JP2002331386A - Solder and soldered wiring substrate using the same - Google Patents

Solder and soldered wiring substrate using the same

Info

Publication number
JP2002331386A
JP2002331386A JP2001137360A JP2001137360A JP2002331386A JP 2002331386 A JP2002331386 A JP 2002331386A JP 2001137360 A JP2001137360 A JP 2001137360A JP 2001137360 A JP2001137360 A JP 2001137360A JP 2002331386 A JP2002331386 A JP 2002331386A
Authority
JP
Japan
Prior art keywords
solder
weight
wiring board
present
soldered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001137360A
Other languages
Japanese (ja)
Inventor
Goro Ideta
吾朗 出田
Junichi Murai
淳一 村井
Yukinobu Sakagami
幸信 坂上
Kohei Murakami
光平 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001137360A priority Critical patent/JP2002331386A/en
Publication of JP2002331386A publication Critical patent/JP2002331386A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide solder containing only an extremely little Pb, low in a melting point, excellent in wettability, and excellent in mechanical properties, and provide a soldered wiring substrate using the soldering not exerting a bad influence on the environment, and excellent in reliability for long term connection. SOLUTION: The solder contains Sn as a main component, besides Ag and Cu, and contain an extremely little amount of Pb, in particular, 1-3 wt.% Ag, 0.3-1 wt.% Cu and 0.3-2.0 wt.% Pb.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電子機器などを
構成する配線基板の部品実装に使用されるはんだに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder used for mounting components on a wiring board constituting an electronic device or the like.

【0002】[0002]

【従来の技術】近年、地球環境保護の問題がクロ−ズア
ップされ、世界的規模で環境に対する関心が高まってき
ている。エレクトロニクス産業の分野においては、主に
部品実装用接合材料として使用されているはんだに含ま
れるPb(鉛)の問題が大いに注目を浴びている。
2. Description of the Related Art In recent years, the problem of global environmental protection has been closed up, and interest in the environment has been increasing on a global scale. In the field of the electronics industry, the problem of Pb (lead) contained in solder mainly used as a bonding material for component mounting has attracted much attention.

【0003】ほとんどの電子機器は不用になると埋め立
て廃棄処分され、昨今の慢性的な酸性雨によりこれら廃
棄された電子機器の配線基板のはんだから溶出したPb
が水質汚染を起こしている。ところが、廃棄された配線
基板のはんだからPbを除去する技術が未だ確立されて
いない。このことから、はんだ材に含有されるPbの量
を低減できる技術の開発が待ち望まれている。
[0003] Most of electronic devices are disposed of when they are no longer needed, and the Pb eluted from the solder on the wiring board of these discarded electronic devices due to chronic acid rain in recent years.
Is causing water pollution. However, a technique for removing Pb from the discarded wiring board solder has not been established yet. For this reason, development of a technique capable of reducing the amount of Pb contained in the solder material has been awaited.

【0004】一方、配線基板に電子部品を接合する場
合、前記電子部品に熱的ダメ−ジを与えず、かつ配線基
板の耐熱性を確保できる適正な融点のはんだが必要であ
る。さらに、配線基板の接合部となるランドを構成する
材料との濡れ性を確保する必要もある。
On the other hand, when an electronic component is joined to a wiring board, it is necessary to provide a solder having an appropriate melting point that does not cause thermal damage to the electronic component and that ensures the heat resistance of the wiring board. Furthermore, it is necessary to ensure the wettability with the material constituting the land that will be the joint of the wiring board.

【0005】このような観点から、Pbを含まないSn
−Ag系はんだ、Sn−Bi系はんだなどが注目されて
おり、例えば特許第3027441号にはSn−Ag−
Cu系はんだの例が、また米国特許4879096号に
はSn−Ag−Cu−Bi系はんだの例が開示されてい
る。
[0005] From such a viewpoint, Sn not containing Pb is used.
-Ag-based solder, Sn-Bi-based solder, and the like have attracted attention. For example, Japanese Patent No. 3027441 discloses Sn-Ag-
An example of a Cu-based solder, and an example of a Sn-Ag-Cu-Bi-based solder are disclosed in U.S. Pat. No. 4,879,096.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Pbを
含まないSn−Ag系はんだでは、はんだ付け時のピー
ク温度が少なくとも230℃を越え、前記適正な融点の
はんだを作製しにくい。また、Cuを含有させると融点
を下げる効果はあるものの、濡れ性の改善が十分ではな
い。また、Biを含有させると、融点低下、濡れ性改善
の効果があるものの、過剰に含有させると、はんだの機
械的特性、特に熱サイクルなどにより発生するひずみの
耐性において重要な因子である伸びや絞り特性を著しく
低下させる。さらに、はんだ付けする電子部品の電極に
Pbが含まれていた場合、はんだ構成材とPbとが合金
化して低融点化し、接合部の耐熱性を損ねたり、寿命を
低下させるなど、実用上の問題があった。
However, in the case of Sn-Ag solder containing no Pb, the peak temperature at the time of soldering exceeds at least 230 ° C., and it is difficult to produce a solder having the proper melting point. Further, when Cu is contained, although the effect of lowering the melting point is obtained, the improvement of the wettability is not sufficient. Further, when Bi is contained, the melting point is reduced and the wettability is improved. However, when Bi is contained excessively, elongation, which is an important factor in mechanical properties of solder, particularly resistance to strain generated by thermal cycling and the like, is improved. The aperture characteristics are significantly reduced. Furthermore, when Pb is contained in the electrode of the electronic component to be soldered, the solder constituent material and Pb are alloyed to lower the melting point, impairing the heat resistance of the joint and shortening the service life. There was a problem.

【0007】この発明は上記のような問題を解消するた
めになされたもので、Pb含有量を低減し、低融点で、
濡れ性に優れ、かつ、機械的特性に優れたはんだを提供
することを目的とする。また、このはんだを用いてはん
だ付けされた、環境に対する悪影響を抑制し、接合部に
おいて信頼性の高い配線基板を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a reduced Pb content and a low melting point.
An object of the present invention is to provide a solder having excellent wettability and excellent mechanical properties. It is another object of the present invention to provide a wiring board that is soldered using this solder and that suppresses adverse effects on the environment and has high reliability at the joints.

【0008】[0008]

【課題を解決するための手段】この発明に係る第1の構
成のはんだは、Snを主成分とし、1〜3重量%程度の
Agと、0.3〜1重量%程度のCuと、0.3〜2.
0重量%程度のPbとを含むものである。
The solder of the first configuration according to the present invention contains Sn as a main component, and contains about 1 to 3% by weight of Ag, about 0.3 to 1% by weight of Cu, .3-2.
About 0% by weight of Pb.

【0009】この発明に係る第2の構成のはんだは、上
記第2の構成のはんだであって、2.5重量%程度のA
gと、0.5重量%程度のCuと、1.0重量%程度の
Pbとを含むものである。
[0009] The solder of the second configuration according to the present invention is the solder of the second configuration, and has an A content of about 2.5% by weight.
g, about 0.5% by weight of Cu, and about 1.0% by weight of Pb.

【0010】この発明に係る第1の構成の配線基板は、
上記第1あるいは第2の構成のはんだを用いて、はんだ
付けしたものである。
[0010] The wiring board of the first configuration according to the present invention comprises:
It is soldered using the solder of the first or second configuration.

【0011】[0011]

【発明の実施の形態】実施の形態1.この発明の実施の
形態1によるSn−1.5Ag−0.5Cu−1.0P
bのはんだと、比較例1として、Pbを含まないSn−
1.5Ag−0.5Cuはんだとを作製し、JISZ2
2014号試験片に準じて機械加工した後、それぞれの
試験片を、室温(25℃)、引張速度5mm/分の条件
にて引張試験に供した。その結果、表1に示すように、
引張強度、伸び、絞りともPbを含有しない比較例1と
同等の値が得られ、Pbの含有による機械的特性の低下
は認められなかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Sn-1.5Ag-0.5Cu-1.0P according to Embodiment 1 of the present invention
b and Sn- containing no Pb as Comparative Example 1.
1.5Ag-0.5Cu solder and JISZ2
After machining according to the 2014 test piece, each test piece was subjected to a tensile test at room temperature (25 ° C.) and a tensile speed of 5 mm / min. As a result, as shown in Table 1,
The values equivalent to those of Comparative Example 1 containing no Pb were obtained in both tensile strength, elongation, and drawing, and no decrease in mechanical properties due to the contained Pb was observed.

【0012】[0012]

【表1】 [Table 1]

【0013】更に、上記それぞれのはんだについて卓上
型のフロ−はんだ実験槽にて、1.27mmピッチ60
電極のコネクタを複数個挿入した200mm×200m
m×1.6mm厚のFR−4材のCuスル−/プリフラ
ックス基板を用いてブリッジ発生率測定を行った(電極
総数1800)。はんだ槽温度は250℃設定とし、コ
ンベア−スピ−ドは0.9m/分とした。尚、フラック
スは標準的なRMAタイプのものを使用した。その結
果、比較例1ではブリッジ発生率が4.7%であったの
に比し、本実施の形態のはんだでは0.7%まで低減し
た。
Further, each of the above-mentioned solders was placed in a table-top type flow soldering test tank at a pitch of 1.27 mm.
200mm x 200m with multiple electrode connectors inserted
The bridge generation rate was measured using a Cu-sulfur / pre-flux substrate made of FR-4 material having a thickness of mx 1.6 mm (total number of electrodes: 1800). The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. Note that a standard RMA type flux was used. As a result, the rate of occurrence of bridges was 4.7% in Comparative Example 1, but was reduced to 0.7% in the solder of the present embodiment.

【0014】実施の形態2.本発明の実施の形態2によ
るSn−3.0Ag−0.5Cu−1.0Pbはんだを
と、比較例2として、Pbを含まないSn−3.0Ag
−0.5Cuはんだとを作製し、JISZ22014号
試験片に準じて機械加工した後、それぞれの試験片を室
温(25℃)、引張速度5mm/分の条件にて引張試験
に供した。その結果、表2に示すように、引張強度、伸
び、絞りともPbを含有しない比較例2と同等の値が得
られ、Pbの含有による機械的特性の低下は認められな
かった。
Embodiment 2 FIG. The Sn-3.0Ag-0.5Cu-1.0Pb solder according to the second embodiment of the present invention and, as Comparative Example 2, Sn-3.0Ag containing no Pb.
-0.5Cu solder was prepared and machined according to JISZ22014 test pieces, and each test piece was subjected to a tensile test at room temperature (25 ° C.) and a tensile speed of 5 mm / min. As a result, as shown in Table 2, the same values as those of Comparative Example 2 containing no Pb were obtained in both tensile strength, elongation, and drawing, and no decrease in mechanical properties due to the inclusion of Pb was observed.

【0015】[0015]

【表2】 [Table 2]

【0016】更に、上記それぞれのはんだについて卓上
型のフロ−はんだ実験槽にて、1.27mmピッチ60
電極のコネクタを複数個挿入した200mm×200m
m×1.6mm厚のFR−4材のCuスル−/プリフラ
ックス基板を用いてブリッジ発生率測定を行った(電極
総数1800)。はんだ槽温度は250℃設定とし、コ
ンベア−スピ−ドは0.9m/分とした。尚、フラック
スは標準的なRMAタイプのものを使用した。その結
果、比較例2ではブリッジ発生率が4.5%であったの
に比し、本実施の形態のはんだでは0.6%まで低減し
た。
Further, each of the above-mentioned solders was placed in a table-top type flow soldering test tank at a pitch of 1.27 mm.
200mm x 200m with multiple electrode connectors inserted
The bridge generation rate was measured using a Cu-sulfur / pre-flux substrate made of FR-4 material having a thickness of mx 1.6 mm (total number of electrodes: 1800). The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. Note that a standard RMA type flux was used. As a result, in comparison with Comparative Example 2, the bridge generation rate was 4.5%, whereas the solder of the present embodiment was reduced to 0.6%.

【0017】また、上記表1、表2より、本実施の形態
によるはんだと、上記実施の形態1によるはんだとは、
機械的特性、ブリッジ発生率とも同等であることがわか
る。本実施の形態および上記実施の形態1に示す液相線
温度から求められる融点は、本実施の形態(218℃)
が上記実施の形態1(223℃)に比べ約5℃低減で
き、電子部品に与える熱影響を低減できる。また、はん
だ付け作業性も向上する。
Further, from Tables 1 and 2, the solder according to this embodiment and the solder according to Embodiment 1 are as follows.
It can be seen that the mechanical characteristics and the rate of occurrence of bridges are equivalent. The melting point obtained from the liquidus temperature described in the present embodiment and the first embodiment is the same as that in the present embodiment (218 ° C.).
However, compared to the first embodiment (223 ° C.), the temperature can be reduced by about 5 ° C., and the thermal effect on the electronic component can be reduced. Also, the workability of soldering is improved.

【0018】実施の形態3.本発明の実施の形態3によ
るSn−2.5Ag−0.5Cu−1.0Pbはんだ
と、比較例3として、Pbを含まないSn−2.5Ag
−0.5Cuはんだとを作製し、JISZ22014号
試験片に準じて機械加工した後、それぞれの試験片を室
温(25℃)で、引張速度5mm/分の条件にて引張試
験に供した。その結果、表3に示すように、引張強度、
伸び、絞りともPbを含有しない比較例3と同等の値が
得られ、Pbの含有による機械的特性の低下は認められ
なかった。
Embodiment 3 Sn-2.5Ag-0.5Cu-1.0Pb solder according to Embodiment 3 of the present invention and Sn-2.5Ag containing no Pb as Comparative Example 3.
-0.5Cu solder was prepared and machined according to JISZ22014 test pieces, and each test piece was subjected to a tensile test at room temperature (25 ° C.) at a tensile speed of 5 mm / min. As a result, as shown in Table 3, the tensile strength,
In both elongation and drawing, values equivalent to those of Comparative Example 3 containing no Pb were obtained, and no decrease in mechanical properties due to the inclusion of Pb was observed.

【0019】[0019]

【表3】 [Table 3]

【0020】更に、上記それぞれのはんだについて卓上
型のフロ−はんだ実験槽にて、1.27mmピッチ60
電極のコネクタを複数個挿入した200mm×200m
m×1.6mm厚のFR−4材のCuスル−/プリフラ
ックス基板を用いてブリッジ発生率測定を行った(電極
総数1800)。はんだ槽温度は250℃設定とし、コ
ンベア−スピ−ドは0.9m/分とした。尚、フラック
スは標準的なRMAタイプのものを使用した。その結
果、比較例3ではブリッジ発生率が4.3%であったの
に比し、本実施の形態によるはんだでは0.4%まで低
減できた。
Further, each of the above-mentioned solders was placed in a table-top type flow soldering experiment tank at a pitch of 1.27 mm.
200mm x 200m with multiple electrode connectors inserted
The bridge generation rate was measured using a Cu-sulfur / preflux substrate made of FR-4 material having a thickness of mx 1.6 mm (total number of electrodes: 1800). The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. Note that a standard RMA type flux was used. As a result, the bridge generation rate in Comparative Example 3 was 4.3%, while the solder according to the present embodiment could be reduced to 0.4%.

【0021】また、本実施の形態によるはんだは、上記
実施の形態2によるはんだと比較して、はんだ融点およ
びブリッジ発生率は同等であるが、機械的特性、特に、
伸びが約3%、絞りが約4%増大するので耐熱疲労性が
向上する。
The solder according to the present embodiment has the same solder melting point and the same bridge generation rate as the solder according to the second embodiment, but has the mechanical characteristics,
Since the elongation is increased by about 3% and the drawing is increased by about 4%, the thermal fatigue resistance is improved.

【0022】実施の形態4.Pbの含有量による熱疲労
特性に対する影響を調べるため、Sn−2.5Ag−
0.5CuにPbを0〜2重量%の範囲で含有量を変え
たはんだ3種(Pb含有量:S1;0、S2;1.0、
S3;2.0重量%)を作製し、それぞれ個別に卓上型
のフロ−はんだ実験槽に入れて、線径0.5mmφで表
層に約10μmのSn−10Pbめっきを施したジャン
パ−線1を、図1に示すようにコの字型に折り曲げて6
0mm×70mm×1.6mm厚のFR−4材の片面配
線Cu/プリフラックス配線基板2に挿入し、ジャンパ
−線1と配線基板2のランド3をフロ−はんだ付けによ
りはんだ付けを行った。
Embodiment 4 In order to investigate the effect of the Pb content on the thermal fatigue properties, Sn-2.5Ag-
Three types of solder in which the content of Pb was changed in the range of 0 to 2% by weight in 0.5Cu (Pb content: S1; 0, S2; 1.0,
S3; 2.0% by weight), individually placed in a desktop type flow soldering test tank, and a jumper wire 1 having a wire diameter of 0.5 mmφ and a surface layer of about 10 μm plated with Sn-10Pb was prepared. , As shown in FIG.
The single-sided wiring Cu / pre-flux wiring board 2 made of FR-4 material having a thickness of 0 mm × 70 mm × 1.6 mm was inserted into the wiring board 2, and the jumper wire 1 and the land 3 of the wiring board 2 were soldered by flow soldering.

【0023】また比較のために、従来から用いられてい
るSn−37Pb(Sn−Pb共晶)はんだについても
同様に評価した。尚、試験に用いた配線基板の穴径は
0.9mm、ランド径は1.3mm。はんだ槽温度は2
50℃設定とし、コンベア−スピ−ドは0.9m/分と
した。また、フラックスは標準的なRMAタイプのもの
を使用した。
For comparison, a conventional Sn-37Pb (Sn-Pb eutectic) solder was similarly evaluated. The hole diameter of the wiring board used in the test was 0.9 mm, and the land diameter was 1.3 mm. Solder bath temperature is 2
The temperature was set at 50 ° C., and the conveyor speed was 0.9 m / min. The flux used was a standard RMA type.

【0024】サンプル配線基板作製後、−40℃(30
分)と125℃(30分)とのヒ−トサイクル試験を実
施し、一定サイクル終了毎に図2(a)に示すようには
んだ付けされたジャンパ−線1の反対側を切断し、図2
(b)に示すように片側のみがはんだ付けされた配線基
板2を反対に向けて、はんだ付けされたジャンパ−線1
を垂直方向に引張速度20mm/分で引抜き、はんだ6
とランド3の接合強度を測定した。
After the sample wiring board is manufactured, the temperature is set at -40 ° C. (30 ° C.).
2) and 125 ° C. (30 minutes), and the opposite side of the soldered jumper wire 1 as shown in FIG. 2
With the wiring board 2 soldered only on one side as shown in FIG.
At a pulling speed of 20 mm / min.
And the land 3 were measured for bonding strength.

【0025】図3は、このようにして得られたヒ−トサ
イクル試験後のジャンパ−線1の引抜強度の最大値とサ
イクル数との関係を示したものである。いずれのはんだ
も、Sn−Pb共晶はんだと同等であった。したがっ
て、Sn−2.5Ag−0.5CuはんだへのPbの添
加量が2.0重量%までの範囲では、はんだ接合部の長
期接続信頼性は従来と同等に確保できている。
FIG. 3 shows the relationship between the maximum value of the pull-out strength of the jumper wire 1 after the heat cycle test thus obtained and the number of cycles. All the solders were equivalent to the Sn-Pb eutectic solder. Therefore, when the amount of Pb added to the Sn-2.5Ag-0.5Cu solder is in the range of up to 2.0% by weight, the long-term connection reliability of the solder joint can be assured as before.

【0026】実施の形態5.Pbの含有量による伸びに
対する影響を調べるため、Sn−2.5Ag−0.5C
uにPbを0〜2重量%の範囲で含有量を変えたはんだ
5種(Pb含有量:S4;0、S5;0.5、S6;
1.0、S7;2.0、S8;3.0重量%)を作製
し、JISZ22014号試験片に準じて機械加工した
後、それぞれの試験片を引張試験に供した。また比較の
ためSn−37Pb(Sn−Pb共晶)はんだについて
も同様に評価した。尚、試験は室温(25℃)で、引張
速度は5mm/分の条件にて実施した。
Embodiment 5 In order to investigate the influence on the elongation due to the content of Pb, Sn-2.5Ag-0.5C
5 types of solder in which the content of Pb was changed in the range of 0 to 2% by weight of u (Pb content: S4; 0, S5; 0.5, S6;
1.0, S7; 2.0, S8; 3.0% by weight), and were machined according to JISZ22014 test pieces, and then each test piece was subjected to a tensile test. For comparison, Sn-37Pb (Sn-Pb eutectic) solder was similarly evaluated. The test was performed at room temperature (25 ° C.) at a tensile speed of 5 mm / min.

【0027】更に、上記それぞれのはんだについて卓上
型のフロ−はんだ実験槽にて、1.27mmピッチ60
電極のコネクタを複数個挿入した200mm×200m
m×1.6mm厚のFR−4材のCuスル−/プリフラ
ックス配線基板を用いてブリッジ発生率測定を行った
(電極総数1800)。はんだ槽温度は250℃設定と
し、コンベア−スピ−ドは0.9m/分とした。尚、フ
ラックスは標準的なRMAタイプのものを使用した。
Further, each of the above-mentioned solders was placed in a table-type flow soldering test tank at a pitch of 1.27 mm.
200mm x 200m with multiple electrode connectors inserted
A bridge generation rate was measured using a Cu-sulfur / pre-flux wiring board made of FR-4 material having a thickness of mx 1.6 mm (total number of electrodes: 1800). The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. Note that a standard RMA type flux was used.

【0028】図4は、上記引張試験で得た伸び、および
上記測定で得たブリッジ発生率と、はんだ組成との関係
を示したものである。これより主に濡れ性不足に起因す
るブリッジ発生率はPb含有量が0.5重量%以上で著
しく低下することがわかる。一方、機械特性を示す伸び
は、Pb含有量2.0重量%を越える範囲で激減するこ
とが分かる。特にSn−2.5Ag−0.5Cu−1.
0Pbは、ブリッジ発生率が低く、かつ絞り特性を確保
でき、濡れ性および機械的特性に優れる。
FIG. 4 shows the relationship between the elongation obtained in the tensile test, the bridge occurrence rate obtained in the above measurement, and the solder composition. From this, it can be seen that the bridge generation rate mainly due to insufficient wettability is significantly reduced when the Pb content is 0.5% by weight or more. On the other hand, it can be seen that the elongation showing the mechanical properties sharply decreases in the range where the Pb content exceeds 2.0% by weight. In particular, Sn-2.5Ag-0.5Cu-1.
0Pb has a low rate of occurrence of bridges, can secure drawing characteristics, and is excellent in wettability and mechanical characteristics.

【0029】実施の形態6.上記実施の形態1〜5と同
様にして、Ag1〜3%、Cu0.3〜1%、Pb0.
3〜2.0%の範囲で、種々はんだを作製し、同様にし
て液相線温度(はんだ融点)を測定した結果、前記液相
線温度は214〜226℃の範囲となり、電子部品に熱
ダメージを与えず、かつ配線基板の耐熱性を確保できる
実用的な温度範囲であることを確認した。
Embodiment 6 FIG. Similarly to Embodiments 1 to 5, Ag 1 to 3%, Cu 0.3 to 1%, Pb 0.
Various solders were prepared in the range of 3 to 2.0%, and the liquidus temperature (solder melting point) was measured in the same manner. As a result, the liquidus temperature was in the range of 214 to 226 ° C. It was confirmed that the temperature was within a practical temperature range where no damage was caused and the heat resistance of the wiring board could be secured.

【0030】[0030]

【発明の効果】以上のように、この発明によれば、はん
だの構成を、Snを主成分とし、1〜3重量%程度のA
gと、0.3〜1重量%程度のCuと、0.3〜2.0
重量%程度のPbとを含むようにしたので、環境に対す
る悪影響が少なく、低融点で、濡れ性に優れ、かつ、機
械的特性に優れたはんだを提供することができる。
As described above, according to the present invention, the composition of the solder is approximately 1 to 3% by weight of Sn containing Sn as a main component.
g, about 0.3 to 1% by weight of Cu, and 0.3 to 2.0% by weight.
Since Pb is contained in an amount of about% by weight, it is possible to provide a solder having a low adverse effect on the environment, a low melting point, excellent wettability, and excellent mechanical properties.

【0031】また、はんだの構成を、Snを主成分と
し、2.5重量%程度のAgと、0.5重量%程度のC
uと、1.0重量%程度のPbとを含むようにしたの
で、特にブリッジ発生率が低く、良好な伸び特性、絞り
特性を確保できる。
The solder is composed of Sn as a main component and about 2.5% by weight of Ag and about 0.5% by weight of C
Since u and about 1.0% by weight of Pb are included, the rate of occurrence of bridges is particularly low, and good elongation characteristics and drawing characteristics can be secured.

【0032】また、上記はんだを用いて、電子部品など
を配線基板にはんだ付けしたので、はんだ接合部の長期
接続信頼性が確保できる効果がある。特に配線基板の電
極にPbが含有されている場合でも低融点化を防止で
き、耐熱性を確保できる。
Further, since the electronic components and the like are soldered to the wiring board using the above-mentioned solder, there is an effect that the long-term connection reliability of the solder joint can be ensured. In particular, even when Pb is contained in the electrode of the wiring board, lowering of the melting point can be prevented, and heat resistance can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態4によるはんだ接合強
度測定用配線基板を示した説明図である。
FIG. 1 is an explanatory diagram showing a wiring board for measuring solder joint strength according to a fourth embodiment of the present invention.

【図2】 この発明の実施の形態4によるはんだ接合強
度測定方法を示した説明図である。
FIG. 2 is an explanatory diagram showing a solder joint strength measuring method according to a fourth embodiment of the present invention.

【図3】 この発明の実施の形態4によるリード引抜強
度とヒートサイクル数の関係を示す図である。
FIG. 3 is a diagram showing a relationship between lead pull-out strength and the number of heat cycles according to Embodiment 4 of the present invention.

【図4】 この発明の実施の形態5によるブリッジ発生
率および伸びとはんだ組成の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a bridge generation rate and elongation and a solder composition according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ジャンパ−線、2 配線基板、3 ランド、6 は
んだ
1 jumper wire, 2 wiring board, 3 land, 6 solder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂上 幸信 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 村上 光平 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5E319 AB01 AC01 BB01 BB08 CC24 CD28 GG03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukinobu Sakagami 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Kohei Murakami 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Rishi Electric Co., Ltd. F-term (reference) 5E319 AB01 AC01 BB01 BB08 CC24 CD28 GG03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Snを主成分とし、1〜3重量%程度の
Agと、0.3〜1重量%程度のCuと、0.3〜2.
0重量%程度のPbとを含むことを特徴とするはんだ。
1. An alloy containing Sn as a main component and containing about 1 to 3% by weight of Ag, about 0.3 to 1% by weight of Cu, and about 0.3 to 2.
A solder containing about 0% by weight of Pb.
【請求項2】 2.5重量%程度のAgと、0.5重量
%程度のCuと、1.0重量%程度のPbとを含むこと
を特徴とする請求項1に記載のはんだ。
2. The solder according to claim 1, comprising about 2.5% by weight of Ag, about 0.5% by weight of Cu, and about 1.0% by weight of Pb.
【請求項3】 請求項1あるいは請求項2に記載のはん
だを用いて、はんだ付けしたことを特徴とする配線基
板。
3. A wiring board characterized by being soldered using the solder according to claim 1 or 2.
JP2001137360A 2001-05-08 2001-05-08 Solder and soldered wiring substrate using the same Pending JP2002331386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137360A JP2002331386A (en) 2001-05-08 2001-05-08 Solder and soldered wiring substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137360A JP2002331386A (en) 2001-05-08 2001-05-08 Solder and soldered wiring substrate using the same

Publications (1)

Publication Number Publication Date
JP2002331386A true JP2002331386A (en) 2002-11-19

Family

ID=18984474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137360A Pending JP2002331386A (en) 2001-05-08 2001-05-08 Solder and soldered wiring substrate using the same

Country Status (1)

Country Link
JP (1) JP2002331386A (en)

Similar Documents

Publication Publication Date Title
JP3220635B2 (en) Solder alloy and cream solder
KR101059710B1 (en) Solder paste and printed circuit board
WO2010122764A1 (en) Soldering material and electronic component assembly
WO1997012719A1 (en) Lead-free solder
KR101738841B1 (en) HIGH-TEMPERATURE SOLDER JOINT COMPRISING Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
KR20020046192A (en) Solder, method for processing surface of printed wiring board, and method for mounting electronic part
KR101587076B1 (en) Soldering method for low-temperature solder paste
JP2001096394A (en) Solder and method for surface treatment for printed wiring board using the solder and method for mounting electronic components on the board using the solder
JP2001071173A (en) Non-leaded solder
CN102085604A (en) Sn-Ag-Cu-Bi-Cr low-silver and lead-free solder
JPH1041621A (en) Junction method using tin-bismuth solder
JPWO2005089999A1 (en) Lead-free solder balls
WO1999004048A1 (en) Tin-bismuth based lead-free solders
JP2005021958A (en) Lead-free solder paste
JP5051633B2 (en) Solder alloy
JP6796108B2 (en) Lead-free solder alloy, solder paste, electronic circuit board and electronic control device
JP2002331386A (en) Solder and soldered wiring substrate using the same
JP3328210B2 (en) Manufacturing method of electronic component mounted products
JP2002126895A (en) Solder and wiring board soldered using the same
JPH09174279A (en) Solder alloy
KR100366131B1 (en) Lead-free solder with lower melting point and lower dross
JP5825265B2 (en) Soldering method for printed circuit boards
JPH0952191A (en) Solder alloy and solder paste
JP3254857B2 (en) Solder alloy
KR100443230B1 (en) Lead-free solder alloy