JP2002325297A - Ultrasonic transmitting and receiving device - Google Patents

Ultrasonic transmitting and receiving device

Info

Publication number
JP2002325297A
JP2002325297A JP2001127425A JP2001127425A JP2002325297A JP 2002325297 A JP2002325297 A JP 2002325297A JP 2001127425 A JP2001127425 A JP 2001127425A JP 2001127425 A JP2001127425 A JP 2001127425A JP 2002325297 A JP2002325297 A JP 2002325297A
Authority
JP
Japan
Prior art keywords
acoustic matching
matching member
glass
metal case
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001127425A
Other languages
Japanese (ja)
Other versions
JP4400004B2 (en
Inventor
Daisuke Betsusou
大介 別荘
Hideki Morozumi
英樹 両角
Yuji Nakabayashi
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001127425A priority Critical patent/JP4400004B2/en
Publication of JP2002325297A publication Critical patent/JP2002325297A/en
Application granted granted Critical
Publication of JP4400004B2 publication Critical patent/JP4400004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic transmitting and receiving device which does not make much different in the output performance due to temperature even if the characteristics of an acoustic matching member and an adhesive agent are changed due to temperature. SOLUTION: In order to connect and acoustic matching member made of an inorganic material having a frame 10 consisting of a main material (alumina) and a supplemental material (glass A) and a metal case 3 using an inorganic bonding member 6, the main material and an auxiliary material that are different in their thermal expansion coefficients are adopted, so that the thermal expansion coefficient of the acoustic matching member is adjusted to be close to that of the bonding member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を利用して
気体や液体の流量や濃度を測定する装置や、物体との距
離を測定する装置などに用いる超音波送受波器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic transducer for use in an apparatus for measuring the flow rate or concentration of a gas or liquid using ultrasonic waves, an apparatus for measuring the distance to an object, and the like. .

【0002】[0002]

【従来の技術】図3は従来の超音波送受波器の構成を示
す断面図である。図において、セラミックを材料とする
圧電振動子で構成される圧電振動子45は約500kHz
で振動するように構成されている。耐腐食性のあるステ
ンレスで構成される金属ケース46には、振動手段1を
水や異物から保護し、水の侵入による電気的故障や、異
物による破損、振動の妨害を防止する役割がある。
2. Description of the Related Art FIG. 3 is a sectional view showing the structure of a conventional ultrasonic transducer. In the figure, a piezoelectric vibrator 45 composed of a piezoelectric vibrator made of ceramic is approximately 500 kHz.
It is constituted so that it may vibrate. The metal case 46 made of corrosion-resistant stainless steel has a role of protecting the vibration means 1 from water and foreign substances, and preventing an electrical failure due to intrusion of water, damage by foreign substances, and disturbance of vibration.

【0003】樹脂材料の一つであるエポキシを接着剤4
7として用い、この接着剤47は振動手段45である圧
電振動子とステンレスで構成された金属ケース46を接
着する。
[0003] Epoxy, one of the resin materials, is bonded to an adhesive 4
This adhesive 47 is used to bond the piezoelectric vibrator as the vibration means 45 to the metal case 46 made of stainless steel.

【0004】音響整合部材41は、エポキシである樹脂
材料42にガラスバルーン43を混合し固めて成形され
る。ガラスバルーン43は中空球体であり、その空間
は、音の伝搬に影響を与えないように50〜100um
になるようにしている。また、ガラスバルーンの厚さ
は、密度を小さくするため数um以下としている。ま
た、エポキシを用いた接着剤44は、金属ケース46と
音響整合部材41を接着する。
The acoustic matching member 41 is formed by mixing and solidifying a glass balloon 43 with a resin material 42 of epoxy. The glass balloon 43 is a hollow sphere, and its space is 50 to 100 um so as not to affect sound propagation.
I am trying to be. The thickness of the glass balloon is set to several um or less in order to reduce the density. The adhesive 44 using epoxy bonds the metal case 46 and the acoustic matching member 41 together.

【0005】音響整合部材41の役割は、振動手段45
の振動(音)を気体、液体、固体などの物質へ効率的に
伝えることである。理想的な音響整合部材41は次の考
え方から求めることができる。
The role of the acoustic matching member 41 is as follows.
To efficiently transmit vibrations (sounds) to substances such as gas, liquid, and solid. The ideal acoustic matching member 41 can be obtained from the following concept.

【0006】物質の音響インピーダンスは密度×音速で
求められる。空気の音響インピーダンスZAIRは約42
8kg/m2s、振動手段45である圧電振動子の音響インピ
ーダンスZPZTは約30×106kg/m2sである。圧電振動
子から空気中へ超音波を放射する場合、両者の音響イン
ピーダンスの差により音の反射が発生し、空気中への音
の放射効率が低下する。これを改善するために用いるも
のが音響整合部材である。音の反射がない理想的な音響
整合部材の音響インピーダンスZMは、
[0006] The acoustic impedance of a substance is determined by density x sound velocity. Air acoustic impedance Z AIR is about 42
8 kg / m 2 s, and the acoustic impedance Z PZT of the piezoelectric vibrator as the vibration means 45 is about 30 × 10 6 kg / m 2 s. When ultrasonic waves are radiated from the piezoelectric vibrator into the air, sound reflection occurs due to the difference in acoustic impedance between the two, and the efficiency of sound radiation into the air is reduced. What is used to improve this is an acoustic matching member. The acoustic impedance Z M of an ideal acoustic matching member without sound reflection is

【0007】[0007]

【数1】 (Equation 1)

【0008】から理論的に求められる。上記のZPZT
びZAIRの値を用いると、ZMは約0.11×106kg/m2
sとなる。このような理想な音響インピーダンスを持つ
音響整合部材を得るため、音響整合部材を構成する材料
は、密度が小さく、音速が遅いことが必要である。
[0008] Using the values of Z PZT and Z AIR above, Z M is about 0.11 × 10 6 kg / m 2
s. In order to obtain an acoustic matching member having such an ideal acoustic impedance, the material forming the acoustic matching member needs to have a low density and a low sound speed.

【0009】以上のことから、従来の音響整合部材で
は、図に示すように、密度の小さい樹脂材料を用いた
り、樹脂材料にガラスバルーンなどを用いて空隙を設
け、より密度の小さい構成としている。
As described above, in the conventional acoustic matching member, as shown in the drawing, a resin material having a low density is used, or a void is formed by using a glass balloon or the like in the resin material, so that the structure has a smaller density. .

【0010】電極48は金属ケース46を介して振動手
段45である圧電振動子の一方の電極に接続し、電極4
9はもう一方の電極に接続している。電極48、49は
振動手段45である圧電振動子を振動させるために電力
を入れる入力端子と、圧電振動子の出力信号を取り出す
出力端子の両方を兼ねることができる。樹脂またはガラ
スなどの電気的絶縁材料で構成される絶縁手段50は、
電極49と金属ケース46を絶縁する。
An electrode 48 is connected to one electrode of a piezoelectric vibrator as a vibration means 45 via a metal case 46, and the electrode 4
9 is connected to the other electrode. The electrodes 48 and 49 can serve as both an input terminal for inputting power to vibrate the piezoelectric vibrator as the vibration means 45 and an output terminal for extracting an output signal of the piezoelectric vibrator. The insulating means 50 made of an electrically insulating material such as resin or glass
The electrode 49 and the metal case 46 are insulated.

【0011】次に図3に示した従来の超音波送受波器の
動作について説明する。
Next, the operation of the conventional ultrasonic transducer shown in FIG. 3 will be described.

【0012】電極48、49より電力を供給すると、振
動手段45である圧電振動子が約500kHzで振動し、
接着剤47、金属ケース46、接着剤44を介して、こ
の振動を音響整合部材41に伝搬する。ここで、接着剤
47、44と金属ケース46の厚さは、音の波長に比べ
十分に小さいものであり、理論的には音の透過、反射を
無視できるようにしている。
When power is supplied from the electrodes 48 and 49, the piezoelectric vibrator as the vibration means 45 vibrates at about 500 kHz.
This vibration is transmitted to the acoustic matching member 41 via the adhesive 47, the metal case 46, and the adhesive 44. Here, the thicknesses of the adhesives 47 and 44 and the metal case 46 are sufficiently smaller than the wavelength of the sound, and the transmission and reflection of the sound can be theoretically ignored.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、従来の
構成では、音響整合部材や、金属ケースと音響整合部材
を接着するための接着剤に、エポキシなどの樹脂材料を
用いているので、樹脂材料の熱膨張係数をはじめとする
温度特性が、超音波送受波器の出力波形などの特性に影
響を与え、温度差がある環境では正確に測定できないと
いう第一の課題を有していた。
However, in the conventional configuration, a resin material such as epoxy is used for the acoustic matching member or the adhesive for bonding the metal case and the acoustic matching member. The first problem is that the temperature characteristics such as the coefficient of thermal expansion affect the characteristics such as the output waveform of the ultrasonic transducer and cannot be accurately measured in an environment having a temperature difference.

【0014】また、前記樹脂系接着剤の熱膨張係数が大
であるために、急激な温度変化がある環境では、音響整
合部材と金属ケースの接着が剥がれ、測定が不可能にな
るという第二の課題を有していた。
Further, since the resin-based adhesive has a large coefficient of thermal expansion, in an environment where there is a rapid temperature change, the adhesion between the acoustic matching member and the metal case is peeled off, making measurement impossible. Had the problem of.

【0015】これら従来の課題を解決するためには、有
機材料を使用せずに、膨張係数が小さく化学的に安定し
た無機材料を使用して音響整合部材を構成し、金属ケー
スと音響整合部材とを無機材料からなる接合部材で接合
する時に、接合部材を溶融するために高温にすると、金
属ケースと音響整合部材とは熱膨張係数が大きく異なる
ので、冷却の途中で接合部材あるいは音響整合部材に割
れが生じあらたな課題が発生することがある。
In order to solve these conventional problems, an acoustic matching member is constituted by using an inorganic material having a small expansion coefficient and being chemically stable without using an organic material, and a metal case and an acoustic matching member are used. When joining with a joining member made of an inorganic material, if the temperature is raised to melt the joining member, the metal case and the acoustic matching member have a significantly different coefficient of thermal expansion. Cracks may occur and new problems may occur.

【0016】本発明は前記従来の課題を解決するもの
で、温度による特性変化の小さい超音波送受波器を提供
することを目的としている。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide an ultrasonic transducer having a small characteristic change due to temperature.

【0017】[0017]

【課題を解決するための手段】本発明の超音波送受波器
は、音響整合部材の骨格を形成する主材料(無機材料)
と前記主材料を固める補助材料(無機材料)と空孔形成
材(有機材料)を混合し、加圧した後、補助材料で主材
料を結合し、空孔形成材を除去して構成する音響整合部
材において、前記主材料と前記補助材料に熱膨張係数が
異なるものを用いることにより、音響整合部材の膨張係
数を調整できるようにし、さらに、音響整合部材の熱膨
張係数は前記主材料と前記補助材料の相対量で調整する
ようにしたものである。
According to the ultrasonic transducer of the present invention, a main material (inorganic material) forming a skeleton of an acoustic matching member is provided.
And an auxiliary material (inorganic material) for solidifying the main material and a pore-forming material (organic material) are mixed and pressurized, and then the main material is combined with the auxiliary material to remove the pore-forming material. In the matching member, the expansion coefficient of the acoustic matching member can be adjusted by using a material having a different coefficient of thermal expansion for the main material and the auxiliary material. The adjustment is based on the relative amount of the auxiliary material.

【0018】[0018]

【発明の実施の形態】請求項1に記載の発明は、骨格を
形成する主材料と前記主材料を固める補助材料と空孔形
成材を混合し、加圧した後、補助材料で主材料を結合
し、空孔形成材を除去して構成する音響整合部材におい
て、前記主材料と前記補助材料に熱膨張係数が異なるも
のを用いることによって、音響整合部材の熱膨張係数を
調整することができる。
According to the first aspect of the present invention, a main material for forming a skeleton, an auxiliary material for solidifying the main material, and a pore-forming material are mixed, and after pressing, the main material is mixed with the auxiliary material. In the acoustic matching member which is formed by combining and removing the hole forming material, by using the main material and the auxiliary material having different coefficients of thermal expansion, the coefficient of thermal expansion of the acoustic matching member can be adjusted. .

【0019】請求項2に記載の発明は、主材料と補助材
料の相対量を調整することで、音響整合部材の熱膨張係
数を調整することができる。
According to the second aspect of the present invention, the thermal expansion coefficient of the acoustic matching member can be adjusted by adjusting the relative amounts of the main material and the auxiliary material.

【0020】請求項3に記載の発明は、振動子を収納し
た金属ケースと音響整合部材との接合に用いる接合部材
の熱膨張係数を金属ケースよりも音響整合部材の熱膨張
係数に近づけるようにすることで、機械的強度の弱い音
響整合部材に負担をかけることなく金属ケースと音響整
合部材とを接合することができる。
According to a third aspect of the present invention, the thermal expansion coefficient of the joining member used for joining the metal case accommodating the vibrator and the acoustic matching member is closer to the thermal expansion coefficient of the acoustic matching member than the metal case. By doing so, the metal case and the acoustic matching member can be joined without placing a burden on the acoustic matching member having low mechanical strength.

【0021】請求項4に記載の発明は、接合部材の厚さ
を音響整合部材に浸透する部分を除いて単独で層を形成
することができる厚さにすることで音響整合部材に応力
がかからないようにすることができる。
According to the fourth aspect of the present invention, stress is not applied to the acoustic matching member by setting the thickness of the joining member to such a thickness that a layer can be formed independently except for a portion penetrating the acoustic matching member. You can do so.

【0022】[0022]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】(実施例1)音響整合部材を構成する材料
は無機材料で構成され、主材料はアルミナの微小粉末で
補助材料はガラスの微小粉末である。ガラスの融点(6
00℃から1000℃)はアルミナの融点(1500
℃)よりも低く、ガラスが溶ける温度まで加熱すること
で、アルミナの微粒子をつなぎとめるようにして骨格を
形成する。
(Embodiment 1) The material constituting the acoustic matching member is made of an inorganic material, the main material being fine alumina powder and the auxiliary material being glass fine powder. Melting point of glass (6
(00 ° C to 1000 ° C) is the melting point of alumina (1500
(° C.), and heats to a temperature at which the glass melts, thereby forming a skeleton so as to hold the alumina fine particles together.

【0024】ガラスの微小粉末(補助材料)とアルミナ
の微小粉末(主材料)の混合の際に、空孔形成材として
アクリル球を混合する。これは有機材料であるが、融点
が150℃であるので、補助材料のガラスが溶ける温度
まで加熱する段階で蒸発してしまう。アクリル球の蒸発
した後が微小な空隙となるので、このようにして得られ
る構造体の密度は主材料や補助材料の密度よりは軽いも
のとなる。
When mixing the fine powder of glass (auxiliary material) and the fine powder of alumina (main material), an acrylic sphere is mixed as a pore-forming material. Although this is an organic material, it has a melting point of 150 ° C., and thus evaporates at the stage of heating to a temperature at which the glass of the auxiliary material melts. After the acrylic spheres evaporate, minute voids are formed, so that the density of the structure obtained in this way is lower than the density of the main material and the auxiliary material.

【0025】金属ケースと音響整合層との接続は、音響
整合部材を構成する補助材料であるガラス(以下ガラス
Aと呼ぶ)に比べて融点の低いガラス(以下ガラスBと
呼ぶ)を用いて行う。すなわち、金属ケースにガラスB
を塗布して、音響整合部材を載せ、加重を加えながらガ
ラスBが溶融する温度まで加熱した後に冷却すること
で、ガラスBが凝固して音響整合部材と金属ケースとを
接合するようにしている。ところが、金属ケースはステ
ンレスを用いているのでその膨張係数は150程度あ
り、音響整合部材の骨格を構成するアルミナの膨張係数
はこれより小さく2から6の値を持ち、さらに、両者の
接合に使用するガラスBは膨張係数が40〜80程度に
なるので、金属ケースと音響整合部材とをガラスBで接
合しようとしても膨張係数の差が大きいので、割れが生
じて確実に接合することが出来ない。そこで、金属ケー
スの表面に銀ロウにチタンを混ぜたものを塗布して、焼
き付ける方法が取られる。チタンは膨張係数が80程度
であるので、銀ロウ、チタンの混合層とガラスBとの膨
張係数の差を少なくする工夫がなされる。さらに、銀ロ
ウ、チタンの混合層を凹凸形状にすることにより、膨張
係数の差により生じるガラスBとの間に働く応力のベク
トル方向をランダムにすることで応力を弱める工夫もな
される。
The connection between the metal case and the acoustic matching layer is performed using glass (hereinafter, referred to as glass B) having a lower melting point than glass (hereinafter, referred to as glass A) which is an auxiliary material constituting the acoustic matching member. . That is, glass B
Is applied, the acoustic matching member is placed, and heated to a temperature at which the glass B melts while applying a load, and then cooled, whereby the glass B solidifies and joins the acoustic matching member and the metal case. . However, since the metal case is made of stainless steel, the coefficient of expansion is about 150, and the coefficient of expansion of alumina constituting the skeleton of the acoustic matching member is smaller than this and has a value of 2 to 6, and is used for joining the two. The glass B has an expansion coefficient of about 40 to 80, so even if an attempt is made to join the metal case and the acoustic matching member with the glass B, the difference in expansion coefficient is large. . Therefore, a method is adopted in which a mixture of titanium and silver brazing is applied to the surface of a metal case and baked. Since titanium has an expansion coefficient of about 80, a device is devised to reduce the difference in expansion coefficient between the mixed layer of silver braze and titanium and glass B. Furthermore, by making the mixed layer of silver brazing and titanium uneven, the vector direction of the stress acting on the glass B generated due to the difference in the expansion coefficient is made random to reduce the stress.

【0026】しかしながら、ガラスBと音響整合部材の
膨張係数が異なると、この部分で割れが生じるようにな
る。音響整合層は空隙を多く含むので、アルミナとをつ
なげるガラスAとで構成される骨格の機械強度は極めて
弱いものになっている。従って、この部分に応力がかか
ると音響整合層に割れが入ってしまう。そこで、ガラス
AはガラスBと同等の膨張係数を有する種類のものを採
用し、アルミナ(主材料)とガラスA(補助材料)で構
成される構造体(音響整合層)の膨張係数をガラスAの
膨張係数に近いものにする。これによって、ガラスBと
アルミナとガラスAで構成される構造体(音響整合層)
の間に働く応力を極めて小さいものにする。
However, if the expansion coefficient of the glass B differs from that of the acoustic matching member, cracks occur at this portion. Since the acoustic matching layer contains many voids, the mechanical strength of the skeleton composed of the glass A connecting alumina and the alumina is extremely weak. Therefore, if stress is applied to this portion, the acoustic matching layer will crack. Therefore, glass A is of a type having the same expansion coefficient as glass B, and the expansion coefficient of the structure (acoustic matching layer) composed of alumina (main material) and glass A (auxiliary material) is set to glass A. The expansion coefficient should be close to Thereby, a structure (acoustic matching layer) composed of glass B, alumina, and glass A
The stress that acts during is extremely small.

【0027】具体的な構成について図を参照して説明す
る。図1は本発明の実施例における超音波送受波器の断
面図を示すものである。図1において、振動手段1は、
セラミックを材料とする圧電振動子で構成されている。
A specific configuration will be described with reference to the drawings. FIG. 1 is a sectional view of an ultrasonic transducer according to an embodiment of the present invention. In FIG. 1, the vibration means 1
It is composed of a piezoelectric vibrator made of ceramic.

【0028】振動手段1と金属ケース3を接着する接着
剤2は、樹脂材料の一つであるエポキシを用いている。
接着剤2の厚さは極めて薄く約10umとしているの
で、この部分が電気的特性に与える影響は少ない。
The adhesive 2 for bonding the vibration means 1 and the metal case 3 uses epoxy which is one of resin materials.
Since the thickness of the adhesive 2 is extremely thin and about 10 um, this portion has little effect on the electrical characteristics.

【0029】金属ケース3は、耐腐食性に優れたステン
レスで構成され、内部に振動手段1を配設して、密閉す
る。金属ケース3には、振動手段1である圧電振動子を
正常に動作させるために、内部に水や気体などから保護
する役割がある。金属ケース3の厚さは200〜300
umとしている。
The metal case 3 is made of stainless steel having excellent corrosion resistance. The vibrating means 1 is disposed inside the metal case 3 and hermetically closed. The metal case 3 has a role of protecting the inside of the metal case 3 from water, gas, and the like in order to normally operate the piezoelectric vibrator as the vibration unit 1. The thickness of the metal case 3 is 200 to 300
um.

【0030】本実施例では、骨格を形成する主材料と主
材料を固める補助材料と空孔形成材を混合して加圧した
後、補助材料が溶ける温度まで加熱して補助材料で主材
料を結合し、その過程で空孔形成材が蒸発して除去され
る製造方法によって音響整合部材4が成形される。主材
料には融点が約1500℃のアルミナを用い、補助材料
には熱膨張係数が40で軟化点が900℃のガラス(ガ
ラスA)を用いている。空孔形成材にはアクリル球を用
いており、この融点は150℃である。音響整合部材4
はこれらの材料を混合して、ガラスAの軟化点である9
00℃で焼成している。音響整合部材4のかさ密度は
0.4〜0.6g/cm3、音速を1000〜1500m/s程
度である。音響整合部材4の厚さは、およそ音の1/4
波長になるようにしている。音の波長λは次の式で求め
ることができる。 (数2) λ=c/f(ここでcは音速、fは動作周波数)・・・(2) 本実施例では、500kHzの音を伝搬するので、音の1/
4波長は0.5〜0.75mmとなる。
In this embodiment, after the main material forming the skeleton, the auxiliary material for solidifying the main material, and the pore-forming material are mixed and pressurized, the mixture is heated to a temperature at which the auxiliary material is melted, and the main material is mixed with the auxiliary material. The acoustic matching member 4 is formed by a manufacturing method in which the holes are formed by evaporating and removing the pore forming material in the process. Alumina having a melting point of about 1500 ° C. is used as a main material, and glass (glass A) having a thermal expansion coefficient of 40 and a softening point of 900 ° C. is used as an auxiliary material. Acrylic spheres are used as the pore-forming material, and the melting point is 150 ° C. Acoustic matching member 4
Is the softening point of glass A by mixing these materials.
Fired at 00 ° C. The bulk density of the acoustic matching member 4 is 0.4 to 0.6 g / cm 3 , and the sound speed is about 1000 to 1500 m / s. The thickness of the acoustic matching member 4 is approximately 1/4 of the sound.
Wavelength. The sound wavelength λ can be obtained by the following equation. (Equation 2) λ = c / f (where c is the speed of sound, f is the operating frequency) (2) In this embodiment, since a 500 kHz sound is propagated, 1 /
The four wavelengths are 0.5 to 0.75 mm.

【0031】金属ケース表面に設けられた銀ロウとチタ
ンとを混合して焼き付けたロウ付け層5は、表面に酸化
したチタン膜が形成された構成となっている。このロウ
付け層5の厚さは20〜50umであり、酸化チタン膜
の厚さは数umとなっている。また、ロウ付け層の表面
は凸凹になるようにしている。
The brazing layer 5 provided on the surface of the metal case and mixed and baked with silver brazing and titanium has a structure in which an oxidized titanium film is formed on the surface. The thickness of the brazing layer 5 is 20 to 50 um, and the thickness of the titanium oxide film is several um. The surface of the brazing layer is made uneven.

【0032】音響整合層4とロウ付け層とを接合するた
めのガラスBは熱膨張係数が40で軟化点温度が450
℃のものを用いている。
Glass B for joining the acoustic matching layer 4 and the brazing layer has a coefficient of thermal expansion of 40 and a softening point temperature of 450.
° C.

【0033】電極7、8によって振動手段1に電力を入
力し、また振動手段1の出力信号を取り出すものであ
る。電極7は金属ケース3を介して振動手段1である圧
電振動子の一方の電極に接着剤の層2を介して接続さ
れ、電極8は、圧電振動子のもう一方の電極に接続され
ている。
Power is input to the vibration means 1 by the electrodes 7 and 8, and an output signal of the vibration means 1 is taken out. The electrode 7 is connected via a metal case 3 to one electrode of a piezoelectric vibrator as the vibration means 1 via an adhesive layer 2 and the electrode 8 is connected to the other electrode of the piezoelectric vibrator. .

【0034】ガラスや樹脂などで構成された絶縁手段9
は、電極8の外周を覆うことで、電極8と金属ケース3
を電気的に絶縁する。
Insulation means 9 made of glass, resin or the like
Covers the outer periphery of the electrode 8 so that the electrode 8 and the metal case 3
Is electrically insulated.

【0035】音響整合部材4を構成するアルミナはガラ
スAに比べ熱膨張係数が小さいので、ガラスAとアルミ
ナの混合比をガラスAのほうを大きくするほど、音響整
合部材4全体の熱膨張係数をガラスAの膨張係数に近づ
けることができる。しかしながら、ガラスAの比率を大
きくしすぎると、空孔形成材が蒸発した後に出来る空隙
を維持することが難しくなり、音響整合部材4の密度が
大きくなることもあるので、アルミナとガラスAとの混
合比は重量比でおよそ4:6にしている。これにより音
響整合部材4の熱膨張係数はアルミナの持つ熱膨張係数
よりも大きくすることができる。
Since the alumina constituting the acoustic matching member 4 has a smaller coefficient of thermal expansion than the glass A, the larger the mixing ratio of the glass A and the alumina is, the larger the coefficient of thermal expansion of the acoustic matching member 4 is. The expansion coefficient of the glass A can be approximated. However, if the ratio of the glass A is too large, it is difficult to maintain a gap formed after the pore-forming material evaporates, and the density of the acoustic matching member 4 may increase. The mixing ratio is approximately 4: 6 by weight. Thereby, the thermal expansion coefficient of the acoustic matching member 4 can be made larger than that of alumina.

【0036】図2は図1で示される超音波送受波器の断
面の破線部分で囲われた部分を拡大した図である。音響
整合部材4には骨格10及び空隙11が存在している。
図中に示されるaの部分はガラスBが音響整合部材4の
空隙11に浸透している部分で100μmから150μm
程度ある。bはガラスBだけの層でおよそ50μmあ
る。5のロウ付け層の表面に形成されているチタンの膨
張係数はおよそ80である。ガラスBの膨張係数は40
なので、両者の境界面には応力がかかるが、ロウ付け層
に凹凸があることと、両者の膨張係数の差が40程度で
あることから、応力によってガラスBに割れが生じると
いうことがない。また、ガラスBは音響整合部材4の空
隙11に浸透していくが、音響整合部材4の膨張係数と
ガラスBの膨張係数との差はわずかであることと、空隙
11の形状は複雑なものであることからガラスBと音響
整合部材4との接合は、割れなどが発生せずに確実に成
されている。
FIG. 2 is an enlarged view of a portion surrounded by a broken line in the cross section of the ultrasonic transducer shown in FIG. The acoustic matching member 4 has a skeleton 10 and a gap 11.
The portion a shown in the figure is a portion where the glass B has penetrated the gap 11 of the acoustic matching member 4 from 100 μm to 150 μm.
There is a degree. b is a layer of only glass B and has a thickness of about 50 μm. The expansion coefficient of titanium formed on the surface of the brazing layer No. 5 is approximately 80. The expansion coefficient of glass B is 40
Therefore, stress is applied to the boundary surface between the two, but since the brazing layer has irregularities and the difference in expansion coefficient between the two is about 40, the glass B does not crack due to the stress. Further, the glass B penetrates into the gap 11 of the acoustic matching member 4, but the difference between the expansion coefficient of the acoustic matching member 4 and the expansion coefficient of the glass B is small, and the shape of the gap 11 is complicated. Therefore, the bonding between the glass B and the acoustic matching member 4 is reliably performed without cracking or the like.

【0037】ガラスBの音響整合部材4への浸透の度合
いは、ガラスBの粘性と接合時の加圧によって調整する
ことが出来る。図に示した状態はガラスBに日本電気硝
子株式会社製の品番LS1301のガラス(軟化温度4
50℃)を用いて、温度を475℃で粘性の高い状態の
温度まで加熱しておき、加圧を639g/cm2の状態で焼
成した場合で、100μmから150μmの深さまで浸透
している。
The degree of penetration of the glass B into the acoustic matching member 4 can be adjusted by the viscosity of the glass B and the pressure at the time of joining. In the state shown in the figure, glass B (product number LS1301 manufactured by Nippon Electric Glass Co., Ltd.)
(50 ° C.) and heated to a temperature of 475 ° C. to a highly viscous state, and baked at a pressure of 639 g / cm 2 , penetrating to a depth of 100 μm to 150 μm.

【0038】音響整合部材4の厚さは波長の1/4が望
ましいが、ガラスB浸透する部分は音響整合部材4とし
て機能しないので、この部分の厚さを除いて波長の1/
4の厚さにする必要がある。
The thickness of the acoustic matching member 4 is desirably 1/4 of the wavelength. However, since the portion where the glass B penetrates does not function as the acoustic matching member 4, the thickness of the acoustic matching member 4 is reduced to 1/4 of the wavelength except for the thickness of this portion.
It is necessary to have a thickness of 4.

【0039】同図のbの部分はガラスBだけで構成され
る層で厚さは50μm程度になるようにしている。この
ガラスBだけの層を設けることにより、ロウ付け層とガ
ラスBとの間に生じる応力にも、ガラスB層は絶えるこ
とができる。
The portion "b" in the drawing is a layer composed of only the glass B and has a thickness of about 50 μm. By providing this glass B layer alone, the glass B layer can be cut off by the stress generated between the brazing layer and the glass B.

【0040】[0040]

【発明の効果】以上のように、本発明によれば熱膨張係
数がそれぞれに異なる、金属ケースと無機材料からなる
音響整合部材との接続を、接合部材として無機材料であ
るガラスを用いて、400〜500℃の高温でそのガラ
スを溶かして、両者を接続することができる。これによ
り、音響整合部材と金属とその接合部とが都市ガスやL
Pガスなどの気体中に暴露されても、無機材料だけで構
成されているので、腐食に対して強く、かつ、安定した
温度特性の超音波送受波器を実現することが出来る。
As described above, according to the present invention, the connection between the metal case and the acoustic matching member made of an inorganic material, each having a different coefficient of thermal expansion, is performed by using glass, which is an inorganic material, as a joining member. The glass can be melted at a high temperature of 400 to 500 ° C. to connect the two. As a result, the acoustic matching member, the metal and the joint between the acoustic matching member and the metal are
Even if it is exposed to a gas such as P gas, since it is composed only of an inorganic material, it is possible to realize an ultrasonic transducer that is resistant to corrosion and has stable temperature characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における超音波送受波器の断
面図
FIG. 1 is a sectional view of an ultrasonic transducer according to a first embodiment of the present invention.

【図2】図1のK部を拡大した断面図FIG. 2 is an enlarged sectional view of a portion K in FIG. 1;

【図3】従来の超音波送受波器の断面図FIG. 3 is a sectional view of a conventional ultrasonic transducer.

【符号の説明】 1 振動子 3 金属ケース 4 音響整合部材 5 ロウ付け層 6 接合部材(ガラスB) 10 骨格 11 空隙[Description of Signs] 1 vibrator 3 metal case 4 acoustic matching member 5 brazing layer 6 joining member (glass B) 10 skeleton 11 void

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中林 裕治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G047 AA01 AA05 CA01 EA11 GA01 GA02 GB29 GB33 4C301 EE12 GA01 GA03 GB22 GB33 GB34 GB39 5D019 AA17 AA22 FF01 FF02 GG01 GG12 5J083 CA01 CA16  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuji Nakabayashi 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 2G047 AA01 AA05 CA01 EA11 GA01 GA02 GB29 GB33 4C301 EE12 GA01 GA03 GB22 GB33 GB34 GB39 5D019 AA17 AA22 FF01 FF02 GG01 GG12 5J083 CA01 CA16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 骨格を形成する主材料と前記主材料を固
める補助材料と空孔形成材を混合し、前記補助材料で前
記主材料を結合し、前記空孔形成材を除去して構成する
音響整合部材において、前記主材料と前記補助材料に熱
膨張係数が異なるものを用いた超音波送受波器。
1. A structure in which a main material forming a skeleton, an auxiliary material for solidifying the main material, and a pore-forming material are mixed, the main material is bonded with the auxiliary material, and the pore-forming material is removed. An ultrasonic transducer using an acoustic matching member having different thermal expansion coefficients for the main material and the auxiliary material.
【請求項2】 音響整合部材の熱膨張係数は主材料と補
助材料の相対量で調整することを特徴とする請求項1記
載の超音波送受波器。
2. The ultrasonic transducer according to claim 1, wherein the coefficient of thermal expansion of the acoustic matching member is adjusted by a relative amount of the main material and the auxiliary material.
【請求項3】 振動子を収納した金属ケースと音響整合
部材との接合に用いる接合部材の熱膨張係数を前記金属
ケースよりも前記音響整合部材の熱膨張係数に近づける
ようにした請求項1または2記載の超音波送受波器。
3. A thermal expansion coefficient of a joining member used for joining a metal case accommodating a vibrator to an acoustic matching member is made closer to a thermal expansion coefficient of the acoustic matching member than the metal case. 2. The ultrasonic transducer according to 2.
【請求項4】 接合部材の厚さは音響整合部材の空隙に
浸透する部分を除いて単独で層を形成することができる
厚さにした請求項3記載の超音波送受波器。
4. The ultrasonic transducer according to claim 3, wherein the thickness of the joining member is such that a layer can be formed independently except for a portion penetrating into the gap of the acoustic matching member.
JP2001127425A 2001-04-25 2001-04-25 Ultrasonic transducer Expired - Fee Related JP4400004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127425A JP4400004B2 (en) 2001-04-25 2001-04-25 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127425A JP4400004B2 (en) 2001-04-25 2001-04-25 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JP2002325297A true JP2002325297A (en) 2002-11-08
JP4400004B2 JP4400004B2 (en) 2010-01-20

Family

ID=18976294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127425A Expired - Fee Related JP4400004B2 (en) 2001-04-25 2001-04-25 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP4400004B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029912A1 (en) * 2003-09-18 2005-03-31 Matsushita Electric Industrial Co., Ltd. Ultrasonic vibrator and ultrasonic flowmeter using the same
JP2008172306A (en) * 2007-01-09 2008-07-24 Matsushita Electric Ind Co Ltd Ultrasonic vibrator
WO2020004097A1 (en) * 2018-06-25 2020-01-02 パナソニックIpマネジメント株式会社 Ultrasonic sensor
CN114137070A (en) * 2021-10-25 2022-03-04 湖南工学院 Method for identifying ultrasonic softening coefficient in ultrasonic vibration cutting of pipe threads of ore-raising

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029912A1 (en) * 2003-09-18 2005-03-31 Matsushita Electric Industrial Co., Ltd. Ultrasonic vibrator and ultrasonic flowmeter using the same
JP2008172306A (en) * 2007-01-09 2008-07-24 Matsushita Electric Ind Co Ltd Ultrasonic vibrator
WO2020004097A1 (en) * 2018-06-25 2020-01-02 パナソニックIpマネジメント株式会社 Ultrasonic sensor
CN112313968A (en) * 2018-06-25 2021-02-02 松下知识产权经营株式会社 Ultrasonic sensor
EP3813385A4 (en) * 2018-06-25 2021-07-28 Panasonic Intellectual Property Management Co., Ltd. Ultrasonic sensor
CN114137070A (en) * 2021-10-25 2022-03-04 湖南工学院 Method for identifying ultrasonic softening coefficient in ultrasonic vibration cutting of pipe threads of ore-raising
CN114137070B (en) * 2021-10-25 2023-10-10 湖南工学院 Method for identifying ultrasonic softening coefficient in ultrasonic vibration cutting of mine raising pipe threads

Also Published As

Publication number Publication date
JP4400004B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US11450800B2 (en) Film with piezoelectric polymer region
US6788620B2 (en) Acoustic matching member, ultrasound transducer, ultrasonic flowmeter and method for manufacturing the same
KR20080028319A (en) Ultrasonic probe
KR20040075324A (en) Sleeved ultrasonic transducer
CN101364632B (en) Piezoelectric element applied in ultrasonic transducer and sensor and manufacturing method thereof
JP4400004B2 (en) Ultrasonic transducer
KR100423381B1 (en) Acoustic matching material, method of manufacture thereof, and ultrasonic transmitter using acoustic matching material
JP2002135895A (en) Ultrasonic transmitter-receiver
JP2001024460A (en) Manufacture of piezoelectric diaphragm
WO2000076066A1 (en) Piezoelectric vibrator
JP2002325299A (en) Method for manufacturing ultrasonic transmitting and receiving device
JP2020017831A (en) Ultrasonic sensor
JP2003111195A (en) Acoustic matching member, ultrasonic transmitting/ receiving device, ultrasonic flow meter, and method of manufacturing these
JP2004045389A (en) Acoustic matching member, ultrasonic transducer, ultrasonic flowmeter, and manufacturing methods for them
JPH0378039B2 (en)
JP2004526345A (en) Method for manufacturing a multi-element acoustic probe using a metallized and ablated polymer film as a ground plane
JPH07116868A (en) Method and device for joining metallic material
Manh et al. Au-Sn Solid-Liquid Interdiffusion (SLID) bonding for piezoelectric ultrasonic transducers
JP4610790B2 (en) Method for manufacturing piezoelectric transducer
JP5322419B2 (en) Ultrasonic probe and piezoelectric vibrator
JP2004343658A (en) Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same
JP2006023099A (en) Acoustic matching layer, ultrasonic transducer using it, and ultrasonic flow measuring apparatus having ultrasonic transducer
JP2001145194A (en) Ultrasonic wave generator and method of manufacturing the same
JP2009118143A (en) Crystal device and manufacturing method thereof
JP2002051398A (en) Acoustic matching member and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees