JP2002325567A - Method for culturing microorganism by using sea water - Google Patents

Method for culturing microorganism by using sea water

Info

Publication number
JP2002325567A
JP2002325567A JP2001134230A JP2001134230A JP2002325567A JP 2002325567 A JP2002325567 A JP 2002325567A JP 2001134230 A JP2001134230 A JP 2001134230A JP 2001134230 A JP2001134230 A JP 2001134230A JP 2002325567 A JP2002325567 A JP 2002325567A
Authority
JP
Japan
Prior art keywords
microorganisms
medium
thermophilic
water
culturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001134230A
Other languages
Japanese (ja)
Inventor
Hisashi Miyamoto
久 宮本
Hirokuni Miyamoto
浩邦 宮本
Hiroyasu Tobe
広康 戸部
Yasuhisa Izui
安久 泉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IZUI TEKKOSHO KK
NIKKAN KAGAKU KK
SABUROKU KK
Original Assignee
IZUI TEKKOSHO KK
NIKKAN KAGAKU KK
SABUROKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IZUI TEKKOSHO KK, NIKKAN KAGAKU KK, SABUROKU KK filed Critical IZUI TEKKOSHO KK
Priority to JP2001134230A priority Critical patent/JP2002325567A/en
Publication of JP2002325567A publication Critical patent/JP2002325567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for culturing microorganisms capable of planning to stabilize proliferation with enhancing culture efficiency by culturing the microorganisms by using a medium prepared by dissolving ingredients of the medium in seawater. SOLUTION: This method for culturing microorganisms by using seawater is to culture the microorganisms by using a medium prepared by dissolving ingredients of the medium in ocean surface water or ocean deep water taken from the deep sea below 2000 m from the sea surface and maintain activities of the cultured microorganisms in a high level as basic means. Concretely the aforesaid medium is sterilized by high pressure steam in an autoclave and put in vessels which are previously sterilized with high pressure steam, subsequently seeds of the microorganisms are inoculated and stationarily cultured by standing in a water bath.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は海水を利用した微生
物の培養方法に関し、特には海洋表層水もしくは海洋深
層水を用いて各種の肥料とか土壌改良、畜産の飼料・屎
尿処理及び水質改善等に使用されている微生物を培養す
ることにより、該微生物の生存率を高めて培養効率及び
培養した微生物の活性を良好に維持するようにした培養
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for culturing microorganisms using seawater, and more particularly to various fertilizers and soil improvement using marine surface water or deep-sea water, treatment of livestock feed and human waste, and improvement of water quality. The present invention relates to a culture method in which the microorganism used is cultured to increase the survival rate of the microorganism and maintain the culture efficiency and the activity of the cultured microorganism satisfactorily.

【0002】[0002]

【従来の技術】従来から各種の農作物とか植物の生育を
高めるために、施肥三大要素である窒素,リン酸,カリ
ウムを主体とする化学肥料が使用されているが、消費者
の安全な食物へのニーズが高まるのに伴って化学肥料か
ら有機肥料への転換及び無農薬による作物栽培への転換
がはかられている。上記に対処して、エビ,カニ,小魚
などの体表から分離された好熱性接種物ミロク(ミロク
菌)(ATTC国際寄託番号PTA−1773)を培養
して、有機肥料としての使用の外にも家畜の屎尿処理、
土壌改良、水質改善等に利用する手段が試みられてい
る。なお、好熱性接種物ミロクとは、バチラス・ブレビ
ス(Bacillus brevis)の近縁の種である好熱性C−1
菌、バチラス・ブレビス(Bacillus brevis)の近縁の
種である好熱性C−3菌、バチラス・ステアロサーモフ
ィラスCH−4(Bacillus stearothermophilus、CH
−4)、及び好熱性放線菌のMH−1(Thermophilic a
ctinomycetesMH−1)とを混合した好熱性菌であり、
好気条件下でエビ及び/又はカニの残渣の分解能、並び
に耐熱性酵素及びシャペロニンの生産能を有している海
洋好熱性の微生物である。
2. Description of the Related Art Conventionally, chemical fertilizers mainly comprising nitrogen, phosphoric acid, and potassium, which are three main components of fertilization, have been used to enhance the growth of various crops and plants. With the growing need for fertilizers, there has been a shift from chemical fertilizers to organic fertilizers and a shift to crop cultivation using no pesticides. In response to the above, the thermophilic inoculum Miroku (Miroku fungus) (ATTC International Deposit No. PTA-1773) isolated from the body surface of shrimp, crab, small fish, etc. is cultured to be used as an organic fertilizer. Livestock excrement processing,
Means for use in soil improvement, water quality improvement, and the like have been attempted. The thermophilic inoculant Miroku is a thermophilic C-1 which is a closely related species of Bacillus brevis.
A thermophilic C-3 bacterium, a closely related species of the bacterium Bacillus brevis, Bacillus stearothermophilus CH-4
-4), and MH-1 (Thermophilic a
ctinomycetes MH-1) and a thermophilic bacterium,
It is a marine thermophilic microorganism that has the ability to decompose shrimp and / or crab residues under aerobic conditions and the ability to produce thermostable enzymes and chaperonins.

【0003】好熱菌とは地球創生期から生息している始
原細胞に近い微生物の一種であり、60℃〜90℃の高
温の極限環境下でも生息可能である。現在では温泉や熱
水鉱床などに生息している。近年、常温菌に比べて有益
な機能成分、例えば耐熱性酵素・シャペロニン等を含有
していることが科学的に証明されている。好熱菌の例と
しては、前記した好熱性接種物ミロクの外に、ストレプ
トコッカス サーモフィラス(Streptococcus thermoph
ilus ),バチラス アシドカルドリウス(Bacillus ac
idocaldarius),サーモアネロバクター イタリカス
(Thermoanaerobacter italicus)などがある。
A thermophilic bacterium is a kind of microorganism close to a progenitor cell that has inhabited since the creation of the earth, and can inhabit even in an extreme environment of a high temperature of 60 ° C. to 90 ° C. Currently it inhabits hot springs and hydrothermal deposits. In recent years, it has been scientifically proved that it contains a useful functional component, such as a thermostable enzyme and chaperonin, as compared with normal-temperature bacteria. Examples of thermophilic bacteria include, in addition to the thermophilic inoculum Miroku described above, Streptococcus thermophilus (Streptococcus thermophus).
ilus), Bacillus acidocardrius (Bacillus ac)
idocaldarius) and Thermoanaerobacter italicus.

【0004】上記に関して、特開2000−34224
8号公報には、安全な作物を生産可能とする好熱性種菌
としての好熱性接種物ミロク、及び好熱性接種物ミロク
を使用した有機肥料、液状有機肥料及びそれらの製造方
法に関する提案がなされている。
With respect to the above, Japanese Patent Application Laid-Open No. 2000-34224
No. 8 proposes a thermophilic inoculum Miroku as a thermophilic inoculum capable of producing a safe crop, an organic fertilizer using the thermophilic inoculum Miroku, a liquid organic fertilizer, and a method for producing the same. I have.

【0005】即ち、上記好熱性種菌をエビ及び/又はカ
ニの残渣に添加して、好気条件下、かつ、50℃乃至9
0℃で発酵させて有機肥料を製造する方法、有機肥料を
水に添加して好気条件下で、かつ、30℃乃至70℃で
培養する液状有機肥料の製造方法、有機肥料を該有機肥
料の製造の際に採取された蒸留液に添加して、好気条件
下、かつ、30℃乃至70℃で培養する液状有機肥料の
製造方法等が記載されている。表1は好熱性種菌の同定
結果を示している。
That is, the thermophilic inoculum is added to shrimp and / or crab residues, and is added under aerobic conditions at 50 ° C. to 9 ° C.
A method for producing an organic fertilizer by fermenting at 0 ° C., a method for producing a liquid organic fertilizer which is added to water and cultured at 30 ° C. to 70 ° C. under aerobic conditions, and Describes a method for producing a liquid organic fertilizer, which is added to a distillate collected at the time of the production of, and cultured at 30 ° C to 70 ° C under aerobic conditions. Table 1 shows the identification results of the thermophilic inoculum.

【0006】[0006]

【表1】 [Table 1]

【0007】前記したように好熱性接種物ミロクは、有
機肥料としての使用の外に家畜の屎尿処理、土壌改良、
水質改善などに用いられており、この好熱性接種物ミロ
クは50℃〜90℃で最も良く増殖し、エビ,カニの体
表成分であるキチン質を分解する耐熱性キチナーゼ・耐
熱性キトサナーゼ及び各種耐熱性酵素を生産するという
特徴を有している。この好熱性接種物ミロクを増殖させ
るために、培地成分を井戸水或いは水道水に溶解して作
成した培地を用いて好熱性接種物ミロクを培養する手段
が知られている。
[0007] As described above, the thermophilic inoculant Miroku can be used as an organic fertilizer, besides excreting livestock from livestock, improving soil,
This thermophilic inoculant, Miroku, grows best at 50 ° C to 90 ° C and decomposes chitin, a body component of shrimp and crab. It has the characteristic of producing thermostable enzymes. Means for culturing the thermophilic inoculum miloc using a medium prepared by dissolving a medium component in well water or tap water in order to propagate the thermophilic inoculum miloc are known.

【0008】一方、近時は海洋深層水の持つ清浄性と豊
富なミネラル成分が需要者の注目を浴びてブームを呼
び、該海洋深層水を脱塩処理した水が飲料水の分野に進
入している現状にある。上記の海洋深層水は、現在世界
中でも「ノルウエー沖」、「ハワイ沖」、「高知県の室
戸岬沖」等の数カ所で実用的に取水されており、通常海
洋表層で見られる風波とか表層温度変化に伴う対流,混
合も生じない環境下にある海水で、地上で使用されてい
る各種の油類とか化学物質に起因する海洋汚染の影響を
受けることがなく、しかも海水中の溶存有機物が非常に
少なく、極めて清浄であるという特徴がある。
On the other hand, recently, the cleanliness of the deep sea water and the abundant mineral components have attracted the attention of consumers and called a boom, and the water obtained by desalinating the deep sea water has entered the field of drinking water. It is in the present situation. The above-mentioned deep ocean water is currently being used practically in several places around the world, such as "off the coast of Norway", "off the coast of Hawaii", and "off the coast of Cape Muroto in Kochi Prefecture". Seawater in an environment where convection and mixing do not occur due to changes, and are not affected by marine pollution caused by various oils and chemicals used on the ground, and the dissolved organic matter in the seawater is extremely low. And is extremely clean.

【0009】表2は海洋表層水と海洋深層水の各種項目
に関して分析した結果を示す一覧表であり、一般項目を
みると、水温平均は海洋表層水の21℃に対して海洋深
層水は13.1℃と低く、pHは同8.19に対して
7.87、DO(溶存酸素)は同8.33mg/Lに対
して7.28mg/L、TOCは1.60mg/Lに対
して0.98mg/Lで、ともに海洋深層水の方が低い
が、生菌数は海洋表層水の10〜10に対して海洋
深層水は10であって一桁以上も低くなっており、し
かも病原生物はほとんど含まれていないため、海水に由
来する魚病菌による病気に関する惧れは全くない。
Table 2 is a table showing the results of an analysis of various items of the ocean surface water and the deep sea water. In the general items, the average water temperature is 21 ° C. for the ocean surface water and 13 cm for the deep ocean water. The pH is as low as 0.1 ° C, the pH is 7.87 for 8.19, the DO (dissolved oxygen) is 7.28 mg / L for 8.33 mg / L, and the TOC is 1.60 mg / L. 0.98 mg / L, both of them are lower in deep sea water, but the viable cell count is 10 2 in deep sea water compared to 10 3 to 10 4 of sea surface water, which is one order of magnitude lower. Moreover, since it contains almost no pathogenic organisms, there is no concern about diseases caused by fish pathogens derived from seawater.

【0010】[0010]

【表2】 [Table 2]

【0011】ミネラル成分としての栄養塩類の項目で
は、NO-Nは海洋表層水の1.49μg-at/Lに
対して海洋深層水では25.9μg-at/L、PO-
Pは同0.34μg-at/Lに対して1.65μg-a
t/L、SiO-Siは同13.6μg-at/Lに対
して64.2μg-at/Lと海洋深層水の方が遙かに
大きくなっている。他の微量元素の項目でも海洋表層水
よりも海洋深層水の方が含有量が高いという分析結果が
得られている。
[0011] In the item of nutrients as minerals, NO 3 -N in the deep sea water against 1.49μg-at / L ocean surface water 25.9μg-at / L, PO 4 -
P is 1.65 μg-a against 0.34 μg-at / L.
t / L and SiO 2 -Si are 13.6 μg-at / L and 64.2 μg-at / L, which is much larger in deep ocean water. Analysis results have also been obtained that the content of deep ocean water is higher than that of ocean surface water for other trace element items.

【0012】海洋深層水の脱塩水を原子吸光光度法によ
り分析した結果、カルシウムが0.4mg/L、マグネ
シウムが1.0mg/L含まれていることが判明した。
更に海洋深層水の濃縮水を同様に原子吸光光度法により
分析した結果、カルシウムが560mg/L、マグネシ
ウムが1700mg/Lも含まれているという結果が得
られた。
Analysis of the desalted water in deep sea water by atomic absorption spectrometry revealed that calcium contained 0.4 mg / L and magnesium contained 1.0 mg / L.
Furthermore, the concentrated water of the deep ocean water was similarly analyzed by atomic absorption spectrometry, and as a result, it was found that calcium contained 560 mg / L and magnesium contained 1700 mg / L.

【0013】[0013]

【発明が解決しようとする課題】前記したように従来の
好熱性接種物ミロクの培養方法として、培地成分を井戸
水或いは水道水に溶解して作成した培地を用いて好熱性
接種物ミロクを培養する手段が採られているが、培養の
効率を充分に高めることができず、特に1週間以上の長
期培養に際しては種菌の生存数も急激に減少してしま
い、好熱性接種物ミロクの増殖にも安定性を欠くという
課題がある。
As described above, as a conventional method for cultivating a thermophilic inoculum Miroku, a thermophilic inoculum Miroku is cultured using a medium prepared by dissolving a medium component in well water or tap water. Although measures have been taken, the efficiency of cultivation cannot be sufficiently increased, and especially during long-term cultivation for one week or more, the number of surviving inoculum decreases rapidly, and the growth of the thermophilic inoculum Miroku is also increased. There is a problem of lack of stability.

【0014】そこで本発明はこのような従来の好熱性接
種物ミロクの培養方法が有している課題を解消して、培
地成分を海水に溶解して作成した培地を用いて好熱性接
種物ミロクその他の微生物を培養することにより、培養
効率を高めて増殖の安定化をはかることができる微生物
の培養方法を提供することを目的とするものである。
Therefore, the present invention solves the problems of such a conventional method for culturing a thermophilic inoculant Miroku, and uses a medium prepared by dissolving a medium component in seawater to produce a thermophilic inoculant Miroku. It is an object of the present invention to provide a method for culturing a microorganism which can increase the culture efficiency and stabilize the growth by culturing another microorganism.

【0015】[0015]

【課題を解決するための手段】本発明は上記目的を達成
するために、培地成分を海洋表層水もしくは海面下20
0メートル以深の深海から取水した海洋深層水に溶解し
て作成した培地を用いて微生物を培養する方法、及び培
養された微生物の活性を高く持続することを基本手段と
して提供する。具体的には上記培地をオートクレーブに
より高圧蒸気減菌処理を行い、クリーンベンチ中で予め
高圧蒸気減菌処理した容器内に入れてから微生物の種母
を植菌し、湯浴中での静置培養を行う。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a culture medium comprising a surface water of the ocean or a surface water below sea level.
The present invention provides, as basic means, a method of culturing microorganisms using a medium prepared by dissolving in deep ocean water taken from deep sea at a depth of 0 m or less, and maintaining the activity of the cultured microorganisms at a high level. Specifically, the medium was subjected to high-pressure steam sterilization by an autoclave, placed in a container previously subjected to high-pressure steam sterilization in a clean bench, inoculated with a seed of the microorganism, and then left standing in a hot water bath. Perform culture.

【0016】そして、微生物として、好熱性微生物ある
いは常温微生物のうち、有効かつ、安全な一種類で構成
された微生物系、あるいは複数種が組み合わされた共存
複合微生物系を用いる手段、微生物としてバチラス・ブ
レビス(Bacillus brevis)の近縁の種である好熱性C
−1菌、バチラス・ブレビス(Bacillus brevis)の近
縁の種である好熱性C−3菌、バチラス・ステアロサー
モフィラスCH−4(Bacillus stearothermophilus、
CH−4)、及び好熱性放線菌のMH−1(Thermophil
ic actinomycetesMH−1)並びに現段階にて分離同定
不可能な好熱性又は耐熱性微生物群から選択される一種
又は複数の微生物を使用する手段、微生物として好熱性
接種物ミロク(国際寄託番号PTA−1773/Thermophili
c inoculum MIROKU)、又は好熱性接種物ミロク
の寄託微生物群から選択される一種または複数の微生物
群を使用する手段を提供する。
Means for using an effective and safe one of thermophilic microorganisms or room-temperature microorganisms or a coexisting complex microorganism system in which a plurality of species are combined, and a microorganism of Bacillus. Thermophilic C, a closely related species of Bacillus brevis
Bacillus stearothermophilus CH-4 (Bacillus stearothermophilus), a thermophilic C-3 bacterium which is a closely related species of Bacillus brevis.
CH-4) and thermophilic actinomycetes MH-1 (Thermophil
ic actinomycetes MH-1) and one or more microorganisms selected from thermophilic or thermotolerant microorganisms that cannot be separated and identified at this stage. / Thermophili
(C. inoculum MIROKU) or a deposited microorganism group of the thermophilic inoculum Miroku.

【0017】前記培地成分は、グルコース,ポリペプト
ン,酵母エキス,リン酸二水素カリウム,硫酸マグネシ
ウム7水和物の混合物であり、培地成分の炭素源として
グリセリン,蔗糖,澱粉を用いる。更に培地成分の窒素
源としてコーンスティーブリカー,綿実粉を用いるとと
もに金属塩として、マンガン,鉄の金属塩を用いる。
The medium component is a mixture of glucose, polypeptone, yeast extract, potassium dihydrogen phosphate, and magnesium sulfate heptahydrate. Glycerin, sucrose, and starch are used as the carbon source of the medium component. Further, corn steep liquor and cottonseed flour are used as the nitrogen source of the medium components, and metal salts of manganese and iron are used as the metal salts.

【0018】かかる微生物の培養方法によれば、培地成
分を海洋表層水もしくは海洋深層水に溶解して作成した
培地を用いて好熱性接種物ミロクその他の微生物を培養
した際の培養液の濁度は、培地成分を脱イオン水もしく
はNaCl液に溶解して作成した培地の濁度と大差がな
いが、培地における好熱性接種物ミロクその他の微生物
のコロニー数(CFU;コロニー形成ユニット)は培養
後期で海洋表層水もしくは海洋深層水を用いた培地の方
が何れも高い値を示しており、好熱性接種物ミロクの生
存率を高く維持する上で有効である。また、海洋表層水
を用いた培地のCFUは海洋深層水を用いた場合に較べ
て若干低いが、実用上からは問題なく使用可能である。
According to the method for culturing microorganisms, the turbidity of a culture solution when culturing the thermophilic inoculum Miroku and other microorganisms using a medium prepared by dissolving a medium component in surface ocean water or deep ocean water. Is not much different from the turbidity of the medium prepared by dissolving the medium components in deionized water or NaCl solution. The medium using the surface water of the ocean or the deep sea water shows higher values in each case, and is effective in maintaining a high survival rate of the thermophilic inoculum Miroku. In addition, although the CFU of the medium using the surface ocean water is slightly lower than that using the deep ocean water, it can be used without any problem in practical use.

【0019】[0019]

【発明の実施の形態】以下本発明にかかる海水を利用し
た微生物の培養方法の具体的な実施形態を説明する。本
発明を適用可能な微生物としては、好熱性微生物あるい
は常温微生物のうち、有効かつ、安全な一種類で構成さ
れた微生物系、あるいは複数種が組み合わされた共存複
合微生物系があり、更に好熱性接種物ミロク(国際寄託
番号PTA−1773/Thermophilic inoculum MIROK
U)、又は好熱性接種物ミロクの寄託微生物群から選択
される一種または複数の微生物群がある。この好熱性接
種物ミロクはバチラス・ブレビス(Bacillus brevis)
の近縁の種である好熱性C−1菌、バチラス・ブレビス
(Bacillus brevis)の近縁の種である好熱性C−3
菌、バチラス・ステアロサーモフィラスCH−4(Baci
llus stearothermophilus、CH−4)、及び好熱性放
線菌のMH−1(Thermophilic actinomycetesMH−
1)とを混合した好熱性菌であり、好気条件下でエビ及
び/又はカニの残渣の分解能、並びに耐熱性酵素及びシ
ャペロニンの生産能を有している海洋好熱性の微生物で
ある。本実施形態では微生物としてこの好熱性接種物ミ
ロク(ミロク菌)(ATTC国際寄託番号PTA−17
73)を用いて説明するが、他の微生物、特に好熱性微
生物の培養にも同様に適用可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific embodiment of the method for culturing microorganisms using seawater according to the present invention will be described. Microorganisms to which the present invention can be applied include, among thermophilic microorganisms or room-temperature microorganisms, effective and safe microbial systems composed of one kind, or coexisting complex microbial systems in which a plurality of kinds are combined. Inoculum Miroku (International Deposit No. PTA-1773 / Thermophilic inoculum MIROK
U) or one or more microorganisms selected from the deposited microorganisms of the thermophilic inoculant Miroku. This thermophilic inoculum, Miroku, is Bacillus brevis
C-3, a closely related species of Bacillus brevis, and a thermophilic C-1 bacterium, a closely related species of Bacillus brevis
Bacteria, Bacillus stearothermophilus CH-4 (Baci
llus stearothermophilus, CH-4), and the thermophilic actinomycetes MH-1 (Thermophilic actinomycetes MH-).
1) and a marine thermophilic microorganism having the ability to decompose shrimp and / or crab residues under aerobic conditions and the ability to produce thermostable enzymes and chaperonins. In the present embodiment, the thermophilic inoculum Miroku (Miroku fungus) (ATTC International Deposit No. PTA-17) is used as a microorganism.
73), but the present invention can be similarly applied to culture of other microorganisms, particularly thermophilic microorganisms.

【0020】本発明では培地成分を海洋表層水もしくは
海面下200メートル以深の深海から取水した海洋深層
水に溶解して作成した培地を用いて微生物を培養し、培
養された微生物の活性を高く持続することが特徴の1つ
となっている。
In the present invention, microorganisms are cultured using a medium prepared by dissolving the medium components in the surface water of the ocean or in the deep ocean water withdrawn from a depth of 200 meters or less below the sea surface, and the activity of the cultured microorganisms is maintained at a high level. Is one of the features.

【0021】以下に好熱性接種物ミロクの種母の調製方
法の一例を説明すると、先ず好熱性雑菌をエビ,カニ,
小魚の残渣に添加して体表に存在する好熱性接種物ミロ
クを好気条件下で培養し、コーヒー滓にまぶしてからア
ルミ缶に詰めて種菌とする。この種菌1グラムを取り出
して試験管に入れ、121℃で15分間の高圧蒸気減菌
処理を行った脱イオン水を5ml加え、良く混合した後
に15分間静置し、その上澄み液0.1mlを種母とし
て用いた。
An example of a method for preparing a seed of the thermophilic inoculant Miroku is described below. First, thermophilic bacteria are shrimp, crab,
The thermophilic inoculum, Miroku, which is added to the residue of the small fish and present on the body surface, is cultured under aerobic conditions, sprinkled on coffee grounds, and packed in an aluminum can to obtain a seed. Take out 1 gram of this inoculum, put it in a test tube, add 5 ml of deionized water which has been subjected to high-pressure steam sterilization treatment at 121 ° C. for 15 minutes, mix well, and allow to stand for 15 minutes. Used as seed mother.

【0022】次に好熱性接種物ミロクを培養するため、
以下に記す4種類の培地を1リットルずつ用意した。 YPD培地成分を脱イオン水に溶解した溶液 YPD培地成分を3.5%NaCl水に溶解した溶液 YPD培地成分を海洋表層水に溶解した溶液 YPD培地成分を海洋深層水に溶解した溶液
Next, in order to culture the thermophilic inoculum Miroku,
The following four types of culture media were prepared, one liter at a time. A solution in which YPD medium components are dissolved in deionized water A solution in which YPD medium components are dissolved in 3.5% NaCl water A solution in which YPD medium components are dissolved in ocean surface water A solution in which YPD medium components are dissolved in deep ocean water

【0023】1リットル溶液中のYPD培地成分は以下
の通りである。 グルコース :10.0g ポリペプトン :8.0g 酵母エキス :7.0g リン酸二水素カリウム :1.0g 硫酸マグネシウム7水和物 :0.5g
The components of the YPD medium in the 1 liter solution are as follows. Glucose: 10.0 g Polypeptone: 8.0 g Yeast extract: 7.0 g Potassium dihydrogen phosphate: 1.0 g Magnesium sulfate heptahydrate: 0.5 g

【0024】尚、YPD培地成分は、炭素源としてはグ
ルコースに限らず他の物質、例えばグリセリン,蔗糖,
澱粉などを用いることができる。窒素源としてはポリペ
プトンや酵母エキスに限らず、例えばコーンスティーブ
リカー,綿実粉などを用いることができる。更に金属塩
としてリン,カリウム,マグネシウムに限らず、例えば
マンガン,鉄などの金属塩も利用可能である。
The YPD medium component is not limited to glucose as a carbon source, but may be other substances such as glycerin, sucrose,
Starch or the like can be used. The nitrogen source is not limited to polypeptone or yeast extract, and for example, corn steep liquor, cottonseed flour and the like can be used. Further, the metal salt is not limited to phosphorus, potassium and magnesium, and metal salts such as manganese and iron can be used.

【0025】前記の4種類の培地をオートクレ
ーブにより121℃で15分間の高圧蒸気減菌処理を行
った。予めアルミキャップを被せた試験管もしくは容器
を15分間の高圧蒸気減菌処理しておき、クリーンベン
チ中で前記4種類の培地の各10mlを、それ
ぞれ一種類の培地につき3本の試験管もしくは容器に分
注した。
The above four types of media were subjected to high-pressure steam sterilization at 121 ° C. for 15 minutes by an autoclave. A test tube or container previously covered with an aluminum cap is subjected to a high-pressure steam sterilization treatment for 15 minutes, and 10 ml of each of the four types of culture media is placed in a clean bench with three test tubes or containers each for one type of culture medium. Was dispensed.

【0026】そして好熱性接種物ミロクの種母0.1m
lを、4種類の培地が分注された各試験管もしくは容器
中に植菌し、50℃の湯浴中での静置培養を開始して、
波長660nmにおける培養液の濁度を0日目〜7日目
まで経時的に測定した。それらの結果を表3に示す。
The seed of the thermophilic inoculant Miroku 0.1 m
1 was inoculated into each test tube or container into which four types of media were dispensed, and static culture was started in a 50 ° C. water bath.
The turbidity of the culture at a wavelength of 660 nm was measured over time from day 0 to day 7. Table 3 shows the results.

【0027】[0027]

【表3】 [Table 3]

【0028】表3によれば、の4種類の培地に
おける好熱性接種物ミロクの培養液の濁度は、1日後に
0.30と最大に達し、2日目以降7日目まではほとん
ど変化がないことが判明した。
According to Table 3, the turbidity of the culture of the thermophilic inoculum Miroku in the four media reached a maximum of 0.30 after 1 day and changed little from the second day to the seventh day. It turned out there was no.

【0029】次に4種類の培地における好熱性接種物ミ
ロクのコロニー数を前記2日目及び7日目の静置培養液
を用いて測定した。先ず、YPD寒天培地1リットルを
作成した。YPD寒天培地の成分は以下の通りである。 グルコース :10.0g ポリペプトン :3.0g 酵母エキス :7.0g リン酸二水素カリウム :1.0g 硫酸マグネシウム7水和物 :0.5g 寒天粉末 :10.0g 脱イオン水 :1リットル
Next, the number of colonies of the thermophilic inoculum Miroku in the four types of media was measured using the stationary culture solutions on the second and seventh days. First, 1 liter of a YPD agar medium was prepared. The components of the YPD agar medium are as follows. Glucose: 10.0 g Polypeptone: 3.0 g Yeast extract: 7.0 g Potassium dihydrogen phosphate: 1.0 g Magnesium sulfate heptahydrate: 0.5 g Agar powder: 10.0 g Deionized water: 1 liter

【0030】上記寒天培地をオートクレーブにより12
1℃で15分間の高圧蒸気減菌処理を行い、クリーンベ
ンチ中で寒天培地20mlずつシャーレに分注した。こ
のシャーレの蓋を開けて1日乾燥した後、CFU検定に
用いた。
The above agar medium was autoclaved for 12 hours.
A high-pressure steam sterilization treatment was performed at 1 ° C. for 15 minutes, and each 20 ml of the agar medium was dispensed into a petri dish in a clean bench. After the lid of this petri dish was opened and dried for one day, it was used for CFU assay.

【0031】前記2日目及び7日目の静置培養液を含む
3本の試験管からそれぞれ1mlを無菌のプラスチック
チューブに入れ、4本のチューブから100倍希釈液及
び10000倍希釈液を調製した後、それぞれの希釈液
を3枚のシャーレに1mlずつ入れ、30℃で24時間
培養した後、シャーレ上のコロニー数を計測し、3枚の
平均値を算出した。表4にその結果を示す。
1 ml of each of the three test tubes containing the stationary culture solution on the second and seventh days was placed in a sterile plastic tube, and a 100-fold dilution and a 10000-fold dilution were prepared from the four tubes. After that, 1 ml of each diluted solution was placed in each of three Petri dishes, and cultured at 30 ° C. for 24 hours. Then, the number of colonies on the Petri dishes was counted, and the average value of the three Petri dishes was calculated. Table 4 shows the results.

【0032】[0032]

【表4】 [Table 4]

【0033】表4によれば、2日目の培養液を用いた場
合のCFUの値は、の4種類の培地における1
00倍希釈液或いは10000倍希釈液では大きな差異
が認められなかった。しかし培養後期である7日目の培
養液を用いた場合のCFUの値は、の培地を用いた
場合は100倍希釈液では各27,42であり、100
00倍希釈液では各2,3であるのに対して、海洋表層
水及び海洋深層水によるの培地を用いた場合は10
0倍希釈液では各374,688であり、10000倍
希釈液では各6,10であって、100倍希釈液或いは
10000倍希釈液の何れもの培地とは大きな差異
が認められた。
According to Table 4, the value of CFU when the culture solution on the second day was used was 1 in the four types of mediums.
No significant difference was observed between the 00-fold dilution and the 10000-fold dilution. However, the CFU value when using the culture solution on the 7th day, which is the latter stage of the culture, is 27, 42 for the 100-fold diluted solution when the medium is used.
In the case of a medium diluted with a surface water of the ocean and a deep ocean water, the concentration is 10 or less, respectively.
The ratio was 374,688 for the 0-fold diluted solution, and 6,10 for the 10,000-fold diluted solution, and a large difference was observed from the medium of either the 100-fold diluted solution or the 10,000-fold diluted solution.

【0034】特にのYPD培地を脱イオン水に溶解し
た培地とのYPD培地を3.5%NaCl水に溶解し
た培地では7日目にCFUが著しく減少しているのに対
して、の海洋表層水を用いた培地との海洋深層水を
用いた培地ではCFUが何れも高い値を示しており、特
にの海洋深層水を用いた培地を用いれば好熱性接種物
ミロクの生存率を高く維持すること、即ち培養された微
生物の活性を高く維持する上で有効であることが判明し
た。尚、の海洋表層水を用いた培地のCFUは海洋深
層水を用いた場合に較べて若干低いが、実用上からは問
題なく使用可能である。
In particular, the medium obtained by dissolving the YPD medium in deionized water and the medium obtained by dissolving the YPD medium in 3.5% NaCl water show a significant decrease in CFU on day 7, whereas the marine surface layer The CFU shows a high value in both the medium using water and the medium using deep sea water, and particularly, the medium using deep sea water maintains high survival rate of the thermophilic inoculum Miroku. That is, it was found to be effective in maintaining the activity of the cultured microorganism high. Although the CFU of the medium using the surface ocean water is slightly lower than that using the deep sea water, it can be used without any problem in practical use.

【0035】本発明で採用した海洋深層水は、室戸岬沖
の水深370メートル地点から取水した海水であり、深
層水中に含まれている三態窒素のうち、アンモニア態窒
素,亜硝酸態窒素はごく僅かであり、生物に与える影響
は小さく、硝酸態窒素についても表層部では微量であっ
たが、水深が増加するにつれて濃度が高まり、水深20
0メートル以深の水中での無機溶存態窒素の95%以上
が硝酸態窒素で24μM存在している。その他リン酸態
リンが1.7μM、珪酸態珪素が41μM溶存してお
り、いずれも表層部の5〜10倍以上の栄養塩濃度を有
している。
The deep ocean water employed in the present invention is seawater taken from a depth of 370 meters off Cape Muroto, and among the tri-state nitrogen contained in the deep-layer water, ammonia nitrogen and nitrite nitrogen are extremely small. The effect on living organisms was slight, and the amount of nitrate nitrogen was very small in the surface layer. However, as the water depth increased, the concentration increased,
More than 95% of inorganic dissolved nitrogen in water at a depth of 0 meters or less is nitrate nitrogen at 24 μM. In addition, 1.7 μM of phosphoric acid phosphorus and 41 μM of silicate silicon are dissolved, and each has a nutrient concentration of 5 to 10 times or more that of the surface layer.

【0036】海洋深層水中に含まれている天然元素と
は、Fe(鉄)、I(沃素)、Cu(銅)、Mn(マン
ガン)、Zn(亜鉛)、Co(コバルト)、Mo(モリ
ブデン)、Se(セレン)、Cr(クロム)、Sn(ス
ズ)、V(バナジウム)、F(フッ素)、Si(ケイ
素)、Ni(ニッケル)、As(ヒ素)の15元素であ
り、これらの元素が海洋深層水に全てバランス良く含ま
れていることが大きな特徴となっている。従って海洋深
層水は微生物の培養とか増殖に対しても大きな潜在能力
を秘めた海水であるといえる。このような潜在能力は、
近年メダイやコンブ、深海サンゴ等の養殖実験に利用さ
れて大きな成果を上げていることからも実証されてい
る。特に前記ノルウエー沖の海洋深層水は、フィヨルド
深層水と呼ばれてサケ養殖に適していることが報告され
ている。
The natural elements contained in deep sea water are Fe (iron), I (iodine), Cu (copper), Mn (manganese), Zn (zinc), Co (cobalt), and Mo (molybdenum). , Se (selenium), Cr (chromium), Sn (tin), V (vanadium), F (fluorine), Si (silicon), Ni (nickel), and As (arsenic). A major feature is that all of them are contained in deep ocean water in a well-balanced manner. Therefore, it can be said that deep sea water has great potential for culturing and growing microorganisms. Such potential
In recent years, it has been proved that it has been used in cultivation experiments on sea bream, kelp, deep-sea coral, etc. and has achieved great results. In particular, it has been reported that the deep ocean water off the coast of Norway is called fjord deep water and is suitable for salmon farming.

【0037】海洋深層水中の生菌数は、前記表2中に示
したように表層水中のそれと比較して、一桁又はそれ以
上少なくなっており、しかも病原生物はほとんど含まれ
ていないため、微生物の培養に採用した際の安全性が極
めて高いという大きな特徴がある。本発明はこのような
海洋深層水に含まれている天然元素を培地として採り入
れることによって、従来の培地では達成されない微生物
の培養効率アップと増殖安定化をはかることができる。
As shown in Table 2 above, the number of viable bacteria in the deep sea water is one or more orders of magnitude lower than that in the surface water, and contains almost no pathogenic organisms. There is a great feature that the safety when employed for culturing microorganisms is extremely high. According to the present invention, by adopting such a natural element contained in deep ocean water as a medium, it is possible to increase the culture efficiency and stabilize the growth of microorganisms, which cannot be achieved with a conventional medium.

【0038】[0038]

【発明の効果】以上詳細に説明したように、本発明によ
れば培地成分を海洋表層水もしくは海洋深層水に溶解し
て作成した培地を用いて好熱性接種物ミロクを培養した
際の好熱性接種物ミロクのコロニー数(CFU)が培地
成分を井戸水或いは水道水に溶解して作成した従来の培
地に比べて高い値を示しており、培養の効率を充分に高
めることができるとともに1週間以上の長期培養に際し
ても好熱性接種物ミロクの生存率を高く維持すること、
即ち培養された微生物の活性を高く維持することができ
て、増殖の安定化をはかることができる。
As described in detail above, according to the present invention, the thermophilic inoculum inoculated by culturing the thermophilic inoculant Miroku using a medium prepared by dissolving the medium components in the surface ocean water or deep sea water. The number of colonies (CFU) of the inoculant Miroku shows a higher value than the conventional medium prepared by dissolving the medium components in well water or tap water, and it is possible to sufficiently increase the cultivation efficiency and for one week or more. To maintain high viability of the thermophilic inoculum Miroku even during long-term culture of
That is, the activity of the cultured microorganism can be maintained at a high level, and the growth can be stabilized.

【0039】また、海洋表層水を用いた培地のCFUは
海洋深層水を用いた場合に較べて若干低いが、実用上か
らは問題なく使用可能であり、微生物の培養に適用して
有効な手段を提供する。
Although the CFU of the medium using the surface ocean water is slightly lower than that using the deep ocean water, it can be used without any problem from a practical point of view, and is an effective means when applied to the culture of microorganisms. I will provide a.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C12N 1/00 C12R 1:04) (71)出願人 000148221 株式会社泉井鉄工所 高知県室戸市浮津18 (72)発明者 宮本 久 大分県杵築市岩谷706番地27 株式会社三 六九内 (72)発明者 宮本 浩邦 千葉県船橋市宮本9丁目11番1号 グリー ンパーク内12F 日環科学株式会社内 (72)発明者 戸部 広康 高知県南国市岡豊町蒲原587番地75 医大 宿舎A−504 (72)発明者 泉井 安久 高知県室戸市浮津18番地 株式会社泉井鉄 工所内 Fターム(参考) 4B065 AA06X AA15X AA18X BB40 CA60 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) (C12N 1/00 C12R 1:04) (71) Applicant 000148221 Izumi Ironworks Co., Ltd. 18 Ukizu, Muroto-shi, Kochi Prefecture (72) Inventor Hisashi Miyamoto 706 Iwatani 27, Kitsuki-shi, Oita Pref. 36 (36) Inventor Hirokuni Miyamoto 9-11-11 Miyamoto, Funabashi-shi, Chiba 72) Inventor Hiroyasu Tobe 587, Kambara, Okatoyo-cho, Nankoku-shi, Kochi Pref.Medical University Dormitory A-504 (72) Inventor, Yasuhisa Izui 18, Ukizu, Muroto-shi, Kochi 18th Izui Iron Works Co., Ltd.F-term (reference) 4B065 AA06X AA15X AA18X BB40 CA60

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 培地成分を海洋表層水もしくは海面下2
00メートル以深の深海から取水した海洋深層水に溶解
して作成した培地を用いて微生物を培養することを特徴
とする海水を利用した微生物の培養方法。
1. A medium component comprising a surface water of the sea or a subsea surface.
A method for culturing microorganisms using seawater, which comprises culturing microorganisms using a medium prepared by dissolving in deep sea water taken from deep sea at a depth of 00 meters or less.
【請求項2】 培地成分を海洋表層水もしくは海面下2
00メートル以深の深海から取水した海洋深層水に溶解
して作成した培地を用いて微生物を培養することによ
り、培養された微生物の活性を高く持続することを特徴
とする海水を利用した微生物の培養方法。
2. A medium component comprising: surface water of the sea or below sea level.
Culture of microorganisms using a medium prepared by dissolving in deep-sea water taken from deep sea below 00 meters, thereby maintaining the activity of the cultured microorganisms at a high level. Method.
【請求項3】 培地成分を海洋表層水もしくは海面下2
00メートル以深の深海から取水した海洋深層水に溶解
して培地を作成し、この培地をオートクレーブにより高
圧蒸気減菌処理を行い、クリーンベンチ中で予め高圧蒸
気減菌処理した容器内に入れてから微生物の種母を植菌
し、湯浴中での静置培養を行うことを特徴とする海水を
利用した微生物の培養方法。
3. The method according to claim 1, wherein the medium components are surface water of the sea or below sea level.
A medium was prepared by dissolving the medium in deep sea water taken from the deep sea at a depth of 00 meters or less, and this medium was subjected to high-pressure steam sterilization by an autoclave, and placed in a container previously subjected to high-pressure steam sterilization in a clean bench. A method for culturing a microorganism using seawater, comprising inoculating a seed of the microorganism and performing stationary culture in a hot water bath.
【請求項4】 微生物として、好熱性微生物あるいは常
温微生物のうち、有効かつ、安全な一種類で構成された
微生物系、あるいは複数種が組み合わされた共存複合微
生物系を用いる請求項1,2又は3記載の海水を利用し
た微生物の培養方法。
4. The microorganism according to claim 1, wherein the microorganism is an effective and safe one of thermophilic microorganisms or room-temperature microorganisms, or a coexisting complex microorganism system in which a plurality of species are combined. 3. The method for culturing microorganisms using seawater according to 3.
【請求項5】 微生物として、バチラス・ブレビス(Ba
cillus brevis)の近縁の種である好熱性C−1菌、バ
チラス・ブレビス(Bacillus brevis)の近縁の種であ
る好熱性C−3菌、バチラス・ステアロサーモフィラス
CH−4(Bacillus stearothermophilus、CH−
4)、及び好熱性放線菌のMH−1(Thermophilic act
inomycetesMH−1)並びに現段階にて分離同定不可能
な好熱性又は耐熱性微生物群から選択される一種又は複
数の微生物を使用する請求項1,2又は3記載の海水を
利用した微生物の培養方法。
5. A microorganism such as Bacillus brevis (Ba)
cillus brevis), thermophilic C-3 bacterium related to Bacillus brevis, Bacillus stearothermophilus CH-4 (Bacillus brevis). stearothermophilus, CH-
4) and MH-1 (Thermophilic actin) of thermophilic actinomycetes
The method for culturing microorganisms using seawater according to claim 1, 2, or 3, wherein one or a plurality of microorganisms selected from the group of thermophilic or heat-resistant microorganisms which cannot be separated and identified at this stage is used. .
【請求項6】 微生物として、好熱性接種物ミロク(国
際寄託番号PTA−1773/Thermophilic inoculum MI
ROKU)、又は好熱性接種物ミロクの寄託微生物群か
ら選択される一種または複数の微生物群を使用する請求
項1,2又は3記載の海水を利用した微生物の培養方
法。
6. The microorganism may be a thermophilic inoculant Miroku (International Deposit No. PTA-1773 / Thermophilic inoculum MI).
The method for culturing microorganisms using seawater according to claim 1, 2, or 3, wherein one or more microorganisms selected from the group of deposited microorganisms of ROKU) or the thermophilic inoculant Miroku are used.
【請求項7】 前記培地成分は、グルコース,ポリペプ
トン,酵母エキス,リン酸二水素カリウム,硫酸マグネ
シウム7水和物の混合物である請求項1,2,3,4,
5又は6記載の海水を利用した微生物の培養方法。
7. The medium component is a mixture of glucose, polypeptone, yeast extract, potassium dihydrogen phosphate, and magnesium sulfate heptahydrate.
7. The method for culturing microorganisms using seawater according to 5 or 6.
【請求項8】 培地成分の炭素源としてグリセリン,蔗
糖,澱粉を用いた請求項7に記載の海水を利用した微生
物の培養方法。
8. The method for culturing microorganisms using seawater according to claim 7, wherein glycerin, sucrose, and starch are used as a carbon source of the medium component.
【請求項9】 培地成分の窒素源としてコーンスティー
ブリカー,綿実粉を用いた請求項7に記載の海水を利用
した微生物の培養方法。
9. The method for culturing microorganisms using seawater according to claim 7, wherein corn steep liquor and cottonseed flour are used as a nitrogen source of the medium component.
【請求項10】 培地成分の金属塩として、マンガン,
鉄の金属塩を用いた請求項7に記載の海水を利用した微
生物の培養方法。
10. Manganese, as a metal salt of a medium component,
The method for culturing microorganisms using seawater according to claim 7, wherein a metal salt of iron is used.
JP2001134230A 2001-05-01 2001-05-01 Method for culturing microorganism by using sea water Pending JP2002325567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134230A JP2002325567A (en) 2001-05-01 2001-05-01 Method for culturing microorganism by using sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134230A JP2002325567A (en) 2001-05-01 2001-05-01 Method for culturing microorganism by using sea water

Publications (1)

Publication Number Publication Date
JP2002325567A true JP2002325567A (en) 2002-11-12

Family

ID=18981956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134230A Pending JP2002325567A (en) 2001-05-01 2001-05-01 Method for culturing microorganism by using sea water

Country Status (1)

Country Link
JP (1) JP2002325567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060317A (en) * 2003-08-13 2005-03-10 Em Research Organization Plant-activating material composed of seawater treated with microorganism and method for producing the same material
KR100704924B1 (en) 2006-02-22 2007-04-06 한국해양연구원 A manufacturing process of food using microorganism cultured by marine deep sea water
EP3632209A4 (en) * 2017-05-22 2021-03-03 Asahi Group Holdings, Ltd. Divalent iron supply agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060317A (en) * 2003-08-13 2005-03-10 Em Research Organization Plant-activating material composed of seawater treated with microorganism and method for producing the same material
KR100704924B1 (en) 2006-02-22 2007-04-06 한국해양연구원 A manufacturing process of food using microorganism cultured by marine deep sea water
EP3632209A4 (en) * 2017-05-22 2021-03-03 Asahi Group Holdings, Ltd. Divalent iron supply agent
US11241016B2 (en) 2017-05-22 2022-02-08 Asahi Group Holding, Ltd. Divalent iron supply agent
IL270535B1 (en) * 2017-05-22 2023-07-01 Asahi Group Holdings Ltd Divalent iron supply agent

Similar Documents

Publication Publication Date Title
CN111849815B (en) Plant growth promoting rhizosphere strain Gxun-20 and application thereof in plant growth promotion
CN107265659A (en) A kind of aquaculture microorganism substrate modifier with triple function and preparation method thereof
Kobayashi et al. Contribution to nitrogen fixation and soil fertility by photosynthetic bacteria
CN104974962B (en) One plant of acinetobacter phosphorus decomposing growth-promoting bacterium Y40 and its application
CN109810924B (en) Method for improving severe saline-alkali soil
Casale et al. Urban and agricultural wastes for use as mulches on avocado and citrus and for delivery of microbial biocontrol agents
CN109136137B (en) Heavy metal-resistant plant growth promoting strain and application thereof
CN105950520B (en) A kind of rhizobium of efficient phosphate-solubilizing and its application
CN111690578B (en) Salt and alkali resistant Siamese bacillus and production method and application of viable bacteria preparation thereof
JP6346982B1 (en) Method for isolating Raulterra microorganisms, method for producing plant waste treatment agent, and method for treating plant waste
CN108085278A (en) One plant height salt tolerant phosphate solubilizing bacteria and its application
CN104726378B (en) The method for improving salt stress turfgrass defence enzyme activity using Salt-tolerant microbial agent is strengthened
CN105964680A (en) Coastal saline continuous cropping cotton soil ecological restoration agent and preparing method and application thereof
CN112189394A (en) Three-dimensional improvement method for saline-alkali soil
KR20090073264A (en) Method for producing culture solution of effective micro-organisms using deep sea water and rice or rice bran
CN114774301B (en) Endophytic bacillus subtilis JL-B16 for antagonizing pathogenic fungi of edible fungi and application thereof
JPH10219249A (en) Soil activator using constituent of deep seawater
JP2002325567A (en) Method for culturing microorganism by using sea water
CN114410509B (en) Microbial inoculum, composition and application of gas-producing enterobacter combined Klebsiella oxytoca
CN105462882A (en) Pseudomonas aeruginosa for preventing and treating vertieillium wilt in crops and application of pseudomonas aeruginosa
KR101355658B1 (en) A method to make soybean paste using deep-ocean water
CN101798564B (en) Chlorimuron-ethyl degrading bacterium, soil bioremediation agent based on same, and application thereof
JPH10152681A (en) Soil activator made by using component of seawater in the depths
Jana et al. Seasonal and spatial distribution pattern of nitrogen fixing bacteria in fish ponds under different management systems
JP3572281B2 (en) Fermented health food using deep ocean water and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050118