-08-29 ニチアス株式会社 INORGANIC FIBER PAPER AND METHOD FOR PRODUCING THE SAME
US8940134B2 (en) 2011-04-05 2015-01-27 Nichias Corporation Paper comprising heat treated bio-soluble inorganic fibers, and method and equipment for making same
BR112014014087A2 (en) * 2011-12-19 2017-06-13 Unifrax I Llc high temperature resistant inorganic fiber
MX365147B (en) 2013-03-15 2019-05-24 Unifrax I Llc Inorganic fiber.
KR102279561B1 (en) * 2013-12-23 2021-07-19 유니프랙스 아이 엘엘씨 Inorganic fiber with improved shrinkage and strength
ES2744914T3 (en) 2014-07-16 2020-02-26 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
BR112017000990A2 (en) 2014-07-17 2018-07-17 Unifrax I Llc inorganic fiber with improved shrinkage and strength
JP5634637B1 (en) 2014-08-08 2014-12-03 ニチアス株式会社 Biosoluble inorganic fiber
CN111448173A (en) 2017-10-10 2020-07-24 尤尼弗瑞克斯 I 有限责任公司 Low biopersistence inorganic fibers free of crystalline silica
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339323A (en) * 2011-03-30 2013-10-02 霓佳斯株式会社 Inorganic fibrous paper, and method and equipment for manufacturing same

Also Published As

Publication number Publication date
JP2004036050A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP3995084B2 (en) Inorganic fiber having water resistance and biosolubility and production method thereof
JP3227586B2 (en) Inorganic fiber
EP0677026B1 (en) Thermostable and biologically soluble mineral fibre compositions
AU590393B2 (en) Inorganic fiber composition
KR100773602B1 (en) Biosoluble ceramic fiber composition with improved solubility in a physiological saline solution for a high temperature insulation material
JP5384346B2 (en) Composition for mineral wool
KR101223675B1 (en) Saline soluble ceramic fiber composition
KR100676167B1 (en) A biodegradable ceramic fiber composition for a heat insulating material
JP3938671B2 (en) Inorganic fiber soluble in physiological saline
RU2580846C2 (en) Composition for manufacturing ceramic fibre and biosoluble ceramic fibre obtained therefrom for high temperature heat-insulating material
KR20130067421A (en) Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom
JP4007482B2 (en) Inorganic fiber
JP4019111B2 (en) Inorganic fiber soluble in physiological saline and method for producing the same
JP6433981B2 (en) Composition for producing mineral wool fiber excellent in solubility in body fluid and mineral wool fiber produced thereby
KR101531633B1 (en) A composition for preparing ceramic fiber and a saline soluble ceramic fiber prepared therefrom for heat insulating material at high temperature
JP3375529B2 (en) Inorganic fiber
JP2006152468A (en) Inorganic fiber and method for producing the same
JP2006089881A (en) Inorganic fiber and method for producing the same
KR102177965B1 (en) Composition for mineral wool and mineral wool manufactured thereof
AU2014246689B2 (en) Ceramic Fiber Composition Which is Soluble in Salt
KR20220026745A (en) Composition for ceramic fiber and ceramic fiber manufactured therefrom
JP2005240205A (en) Inorganic fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3995084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term