JP2002329514A - Single cell for fuel cell and solid electrolyte fuel cell - Google Patents

Single cell for fuel cell and solid electrolyte fuel cell

Info

Publication number
JP2002329514A
JP2002329514A JP2001134693A JP2001134693A JP2002329514A JP 2002329514 A JP2002329514 A JP 2002329514A JP 2001134693 A JP2001134693 A JP 2001134693A JP 2001134693 A JP2001134693 A JP 2001134693A JP 2002329514 A JP2002329514 A JP 2002329514A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode layer
cell
solid electrolyte
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001134693A
Other languages
Japanese (ja)
Other versions
JP4807606B2 (en
Inventor
Tatsuhiro Fukuzawa
達弘 福沢
Keiko Kushibiki
圭子 櫛引
Itaru Shibata
格 柴田
Masaharu Hatano
正治 秦野
Naoki Hara
直樹 原
Noritoshi Sato
文紀 佐藤
Mitsugi Yamanaka
貢 山中
Makoto Uchiyama
誠 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001134693A priority Critical patent/JP4807606B2/en
Publication of JP2002329514A publication Critical patent/JP2002329514A/en
Application granted granted Critical
Publication of JP4807606B2 publication Critical patent/JP4807606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized, high output and highly reliable single cell, cell plate, a stack for a fuel cell provided with these and a solid electrolyte fuel cell. SOLUTION: In the single cell for the fuel cell, a solid electrolyte layer 9 is arranged in a groove or a hole providing an air electrode layer 5 and a fuel electrode layer 6 on a substrate 10, an electrochemical reaction fluid is formed in a solid electrolyte layer interface, and a conductive material 3 is inserted in the substrate 10. Electron conductivity of the conductive material 3 is higher than electron conductivity of a forming material of the air electrode layer 5 and the fuel electrode layer 6. The solid electrolyte fuel cell uses the stack for the solid electrolyte fuel cell as a power generating element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質を用
い、電気化学反応により電気エネルギーを得る固体電解
質型燃料電池(SOFC)に係り、更に詳細には、固体
電解質を電極層で挟持して成る単セル、セル板、これら
を備えた燃料電池用スタック及び固体電解質型燃料電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell (SOFC) that uses a solid electrolyte to obtain electric energy by an electrochemical reaction, and more particularly, to a solid electrolyte sandwiched between electrode layers. The present invention relates to a single cell, a cell plate, a fuel cell stack including the same, and a solid oxide fuel cell.

【0002】[0002]

【従来の技術】近年、高エネルギー変換が可能で、地球
環境に優しいクリーンエネルギー源として燃料電池が注
目されており、自動車用電源としての応用が検討されて
いる。固体電解質型燃料電池(以下、「SOFC」と略
す)は、効率の高い燃料電池として注目されている。し
かし、燃料電池単セルの起電力は約1Vと低いため、高
電圧化のために複数の単セルを直列に接続してスタック
を形成する必要があるため、スタッキングの方法が重要
である。また、自動車用電源としての応用を考えたとき
には、高出力化が必要となり、SOFCを高出力化する
ための技術のひとつとして、固体電解質や電極を薄膜化
することが挙げられるが、従来例である特開平8−64
216号公報などに開示されている構造では、集電機能
が不十分であり、電流の取り出しをスムーズに行うため
の配線構造が必要である。
2. Description of the Related Art In recent years, fuel cells have attracted attention as a clean energy source capable of high energy conversion and friendly to the global environment, and applications as power sources for automobiles are being studied. 2. Description of the Related Art Solid oxide fuel cells (hereinafter abbreviated as “SOFC”) have been attracting attention as highly efficient fuel cells. However, since the electromotive force of a single fuel cell is as low as about 1 V, it is necessary to connect a plurality of single cells in series to form a stack in order to increase the voltage. Therefore, a stacking method is important. Further, when considering the application as a power source for automobiles, it is necessary to increase the output. One of the techniques for increasing the output of an SOFC is to reduce the thickness of a solid electrolyte or an electrode. JP-A-8-64
In the structure disclosed in Japanese Patent Application Publication No. 216 and the like, the current collecting function is insufficient, and a wiring structure for smoothly extracting a current is required.

【0003】[0003]

【発明が解決しようとする課題】上述のような、従来の
燃料電池スタックでは、電極部が集電機能を兼ねている
ため、電極が薄くなると導電経路の断面積が小さくなっ
てしまい、電気抵抗が大きくなってしまう。また、集電
機能を向上させるために、セル要素間にセパレーターや
インタコネクタを配置すると、燃料電池スタックにおけ
る非発電要素の占める割合が大きくなり、出力密度が低
下してしまう。更に、従来のインタコネクタは、高温下
で酸化ガス雰囲気、還元ガス雰囲気の両方にさらされる
ため、高い耐久性が要求され、使用できる材料が限られ
ていた。更にまた、高電圧化のためには単セルを直列化
することが必要だが、ガスセパレーターがない平板型の
スタックにおいて、スタック内部で各単セルを直列接続
することは非常に困難であり、スタック外部で直列接続
を行わなければならず、配線構造の複雑化、部品点数の
増加などに係る課題があった。
In the conventional fuel cell stack as described above, since the electrode portion also has a current collecting function, the thinner the electrode, the smaller the cross-sectional area of the conductive path, and the lower the electrical resistance. Becomes large. Further, if a separator or an interconnector is arranged between the cell elements in order to improve the current collection function, the ratio of the non-power generation elements in the fuel cell stack increases, and the output density decreases. Further, the conventional interconnector is exposed to both an oxidizing gas atmosphere and a reducing gas atmosphere at a high temperature, so high durability is required, and usable materials are limited. Furthermore, it is necessary to serialize the single cells in order to increase the voltage, but in a flat stack without a gas separator, it is extremely difficult to connect each single cell in series inside the stack. The external connection must be performed in series, and there are problems related to the complexity of the wiring structure and the increase in the number of components.

【0004】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするとこと
は、小型化、高出力化が可能で、信頼性の高い単セル、
セル板、これらを備えた燃料電池用スタック及び固体電
解質型燃料電池を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a highly reliable single cell that can be reduced in size and output.
An object of the present invention is to provide a cell plate, a stack for a fuel cell provided with these, and a solid oxide fuel cell.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、集電を担う導電性
材料を所定形状で配置したことにより、上記課題が解決
できることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned problems can be solved by arranging a conductive material for collecting electricity in a predetermined shape. As a result, the present invention has been completed.

【0006】即ち、本発明の燃料電池用単セルは、固体
電解質層を空気極層及び燃料極層で挟持し、これを導電
性基板又は絶縁性基板に設けた溝又は孔に配置して成る
燃料電池用の単セルであって、上記空気極層及び燃料極
層を上記固体電解質層と電気的且つ機械的に接合し、該
固体電解質層界面に電気化学的な反応場を形成し、上記
基板の、延在方向且つ上記溝又は孔が存在しない部位
に、該反応場から集電し外部に電流を導通可能な導電性
材料を貫入して成ることを特徴とする。
That is, the single cell for a fuel cell according to the present invention comprises a solid electrolyte layer sandwiched between an air electrode layer and a fuel electrode layer, which are arranged in grooves or holes provided in a conductive substrate or an insulating substrate. A single cell for a fuel cell, wherein the air electrode layer and the fuel electrode layer are electrically and mechanically joined to the solid electrolyte layer to form an electrochemical reaction field at the solid electrolyte layer interface; It is characterized in that a conductive material capable of collecting current from the reaction field and conducting current to the outside penetrates into a portion of the substrate in the extending direction and where the groove or hole does not exist.

【0007】また、本発明の燃料電池用単セルの好適形
態は、上記導電性材料の電子伝導度が、上記空気極層及
び燃料極層を形成する材料の電子伝導度以上であること
を特徴とする。
In a preferred embodiment of the fuel cell unit cell according to the present invention, the electronic conductivity of the conductive material is equal to or higher than that of the material forming the air electrode layer and the fuel electrode layer. And

【0008】更に、本発明の燃料電池用セル板は、上記
燃料電池用単セルを、上記空気極層、燃料極層及び固体
電解質層の積層方向とほぼ垂直の方向へ2次元的且つ連
続的又は断続的に複数個接合して成ることを特徴とす
る。
Further, the fuel cell plate according to the present invention provides the fuel cell unit cell in a two-dimensional and continuous manner in a direction substantially perpendicular to the laminating direction of the air electrode layer, the fuel electrode layer and the solid electrolyte layer. Alternatively, it is characterized by a plurality of intermittently joined ones.

【0009】更にまた、本発明の燃料電池用スタック
は、上記燃料電池用単セル、又は上記燃料電池用セル板
を、上記空気極層、燃料極層及び固体電解質層の積層方
向とほぼ同一方向へ2次元的に複数個連結し一体化して
成ることを特徴とする。
Further, in the fuel cell stack according to the present invention, the fuel cell unit cell or the fuel cell cell plate may be disposed in a direction substantially the same as the lamination direction of the air electrode layer, the fuel electrode layer and the solid electrolyte layer. It is characterized in that it is two-dimensionally connected and integrated.

【0010】また、本発明の燃料電池用スタックの好適
形態は、上記燃料電池用単セル又は導電性材料に絶縁部
を設け、1又は複数の単セルごと且つ空気極層側及び燃
料極層側の集電を担う集電部を形成したことを特徴とす
る。
In a preferred embodiment of the fuel cell stack according to the present invention, the fuel cell single cell or the conductive material is provided with an insulating portion, and one or more single cells are provided on the air electrode layer side and the fuel electrode layer side. A current collecting portion for collecting the current.

【0011】更に、本発明の燃料電池用スタックの他の
好適形態は、上記集電部の横断面の平均面積Scと上記
反応場の横断面の平均面積Srとが、Sc/Sr≧10
の関係を満たすことを特徴とする。
Further, in another preferred embodiment of the fuel cell stack according to the present invention, the average area Sc of the cross section of the current collector and the average area Sr of the cross section of the reaction field satisfy Sc / Sr ≧ 10.
Is satisfied.

【0012】更にまた、本発明の固体電解質型燃料電池
は、上記固体電解質型燃料電池用スタックを発電要素と
して構成したことを特徴とする。
Still further, a solid oxide fuel cell according to the present invention is characterized in that the solid oxide fuel cell stack is constituted as a power generating element.

【0013】[0013]

【発明の実施の形態】以下、本発明の固体電解質型燃料
電池用の単セル及びセル板について詳細に説明する。な
お、本明細書において、「%」は特記しない限り質量百
分率を示す。また、説明の便宜上、単セルや電極層など
各層の一方の面を「上面、表面」、他の面を「下面、裏
面」などと記載するが、これらは等価な要素であり、相
互に置換した構成も本発明の範囲に含まれるのは言うま
でもない。更に、セル板は、単セルの集積化を促進し
て、得られる燃料電池の高出力化を図るのに実用的な製
品形態である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a single cell and a cell plate for a solid oxide fuel cell according to the present invention will be described in detail. In addition, in this specification, "%" shows a mass percentage unless otherwise specified. For convenience of description, one surface of each layer such as a single cell or an electrode layer is described as “upper surface, front surface”, and the other surface is described as “lower surface, back surface”, etc., but these are equivalent elements, and Needless to say, such a configuration is also included in the scope of the present invention. Further, the cell plate is a practical product form for promoting the integration of the single cells and increasing the output of the obtained fuel cell.

【0014】上述のように、本発明の単セルは、固体電
解質層を空気極層及び燃料極層で挟持し、これを基板に
配置して成る。ここで、基板は、特にシリコン(Si)
基板に限定されず、導電性基板及び絶縁性基板のいずれ
でも採用でき、例えばガラス基板や金属基板などを使用
できる。これより、基板にかかるコストを低下できる。
但し、Si基板や金属基板を用いることが特に望まし
い。また、上記挟持体(空気極層、固体電解質層及び燃
料極層の積層体)は、基板に設けた溝又は孔に配置され
る。これより、単セルにおけるデッドスペースを有効利
用し出力密度を低下することなく電極集電部が形成され
る。また、電極集電部が原料ガス(酸化ガス及び燃料ガ
ス)に接触しないためガス耐久性の低い材料でも使用で
きる。更に、原料ガスの接触により形成される反応場
(発電部)が所望形態で固定される。なお、かかる溝や
孔は、燃料電池としたときの出力や原料ガス流路などを
考慮して種々の形状とすることが可能であり、溝や孔の
深さも特に限定されない。
As described above, the single cell of the present invention comprises a solid electrolyte layer sandwiched between an air electrode layer and a fuel electrode layer, which is disposed on a substrate. Here, the substrate is, in particular, silicon (Si).
The present invention is not limited to the substrate, and any of a conductive substrate and an insulating substrate can be employed. For example, a glass substrate or a metal substrate can be used. Thus, the cost for the substrate can be reduced.
However, it is particularly desirable to use a Si substrate or a metal substrate. Further, the sandwiching body (the laminate of the air electrode layer, the solid electrolyte layer, and the fuel electrode layer) is arranged in a groove or a hole provided in the substrate. Thus, the electrode current collector is formed without using the dead space in the single cell and reducing the output density. Further, since the electrode current collector does not come into contact with the raw material gas (oxidizing gas and fuel gas), a material having low gas durability can be used. Further, a reaction field (power generation unit) formed by contact of the raw material gas is fixed in a desired form. The grooves and holes can be formed into various shapes in consideration of the output when the fuel cell is used, the source gas flow path, and the like, and the depths of the grooves and holes are not particularly limited.

【0015】また、上記空気極層及び燃料極層の構成材
料としては、例えば、燃料極層として、ニッケル(N
i)、銅(Cu)及びそれらのサーメットなどを使用で
き、空気極層として、LSM、LSC及びPtなどを使
用できる。
The constituent materials of the air electrode layer and the fuel electrode layer include, for example, nickel (N
i), copper (Cu) and cermets thereof can be used, and LSM, LSC and Pt can be used as an air electrode layer.

【0016】更に、上記固体電解質層は、発電機能を発
現するのに必要であり、酸素イオン伝導性などを有する
従来公知の材料、例えば、酸化ネオジウム(Nd
)、酸化サマリウム(Sm)、イットリア
(Y)及び酸化ガドリニウム(Gd)など
を固溶した安定化ジルコニアや、セリア(CeO)系
固溶体、酸化ビスマス及びLaGaOなどを使用する
ことができるが、これに限定されるものではない。
Further, the solid electrolyte layer is necessary for exhibiting a power generation function, and is a conventionally known material having oxygen ion conductivity, for example, neodymium oxide (Nd
2 O 3), samarium oxide (Sm 2 O 3), yttria (Y 2 O 3) and stabilized zirconia and the solid solution and gadolinium oxide (Gd 2 O 3), ceria (CeO 2) solid solution, bismuth oxide And LaGaO 3 can be used, but is not limited thereto.

【0017】また、本発明の単セルは、上記空気極層及
び燃料極層を上記固体電解質層と電気的且つ機械的に接
合し、該固体電解質層界面に電気化学的な反応場を形成
することを特徴とし、また、上記基板の、延在方向且つ
上記溝又は孔が存在しない部位に、該反応場から集電し
外部に電流を導通可能な導電性材料を貫入して成ること
を特徴とする。これより、スタックとしたときの直流抵
抗を低減し、スタック内で単セルを直列接続することが
できる。また、上記導電性材料をガスに触れさせないた
め、耐久性の低い材料であっても使用できる。更に、上
記導電性材料として強度の強い材料を使用することによ
り、機械的強度を向上させることができる。
Further, in the single cell of the present invention, the air electrode layer and the fuel electrode layer are electrically and mechanically joined to the solid electrolyte layer to form an electrochemical reaction field at the solid electrolyte layer interface. In addition, a conductive material capable of collecting current from the reaction field and conducting current to the outside penetrates into a portion of the substrate in the extending direction and where the groove or hole does not exist. And Thus, the DC resistance of the stack can be reduced, and the single cells can be connected in series in the stack. Further, since the conductive material is not exposed to gas, even a material having low durability can be used. Further, by using a material having high strength as the conductive material, mechanical strength can be improved.

【0018】上記導電性材料としては、例えば、ランタ
ン−ストロンチウム−マンガン(La−Sr−Mn)複
合酸化物、ランタン−ストロンチウム−コバルト(La
−Sr−Co)複合酸化物、ランタンクロマイト、銀
(Ag)、ニッケル(Ni)、銅(Cu)、白金(P
t)又は鉄(Fe)、及びこれらの任意の組合せに係る
金属を含んで成る合金、並びに/又はステンレス鋼を用
いることができる。このように、他の部分の熱膨張係数
差を緩和できる材料を選択することにより、スタックと
したときの熱ショックを緩和し、燃料電池スタックを高
速で昇温させることができる。また、集電機能が高く、
高温でも安定な電極層集電部を形成することができる。
なお、上記導電性材料として、例えばニッケル−クロム
合金などの発熱体を用いることも有効であり、この場合
は通電によりスタックなどの起動用熱源などとして利用
できる。
Examples of the conductive material include lanthanum-strontium-manganese (La-Sr-Mn) composite oxide and lanthanum-strontium-cobalt (La).
-Sr-Co) composite oxide, lanthanum chromite, silver (Ag), nickel (Ni), copper (Cu), platinum (P
Alloys comprising metals according to t) or iron (Fe), and any combination thereof, and / or stainless steel can be used. As described above, by selecting a material that can reduce the difference in thermal expansion coefficient between the other portions, the thermal shock when the stack is formed can be reduced, and the temperature of the fuel cell stack can be increased at a high speed. In addition, the power collection function is high,
A stable electrode layer current collector can be formed even at a high temperature.
It is also effective to use a heating element such as a nickel-chromium alloy as the conductive material. In this case, it can be used as a starting heat source for a stack or the like by energization.

【0019】更に、上記導電性材料の電子伝導度は、上
記空気極層及び燃料極層を形成する材料の電子伝導度と
同じ又はそれより高いことが好適である。これより、各
電極層集電部の抵抗を十分に小さくし、集電がスムーズ
になり易い。また、セル板を構成したときにセル板内の
温度分布を均一化し、スタックの熱耐久性を向上させる
ことができる。
Further, it is preferable that the electronic conductivity of the conductive material is equal to or higher than the electron conductivity of the material forming the air electrode layer and the fuel electrode layer. Accordingly, the resistance of each electrode layer current collector is made sufficiently small, and current collection is easily performed. Further, when the cell plate is formed, the temperature distribution in the cell plate can be made uniform, and the thermal durability of the stack can be improved.

【0020】なお、本発明の燃料電池用セル板は、上述
の単セルを上記空気極層、燃料極層及び固体電解質層の
積層方向とほぼ垂直の方向へ2次元的且つ連続的又は断
続的に複数個接合して成る。この場合、導電性材料が担
当する単セル数を適宜変更することにより、電気抵抗と
発電出力のバランスを調整できるので有効である。ここ
で、かかるセル板が該単セルを断続的に接合してなる場
合とは、本発明の単セルから導電性材料を除いた構成の
単セルを組合わせて成るセル板であることを意味し、言
い換えれば、2以上の単セルユニットごとに導電性材料
を設置した構成となる。
The cell plate for a fuel cell according to the present invention is characterized in that the above-mentioned single cell is two-dimensionally and continuously or intermittently arranged in a direction substantially perpendicular to the laminating direction of the air electrode layer, the fuel electrode layer and the solid electrolyte layer. And a plurality of them. In this case, the balance between the electric resistance and the power generation output can be adjusted by appropriately changing the number of single cells handled by the conductive material, which is effective. Here, the case where such a cell plate is formed by intermittently joining the unit cells means that the unit plate is a unit plate obtained by combining the unit cells of the present invention in which the conductive material is removed from the unit cells. In other words, a configuration is adopted in which a conductive material is provided for each of two or more single cell units.

【0021】次に、本発明の固体電解質型燃料電池用ス
タックについて説明する。かかる固体電解質型燃料電池
用スタックは、上述の燃料電池用単セル又はセル板を上
記空気極層、燃料極層及び固体電解質層の積層方向とほ
ぼ同一方向へ2次元的に複数個連結し一体化して成る。
このようなスタックを発電要素とするときは、出力特性
に優れた(自動車用電源に適した)燃料電池が得られ
る。
Next, the stack for a solid oxide fuel cell according to the present invention will be described. Such a stack for a solid oxide fuel cell comprises two or more two-dimensionally connected single cells or cell plates for the fuel cell described above, which are two-dimensionally connected in the same direction as the lamination direction of the air electrode layer, the fuel electrode layer and the solid electrolyte layer. Become
When such a stack is used as a power generation element, a fuel cell having excellent output characteristics (suitable for an automobile power supply) can be obtained.

【0022】また、上記燃料電池用単セル又は導電性材
料に絶縁部を設け、1又は複数の単セルごと且つ空気極
層側及び燃料極層側の集電を担う集電部を形成すること
が好適である。即ち、電極反応を担う反応場と電流輸送
を担う集電部とを所望のユニットごとに分けることがで
き、スタックの直流抵抗を低減し、単セルを容易に直列
接続することができる。上記絶縁部は、直列に接続され
るように設けることができる。また、絶縁部を構成する
絶縁体としては、アルミナ、SiN及びガラスなどを例
示できる。なお、本発明の固体電解質型燃料電池用スタ
ックでは、各電極層と導電性材料とを絶縁することが望
ましい。
Further, an insulating portion is provided on the single cell for a fuel cell or the conductive material to form a current collecting portion for collecting current on the air electrode layer side and the fuel electrode layer side for one or more single cells. Is preferred. In other words, the reaction field responsible for the electrode reaction and the current collecting part responsible for the current transport can be separated for each desired unit, the DC resistance of the stack can be reduced, and the single cells can be easily connected in series. The insulating portions can be provided so as to be connected in series. In addition, examples of the insulator constituting the insulating portion include alumina, SiN, and glass. Note that, in the solid oxide fuel cell stack of the present invention, it is desirable to insulate each electrode layer from the conductive material.

【0023】更に、上記集電部の横断面の平均面積Sc
は、上記反応場の横断面の平均面積Srより大きいこと
が好適である。具体的には、上記集電部の横断面の平均
面積Scと上記反応場の横断面の平均面積Srとが、S
c/Sr≧10の関係を満たすこと、即ち、集電部の断
面積が集電を担う反応場の断面積の10倍以上であるこ
とがよい。この場合は、電極層集電部の抵抗を十分に小
さくし、集電をスムーズに行うことができる。
Further, the average area Sc of the cross section of the current collector is described.
Is preferably larger than the average area Sr of the cross section of the reaction field. Specifically, the average area Sc of the cross section of the current collector and the average area Sr of the cross section of the reaction field are S
It is preferable that the relationship of c / Sr ≧ 10 is satisfied, that is, the cross-sectional area of the current collecting unit is at least 10 times the cross-sectional area of the reaction field responsible for current collection. In this case, the resistance of the electrode layer current collector can be sufficiently reduced, and current collection can be performed smoothly.

【0024】次に、本発明の固体電解質型燃料電池につ
いて説明する。かかる燃料電池は、上述の固体電解質型
燃料電池用スタックを発電要素として構成して得られ
る。これより、導電性材料を貫入させたスタックで構成
されているため、該導電性材料をインタコネクタ(電気
伝導路)として利用でき、燃料電池を薄膜化、小型化す
ることが容易になる。
Next, the solid oxide fuel cell of the present invention will be described. Such a fuel cell is obtained by configuring the solid oxide fuel cell stack described above as a power generation element. As a result, since the fuel cell is constituted by a stack in which a conductive material is penetrated, the conductive material can be used as an interconnector (electrically conductive path), and it is easy to make the fuel cell thinner and smaller.

【0025】[0025]

【実施例】以下、本発明を図面を参照して実施例及び比
較例により更に詳細に説明するが、本発明はこれら実施
例に限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings by way of examples and comparative examples, but the present invention is not limited to these examples.

【0026】実施例1及び実施例2では、上記単電池板
Aと単電池板Bを複数枚積層して固体電解質型燃料電池
を作製し、その性能評価を実施した。
In Examples 1 and 2, a plurality of unit cell plates A and B were stacked to produce a solid oxide fuel cell, and its performance was evaluated.

【0027】(実施例1) 1)基板の作製 アンチモンが混入された抵抗率10〜11Ωcmの(1
00)配向単結晶シリコン基板(5インチ径、厚さ1.
0mm)として、その片面を鏡面研磨したものを用い、
これをダイシング・ソーで各辺が(110)方向となる
ように、5cm角の正方形状に切断した。この方形物を
90℃に保った水:過酸化水素:水酸化アンモニウム=
5:1:0.05の混合溶液中10分間の浸漬処理に付
したのち、5%フッ酸水溶液に1分、純水に1分浸して
から取り出し、次いで窒素ガス噴射で乾燥後直ちに超高
真空仕様、複数ターゲット・スパッタリング装置に搬入
した。該装置の基板ホルダーに収容した正方形シリコン
基板の成膜面について、その外縁部をインコネル製マス
クで覆って周辺部分が成膜されないようにした。成膜面
積は正方形基板の中心部分の4cm角部分となるように
した。上記Si基板を用いて、単電池板を作製した。
Example 1 1) Fabrication of Substrate A (1) having a resistivity of 10 to 11 Ωcm mixed with antimony was used.
00) Oriented single crystal silicon substrate (5 inch diameter, thickness 1.
0 mm), using a mirror-polished surface on one side,
This was cut with a dicing saw into a square of 5 cm square so that each side was in the (110) direction. This square was kept at 90 ° C. water: hydrogen peroxide: ammonium hydroxide =
After immersion treatment in a 5: 1: 0.05 mixed solution for 10 minutes, immersion in a 5% aqueous hydrofluoric acid solution for 1 minute and immersion in pure water for 1 minute, and then taking out, followed by drying with nitrogen gas injection, and immediately It was carried into a vacuum specification, multiple target sputtering system. The outer peripheral portion of the film formation surface of the square silicon substrate housed in the substrate holder of the apparatus was covered with an Inconel mask to prevent the peripheral portion from being formed. The film formation area was set to be a 4 cm square portion at the center of the square substrate. A cell plate was produced using the Si substrate.

【0028】2)単電池板Aの作製 上記のシリコン基板に対し、輻射ヒーターを用い基板温
度を700℃まで昇温し、金属ニッケルのターゲットを
用いて、RFスパッタにて膜厚約5000Åの酸化ニッ
ケル膜を成長させた。次に、基板温度を600℃まで低
下させ、10モル%イットリア添加安定化ジルコニア
(以下、「10YSZ」とする)の焼結体ターゲットを
用いて、酸化ニッケル膜上に膜厚約2μmの10YSZ
薄膜を成長させた。次に、基板温度を500℃まで低下
させ、LSMの焼結体ターゲットを用いて、膜厚約30
00Åの多結晶LSM膜を成長させた。このようにし
て、シリコン基板の片面上に順次酸化ニッケル膜、10
YSZ膜、多結晶LSM膜を積層した。
2) Preparation of single cell plate A The above silicon substrate was heated to 700 ° C. using a radiant heater, and oxidized to a thickness of about 5000 ° by RF sputtering using a metal nickel target. A nickel film was grown. Next, the temperature of the substrate was lowered to 600 ° C., and a 10 mol% yttria-added stabilized zirconia (hereinafter, referred to as “10YSZ”) sintered target was used to form a 10 YSZ film having a thickness of about 2 μm on the nickel oxide film.
A thin film was grown. Next, the substrate temperature is lowered to 500 ° C., and a film thickness of about 30
A polycrystalline LSM film of 00 ° was grown. In this manner, the nickel oxide film, 10
A YSZ film and a polycrystalline LSM film were laminated.

【0029】次に、上記の基板両面に、常圧CVD法で
約5000Å厚のPSG(燐ケイ酸ガラス)膜を析出さ
せ、次いでシリコン基板の裏面(10YSZ膜等が積層
された面の裏面)に、図1に示すパターンをフォトリソ
グラフィー法で転写し、図1の白抜き部分に相応する転
写部のみをフッ酸系エッチング液への浸漬処理により除
去した。ここで、エッチングパターンの幅に狭いエリア
があるのは、異方性エッチングの際、基板途中でエッチ
ングが停止するようにするためである。フォトレジスト
をアッシングして除去したのち、約60℃に保った抱水
ヒドラジンの異方性エッチング液中に基板を約8時間浸
漬し、図1に示すように、シリコン基板を上記パターン
に相応させてエッチング除去し、基板面内に小開口2を
あけ、積層薄膜が一部自立状態となるようにする。ま
た、電極集電部となる溝3も、小開口部間に同時に形成
される。この溝は基板を厚さ方向に貫通していない。次
いで、シリコン基板をフッ酸系エッチング液中に浸し、
保護PSG膜4を除去した。続いて、上記積層膜の形成
されていない面に対し、輻射ヒーターを用い基板温度を
500℃まで昇温し、金属ニッケルの焼結体ターゲット
を用いて、RFスパッタにて、ガス流路に沿って膜厚約
3000Åの酸化ニッケル膜を成長させ、次いで金属ニ
ッケルペーストを電極集電部となる溝に充填して乾燥さ
せ、単電池板Aを作製した。各要素部のサイズは、開口
部2は1.0mm×1.0mm、開口部2の間隔は1.
0mm、溝の幅は最長部(断面で見た時の三角形の底
辺)で0.8mm、溝の深さは0.7mmである。
Next, a PSG (phosphosilicate glass) film having a thickness of about 5000 mm is deposited on both surfaces of the substrate by a normal pressure CVD method, and then the back surface of the silicon substrate (the back surface of the surface on which the 10YSZ film and the like are laminated). Then, the pattern shown in FIG. 1 was transferred by photolithography, and only the transfer portion corresponding to the white portion in FIG. 1 was removed by immersion in a hydrofluoric acid-based etching solution. Here, the reason why the area of the width of the etching pattern is narrow is to stop the etching in the middle of the substrate during the anisotropic etching. After the photoresist was removed by ashing, the substrate was immersed in an anisotropic etching solution of hydrazine hydrate kept at about 60 ° C. for about 8 hours, and the silicon substrate was made to conform to the above pattern as shown in FIG. Then, a small opening 2 is formed in the substrate surface so that the laminated thin film is partially free standing. Also, the groove 3 serving as an electrode current collector is formed simultaneously between the small openings. This groove does not penetrate the substrate in the thickness direction. Next, the silicon substrate is immersed in a hydrofluoric acid-based etching solution,
The protection PSG film 4 was removed. Subsequently, the substrate temperature was raised to 500 ° C. using a radiant heater on the surface on which the above-mentioned laminated film was not formed, and along a gas flow path by RF sputtering using a sintered target of metallic nickel. Then, a nickel oxide film having a thickness of about 3000 ° was grown, and then a metal nickel paste was filled in a groove serving as an electrode current collector and dried to produce a unit cell plate A. The size of each element is 1.0 mm × 1.0 mm for the opening 2, and the interval between the openings 2 is 1.
0 mm, the width of the groove is 0.8 mm at the longest part (the bottom side of the triangle when viewed in cross section), and the depth of the groove is 0.7 mm.

【0030】3)単電池板Bの作製 上記のシリコン基板に対し、輻射ヒーターを用い基板温
度を700℃まで昇温し、LSMの焼結体ターゲットを
用いて、RFスパッタにて膜厚約5000Åの多結晶L
SM膜を成長させた。次に、基板温度を600℃まで低
下させ、10モル%イットリア添加安定化ジルコニア
(以下10YSZとする)の焼結体ターゲットを用い
て、LSM膜上に膜厚約2μmの10YSZ薄膜を成長
させた。次に、基板温度を500℃まで低下させ、金属
ニッケルのターゲットを用いて、膜厚約3000Åの酸
化ニッケル膜を成長させた。このようにして、シリコン
基板の片面上に順次多結晶LSM膜、10YSZ膜、酸
化ニッケル膜を積層した。
3) Preparation of Single Cell Plate B The above silicon substrate was heated to 700 ° C. using a radiant heater, and was subjected to RF sputtering using an LSM sintered target to a film thickness of about 5000 ° C. Polycrystalline L
An SM film was grown. Next, the substrate temperature was lowered to 600 ° C., and a 10 YSZ thin film having a thickness of about 2 μm was grown on the LSM film by using a sintered target of 10 mol% yttria-added stabilized zirconia (hereinafter referred to as 10 YSZ). . Next, the substrate temperature was lowered to 500 ° C., and a nickel oxide film having a thickness of about 3000 ° was grown using a metal nickel target. Thus, a polycrystalline LSM film, a 10YSZ film, and a nickel oxide film were sequentially laminated on one surface of the silicon substrate.

【0031】次に、上記の基板両面に、常圧CVD法で
約5000Å厚のPSG膜を析出させ、次いでシリコン
基板の裏面(10YSZ膜等が積層された面の裏面)
に、図1に示すパターンをフォトリソグラフィー法で転
写し、図の白抜き部分に相応する転写部のみをフッ酸系
エッチング液への浸漬処理により除去した。ここで、エ
ッチングパターンの幅に狭いエリアがあるのは、異方性
エッチングの際、基板途中でエッチングが停止するよう
にするためである。フォトレジストをアッシングして除
去したのち、約60℃に保った抱水ヒドラジンの異方性
エッチング液中に基板を約8時間浸漬し、図1に示すよ
うに、シリコン基板を上記パターンに相応させてエッチ
ング除去し、基板面内に小開口2をあけ、積層薄膜が一
部自立状態となるようにする。また、電極集電部となる
溝3も、小開口部間に同時に形成される。この溝は基板
を厚さ方向に貫通していない。次いで、シリコン基板を
フッ酸系エッチング液中に浸し、保護PSG膜4を除去
した。続いて、上記積層膜の形成されていない面に対
し、輻射ヒーターを用い基板温度を500℃まで昇温
し、LSMの焼結体ターゲットを用いて、RFスパッタ
にて、ガス流路に沿って膜厚約3000Åの多結晶LS
M膜を成長させ、次いで金属ニッケルペーストを電極集
電部となる溝に充填して乾燥させ、単電池板Bを作製し
た。各要素部のサイズは、開口部は1.0mm×1.0
mm、開口部の間隔は1.0mm、溝の幅は最長部(断
面で見た時の三角形の底辺)で0.8mm、溝の深さは
0.7mmである。
Next, a PSG film having a thickness of about 5000 mm is deposited on both surfaces of the substrate by a normal pressure CVD method, and then the back surface of the silicon substrate (the back surface of the surface on which the 10YSZ film and the like are laminated).
Then, the pattern shown in FIG. 1 was transferred by photolithography, and only the transfer portion corresponding to the white portion in the figure was removed by immersion in a hydrofluoric acid-based etching solution. Here, the reason why the area of the width of the etching pattern is narrow is to stop the etching in the middle of the substrate during the anisotropic etching. After the photoresist is removed by ashing, the substrate is immersed in an anisotropic etching solution of hydrazine hydrate kept at about 60 ° C. for about 8 hours, and as shown in FIG. Then, a small opening 2 is formed in the substrate surface so that the laminated thin film is partially free standing. Also, the groove 3 serving as an electrode current collector is formed simultaneously between the small openings. This groove does not penetrate the substrate in the thickness direction. Next, the silicon substrate was immersed in a hydrofluoric acid-based etching solution to remove the protective PSG film 4. Subsequently, the substrate temperature was raised to 500 ° C. using a radiant heater on the surface on which the laminated film was not formed, and along a gas flow path by RF sputtering using a sintered target of LSM. Polycrystalline LS with a thickness of about 3000mm
An M film was grown, and then a metal nickel paste was filled in a groove serving as an electrode current collector and dried to prepare a unit cell plate B. The size of each element is 1.0 mm x 1.0 for the opening.
mm, the interval between the openings is 1.0 mm, the width of the groove is 0.8 mm at the longest part (the bottom of the triangle when viewed in cross section), and the depth of the groove is 0.7 mm.

【0032】4)固体電解質型燃料電池の作製(各単電
池板の積層) 上記手順にて作製した単電池板Aの平坦な面に被着して
いる電極材料と同じLSM空気電極材料のスラリーを単
電池板Aの平坦な面の電極上に塗布し、次いで、上記単
電池板の平坦な面の最表面に被着している電極材料と同
じ酸化ニッケル燃料電極材料のスラリーを単電池板の平
坦な面の電極上に塗布し、図2に示すように、各単電池
板を対向させて積層した。それらを積層したのち、焼成
炉にて600℃で一括焼成し、燃料電池を作製した。
4) Fabrication of Solid Oxide Fuel Cell (Lamination of Unit Cell Plates) A slurry of the same LSM air electrode material as the electrode material adhered to the flat surface of the unit cell plate A manufactured by the above procedure Is applied onto the flat surface electrode of the unit cell plate A, and then a slurry of the same nickel oxide fuel electrode material as the electrode material adhered to the outermost surface of the flat surface of the unit cell plate is applied to the unit cell plate. Was applied on the flat surface electrode, and as shown in FIG. 2, each unit cell plate was laminated so as to face each other. After laminating them, they were batch fired at 600 ° C. in a firing furnace to produce a fuel cell.

【0033】[性能評価]電気炉中に上記単電池板A2
枚と単電池板B1枚を積層した燃料電池を設置し、70
0℃に昇温させ、純酸素と純水素をそれぞれ原料ガスと
して用い、交流インピーダンス測定と、発電試験を行っ
た。交流インピーダンス測定の結果、直流抵抗は、電極
層集電部を形成していないものは0.3Ωだったのに対
し、本実施例で作製したものは、0.03Ωと小さな抵
抗値を示した。また、発電試験の結果、開放起電力1.
05V、最大出力0.8W/cmであった。
[Evaluation of Performance] The above-mentioned unit cell plate A2 was placed in an electric furnace.
A fuel cell in which the fuel cell and the single cell plate B are stacked is installed, and 70
The temperature was raised to 0 ° C., and an AC impedance measurement and a power generation test were performed using pure oxygen and pure hydrogen as raw material gases. As a result of the AC impedance measurement, the direct current resistance was 0.3Ω when the electrode layer collector was not formed, whereas the direct resistance was as low as 0.03Ω when manufactured in this example. . In addition, as a result of the power generation test, the open electromotive force 1.
05 V and a maximum output of 0.8 W / cm 2 .

【0034】(実施例2)本実施例の製造工程を図4に
示す。また、図3にセル板の一部の断面図及び平面図を
示す。 厚さ0.5mm、5cm角の高珪酸ガラスを基板11と
して、2mmφの開口部を6個穴と、電極集電部となる
べき溝(サイズ)を加工した。(a) 次いで、仮基板12としてSi基板表面にシランカップ
リング材を塗布して基板11の上面に設置し、200℃
で熱処理し張り合わせる。(b) 基板下面から蒸着マスクを使用して所望のパターンで開
口部に電解質層13としてYSZをRFスパッタ法によ
り1μm成膜する。(c) 続いて下部電極層14として基板下面から電解質層に直
接接着するように、LSMをRFスパッタ法により5μ
m形成する。(d) フッ酸系のエッチング液により、仮基板を剥離除去す
る。(e) 基板の電極集電部となるべき溝に、Ni金属ペーストを
充填、乾燥し、電極集電部15を形成する。(f) 基板上面から上部電極層16としてYSZとNiを2源
スパッタ法により5μm形成する。(g) このようにして作製した単電池板を、単電池板Aとし
た。
(Embodiment 2) FIG. 4 shows the manufacturing process of this embodiment. FIG. 3 shows a cross-sectional view and a plan view of a part of the cell plate. Using high silicate glass having a thickness of 0.5 mm and a square of 5 cm square as the substrate 11, six holes of 2 mmφ and a groove (size) to be an electrode current collector were processed. (A) Next, a silane coupling material is applied to the surface of the Si substrate as the temporary substrate 12 and placed on the upper surface of the substrate 11,
And heat bonded. (B) YSZ is formed as an electrolyte layer 13 to a thickness of 1 μm as an electrolyte layer 13 on the opening in a desired pattern from the lower surface of the substrate by using an evaporation mask by an RF sputtering method. (C) Subsequently, the LSM is applied to the lower electrode layer 14 by 5 μm by RF sputtering so that the lower electrode layer 14 is directly adhered to the electrolyte layer from the lower surface of the substrate.
m is formed. (D) The temporary substrate is peeled off using a hydrofluoric acid-based etchant. (E) Ni metal paste is filled in a groove to be an electrode current collector of the substrate and dried to form an electrode current collector 15. (F) YSZ and Ni are formed as the upper electrode layer 16 from the upper surface of the substrate by 5 μm by a two-source sputtering method. (G) The unit cell plate thus prepared was referred to as a unit cell plate A.

【0035】また、上記製造工程において、工程(d)
で下部電極層をYSZとNiを2源スパッタ法により5
μm形成し、工程(g)で上部電極層をLSMをRFス
パッタ法により5μm形成した単電池板を、単電池板B
とした。
In the above manufacturing process, the step (d)
The lower electrode layer is formed by sputtering YSZ and Ni by two-source sputtering.
A cell plate having an upper electrode layer of 5 μm formed by RF sputtering on the upper electrode layer in step (g) was
And

【0036】[性能評価]実施例1と同様にして、上記
単電池板A2枚と単電池板B1枚を積層した燃料電池を
用いて、500℃で発電特性を評価した。開放端電圧
0.92V、出力0.22W/cmであった。
[Evaluation of Performance] In the same manner as in Example 1, the power generation characteristics at 500 ° C. were evaluated using a fuel cell in which the two unit cells A and one unit cell B were stacked. The open-circuit voltage was 0.92 V, and the output was 0.22 W / cm 2 .

【0037】以上、本発明を実施例により詳細に説明し
たが、本発明はこれらに限定されるものではなく、本発
明の要旨の範囲内において種々の変形が可能である。例
えば、本発明において、単セル及びセル板の形状等は任
意に選択でき、目的の出力に応じた固体電解質型燃料電
池を作製できる。また、導電性材料は、基板の延在方向
に貫入するだけでなく、電極層の積層方向に貫入するこ
ともでき、これらの導電性材料を組合わせて接続するこ
とで所望の出力制御が可能な燃料電池が得られる。
Although the present invention has been described in detail with reference to the embodiments, the present invention is not limited to these, and various modifications can be made within the scope of the present invention. For example, in the present invention, the shape and the like of the single cell and the cell plate can be arbitrarily selected, and a solid oxide fuel cell according to the desired output can be manufactured. In addition, the conductive material can penetrate not only in the direction in which the substrate extends but also in the direction in which the electrode layers are stacked. Desired output control is possible by combining and connecting these conductive materials. A simple fuel cell can be obtained.

【0038】[0038]

【発明の効果】以上説明してきたように、本発明によれ
ば、集電を担う導電性材料を所定形状で配置したことと
したため、小型化、高出力化が可能で、信頼性の高い単
セル、セル板、これらを備えた燃料電池用スタック及び
固体電解質型燃料電池を提供することができる。
As described above, according to the present invention, since the conductive material for collecting current is arranged in a predetermined shape, it is possible to reduce the size, increase the output, and obtain a highly reliable unit. It is possible to provide a cell, a cell plate, a fuel cell stack including the same, and a solid oxide fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基板の一例を示す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a substrate.

【図2】燃料電池用スタックの一例を示す断面図であ
る。
FIG. 2 is a cross-sectional view illustrating an example of a fuel cell stack.

【図3】セル板の一例を示す平面図及び断面図である。FIG. 3 is a plan view and a cross-sectional view illustrating an example of a cell plate.

【図4】セル板の製造工程の一例を示す断面図である。FIG. 4 is a cross-sectional view illustrating an example of a manufacturing process of the cell plate.

【符号の説明】[Explanation of symbols]

1 ガス流路(ガス流路になる部分) 2 セル孔(セル孔になる部分) 3 溝(集電部)(溝(集電部)になる部分) 4 エッチングされない部分(保護PSG膜) 5 空気極 6 燃料極 7 空気極反応部 8 燃料極反応部 9 電解質 10、11 基板(ガラス基板) 12 仮基板 13 電解質層 14 下部電極層 15 電極集電部 16 上部電極層 DESCRIPTION OF SYMBOLS 1 Gas flow path (part which becomes a gas flow path) 2 Cell hole (part which becomes a cell hole) 3 Groove (current collection part) (part which becomes a groove (current collection part)) 4 Unetched part (protective PSG film) 5 Air electrode 6 Fuel electrode 7 Air electrode reaction part 8 Fuel electrode reaction part 9 Electrolyte 10, 11 Substrate (glass substrate) 12 Temporary substrate 13 Electrolyte layer 14 Lower electrode layer 15 Electrode collector 16 Upper electrode layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 格 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 秦野 正治 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 原 直樹 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 佐藤 文紀 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 山中 貢 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 内山 誠 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5H026 AA06 CC03 CV06 EE08 EE13 HH02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tadashi Shibata Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture (72) Inventor Masaharu Hatano 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa, Nissan Motor Co. 72) Inventor Naoki Hara 2 Takaracho, Kanagawa-ku, Yokohama City, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Fumi Sato 2 Takaracho, Kanagawa-ku, Yokohama City, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Mitsugu Yamanaka Kanagawa Prefecture Nissan Motor Co., Ltd., 2nd, Takaracho, Kanagawa-ku, Yokohama-shi (72) Inventor Makoto Uchiyama 2nd, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. F-term (reference) 5H026 AA06 CC03 CV06 EE08 EE13 HH02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質層を空気極層及び燃料極層で
挟持し、これを導電性基板又は絶縁性基板に設けた溝又
は孔に配置して成る燃料電池用の単セルであって、 上記空気極層及び燃料極層を上記固体電解質層と電気的
且つ機械的に接合し、該固体電解質層界面に電気化学的
な反応場を形成し、 上記基板の、延在方向且つ上記溝又は孔が存在しない部
位に、該反応場から集電し外部に電流を導通可能な導電
性材料を貫入して成ることを特徴とする燃料電池用単セ
ル。
1. A single cell for a fuel cell comprising a solid electrolyte layer sandwiched between an air electrode layer and a fuel electrode layer and arranged in a groove or a hole provided in a conductive substrate or an insulating substrate, The air electrode layer and the fuel electrode layer are electrically and mechanically joined to the solid electrolyte layer to form an electrochemical reaction field at the solid electrolyte layer interface. A unit cell for a fuel cell, wherein a conductive material capable of collecting current from the reaction field and conducting current to the outside penetrates into a portion where no hole exists.
【請求項2】 上記導電性材料の電子伝導度が、上記空
気極層及び燃料極層を形成する材料の電子伝導度以上で
あることを特徴とする請求項1記載の燃料電池用単セ
ル。
2. The unit cell for a fuel cell according to claim 1, wherein the electronic conductivity of the conductive material is equal to or higher than the electronic conductivity of the material forming the air electrode layer and the fuel electrode layer.
【請求項3】 上記導電性材料が、ランタン−ストロン
チウム−マンガン複合酸化物、ランタン−ストロンチウ
ム−コバルト複合酸化物、ランタンクロマイト、銀、ニ
ッケル、銅、白金及び鉄から成る群より選ばれた少なく
とも1種のものを含んで成る合金、並びに/又はステン
レス鋼より成ることを特徴とする請求項1又は2記載の
燃料電池用単セル。
3. The method according to claim 1, wherein the conductive material is at least one selected from the group consisting of lanthanum-strontium-manganese composite oxide, lanthanum-strontium-cobalt composite oxide, lanthanum chromite, silver, nickel, copper, platinum and iron. 3. The unit cell for a fuel cell according to claim 1, wherein the unit cell is made of an alloy containing any one of the above and / or stainless steel.
【請求項4】 請求項1〜3のいずれか1つの項に記載
の燃料電池用単セルを、上記空気極層、燃料極層及び固
体電解質層の積層方向とほぼ垂直の方向へ2次元的且つ
連続的又は断続的に複数個接合して成ることを特徴とす
る燃料電池用セル板。
4. The fuel cell unit according to claim 1, wherein the single cell for a fuel cell is two-dimensionally arranged in a direction substantially perpendicular to a laminating direction of the air electrode layer, the fuel electrode layer and the solid electrolyte layer. A cell plate for a fuel cell, wherein a plurality of cells are continuously or intermittently joined.
【請求項5】 請求項1〜3のいずれか1つの項に記載
の燃料電池用単セル、又は請求項5記載の燃料電池用セ
ル板を、上記空気極層、燃料極層及び固体電解質層の積
層方向とほぼ同一方向へ2次元的に複数個連結し一体化
して成ることを特徴とする固体電解質型燃料電池用スタ
ック。
5. The fuel cell unit cell according to any one of claims 1 to 3, or the fuel cell panel according to claim 5, wherein the air electrode layer, the fuel electrode layer, and the solid electrolyte layer are provided. A solid oxide fuel cell stack comprising a plurality of two-dimensionally connected and integrated two-dimensionally in substantially the same direction as the lamination direction.
【請求項6】 上記燃料電池用単セル又は導電性材料に
絶縁部を設け、1又は複数の単セルごと且つ空気極層側
及び燃料極層側の集電を担う集電部を形成したことを特
徴とする請求項5記載の固体電解質型燃料電池用スタッ
ク。
6. An insulating portion is provided on the fuel cell single cell or the conductive material, and a current collecting portion for collecting power on the air electrode layer side and the fuel electrode layer side is formed for each of one or more single cells. The solid oxide fuel cell stack according to claim 5, wherein
【請求項7】 上記集電部の横断面の平均面積Scが、
上記反応場の横断面の平均面積Srより大きいことを特
徴とする請求項6記載の固体電解質型燃料電池用スタッ
ク。
7. An average area Sc of a cross section of the current collector is:
7. The stack for a solid oxide fuel cell according to claim 6, wherein the average area of the cross section of the reaction field is larger than Sr.
【請求項8】 上記集電部の横断面の平均面積Scと上
記反応場の横断面の平均面積Srとが、Sc/Sr≧1
0の関係を満たすことを特徴とする請求項7記載の固体
電解質型燃料電池用スタック。
8. The average area Sc of the cross section of the current collector and the average area Sr of the cross section of the reaction field are Sc / Sr ≧ 1.
The stack for a solid oxide fuel cell according to claim 7, wherein a relationship of 0 is satisfied.
【請求項9】 請求項5〜8のいずれか1つの項に記載
の固体電解質型燃料電池用スタックを発電要素として構
成したことを特徴とする固体電解質型燃料電池。
9. A solid oxide fuel cell comprising the stack for a solid oxide fuel cell according to claim 5 as a power generating element.
JP2001134693A 2001-05-01 2001-05-01 STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL Expired - Lifetime JP4807606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134693A JP4807606B2 (en) 2001-05-01 2001-05-01 STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134693A JP4807606B2 (en) 2001-05-01 2001-05-01 STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL

Publications (2)

Publication Number Publication Date
JP2002329514A true JP2002329514A (en) 2002-11-15
JP4807606B2 JP4807606B2 (en) 2011-11-02

Family

ID=18982328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134693A Expired - Lifetime JP4807606B2 (en) 2001-05-01 2001-05-01 STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL

Country Status (1)

Country Link
JP (1) JP4807606B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072011A (en) * 2003-08-26 2005-03-17 Hewlett-Packard Development Co Lp Current collector supported fuel cell
CN110337748A (en) * 2017-02-16 2019-10-15 日本特殊陶业株式会社 Electrochemical reaction single battery and electrochemical reaction battery pack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200666A (en) * 1986-02-27 1987-09-04 Mitsubishi Electric Corp Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200666A (en) * 1986-02-27 1987-09-04 Mitsubishi Electric Corp Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072011A (en) * 2003-08-26 2005-03-17 Hewlett-Packard Development Co Lp Current collector supported fuel cell
CN110337748A (en) * 2017-02-16 2019-10-15 日本特殊陶业株式会社 Electrochemical reaction single battery and electrochemical reaction battery pack
CN110337748B (en) * 2017-02-16 2022-05-27 森村索福克科技股份有限公司 Electrochemical reaction single cell and electrochemical reaction battery

Also Published As

Publication number Publication date
JP4807606B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP3674840B2 (en) Fuel cell stack and method for manufacturing the same
EP1290746B1 (en) High performance solid electrolyte fuel cells
JP3789913B2 (en) Fuel cell and manufacturing method thereof
JP3705485B2 (en) Single cell for fuel cell and solid oxide fuel cell
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP2002319413A (en) Solid electrolyte fuel cell plate and stack
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
TW201027831A (en) Fuel cell and fabricating method thereof
JP4851692B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP6389133B2 (en) Fuel cell stack
JP4249960B2 (en) Fuel cell
JP4807605B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP4807606B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP6014278B2 (en) Single cell with metal plate, fuel cell stack, and manufacturing method of single cell with metal plate
JP2002203580A (en) Single cell for fuel cell and solid electrolyte fuel cell
JP4352447B2 (en) Solid oxide fuel cell separator with excellent conductivity
JP2006221884A (en) Single chamber type solid oxide fuel cell
JP2001102060A (en) Fuel pole for solid electrolyte fuel electrode
JP2002170578A (en) Cell for fuel battery and manufacturing method thereof
JP2005129281A (en) Solid electrolyte fuel battery cell
JP2003308854A (en) Solid oxide fuel cell and its manufacturing method
JPH0462757A (en) Solid electrolyte type fuel cell
JP2003346826A (en) Solid electrolyte fuel cell
JP2002170577A (en) Separator for fuel battery and fuel battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4807606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02