JP2002325299A - Method for manufacturing ultrasonic transmitting and receiving device - Google Patents

Method for manufacturing ultrasonic transmitting and receiving device

Info

Publication number
JP2002325299A
JP2002325299A JP2001127424A JP2001127424A JP2002325299A JP 2002325299 A JP2002325299 A JP 2002325299A JP 2001127424 A JP2001127424 A JP 2001127424A JP 2001127424 A JP2001127424 A JP 2001127424A JP 2002325299 A JP2002325299 A JP 2002325299A
Authority
JP
Japan
Prior art keywords
acoustic matching
matching member
joining
joining means
metal case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001127424A
Other languages
Japanese (ja)
Inventor
Hideki Morozumi
英樹 両角
Daisuke Betsusou
大介 別荘
Yuji Nakabayashi
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001127424A priority Critical patent/JP2002325299A/en
Publication of JP2002325299A publication Critical patent/JP2002325299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a bonding material from penetrating into voids in an acoustic matching member. SOLUTION: This device has a plurality of bonding means 4, 5, and 6 provided to bond a metal case 2 holding a vibrator 1 with an acoustic matching member 3 having a large number of voids. Among these bonding means 4, 5, and 6, the one adjacent to the acoustic matching member 3 bonds the acoustic matching member 3 and the other bonding means in a high viscosity state, which can prevent the bonding means from penetrating into the voids in the acoustic matching member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を利用して
気体や液体の流量や濃度を測定する装置や、物体との距
離を測定する装置などに用いる超音波送受信器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic transmitter / receiver used for an apparatus for measuring the flow rate or concentration of a gas or liquid using ultrasonic waves, an apparatus for measuring the distance to an object, and the like.

【0002】[0002]

【従来の技術】図7は従来の超音波送受信器の断面構造
図である。図において、セラミックを材料とする圧電振
動子1は約500kHzで振動するように構成されてい
る。
2. Description of the Related Art FIG. 7 is a sectional structural view of a conventional ultrasonic transceiver. In the figure, a piezoelectric vibrator 1 made of ceramic is configured to vibrate at about 500 kHz.

【0003】耐腐食性のあるステンレスで構成される金
属ケース2には、振動子1を水や異物から保護し、水の
侵入による電気的故障や、異物による破損、振動の妨害
を防止する役割がある。
[0003] A metal case 2 made of corrosion-resistant stainless steel protects the vibrator 1 from water and foreign substances, and prevents electric failure due to water intrusion, damage by foreign substances, and disturbance of vibration. There is.

【0004】複雑な骨格部分と多数の空隙により構成さ
れる音響整合部材3の骨格部分の材料にはセラミックと
ガラスの複合材料を用いている。音響整合部材3の空隙
の殆どはその他の空隙とつながっており、音響整合部材
3は液体が染み込みやすい開放構造になっている。
[0004] A composite material of ceramic and glass is used as a material of the skeleton portion of the acoustic matching member 3 composed of a complicated skeleton portion and a large number of voids. Most of the gaps of the acoustic matching member 3 are connected to other gaps, and the acoustic matching member 3 has an open structure in which liquid easily permeates.

【0005】音響整合部材3の役割は、振動子1の振動
(音)を気体、液体、固体などの物質へ効率的に伝える
ことである。理想的な音響整合部材3は次の考え方から
求めることができる。
The role of the acoustic matching member 3 is to efficiently transmit the vibration (sound) of the vibrator 1 to substances such as gas, liquid, and solid. An ideal acoustic matching member 3 can be obtained from the following concept.

【0006】物質の音響インピーダンスは密度×音速で
求められる。空気の音響インピーダンスZAIRは約42
8kg/m2s、振動子1である圧電振動子の音響インピーダ
ンスZPZTは約30×106kg/m2sである。圧電振動子か
ら空気中へ超音波を放射する場合、両者の音響インピー
ダンスの差により音の反射が発生し、空気中への音の放
射効率が低下する。これを改善するために用いるものが
音響整合部材である。音の反射がない理想的な音響整合
部材の音響インピーダンスZMは、
[0006] The acoustic impedance of a substance is determined by density x sound velocity. Air acoustic impedance Z AIR is about 42
8kg / m 2 s, the acoustic impedance Z PZT piezoelectric vibrator is vibrator 1 is about 30 × 10 6 kg / m 2 s. When ultrasonic waves are radiated from the piezoelectric vibrator into the air, sound reflection occurs due to the difference in acoustic impedance between the two, and the efficiency of sound radiation into the air is reduced. What is used to improve this is an acoustic matching member. The acoustic impedance Z M of an ideal acoustic matching member without sound reflection is

【0007】[0007]

【数1】 (Equation 1)

【0008】から理論的に求められる。上記のZPZT
びZAIRの値を用いると、ZMは約0.11×106kg/m2
sとなる。このような理想な音響インピーダンスを持つ
音響整合部材を得るため、音響整合部材を構成する材料
は、密度が小さく、音速が遅いことが必要である。
[0008] Using the values of Z PZT and Z AIR above, Z M is about 0.11 × 10 6 kg / m 2
s. In order to obtain an acoustic matching member having such an ideal acoustic impedance, the material forming the acoustic matching member needs to have a low density and a low sound speed.

【0009】以上のことから、従来の音響整合部材で
は、密度の小さい樹脂材料を用いたり、多数の空隙を設
け、より密度の小さい構成としている。
From the above, in the conventional acoustic matching member, a resin material having a low density is used, or a large number of gaps are provided, so that a configuration having a lower density is used.

【0010】樹脂材料の一つであるエポキシを用いる接
着剤4は金属ケース2と音響整合部材3を接着する。接
着固化する温度は約100℃以上としている。エポキシ
樹脂は常温〜300℃程度で接着固化できるので、金属
ケース2と音響整合部材3の熱膨張率が異なっていて
も、結合面に応力が生じ、反りや剥離が生じることはま
れである。
An adhesive 4 using epoxy, which is one of the resin materials, bonds the metal case 2 and the acoustic matching member 3 together. The temperature at which the adhesive is solidified is about 100 ° C. or higher. Since the epoxy resin can be adhered and solidified at about room temperature to about 300 ° C., even if the thermal expansion coefficients of the metal case 2 and the acoustic matching member 3 are different, stress is generated on the bonding surface, and warping or peeling is rarely generated.

【0011】電極7は金属ケース2を介して振動子1の
電極の一つに接続し、電極8はもう一方の電極に接続し
ている。電極7、8は振動子1を振動させるための電気
信号入力端子と、振動子1の出力信号を取り出す出力端
子の両方を兼ねている。9は絶縁手段であり、樹脂また
はガラスなどの電気的絶縁材料で構成され、電極8と金
属ケース2を絶縁する。
The electrode 7 is connected to one of the electrodes of the vibrator 1 via the metal case 2, and the electrode 8 is connected to the other electrode. The electrodes 7 and 8 serve as both an electric signal input terminal for vibrating the vibrator 1 and an output terminal for extracting an output signal of the vibrator 1. Reference numeral 9 denotes an insulating means, which is made of an electrically insulating material such as resin or glass, and insulates the electrode 8 from the metal case 2.

【0012】図8は図7に示した超音波送受信器の製造
方法のうち、金属ケース2と音響整合部材3の接合方法
を説明している。81は音響整合部材3に荷重を加える
重りである。重り81の重量は音響整合部材3が潰れな
い範囲内であれば重い方がよい。また、荷重を加える方
法はバネであってもよい。
FIG. 8 illustrates a method of joining the metal case 2 and the acoustic matching member 3 in the method of manufacturing the ultrasonic transceiver shown in FIG. A weight 81 applies a load to the acoustic matching member 3. The weight of the weight 81 is preferably as long as it is within a range where the acoustic matching member 3 is not crushed. Further, a method of applying a load may be a spring.

【0013】ここで、接着剤71はペースト状である。
これは、網の目状のスクリーンを用いて金属ケース2に
接着剤4を印刷するときにバラツキなく印刷するためで
ある。金属ケース2に印刷したあと、音響整合部材3を
置き、重り81を用いて荷重を加えながら、100℃〜
200℃の間で加熱することで接着剤71を固体化さ
せ、音響整合部材3と金属ケース2を接合する。以上の
ように、ペースト状の接着剤を加熱して固体化すること
で、音響整合部材と金属ケースを接合するものであっ
た。
The adhesive 71 is in the form of a paste.
This is because when the adhesive 4 is printed on the metal case 2 using the mesh screen, the printing is performed without variation. After printing on the metal case 2, the acoustic matching member 3 is placed, and a load is
The adhesive 71 is solidified by heating between 200 ° C., and the acoustic matching member 3 and the metal case 2 are joined. As described above, the acoustic matching member and the metal case are joined by heating and solidifying the paste adhesive.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、従来の
接着剤を用いた超音波送受信器の製造方法では、液体状
の接着剤が表面張力の作用で音響整合部材の空隙に浸透
し、接着面積が減少するので超音波送受信器の性能が低
下したり、音響整合部材と金属ケースを接着できないと
いう第一の課題を有するものであった。
However, in the conventional method of manufacturing an ultrasonic transceiver using an adhesive, the liquid adhesive penetrates into the gap of the acoustic matching member by the action of surface tension, and the bonding area is reduced. Because of the decrease, the first problem is that the performance of the ultrasonic transceiver is deteriorated and that the acoustic matching member and the metal case cannot be bonded.

【0015】また、前記接着剤の熱膨張率が大きいため
に、温度変化が大きい環境では、音響整合部材がはく離
するという第二の課題を有していた。
[0015] In addition, there is a second problem that the acoustic matching member peels off in an environment with a large temperature change due to a large coefficient of thermal expansion of the adhesive.

【0016】また、前記接着剤では、接着部分が腐食性
のガスもしくは液体にさらされた場合に、樹脂材料が劣
化して接合強度が弱まり、音響整合部材が剥離する、特
にエポキシの場合は水を吸収するという特性があり、水
を含む気体の場合には、エポキシが水を吸収し、性能が
低下するという第三の課題を有していた。
Further, in the above-mentioned adhesive, when the adhesive portion is exposed to corrosive gas or liquid, the resin material deteriorates and the bonding strength is weakened, and the acoustic matching member peels off. In the case of a gas containing water, there is a third problem that the epoxy absorbs water and the performance is reduced.

【0017】本発明は前記従来の課題を解決するもの
で、性能が安定し、かつこの性能の温度特性が小さい超
音波送受信器を提供することを目的としている。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide an ultrasonic transceiver having stable performance and small temperature characteristics of the performance.

【0018】[0018]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、振動子を収納する金属ケースと、
多数の空隙を有する音響整合部材を接合する複数の接合
手段を有し、前記第一の接合手段のうち前記音響整合部
材と接する接合手段は粘度の大きい状態で前記音響整合
部材とその他の接合手段を接合する超音波送受信器の製
造方法である。
According to the present invention, a metal case for accommodating a vibrator is provided to solve the above-mentioned conventional problems.
A plurality of joining means for joining the acoustic matching member having a large number of voids, wherein the joining means of the first joining means which contacts the acoustic matching member has a large viscosity and the other joining means has a large viscosity. This is a method for manufacturing an ultrasonic transceiver for joining the two.

【0019】本発明によれば第一の接合手段の粘度が大
きいので、接合中に第一の接合手段が音響整合部材の空
隙に浸透することを防止でき、また、熱膨張率の異なる
複数の接合手段を設けているので、音響整合部材と金属
ケースの熱膨張率が異なっていても、熱膨張率の差によ
る応力を緩和し、音響整合部材と金属ケースを接合でき
る。従って、熱膨張率の違いの影響が出る高温下でも接
合ができるようになり、融点の高い無機材料を用いるこ
とができ、信頼性の高い超音波送受信器を提供できる。
According to the present invention, since the viscosity of the first joining means is large, it is possible to prevent the first joining means from penetrating into the gap of the acoustic matching member during the joining, and it is also possible to prevent the first joining means from having a plurality of different thermal expansion coefficients. Since the joining means is provided, even if the acoustic matching member and the metal case have different coefficients of thermal expansion, stress caused by the difference in the coefficient of thermal expansion can be reduced, and the acoustic matching member and the metal case can be joined. Accordingly, bonding can be performed even at a high temperature where the influence of the difference in the coefficient of thermal expansion affects, an inorganic material having a high melting point can be used, and a highly reliable ultrasonic transceiver can be provided.

【0020】[0020]

【発明の実施の形態】請求項1に記載の発明は、振動子
を収納する金属ケースと、多数の空隙を有する音響整合
部材を接合する複数の接合手段を有し、前記第一の接合
手段のうち前記音響整合部材と接する接合手段は粘度の
高い状態で前記音響整合部材とその他の接合手段を接合
することにより、第一の接合手段が溶けても音響整合部
材の空隙に浸透することを防止することができるので、
超音波送受信器の性能低下や音響整合部材のはく離を防
止できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first aspect of the present invention comprises a metal case for accommodating a vibrator and a plurality of joining means for joining an acoustic matching member having a large number of voids. Of the joining means in contact with the acoustic matching member, the acoustic matching member and other joining means are joined in a state of high viscosity, so that even if the first joining means is melted, it penetrates into the gap of the acoustic matching member. Can be prevented,
It is possible to prevent the performance of the ultrasonic transceiver from deteriorating and to prevent the acoustic matching member from peeling off.

【0021】請求項2に記載の発明は、特に請求項1に
記載の第一の接合手段の粘度を、加熱温度で調整するこ
とにより、第一の接合手段が音響整合部材の空隙に浸透
するのを防止するとともに、熱膨張率の影響が小さい低
温で接合することができる。
According to a second aspect of the present invention, in particular, by adjusting the viscosity of the first joining means according to the first aspect at a heating temperature, the first joining means penetrates into the gap of the acoustic matching member. And bonding can be performed at a low temperature where the influence of the coefficient of thermal expansion is small.

【0022】請求項3に記載の発明は、特に請求項2に
記載の第一の接合手段とその他の接合手段を第一の加熱
温度で接合し、その後、音響整合部材と第一の接合手段
を第二の加熱温度で接合する超音波送受信器において、
前記第一の加熱温度は前記第二の加熱温度より高温であ
ることを特徴とすることにより、第一の接合手段をその
他の接合手段を高温で接合するので、第一の接合手段を
空隙の少ない板状構造にすることができる。また、音響
整合部材と第一の接合手段を低温で接合するので、第一
の接合手段の粘度が高い状態で接合でき、音響整合部材
の空隙への浸透を防止できる。また、音響整合部材と第
一の接合手段の熱膨張率が異なっていても、熱膨張率の
影響が小さい低温で接合できるので、接合後に熱膨張率
の差による接合体の反りや、音響整合部材のはく離を防
止できる。
According to a third aspect of the present invention, in particular, the first joining means and the other joining means are joined at a first heating temperature, and thereafter, the acoustic matching member and the first joining means are joined. At the second heating temperature in the ultrasonic transceiver,
Since the first heating temperature is higher than the second heating temperature, the first bonding means is bonded to the other bonding means at a high temperature. The number of plate-like structures can be reduced. In addition, since the acoustic matching member and the first joining means are joined at a low temperature, joining can be performed in a state where the viscosity of the first joining means is high, and penetration of the acoustic matching member into the gap can be prevented. Even if the acoustic matching member and the first joining means have different coefficients of thermal expansion, they can be joined at a low temperature where the influence of the coefficient of thermal expansion is small. Peeling of the member can be prevented.

【0023】請求項4に記載の発明は、特に請求項2ま
たは3に記載の第一の接合手段の材料を非晶質ガラスに
することにより、高温で非晶質ガラスを溶かした後で
も、再びそれより低温で非晶質ガラスを溶かすことがで
きるので、第一の接合手段をその他の接合手段に接合し
た後で、音響整合部材と第一の接合手段を低温で接合で
きる。また、ガラスを用いているので、安定した温度特
性と耐水性、耐腐食性の高い超音波送受信器を提供でき
る。
According to a fourth aspect of the present invention, the material of the first bonding means according to the second or third aspect is made of an amorphous glass. Since the amorphous glass can be melted again at a lower temperature, the acoustic matching member and the first joining means can be joined at a low temperature after joining the first joining means to the other joining means. In addition, since glass is used, an ultrasonic transceiver having stable temperature characteristics, high water resistance, and high corrosion resistance can be provided.

【0024】請求項5に記載の発明は、特に請求項1〜
4に記載の第一の接合手段を粒子の集合体を加熱するこ
とで形成し、この粒子の大きさを音響整合部材の空隙の
大きさより大とすることにより、第一の接合手段が溶け
て形成される過程で、音響整合部材の空隙に浸透するこ
とを防止できる。
The invention described in claim 5 is particularly advantageous in claim 1 to claim 1.
The first joining means according to 4 is formed by heating the aggregate of particles, and the size of the particles is made larger than the size of the gap of the acoustic matching member, whereby the first joining means is melted. In the formation process, it can be prevented from penetrating into the gap of the acoustic matching member.

【0025】請求項6に記載の発明は、特に請求項1〜
5に記載の音響整合部材と第一の接合手段の接合時に荷
重を加えることにより、第一の接合手段の粘度が高くて
も、音響整合部材と第一の接合手段の接合面積を大きく
することができる。また、第一の接合手段が溶けたとき
の表面張力により音響整合部材を浮かすことを防止する
ことができる。
[0025] The invention described in claim 6 is particularly advantageous in claim 1 to claim 1.
Applying a load at the time of joining the acoustic matching member and the first joining means described in 5 to increase the joining area between the acoustic matching member and the first joining means even if the viscosity of the first joining means is high. Can be. In addition, it is possible to prevent the acoustic matching member from floating due to surface tension when the first joining means is melted.

【0026】[0026]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】(実施例1)図1は、本発明の実施例1に
おける超音波送受信器の断面図を示すものである。
(Embodiment 1) FIG. 1 is a sectional view of an ultrasonic transceiver according to Embodiment 1 of the present invention.

【0028】セラミック材料を用いた圧電振動子1は、
耐腐食性があり、強度も強いステンレス製の金属ケース
2に密閉内蔵されている。金属ケース2のステンレスに
は、熱膨張率が110〜150×10-7-1であるもの
を用いている。密閉構造にすることにより、気体や水の
浸入を防止し、振動子1の性能劣化や電気的故障を防止
している。また、金属ケース2の厚さは200〜300
umと薄くしている。金属ケース2の厚さを薄くするこ
とにより、金属ケース2中を通過する音(振動)の損失
は小さくなる。その他にも、金属ケース2の厚さが金属
ケース2の音の波長に対し十分に薄くすることで、理論
的に金属ケース2の音響インピーダンスを無視すること
ができる。音の波長は、物体の動作周波数と音速から導
出する。この関係式を(数式2)に示す。金属ケース2
の材料であるステンレスの音速は5000〜6000m/
sであり、超音波送受信器の動作周波数500kHzとする
と、(数2)より金属ケース2の音の波長は10〜12
mmとなる。従って、金属ケース2の厚さは音の波長に対
し十分薄いものであり、その音響インピーダンスを無視
できる。
The piezoelectric vibrator 1 using a ceramic material is
It is hermetically sealed in a stainless steel case 2 that has corrosion resistance and high strength. The stainless steel of the metal case 2 has a coefficient of thermal expansion of 110 to 150 × 10 −7 K −1 . By adopting a closed structure, intrusion of gas or water is prevented, and performance degradation and electrical failure of the vibrator 1 are prevented. The thickness of the metal case 2 is 200 to 300.
um and thin. By reducing the thickness of the metal case 2, the loss of sound (vibration) passing through the metal case 2 is reduced. In addition, by making the thickness of the metal case 2 sufficiently thin with respect to the sound wavelength of the metal case 2, the acoustic impedance of the metal case 2 can be theoretically ignored. The sound wavelength is derived from the operating frequency and sound speed of the object. This relational expression is shown in (Equation 2). Metal case 2
The speed of sound of stainless steel is 5000-6000m /
s and the operating frequency of the ultrasonic transceiver is 500 kHz, the sound wavelength of the metal case 2 is 10 to 12 according to (Equation 2).
mm. Therefore, the thickness of the metal case 2 is sufficiently thin with respect to the sound wavelength, and its acoustic impedance can be ignored.

【0029】3は音響整合部材で、本実施例では、材料
にアルミナとガラス材料の混合体を用いている。この混
合体の熱膨張率は50〜80×10-7-1である。樹脂
材料であるエポキシ樹脂の熱膨張率は400〜500×
10-7-1であり、極めて熱膨張率の小さい材料を用い
ているといえる。このように、熱膨張率の小さい材料を
用いているので、周囲温度による形状変化の影響を受け
にくい性能の安定した音響整合部材を作ることができ
る。また、音響整合部材3は多数の空隙を有する構成に
している。この空隙は、殆どが別の空隙とつながってい
る。従って、水などの液体が浸透しやすい構造となって
いる。また、この空隙一つの大きさは100um以下と
している。この大きさは音響整合部材3の音の波長に対
し十分に小さい値であり、音(振動)の伝播損失を抑え
る効果がある。また、空隙を多数設けることで、音響整
合部材3のかさ密度を0.6g/cm3にするとともに、空
隙により音の伝播経路を複雑にすることで、音速を14
00m/sとしている。音響整合部材3の厚さは、おおよ
そ音の1/4波長になるようにしている。音の波長λは
次の(数2)で求めることができる。
Reference numeral 3 denotes an acoustic matching member. In this embodiment, a mixture of alumina and a glass material is used as the material. The thermal expansion coefficient of this mixture is 50 to 80 × 10 −7 K −1 . The thermal expansion coefficient of the epoxy resin as the resin material is 400 to 500 ×
10 −7 K −1 , which means that a material having an extremely low coefficient of thermal expansion is used. As described above, since a material having a low coefficient of thermal expansion is used, it is possible to produce an acoustic matching member having a stable performance that is not easily affected by a shape change due to an ambient temperature. The acoustic matching member 3 has a configuration having a large number of voids. This gap is mostly connected to another gap. Therefore, the structure is such that liquid such as water easily penetrates. The size of one space is 100 um or less. This magnitude is a value sufficiently smaller than the wavelength of the sound of the acoustic matching member 3, and has an effect of suppressing propagation loss of sound (vibration). Further, by providing a large number of air gaps, the bulk density of the acoustic matching member 3 is set to 0.6 g / cm 3, and the sound propagation path is complicated by the air gaps.
00 m / s. The thickness of the acoustic matching member 3 is set to approximately 1 / wavelength of the sound. The sound wavelength λ can be obtained by the following (Equation 2).

【0030】 (数2) λ=c/f (ここでcは音速、fは振動周波数である)・・・(数2) 本実施例では、500kHzの音を伝播するので、音の波
長は2.8mmとなり、空隙の大きさ100umと大きな
差がある。また、音響整合部材3の1/4波長は0.7
mmとなる。以上のように、音響整合部材3に設けられた
多数の空隙は、音響整合部材4の密度と音速を小さく
し、音響インピーダンスを小さくすることができる。
(Equation 2) λ = c / f (where c is the sound speed and f is the vibration frequency) (Equation 2) In the present embodiment, a 500 kHz sound is propagated, so the wavelength of the sound is 2.8 mm, which is a large difference with the gap size of 100 um. The quarter wavelength of the acoustic matching member 3 is 0.7
mm. As described above, the large number of voids provided in the acoustic matching member 3 can reduce the density and sound speed of the acoustic matching member 4 and reduce the acoustic impedance.

【0031】図1において、複数の接合手段は第一の接
合手段4、第二の接合手段5、第三の接合手段6より構
成されている。第一の接合手段4は、音響整合部材3に
用いたアルミナとガラスの混合体より低融点の非晶質ガ
ラスで構成されている。非晶質ガラスには次のような特
徴がある。第一の特徴は、融点よりも低い温度から溶け
はじめることである。第二の特徴は、溶けた状態でも温
度により粘度が異なることである。第三の特徴は、高温
で焼成した後でも、低温で溶かすことができる再現性を
有していることである。本実施例では、この非晶質ガラ
スが音響整合部材3に浸透しないように、非晶質ガラス
の粘度を加熱温度で調整して接合している。この非晶質
ガラスには、熱膨張率が50〜80×10-7-1である
ものを用いている。この熱膨張率は音響整合部材3の材
料であるアルミナとガラスの混合体と殆ど同じであり、
接合後も非晶質ガラスを用いた第一の接合手段とアルミ
ナとガラスの混合体を用いた音響整合部材3がはく離し
ないようにしている。また、第一の接合手段4の厚さ
は、100〜200μmとしている。この厚さは、金属
ケース2の場合と同様に、第一の接合手段4の音響イン
ピーダンスを理論的に無視できる厚さになっている。
In FIG. 1, the plurality of joining means are composed of a first joining means 4, a second joining means 5, and a third joining means 6. The first joining means 4 is made of amorphous glass having a lower melting point than the mixture of alumina and glass used for the acoustic matching member 3. Amorphous glass has the following characteristics. The first feature is that melting starts at a temperature lower than the melting point. The second feature is that the viscosity varies depending on the temperature even in a molten state. The third feature is that it has reproducibility that it can be melted at a low temperature even after firing at a high temperature. In this embodiment, the joining is performed by adjusting the viscosity of the amorphous glass at the heating temperature so that the amorphous glass does not penetrate into the acoustic matching member 3. As this amorphous glass, one having a thermal expansion coefficient of 50 to 80 × 10 −7 K −1 is used. This coefficient of thermal expansion is almost the same as that of the mixture of alumina and glass, which is the material of the acoustic matching member 3,
Even after the joining, the first joining means using the amorphous glass and the acoustic matching member 3 using the mixture of alumina and glass are not separated. Further, the thickness of the first joining means 4 is set to 100 to 200 μm. As in the case of the metal case 2, the thickness is such that the acoustic impedance of the first joining means 4 can be theoretically ignored.

【0032】第二の接合手段5は、厚さ数umの酸化チ
タンの膜で構成されている。本実施例の第一の接合手段
4に用いている非晶質ガラスは酸化ガラスの一種である
ので、酸化チタン膜の酸素と接合することが可能となっ
ている。酸化チタンのもとになるチタンの熱膨張率は、
86×10-7-1であり、第一の接合手段4と第三の接
合手段6の中間値になっている。中間値にすることで熱
膨張率の差により接合境界面に生じる応力を段階的に低
減する作用がある。また、チタンは展性があり、熱膨張
率が異なる物体を接合しても熱膨張率の差を緩和するこ
とができる。
The second joining means 5 is composed of a titanium oxide film having a thickness of several um. Since the amorphous glass used in the first bonding means 4 of the present embodiment is a kind of oxide glass, it can be bonded to oxygen of the titanium oxide film. The coefficient of thermal expansion of titanium, the source of titanium oxide, is
86 × 10 −7 K −1, which is an intermediate value between the first joining means 4 and the third joining means 6. By setting the value to an intermediate value, there is an effect of gradually reducing the stress generated at the joint interface due to the difference in the coefficient of thermal expansion. In addition, titanium has malleability and can reduce the difference in the coefficient of thermal expansion even when objects having different coefficients of thermal expansion are joined.

【0033】第三の接合手段6は、銀と銅の合金である
銀ロウで構成され、一方を金属ケース2と接合し、もう
一方で凹凸形状を形成している。銀ロウの熱膨張率は1
80×10-7-1、第三の接合手段6の厚さは10〜1
00umとしている。
The third joining means 6 is made of a silver braze, which is an alloy of silver and copper. One of the third joining means 6 is joined to the metal case 2 and the other is formed with an uneven shape. The coefficient of thermal expansion of silver braze is 1
80 × 10 −7 K −1 , the thickness of the third joining means 6 is 10 to 1
00 um.

【0034】以上のように、複数の接合手段は熱膨張率
を段階的に変化させるほかに、凹凸形状を一部に有する
構造にしている。凹凸形状の第一の作用は、接合面積を
大きくすることができるので接合強度を強くできること
である。第二の作用は、互いの接合手段がかみ合った状
態になるので接合強度が強くなることである。第三の作
用は、接合境界面にかかる熱膨張率の差による応力が分
散され、接合後に反りやはく離が生じにくいことであ
る。7,8は電極で振動子1に電力を入力したり、振動
子1の出力を取り出すものである。9は絶縁手段であ
り、ガラスや樹脂などで構成され、電極8と金属ケース
2を電気的に絶縁している。
As described above, the plurality of bonding means have a structure in which the coefficient of thermal expansion is changed stepwise, and a part of the bonding means has an uneven shape. The first effect of the concavo-convex shape is that the bonding area can be increased, so that the bonding strength can be increased. The second effect is that the joining strength is increased because the joining means are engaged with each other. The third effect is that the stress due to the difference in the coefficient of thermal expansion applied to the joint interface is dispersed, and warpage or peeling is less likely to occur after joining. Reference numerals 7 and 8 denote electrodes for inputting electric power to the vibrator 1 and extracting the output of the vibrator 1. Reference numeral 9 denotes insulating means, which is made of glass, resin, or the like, and electrically insulates the electrode 8 from the metal case 2.

【0035】図2は、図1における第一の接合手段4の
粘度が小さい状態で接合した場合の超音波送受信器の断
面構造図である。21は第一の接合手段で、材料は図1
と同様に非晶質ガラスを用いている。ただし、接合する
ときの加熱温度を図1のときよりも100℃ほど高く
し、非晶質ガラスの粘度を小さくしたものである。22
は空隙である。その他の構成については図1と同様であ
り、ここでは省略する。
FIG. 2 is a sectional structural view of the ultrasonic transmitter / receiver when the first joining means 4 in FIG. 1 is joined in a state where the viscosity is small. 21 is a first joining means, the material of which is shown in FIG.
Similarly, amorphous glass is used. However, the heating temperature at the time of joining is higher by about 100 ° C. than that of FIG. 1, and the viscosity of the amorphous glass is reduced. 22
Is a void. Other configurations are the same as those in FIG. 1 and are omitted here.

【0036】図2に示すように、第一の接合手段21は
粘度が小さくなったことにより、音響整合部材3の空隙
に一部が浸透している。第一の接合手段21の一部が浸
透した結果、浸透した箇所に空隙22が生じる。空隙2
2は100um以上の大きさで、空気の音響インピーダ
ンスを無視することができない大きさである。従って、
空気と第二の接合手段5の間で音の反射が生じ、音(振
動)が第一の接合手段21に殆ど伝播されない状態にな
り、超音波送受信器の性能は低下する。空隙22が更に
大きくなると、接合強度が大幅に低下し音響整合部材が
はく離することにもなる。また、第一の接合手段21の
浸透度合は必ずしも一定ではない。この浸透度合のバラ
ツキが、超音波送受信器の性能バラツキの原因にもなっ
ている。
As shown in FIG. 2, the first joining means 21 has partially penetrated into the gap of the acoustic matching member 3 due to the reduced viscosity. As a result of the permeation of a part of the first joining means 21, a void 22 is formed at the permeated portion. Void 2
2 is a size of 100 um or more, which is a size where the acoustic impedance of air cannot be ignored. Therefore,
The reflection of sound occurs between the air and the second joining means 5, so that sound (vibration) is hardly transmitted to the first joining means 21, and the performance of the ultrasonic transceiver deteriorates. When the gap 22 is further increased, the joining strength is greatly reduced, and the acoustic matching member is peeled off. Further, the degree of penetration of the first joining means 21 is not always constant. This variation in the degree of penetration causes variation in the performance of the ultrasonic transceiver.

【0037】しかしながら、図1に示した超音波送受信
器においては、第一の接合手段4の粘度が強く、空隙に
浸透しにくいので、第一の接合手段4に空隙ができるこ
とはない。従って、浸透バラツキも起きることはなく、
バラツキの性能の安定した超音波送受信器を提供でき
る。
However, in the ultrasonic transmitter / receiver shown in FIG. 1, since the first joining means 4 has a high viscosity and does not easily penetrate into the gaps, no gaps are formed in the first joining means 4. Therefore, there is no permeation variation,
It is possible to provide an ultrasonic transceiver that has stable performance.

【0038】なお、本実施例においては第二の接合手段
に酸化チタン膜を設けたが、これに限定するものではな
い。第一の接合手段が酸化ガラスの場合、酸化物と接合
することができるので、銀ロウを酸化させたものでも構
わない。ただし、この場合は銀ロウとの熱膨張率の差に
よる応力を緩和するために、凹凸形状だけでなく、断続
形状をとることや、銀ロウに熱膨張率が小さい材料を混
ぜることなどが必要となる。
In this embodiment, the titanium oxide film is provided in the second bonding means, but the present invention is not limited to this. When the first joining means is an oxide glass, the first joining means can be joined with an oxide. However, in this case, in order to reduce the stress due to the difference in the coefficient of thermal expansion from the silver brazing, it is necessary to take not only the uneven shape but also the intermittent shape, and to mix the silver brazing with a material having a small coefficient of thermal expansion. Becomes

【0039】(実施例2)図3は、図1に示した超音波
送受信器の製造方法を示すフローチャートである。な
お、図3は特に、金属ケース2と音響整合部材3を第一
の接合手段4、第二の接合手段5、第三の接合手段6で
接合する方法について示している。
(Embodiment 2) FIG. 3 is a flowchart showing a method of manufacturing the ultrasonic transceiver shown in FIG. FIG. 3 particularly shows a method of joining the metal case 2 and the acoustic matching member 3 by the first joining means 4, the second joining means 5, and the third joining means 6.

【0040】図3のステップ31の混合工程では、第二
の接合手段5の材料であるチタン粒子と第三の接合手段
6の材料である銀ロウ粒子と樹脂材料からなる固形助剤
を所定の比率で混合する。この固形助剤は粘性を有す
る。粘性を有することで、混合体の取り扱いが容易にな
る。つまり、金属ケース2に混合体を塗布してもその状
態を維持できる点と、スクリーン印刷を用いて塗布する
ことにより混合体の塗布厚さを一定にできる点が容易に
なる。この固形助剤は樹脂材料なので、接合手段の材料
であるチタンや銀ロウを溶かす前に蒸発する。
In the mixing process of step 31 in FIG. 3, a solid auxiliary comprising titanium particles as the material of the second bonding means 5, silver brazing particles as the material of the third bonding means 6, and a resin material is mixed with a predetermined amount. Mix in proportions. This solid auxiliary has viscosity. The viscosity makes the mixture easier to handle. That is, even if the mixture is applied to the metal case 2, the state can be maintained, and the application thickness of the mixture can be made constant by application using screen printing. Since this solid assistant is a resin material, it evaporates before melting the titanium or silver braze, which is the material of the joining means.

【0041】ステップ32の混合体塗布工程では、ステ
ップ31で作成した混合体を金属ケース2に塗布する。
具体的には、メッシュ状の印刷工具を用いてスクリーン
印刷をする。印刷工具のメッシュ形状を調整すること
で、混合体の塗布厚さを調整するとともに、塗布後の混
合体の凹凸形状を調整することができる。
In the mixture application step of step 32, the mixture prepared in step 31 is applied to the metal case 2.
Specifically, screen printing is performed using a mesh printing tool. By adjusting the mesh shape of the printing tool, it is possible to adjust the coating thickness of the mixture and to adjust the uneven shape of the mixture after application.

【0042】ステップ33の混合体加熱工程では、混合
体を塗布した金属ケース2を真空炉に入れ加熱する。2
00〜300℃付近で固形助剤を蒸発させた後、更に高
温加熱して、銀ロウより構成された第三の接合手段と、
酸化チタン膜で構成された第二の接合手段を構成する。
In the mixture heating step 33, the metal case 2 coated with the mixture is heated in a vacuum furnace. 2
After evaporating the solid auxiliary agent at around 00 to 300 ° C., the mixture is further heated to a high temperature, and a third joining means composed of silver brazing is provided;
The second joining means is constituted by a titanium oxide film.

【0043】ステップ34の非晶質ガラス塗布工程で
は、既に第二の接合手段5と第三の接合手段6が形成さ
れた金属ケース2に、第一の接合手段4の材料である非
晶質ガラスを塗布する。このとき、混合工程31と同様
に非晶質ガラス粒子と固形助剤からなる混合体を作成
し、非晶質ガラスを均一に塗布できるようにしている。
非晶質ガラス粒子と固形助剤の混合体を塗布した後、こ
の混合体を乾燥させ、流動性をなくす。これにより音響
整合部材3の空隙に非晶質ガラスと固形助剤の混合体が
浸透するのを防止する。
In the amorphous glass coating step of step 34, the metal case 2 on which the second bonding means 5 and the third bonding means 6 have already been formed is filled with the amorphous material, which is the material of the first bonding means 4. Apply glass. At this time, similarly to the mixing step 31, a mixture composed of the amorphous glass particles and the solid auxiliary is prepared so that the amorphous glass can be uniformly applied.
After applying the mixture of the amorphous glass particles and the solid auxiliaries, the mixture is dried to lose its fluidity. This prevents the mixture of the amorphous glass and the solid auxiliary from penetrating into the gap of the acoustic matching member 3.

【0044】ステップ35の音響整合部材接合工程で
は、音響整合部材3を、非晶質ガラスと固形助剤の混合
体に置き、数十gf/cm^2の荷重を加えながら、400
〜500℃付近で加熱する。加熱は空気中で行う。非晶
質ガラス粒子が溶けると、この粒子が互いに接合し大き
な板になる。400〜500℃における非晶質ガラスの
粘度は十分に大きく、音響整合部材3の空隙に非晶質ガ
ラスが浸透することなく、音響整合部材3のガラスまた
はアルミナと接合する。この非晶質ガラスは酸化ガラス
なので、第二の接合手段5である酸化チタン膜と接合す
る。音響整合部材3のガラスが溶け始める温度は600
℃以上なので、接合中に音響整合部材3の形状が変化す
ることはない。
In the acoustic matching member joining step of Step 35, the acoustic matching member 3 is placed on a mixture of amorphous glass and a solid auxiliary, and a load of several tens gf / cm ^ 2 is applied thereto while applying a load of several tens gf / cm ^ 2.
Heat around ~ 500 ° C. Heating takes place in air. As the amorphous glass particles melt, they join together to form a large plate. The viscosity of the amorphous glass at 400 to 500 ° C. is sufficiently large so that the amorphous glass does not penetrate into the gaps of the acoustic matching member 3 and is bonded to the glass or alumina of the acoustic matching member 3. Since this amorphous glass is an oxide glass, it is bonded to a titanium oxide film as the second bonding means 5. The temperature at which the glass of the acoustic matching member 3 begins to melt is 600
Since the temperature is not lower than ° C., the shape of the acoustic matching member 3 does not change during the joining.

【0045】また、本実施例では、混合体加熱工程33
において、約800〜900℃で加熱するようにしてい
る。この温度では銀ロウ粒子を溶かして、第三の接合手
段6を形成できる。チタンは、その融点が1650℃で
あるが、真空炉内に僅かにある酸素と反応して酸化チタ
ンの膜を形成する。酸化チタン膜が銀ロウで構成された
第三の接合手段6の表面に形成されるのは、チタンが銀
ロウで構成された第三の接合手段6の表面にある酸素と
反応することで拡散するためである。
In this embodiment, the mixture heating step 33 is performed.
Is heated at about 800 to 900 ° C. At this temperature, the third bonding means 6 can be formed by melting the silver brazing particles. Titanium has a melting point of 1650 ° C., but reacts with oxygen slightly present in the vacuum furnace to form a titanium oxide film. The reason why the titanium oxide film is formed on the surface of the third bonding means 6 made of silver brazing is that titanium reacts with oxygen on the surface of the third bonding means 6 made of silver brazing to diffuse. To do that.

【0046】また、本実施例では、非晶質ガラス塗布工
程34において、非晶質ガラス粒子の大きさを音響整合
部材3の空隙の大きさ(100um以下)より大きくす
ることもできる。この場合は、非晶質ガラス粒子と固形
助剤の混合体を乾燥させなくても、音響整合部材3の空
隙に非晶質ガラス粒子が入り込むことはなく、加熱接合
時に音響整合部材3に非晶質ガラスが浸透することを防
止できる。
In this embodiment, the size of the amorphous glass particles can be made larger than the size of the gap (100 um or less) in the acoustic matching member 3 in the amorphous glass coating step 34. In this case, even if the mixture of the amorphous glass particles and the solid auxiliary is not dried, the amorphous glass particles do not enter the voids of the acoustic matching member 3 and the acoustic matching member 3 Crystalline glass can be prevented from penetrating.

【0047】図4は、第一の接合手段4の材料である非
晶質ガラスの粘度と加熱温度の関係を示している。第一
の加熱温度T1における非晶質ガラスの粘度はN1であ
る。第二の加熱温度T2における非晶質ガラスの粘度は
N2である。図4においては、第一の加熱温度T1の方
が第二の加熱温度T2より高温であり、それぞれに対応
する非晶質ガラスの粘度はN1の方がN2より小さいも
のとなっている。つまり、加熱温度により非晶質ガラス
の粘度が変化するので、加熱温度を調整して、音響整合
部材3の空隙に浸透しない粘度にすることができる。
FIG. 4 shows the relationship between the viscosity of the amorphous glass, which is the material of the first bonding means 4, and the heating temperature. The viscosity of the amorphous glass at the first heating temperature T1 is N1. The viscosity of the amorphous glass at the second heating temperature T2 is N2. In FIG. 4, the first heating temperature T1 is higher than the second heating temperature T2, and the viscosity of the corresponding amorphous glass is smaller in N1 than in N2. That is, since the viscosity of the amorphous glass changes depending on the heating temperature, it is possible to adjust the heating temperature so that the viscosity does not penetrate into the gap of the acoustic matching member 3.

【0048】図5は、音響整合部材接合工程35におい
て、荷重を加えずに接合した超音波送受信器の断面構造
図である。51は第一の接合手段で、図1と同様に非晶
質ガラスを用いている。その他の構成は図1と同様であ
り、ここでは省略する。
FIG. 5 is a cross-sectional structural view of the ultrasonic transmitter / receiver joined without applying a load in the acoustic matching member joining step 35. Reference numeral 51 denotes first bonding means, which uses amorphous glass as in FIG. Other configurations are the same as those in FIG. 1 and are omitted here.

【0049】図5に示すように、第一の接合手段51が
集中して固形化しており、音響整合部材3との接合面積
が小さくなっている。これは、第一の接合手段51の材
料である非晶質ガラスが表面張力で集中していること
と、粘度が強いために密度の小さい音響整合部材3の重
さでは第一の接合手段51を変形させることができない
ためである。しかしながら、音響整合部材3に荷重を加
えれば、粘度が強くても第一の接合手段51を押しつぶ
し、接合面積を大きくできる。そして、粘度が強いので
音響整合部材3の空隙に第一の接合手段51が殆ど浸透
せずに接合できる。
As shown in FIG. 5, the first joining means 51 is concentrated and solidified, and the joining area with the acoustic matching member 3 is reduced. This is because the amorphous glass, which is the material of the first bonding means 51, is concentrated by surface tension and the weight of the acoustic matching member 3 having a low density due to its high viscosity is low. Cannot be deformed. However, if a load is applied to the acoustic matching member 3, the first joining means 51 can be crushed even if the viscosity is high, and the joining area can be increased. And since the viscosity is strong, the first joining means 51 can be joined almost without penetrating into the gap of the acoustic matching member 3.

【0050】(実施例3)図6は、図3とは異なる音響
整合部材と金属ケースの接合方法を示すフローチャート
である。以下、図6を用いながら接合方法を説明する。
なお、混合工程31から非晶質ガラス塗布工程34まで
は、図3と同様であり、ここでは省略する。
(Embodiment 3) FIG. 6 is a flowchart showing a method of joining an acoustic matching member and a metal case different from FIG. Hereinafter, the joining method will be described with reference to FIG.
The steps from the mixing step 31 to the amorphous glass coating step 34 are the same as those in FIG.

【0051】ステップ61は非晶質ガラス加熱工程で、
非晶質ガラスを第一の加熱温度T1で加熱する。図4に
示したように、第一の加熱温度T1では非晶質ガラスの
粘度は小さいので、非晶質ガラスは溶けて一つの固まり
になっても、重力により押しつぶされ、第二の接合手段
5である酸化チタン膜と接合し、第一の接合手段4を構
成する。同時に、非晶質ガラスの粘度が小さいので、第
一の接合手段4を形成時に内部に空隙があっても、この
空隙は非晶質ガラスの表面張力に負けて押しつぶされ
る。従って、空隙のない板状の層を形成できる。
Step 61 is an amorphous glass heating step.
The amorphous glass is heated at a first heating temperature T1. As shown in FIG. 4, since the viscosity of the amorphous glass is small at the first heating temperature T1, even if the amorphous glass is melted into one lump, it is crushed by gravity, and the second bonding means is formed. The first bonding means 4 is formed by bonding with the titanium oxide film 5. At the same time, since the viscosity of the amorphous glass is small, even if there is a gap inside the first bonding means 4 when forming the first bonding means 4, the gap is crushed by losing the surface tension of the amorphous glass. Therefore, a plate-like layer without voids can be formed.

【0052】ステップ62は音響整合部材接合工程で、
音響整合部材3を第一の接合手段4の上に配置し、数十
gf/cm^2の荷重を加えながら、第二の加熱温度T2で
加熱して音響整合部材3を接合する。第二の加熱温度T
2における非晶質ガラスの粘度N2は第一の加熱温度T
1における非晶質ガラスの粘度N1よりも大きく、音響
整合部材3の空隙に浸透しない粘度に調整されている。
Step 62 is an acoustic matching member joining step.
The acoustic matching member 3 is arranged on the first joining means 4 and several tens of
The acoustic matching member 3 is joined by heating at a second heating temperature T2 while applying a load of gf / cm ^ 2. Second heating temperature T
The viscosity N2 of the amorphous glass in Example 2 is the first heating temperature T
1 is adjusted to a viscosity that is larger than the viscosity N1 of the amorphous glass and does not penetrate into the gaps of the acoustic matching member 3.

【0053】以上のように、先に第一の接合手段4の非
晶質ガラスを粘度の小さくできる高温で加熱すること
で、内部に空隙のない板状の層を形成し、この空隙によ
る損失が生じない第一の接合手段を形成できる。その
後、この板状の第一の接合手段4と音響整合部材を非晶
質ガラスの粘度が大きい低温で加熱接合するので、音響
整合部材3の空隙に第一の接合手段4が浸透せずに、確
実に接合面積を確保できる。同時に、音響整合部材3、
金属ケース2の熱による形状変化が小さい低温で接合で
きるので、熱膨張率の差による応力の集中も低減でき
る。また、実施例1、2のように、音響整合部材の接合
と第一の接合手段の形成を同時に行う場合は、第一の接
合手段の材料である非晶質ガラスを粘度の大きい温度で
加熱するので、非晶質ガラスの粒子間の空隙が潰れずに
残りやすい。この空隙は、接合時に加える荷重を大きく
することで潰すことができるが、1kgf/cm^2近くの
荷重を加える必要があり接合する電気炉の大型化にな
り、製造コストも増加する傾向がある。しかし、図6に
示したように、先に第一の接合手段に生じる空隙をなく
すようにすれば、接合時に加える荷重を小さくすること
ができ、接合する電気炉の小型化を実現できる。
As described above, by heating the amorphous glass of the first bonding means 4 at a high temperature at which the viscosity can be reduced, a plate-like layer having no voids therein is formed, and the loss due to the voids is formed. The first joining means which does not cause the occurrence can be formed. Thereafter, the plate-like first joining means 4 and the acoustic matching member are heated and joined at a low temperature where the viscosity of the amorphous glass is large, so that the first joining means 4 does not penetrate into the gap of the acoustic matching member 3. Thus, the bonding area can be reliably ensured. At the same time, the acoustic matching member 3,
Since the joining can be performed at a low temperature where the shape change due to the heat of the metal case 2 is small, the concentration of stress due to the difference in the coefficient of thermal expansion can be reduced. When the joining of the acoustic matching member and the formation of the first joining means are performed simultaneously as in the first and second embodiments, the amorphous glass as the material of the first joining means is heated at a temperature having a high viscosity. Therefore, voids between the amorphous glass particles are likely to remain without being crushed. This gap can be crushed by increasing the load applied at the time of joining. However, it is necessary to apply a load of about 1 kgf / cm ^ 2, which increases the size of the electric furnace to be joined and tends to increase the manufacturing cost. . However, as shown in FIG. 6, if the gap generated in the first joining means is eliminated first, the load applied at the time of joining can be reduced, and the electric furnace to be joined can be reduced in size.

【0054】なお、実施例1〜3では音響整合部材をア
ルミナとガラスの混合体としたが、アルミナだけでもよ
いし、ガラスだけでも構わない。無機物の集合体であれ
ば、特に限定しないものである。
In the first to third embodiments, the acoustic matching member is a mixture of alumina and glass. However, the acoustic matching member may be made of only alumina or only glass. It is not particularly limited as long as it is an aggregate of inorganic substances.

【0055】また、第一の接合手段、第二の接合手段、
第三の接合手段についても実施例1〜3で限定するもの
ではない。接合手段の数は音響整合部材と金属ケースの
熱膨張率の差を緩和できれば特に限定するものではない
し、接合手段の材料も無機物であればよい。
Further, the first joining means, the second joining means,
The third joining means is not limited to the first to third embodiments. The number of the joining means is not particularly limited as long as the difference in the coefficient of thermal expansion between the acoustic matching member and the metal case can be reduced. The material of the joining means may be an inorganic substance.

【0056】[0056]

【発明の効果】以上のように、請求項1〜5に記載の発
明によれば、振動子を収納する金属ケースと、多数の空
隙を有する音響整合部材を接合するときに、粘度の高い
状態で前記音響整合部材と接合するので、接合手段の材
料が接合中に音響整合部材の空隙に浸透することを防止
し、超音波送受信器の性能低下を防止できる。
As described above, according to the first to fifth aspects of the present invention, when a metal case accommodating a vibrator and an acoustic matching member having a large number of voids are joined, a high viscosity state is obtained. Therefore, it is possible to prevent the material of the joining means from penetrating into the gap of the acoustic matching member during joining, and to prevent the performance of the ultrasonic transceiver from being reduced.

【0057】また、請求項3に記載の発明によれば、先
に第一の接合手段の空隙をなくしてから、音響整合部材
と第一の接合手段を接合するので、第一の接合手段にお
ける音(振動)の損失を小さくでき、超音波送受信器の
性能低下を防止できる。
According to the third aspect of the present invention, the gap between the first joining means is first eliminated, and then the acoustic matching member and the first joining means are joined. Loss of sound (vibration) can be reduced, and performance degradation of the ultrasonic transceiver can be prevented.

【0058】また、請求項6に記載の発明によれば、接
合時に荷重を加えるので、音響整合部材と第一の接合手
段の接合面積を大きくでき、接合強度を強くできる。更
には、第一の接合手段に生じる空隙を潰すことができる
ので、第一の接合手段における音(振動)の損失を小さ
くでき、超音波送受信器の性能低下を防止できる。
According to the sixth aspect of the present invention, since a load is applied at the time of joining, the joining area between the acoustic matching member and the first joining means can be increased, and the joining strength can be increased. Further, since the gap generated in the first joining means can be crushed, the loss of sound (vibration) in the first joining means can be reduced, and the performance of the ultrasonic transceiver can be prevented from deteriorating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における超音波送受信器の構
成を示す断面図
FIG. 1 is a cross-sectional view illustrating a configuration of an ultrasonic transceiver according to a first embodiment of the present invention.

【図2】同受信器において接合に失敗した場合の構成を
示す断面図
FIG. 2 is a cross-sectional view showing a configuration when joining fails in the receiver.

【図3】本発明の実施例2における音響整合部材と金属
ケースの接合工程を示すフローチャート
FIG. 3 is a flowchart illustrating a joining process of the acoustic matching member and the metal case according to the second embodiment of the present invention.

【図4】同接合工程における非晶質ガラスの粘度と加熱
温度の特性図
FIG. 4 is a characteristic diagram of the viscosity and heating temperature of the amorphous glass in the bonding step.

【図5】同接合工程において失敗した場合の構成を示す
断面図
FIG. 5 is a cross-sectional view showing a configuration when a failure occurs in the joining step.

【図6】本発明の実施例3における音響整合部材と金属
ケースの接合工程を示すフローチャート
FIG. 6 is a flowchart illustrating a joining process of the acoustic matching member and the metal case according to the third embodiment of the present invention.

【図7】従来の超音波送受信器の構成を示す断面図FIG. 7 is a sectional view showing the configuration of a conventional ultrasonic transceiver.

【図8】従来の音響整合部材と金属ケースの接合方法を
示す断面図
FIG. 8 is a sectional view showing a conventional method of joining an acoustic matching member and a metal case.

【符号の説明】[Explanation of symbols]

1 振動子 2 金属ケース 3 音響整合部材 4 第一の接合手段 5 第二の接合手段 6 第三の接合手段 REFERENCE SIGNS LIST 1 vibrator 2 metal case 3 acoustic matching member 4 first joining means 5 second joining means 6 third joining means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中林 裕治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2F035 DA05 DA07 5D019 AA18 AA26 EE04 FF01 FF02 GG02 GG12 HH03 5J083 AA02 AC31 AD04 AD12 CA35 CA36 CA50 CB02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuji Nakabayashi 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture F-term (reference) 2F035 DA05 DA07 5D019 AA18 AA26 EE04 FF01 FF02 GG02 GG12 HH03 5J083 AA02 AC31 AD04 AD12 CA35 CA36 CA50 CB02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 振動子を収納する金属ケースと、多数の
空隙を有する音響整合部材を接合する複数の接合手段を
有し、前記複数の接合手段のうち前記音響整合部材と接
する接合手段は粘度の大きい状態で前記音響整合部材と
その他の接合手段を接合する超音波送受信器の製造方
法。
1. A metal case for accommodating a vibrator, and a plurality of joining means for joining an acoustic matching member having a large number of voids, wherein the joining means of the plurality of joining means which is in contact with the acoustic matching member has viscosity. Manufacturing method of an ultrasonic transceiver for joining the acoustic matching member and other joining means in a state where the size is large.
【請求項2】 第一の接合手段の粘度は加熱温度で調整
する請求項1に記載の超音波送受信器の製造方法。
2. The method for manufacturing an ultrasonic transceiver according to claim 1, wherein the viscosity of the first joining means is adjusted at a heating temperature.
【請求項3】 第一の接合手段とその他の接合手段を第
一の加熱温度で接合し、その後、音響整合部材と第一の
接合手段を第二の加熱温度で接合する超音波送受信器に
おいて、前記第一の加熱温度は前記第二の加熱温度より
高温であることを特徴とする請求項2に記載の超音波送
受信器の製造方法。
3. An ultrasonic transceiver for joining a first joining means and another joining means at a first heating temperature and thereafter joining the acoustic matching member and the first joining means at a second heating temperature. 3. The method according to claim 2, wherein the first heating temperature is higher than the second heating temperature.
【請求項4】 第一の接合手段の材料は非晶質ガラスと
する請求項2または3記載の超音波送受信器の製造方
法。
4. The method for manufacturing an ultrasonic transceiver according to claim 2, wherein the material of the first bonding means is amorphous glass.
【請求項5】 第一の接合手段は粒子の集合体を加熱し
て形成され、前記粒子の大きさは音響整合部材の空隙の
大きさよりも大きい請求項1〜4のいずれか1項に記載
の超音波送受信器の製造方法。
5. The method according to claim 1, wherein the first joining means is formed by heating an aggregate of particles, and the size of the particles is larger than the size of the gap of the acoustic matching member. Manufacturing method of an ultrasonic transceiver.
【請求項6】 音響整合部材と第一の接合手段は荷重を
加えて接合する請求項1〜5のいずれか1項に記載の超
音波送受信器の製造方法。
6. The method of manufacturing an ultrasonic transceiver according to claim 1, wherein the acoustic matching member and the first joining means are joined by applying a load.
JP2001127424A 2001-04-25 2001-04-25 Method for manufacturing ultrasonic transmitting and receiving device Pending JP2002325299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127424A JP2002325299A (en) 2001-04-25 2001-04-25 Method for manufacturing ultrasonic transmitting and receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127424A JP2002325299A (en) 2001-04-25 2001-04-25 Method for manufacturing ultrasonic transmitting and receiving device

Publications (1)

Publication Number Publication Date
JP2002325299A true JP2002325299A (en) 2002-11-08

Family

ID=18976293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127424A Pending JP2002325299A (en) 2001-04-25 2001-04-25 Method for manufacturing ultrasonic transmitting and receiving device

Country Status (1)

Country Link
JP (1) JP2002325299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067304A (en) * 2006-09-11 2008-03-21 Aichi Tokei Denki Co Ltd Ultrasonic sensor
JP2012513714A (en) * 2008-12-23 2012-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ultrasonic transducer for use in fluid media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067304A (en) * 2006-09-11 2008-03-21 Aichi Tokei Denki Co Ltd Ultrasonic sensor
JP2012513714A (en) * 2008-12-23 2012-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ultrasonic transducer for use in fluid media
US8698378B2 (en) 2008-12-23 2014-04-15 Robert Bosch Gmbh Ultrasonic transducer for use in a fluid medium

Similar Documents

Publication Publication Date Title
US8069549B2 (en) Method for sealing a quartz crystal device
US4582240A (en) Method for low temperature, low pressure metallic diffusion bonding of piezoelectric components
US8875362B2 (en) Method of manufacturing piezoelectric device
JP3465427B2 (en) Piezoelectric actuator and method of manufacturing the same
JP2008271491A (en) Quartz crystal device and method for sealing the same
JP3887137B2 (en) Method for manufacturing piezoelectric vibrator
JP2011188145A (en) Manufacturing method of electronic device package, electronic device package, and oscillator
JP2002325299A (en) Method for manufacturing ultrasonic transmitting and receiving device
JP4400004B2 (en) Ultrasonic transducer
JP2001024460A (en) Manufacture of piezoelectric diaphragm
WO2001037609A1 (en) Acoustic matching material, method of manufacture thereof, and ultrasonic transmitter using acoustic matching material
WO2004100364A1 (en) Tuning-fork piezoelectric device manufacturing method and tuning-fork piezoelectric device
JP2003204238A (en) Piezoelectric device, sealing method therefor, portable telephone equipment utilizing piezoelectric device and electronic equipment utilizing piezoelectric device
JP4292575B2 (en) Piezoelectric device and method of manufacturing lid
JP2002112394A (en) Junction of substances with different coefficients of thermal expansion and ultrasonic wave transmitter- receiver using it and its manufacturing method
JP2005175686A (en) Method of manufacturing piezoelectric device and lid, portable telephone utilizing piezoelectric device and electronic apparatus utilizing piezoelectric device
JP2002112393A (en) Junction of substances with different coefficients of thermal expansion and ultrasonic wave transmitter- receiver using it
JP2005109886A (en) Piezoelectric device, manufacturing method thereof, cellular telephone apparatus using the same, and electronic apparatus using the same
JP2008072618A (en) Piezoelectric device and method for manufacturing thereof
JP2004266763A (en) Package for piezoelectric device and manufacturing method thereof, piezoelectric device utilizing the package, and electronic apparatus utilizing the piezoelectric device
JP2010245266A (en) Electronic component and method of manufacturing the same
JP2001145194A (en) Ultrasonic wave generator and method of manufacturing the same
JP2013045880A (en) Manufacturing method of electronic device
JP2002034098A (en) Ultrasonic probe and its manufacturing method
JP2011244118A (en) Manufacturing method for piezoelectric vibration piece, piezoelectric vibration piece, and piezoelectric device