JP2002329869A - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor deviceInfo
- Publication number
- JP2002329869A JP2002329869A JP2001131295A JP2001131295A JP2002329869A JP 2002329869 A JP2002329869 A JP 2002329869A JP 2001131295 A JP2001131295 A JP 2001131295A JP 2001131295 A JP2001131295 A JP 2001131295A JP 2002329869 A JP2002329869 A JP 2002329869A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- film
- tft
- manufacturing
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体装置の製造
方法に関するものである。[0001] The present invention relates to a method for manufacturing a semiconductor device.
【0002】[0002]
【従来の技術】プラズマ化学気相堆積法(以後、プラズ
マCVD法と呼ぶ)でシリコン窒化膜(以後、SiNx
膜と呼ぶ)と非晶質シリコン膜(以後、a−Si膜と呼
ぶ)が各々、ゲート絶縁膜及び半導体膜として連続的に
形成された薄膜電界効果トランジスタ(以後、a−Si
TFTと呼ぶ)は優れたオン抵抗,オフ抵抗を有する
ことから、液晶画像表示装置のスイッチング素子として
実用化されている。2. Description of the Related Art A silicon nitride film (hereinafter referred to as SiNx) is formed by a plasma chemical vapor deposition method (hereinafter referred to as a plasma CVD method).
Film) and an amorphous silicon film (hereinafter a-Si film) are continuously formed as a gate insulating film and a semiconductor film, respectively.
TFTs) have excellent on-resistance and off-resistance, and have been put to practical use as switching elements in liquid crystal image display devices.
【0003】[0003]
【発明が解決しようとする課題】しかし、それらの作製
過程において、プラズマCVD装置のプロセスチャンバ
ー内部をNF3,CF4,SF6などのガスを用いてクリ
ーニングする際に、プロセスチャンバー内部にフッ素が
残留し、直後に成膜した半導体層にフッ素が混入するこ
とによって、a−Si TFTのオン抵抗,オフ抵抗を
劣化させるという問題がある。However, when cleaning the inside of the process chamber of the plasma CVD apparatus using a gas such as NF 3 , CF 4 , SF 6 during the manufacturing process thereof, fluorine is contained in the process chamber. There is a problem in that the residual and the fluorine mixed into the semiconductor layer formed immediately thereafter deteriorate the on-resistance and off-resistance of the a-Si TFT.
【0004】そこで本発明は、半導体層の膜質を改善
し、優れた信頼性を有するa−SiTFT等の半導体装
置の製造方法を提供することを目的とするものである。Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor device such as an a-Si TFT having improved reliability by improving the film quality of a semiconductor layer.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、プラズマCVD装置のプロセスチャンバ
ーのクリーニング後に、水素プラズマを発生させる等の
方法でプロセスチャンバー内の残留フッ素を除去し、プ
ラズマCVD法で作製される半導体層のフッ素含有量が
1.0×1019(atoms/cm3)以下の小さな値を有する
ように作製するものである。In order to achieve the above object, the present invention provides a method of cleaning a process chamber of a plasma CVD apparatus, which removes residual fluorine in the process chamber by, for example, generating hydrogen plasma. The semiconductor layer is manufactured such that the fluorine content of the semiconductor layer manufactured by the CVD method has a small value of 1.0 × 10 19 (atoms / cm 3 ) or less.
【0006】本発明は、半導体層の膜質の改善により、
界面付近の膜質を良化し、トラップ準位が少ないことに
起因して、優れた特性のa−Si TFTを提供するこ
とができる。従って、本発明の半導体層を用いた他の応
用の半導体装置も優れた特性のものが得られる。According to the present invention, there is provided a semiconductor device comprising:
An a-Si TFT having excellent characteristics can be provided because the film quality near the interface is improved and the trap level is small. Therefore, a semiconductor device of another application using the semiconductor layer of the present invention also has excellent characteristics.
【0007】[0007]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して詳細に説明する。図1は本発明の一
実施の形態におけるa−Si TFTの要部構造断面を
示したものである。図1において、ガラス基板1上にC
r,Al,Mo等の導電体からなるゲート電極2を選択
的に形成する。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a cross-sectional view of a main structure of an a-Si TFT according to an embodiment of the present invention. In FIG. 1, C is placed on a glass substrate 1.
A gate electrode 2 made of a conductor such as r, Al, or Mo is selectively formed.
【0008】プラズマCVD装置のプロセスチャンバー
内部をクリーニングした後に、水素プラズマを発生させ
ることによりプロセスチャンバー内部のフッ素を除去す
る。After cleaning the inside of the process chamber of the plasma CVD apparatus, hydrogen in the process chamber is removed by generating hydrogen plasma.
【0009】次いで、13.56MHzのグロー放電を
用いた平行平板型のプラズマCVD法で、ゲート絶縁膜
として3000×10-10m(又は3000Å)程度の
膜厚のSiNx膜3と、半導体膜としてSiNx膜と同
じプラズマCVD法で2000×10-10m(又は20
00Å)程度のa−Si膜4及びリンを不純物として含
むn+型のa−Si膜5を膜厚200×10-10m(又
は200Å)程度連続的に堆積し、エッチング等でa−
Si膜を選択的に除去して島状のa−Si膜のパターン
を形成する。Next, a SiNx film 3 having a thickness of about 3000 × 10 −10 m (or 3000 ° ) as a gate insulating film and a semiconductor film as a semiconductor film by a parallel plate type plasma CVD method using a 13.56 MHz glow discharge. 2000 × 10 −10 m (or 20 × 10 −10 m) by the same plasma CVD method as the SiNx film.
An a-Si film 4 of about 00 °) and an n + type a-Si film 5 containing phosphorus as an impurity are continuously deposited to a thickness of about 200 × 10 −10 m (or 200 ° ), and a-
The Si film is selectively removed to form an island-like a-Si film pattern.
【0010】さらに、a−Si膜4とn+型のa−Si
膜5のパターン上にCr,Al,Mo等の導電体からな
る膜を形成し、エッチング等で選択的に被着形成された
ソース電極6とドレイン電極7との間のn+型a−Si
膜を除去することにより、a−Si TFTが作製され
る。Further, an a-Si film 4 and an n + type a-Si
A film made of a conductor such as Cr, Al, or Mo is formed on the pattern of the film 5, and n + type a-Si between the source electrode 6 and the drain electrode 7 selectively formed by etching or the like.
By removing the film, an a-Si TFT is manufactured.
【0011】a−Si TFTの特性において、本発明
者らの研究によると、特にオン特性と信頼性は、半導体
層の膜質によって大いに左右されることが解かった。特
に、これらの半導体層の膜質の内でフッ素混入量が最適
な膜質を示す大きなパラメータであることが確認され
た。According to the research of the present inventors, the characteristics of the a-Si TFT, in particular, it has been found that the ON characteristics and the reliability are greatly influenced by the film quality of the semiconductor layer. In particular, it was confirmed that, among the film qualities of these semiconductor layers, the amount of mixed fluorine was a large parameter indicating the optimum film quality.
【0012】本実施の形態における半導体層のフッ素混
入量は、a−Si TFTを作製するのと同じ条件で、
両面研摩された単結晶シリコン基板上にSiNx膜と半
導体層とを堆積させ、二次イオン質量分析(SIMS)
によって、半導体層の単位体積あたりのフッ素含有量を
定量して求めた。The amount of fluorine mixed in the semiconductor layer in this embodiment is determined under the same conditions as those for manufacturing an a-Si TFT.
Depositing a SiNx film and a semiconductor layer on a double-side polished single-crystal silicon substrate, secondary ion mass spectrometry (SIMS)
Thus, the fluorine content per unit volume of the semiconductor layer was quantified and determined.
【0013】半導体層の膜質の劣化によるa−Si T
FT特性の劣化は、特にゲートのしきい値電圧Vtに現
れ、印加したゲート電圧の符号の正,負により同符号の
Vtのシフトが生じる。A-Si T due to deterioration of the film quality of the semiconductor layer
Deterioration of the FT characteristic appears especially in the threshold voltage Vt of the gate, and a positive or negative sign of the applied gate voltage causes a shift of Vt having the same sign.
【0014】本実施の形態におけるゲートのしきい値電
圧Vtは、図1に示すa−Si TFTにおいて、チャ
ンネル幅W,チャンネル長LのW/L比が6のものを用
い、基板温度25.0±3.0℃で暗所の環境の中でソ
ース接地,ドレイン電圧0.1Vを一定に印加した時に
ドレイン電流が1×10-8Aになる時のゲート電圧とし
た。またVtシフト量はa−Si TFTを長時間動作
させ終了した時のしきい値電圧Vtからa−Si TF
T作製直後のゲートしきい値電圧Vtを減じたものであ
る。The threshold voltage Vt of the gate in this embodiment is the same as that of the a-Si TFT shown in FIG. 1 in which the W / L ratio of the channel width W and the channel length L is 6, and the substrate temperature is 25. The gate voltage was set at a drain current of 1 × 10 −8 A when a source ground and a drain voltage of 0.1 V were constantly applied in a dark environment at 0 ± 3.0 ° C. The Vt shift amount is calculated from the threshold voltage Vt at the time when the a-Si TFT is operated for a long time and terminated, and
The gate threshold voltage Vt immediately after the fabrication of T is reduced.
【0015】図3は、半導体層のフッ素含有量が8.8
4×1019(atoms/cm3)のa−Si TFTのVtシフ
トの模様を示したものである。a−Si TFT作製直
後の特性がA曲線であり、Vt=Vt1≒0.5Vであ
った。a−Si TFTを暗所の乾燥窒素ガス雰囲気中
25.0±3.0℃の環境でソース接地、ドレイン接
地、ゲート電圧30V一定(直流動作条件)で10分動
作させた後の特性がB曲線であり、Vt=Vt2≒4.
5Vと、Vtが正のシフトを示し、ゲート電圧が20V
の場合のドレイン電流は初期ID1=8.1μAであっ
たものが動作後ではID2=7.2μAと11%減少し
てしまっている。FIG. 3 shows that the semiconductor layer has a fluorine content of 8.8.
This shows a Vt shift pattern of an a-Si TFT of 4 × 10 19 (atoms / cm 3 ). The characteristic immediately after the fabrication of the a-Si TFT was an A curve, and Vt = Vt1 ≒ 0.5 V. The characteristics after operating the a-Si TFT in a dry nitrogen gas atmosphere in a dark place at 25.0 ± 3.0 ° C. for 10 minutes at a source ground, a drain ground, and a constant gate voltage of 30 V (DC operation conditions) are B. Vt = Vt2 ≒ 4.
5 V and Vt indicate a positive shift, and the gate voltage is 20 V
In the case of (1), the drain current was initially ID1 = 8.1 μA, but after the operation, ID2 = 7.2 μA, which is a decrease of 11%.
【0016】図2は、水素プラズマ発生に際し、水素ガ
スの流量,放電パワー,真空度等のプラズマCVDの条
件を種々変えて、プロセスチャンバー内部のフッ素量を
変えた後に作製した半導体層について、暗所の乾燥窒素
ガス雰囲気中25.0±3.0℃の環境で、ソース接
地,ドレイン接地,ゲート電圧30V一定(直流動作条
件)で10分動作させた時のVtシフト量を縦軸に、半
導体層のフッ素含有量を横軸にプロットした図である。FIG. 2 shows a semiconductor layer formed after changing the amount of fluorine in the process chamber by changing various conditions of plasma CVD such as a flow rate of hydrogen gas, a discharge power, and a degree of vacuum in generating hydrogen plasma. The vertical axis represents the amount of Vt shift when the device was operated for 10 minutes in a dry nitrogen gas atmosphere at a temperature of 25.0 ± 3.0 ° C. and a constant source and drain, and a constant gate voltage of 30 V (DC operating conditions). FIG. 3 is a diagram in which the fluorine content of a semiconductor layer is plotted on the horizontal axis.
【0017】図2において、フッ素含有量をパラメータ
にすることにより、a−Si TFTのVtシフト量が
2つの直線上に並ぶ。そしてフッ素含有量が約1.2×
10 19(atoms/cm3)より大きくなると、Vtシフト量
がフッ素含有量の増加とともに増大することが明らかに
なった。In FIG. 2, the fluorine content is a parameter
, The Vt shift amount of the a-Si TFT becomes
Align on two straight lines. And the fluorine content is about 1.2 ×
10 19(Atoms / cmThree), The Vt shift amount
Clearly increases with increasing fluorine content
became.
【0018】以上のことから、信頼性に優れたa−Si
TFTを得るには、半導体層のフッ素含有量が1.0
×1019(atoms/cm3)以下に小さいことが必要である
ことが解る。From the above, it can be seen that a-Si
To obtain a TFT, the fluorine content of the semiconductor layer must be 1.0
It turns out that it is necessary to be smaller than × 10 19 (atoms / cm 3 ).
【0019】[0019]
【発明の効果】以上説明したように、本発明によれば、
フッ素含有量が1.0×1019(atoms/cm3)以下に小
さいプラズマCVD法で作製された半導体層は、前述し
たように界面付近の準位密度が小さく、半導体装置の半
導体層として優れていると考えられる。更に、本発明の
半導体層を用いたa−Si TFTはVtシフトが安定
しており、優れた信頼性を有するa−Si TFTを作
製することができる。As described above, according to the present invention,
A semiconductor layer manufactured by a plasma CVD method having a fluorine content of 1.0 × 10 19 (atoms / cm 3 ) or less has a low level density near an interface as described above, and is excellent as a semiconductor layer of a semiconductor device. It is thought that it is. Further, the a-Si TFT using the semiconductor layer of the present invention has a stable Vt shift, and an a-Si TFT having excellent reliability can be manufactured.
【図1】本発明の一実施の形態におけるa−Si TF
Tの要部構造断面図FIG. 1 shows a-Si TF according to an embodiment of the present invention.
Sectional view of main structure of T
【図2】半導体層のフッ素含有量と直流動作を10分間
行った場合のa−Si TFTのVtシフト量との関係
を示す特性図FIG. 2 is a characteristic diagram showing the relationship between the fluorine content of a semiconductor layer and the Vt shift amount of an a-Si TFT when DC operation is performed for 10 minutes.
【図3】縦軸にドレイン電流、横軸にゲート電圧をプロ
ットし、Vtシフトの様子を示した特性図FIG. 3 is a characteristic diagram in which a drain current is plotted on a vertical axis and a gate voltage is plotted on a horizontal axis, showing a state of Vt shift.
1 ガラス基板 2 ゲート電極 3 SiNx膜 4 a−Si膜 5 n+型a−Si膜 6 ソース電極 7 ドレイン電極 Reference Signs List 1 glass substrate 2 gate electrode 3 SiNx film 4 a-Si film 5 n + type a-Si film 6 source electrode 7 drain electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 浩佐 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小西 芳広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小島 徹也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H092 JA28 JA34 MA08 NA22 5F045 AA08 AB04 AB33 CA15 DA59 EB06 EH13 HA22 5F110 AA14 BB01 CC07 DD02 EE03 EE04 FF03 FF30 FF35 GG02 GG15 GG24 GG28 GG29 GG33 GG34 GG45 HK03 HK04 HK09 HK16 HK21 HK25 HK35 QQ09 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hirosa Baba 1006 Kadoma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. (72) Inventor Tetsuya Kojima 1006 Kazuma Kadoma, Kazuma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (reference) GG02 GG15 GG24 GG28 GG29 GG33 GG34 GG45 HK03 HK04 HK09 HK16 HK21 HK25 HK35 QQ09
Claims (4)
なる絶縁膜と半導体層とが互いに接するように積層され
て一部の構成体が形成される半導体装置の製造におい
て、前記半導体層のフッ素含有量が1.0×1019(at
oms/cm3)以下になるようにしたことを特徴とする半導
体装置の製造方法。1. A method of manufacturing a semiconductor device in which an insulating film made of a silicon nitride film and a semiconductor layer are laminated on one main surface of a substrate so as to be in contact with each other to form a part of a structure, Has a fluorine content of 1.0 × 10 19 (at
oms / cm 3 ). A method for manufacturing a semiconductor device, characterized in that:
気相堆積法によって連続して作製されたことを特徴とす
る請求項1記載の半導体装置の製造方法。2. The method according to claim 1, wherein the insulating film and the semiconductor layer are continuously formed by a plasma enhanced chemical vapor deposition method.
ランジスタのゲート絶縁膜と半導体層であることを特徴
とする請求項1記載の半導体装置の製造方法。3. The method for manufacturing a semiconductor device according to claim 1, wherein the insulating film and the semiconductor layer are a gate insulating film and a semiconductor layer of a field effect transistor.
とを特徴とする請求項1記載の半導体装置の製造方法。4. The method according to claim 1, wherein the semiconductor layer is an amorphous silicon film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001131295A JP2002329869A (en) | 2001-04-27 | 2001-04-27 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001131295A JP2002329869A (en) | 2001-04-27 | 2001-04-27 | Manufacturing method of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002329869A true JP2002329869A (en) | 2002-11-15 |
Family
ID=18979503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001131295A Pending JP2002329869A (en) | 2001-04-27 | 2001-04-27 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002329869A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7557416B2 (en) | 2003-12-03 | 2009-07-07 | Sharp Kabushiki Kaisha | Transistor and CVD apparatus used to deposit gate insulating film thereof |
JP2013168646A (en) * | 2012-01-20 | 2013-08-29 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
-
2001
- 2001-04-27 JP JP2001131295A patent/JP2002329869A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7557416B2 (en) | 2003-12-03 | 2009-07-07 | Sharp Kabushiki Kaisha | Transistor and CVD apparatus used to deposit gate insulating film thereof |
JP2013168646A (en) * | 2012-01-20 | 2013-08-29 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101813016B1 (en) | Thin film transistor | |
KR101345376B1 (en) | Fabrication method of ZnO family Thin film transistor | |
JP5099740B2 (en) | Thin film transistor | |
TWI538218B (en) | Thin film transistor | |
JPH0992841A (en) | Manufacture of field-effect thin film transistor | |
KR20040021758A (en) | Method for fabricating of a poly-Si TFT | |
US7893509B2 (en) | Transistor and CVD apparatus used to deposit gate insulating film thereof | |
US20140183541A1 (en) | Thin film transistor, manufacturing method thereof, array substrate and display device | |
KR100272260B1 (en) | Thin film transistor using diamond like carbon and manufacturing method thereof | |
US6869834B2 (en) | Method of forming a low temperature polysilicon thin film transistor | |
Parsons | Enhanced mobility top-gate amorphous silicon thin-film transistor with selectively deposited source/drain contacts | |
US6900083B2 (en) | Method of forming multi-layers for a thin film transistor | |
JPH08242005A (en) | Amorphous silicon thin film transistor and its manufacture | |
JP3416472B2 (en) | Semiconductor element | |
JP2002329869A (en) | Manufacturing method of semiconductor device | |
KR19980065168A (en) | Thin film transistor using fluorine-containing oxide film as gate insulating film and manufacturing method thereof | |
KR100509660B1 (en) | Film manufacturing method | |
JPH0727900B2 (en) | Method for manufacturing semiconductor device | |
JPH0774360A (en) | Preparation of vertical thin film transistor | |
JPH04240733A (en) | Manufacture of thin film transistor | |
JP2925007B2 (en) | Method for manufacturing thin film transistor | |
JPH01106470A (en) | Thin film transistor | |
JP4278857B2 (en) | Thin film transistor and manufacturing method thereof | |
JPS5914672A (en) | Manufacture of thin film transistor | |
WO1989009494A1 (en) | Gate dielectric for a thin film field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20061127 |