JP2002319545A - MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH - Google Patents

MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH

Info

Publication number
JP2002319545A
JP2002319545A JP2001123345A JP2001123345A JP2002319545A JP 2002319545 A JP2002319545 A JP 2002319545A JP 2001123345 A JP2001123345 A JP 2001123345A JP 2001123345 A JP2001123345 A JP 2001123345A JP 2002319545 A JP2002319545 A JP 2002319545A
Authority
JP
Japan
Prior art keywords
thin film
substrate
gan
crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001123345A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tadatomo
一行 只友
Hiroaki Okagawa
広明 岡川
Yoichiro Ouchi
洋一郎 大内
Takashi Tsunekawa
高志 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2001123345A priority Critical patent/JP2002319545A/en
Publication of JP2002319545A publication Critical patent/JP2002319545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a GaN crystal capable of using a GaN crystal thin film as a start crystal for GaN crystal growth, and to provide a base material of the crystal growth for it. SOLUTION: A GaN crystal thin film (especially GaN crystal thin film) 1 of thickness 100 μm or less which is formed as an independent thin film by a solution growth method, or the like, is jointed onto a substrate 2, to provide a crystal growth base material comprising one surface 1b of the thin film as a start surface for growing GaN crystal, on which the GaN crystal is grown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低転位化された高
品質なGaN系結晶を製造する方法、およびそのための
結晶成長用基材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-quality GaN-based crystal with reduced dislocations, and a crystal growth substrate therefor.

【0002】[0002]

【従来の技術】GaN系結晶を用いた光素子、電子素子
が開発され実用化されている。一方で素子の高性能化が
検討され、結晶品質のさらなる向上が求められている。
特に、発光素子においては、GaN系結晶中に存在する
転位が発光を阻害し、また、素子の寿命を決定するとい
う重大な要因となることが知られており、素子の高輝度
化のためにも、素子の長寿命化のためにも結晶の低転位
化が強く求められている。
2. Description of the Related Art Optical devices and electronic devices using GaN-based crystals have been developed and put into practical use. On the other hand, higher performance of devices has been studied, and further improvement in crystal quality has been demanded.
In particular, in light emitting devices, it is known that dislocations present in the GaN-based crystal inhibit light emission, and are a serious factor in determining the lifetime of the device. However, there is a strong demand for lower dislocations in the crystal in order to extend the life of the device.

【0003】従来、MOVPE法、HVPE法などの種
々の気相成長法を用い、これに、バッファ層技術、ラテ
ラル成長技術などを加えて、サファイア基板やSiC基
板上に転位密度のより低いGaN結晶を成長させる試み
がなされてきた。しかし、GaN系結晶の低転位化、素
子の高性能化、長寿命化には、最初の出発基板の段階か
ら高品質のGaN結晶基板を用い、目的のGaN系結晶
をホモエピタキシャル成長させることが重要な技術とな
ってきている。
Conventionally, various vapor phase growth methods such as the MOVPE method and the HVPE method have been used, and a GaN crystal having a lower dislocation density has been formed on a sapphire substrate or a SiC substrate by adding a buffer layer technology and a lateral growth technology. Attempts have been made to grow. However, it is important to use a high-quality GaN crystal substrate from the initial starting substrate stage and grow the target GaN-based crystal homoepitaxially in order to reduce the dislocation of the GaN-based crystal, improve the performance of the device, and extend the life of the device. Technology.

【0004】上記のような気相成長法を用いた種々のG
aN系結晶成長が試みされる一方で、近年、溶液成長法
によるGaN結晶基板の作製技術の進歩も著しく、該基
板上へのホモエピタキシャルによる新しい素子構造が提
案されている。溶液成長法は、溶媒に溶質を飽和状態ま
で溶解させた後、温度や圧力などの条件をコントロール
し、GaN系結晶を晶出させることを基本とする、一種
の液相成長方法である。例えば、基本的な溶液成長法と
して、Ga融液に窒素ガスを飽和状態まで溶解させた
後、系の温度を下げることで過飽和状態を得て、GaN
結晶を成長させる方法が挙げられる。
Various types of G using the above-described vapor phase growth method are used.
While aN-based crystal growth has been attempted, in recent years, the technology for producing a GaN crystal substrate by the solution growth method has been remarkably advanced, and a new device structure by homoepitaxial growth on the substrate has been proposed. The solution growth method is a kind of liquid phase growth method based on dissolving a solute in a solvent to a saturated state and then controlling conditions such as temperature and pressure to crystallize a GaN-based crystal. For example, as a basic solution growth method, after a nitrogen gas is dissolved in a Ga melt to a saturated state, a supersaturated state is obtained by lowering the temperature of the system to obtain a GaN solution.
There is a method of growing a crystal.

【0005】溶液成長法の1つとして高圧溶液成長法が
知られているが、これは、窒素圧1.2〜1.5GP
a、温度1400〜1600℃の条件において、特定の
温度勾配の下、窒素を溶かしたGa溶液から過飽和のG
aN結晶を成長させる方法として報告されている(参照
文献:S. Porowski et al, J. Crystal Growth、 178
(1997)174.)。
As one of the solution growth methods, a high-pressure solution growth method is known, which is a nitrogen pressure of 1.2 to 1.5 GP.
a, under the conditions of a temperature of 1400 to 1600 ° C. and under a specific temperature gradient, a supersaturated G
It has been reported as a method for growing aN crystals (Reference: S. Porowski et al, J. Crystal Growth, 178).
(1997) 174. ).

【0006】さらには、圧力制御溶液成長法として、結
晶成長の間、溶質のガス圧力を連続的に印加し続け、平
衡圧力を上回る過剰圧力を印加することにより過飽和状
態としてGaN結晶を成長させる方法が報告されている
(参照文献:井上等、日本結晶成長会誌、27(200
0)54.)。
Further, as a pressure controlled solution growth method, a method of growing a GaN crystal in a supersaturated state by continuously applying a solute gas pressure during crystal growth and applying an excess pressure exceeding an equilibrium pressure. (Reference: Inoue et al., Journal of Japanese Society for Crystal Growth, 27 (200)
0) 54. ).

【0007】これらの溶液成長法によって、転位密度が
1×105cm-2以下にまで低減された高品質なGaN
単結晶が得られるようになってきている。しかし、これ
ら溶液成長法によって得られるGaN単結晶は、低転位
ではあるが、未だ厚膜のものが得られておらず、100
μmにも満たない薄膜であって、極めて割れやすく、取
扱いも困難である。
By these solution growth methods, high-quality GaN in which the dislocation density is reduced to 1 × 10 5 cm −2 or less.
Single crystals are becoming available. However, although the GaN single crystal obtained by these solution growth methods has low dislocations, a thick GaN single crystal has not yet been obtained.
It is a thin film having a thickness of less than μm, and is extremely fragile and difficult to handle.

【0008】[0008]

【発明が解決しようとする課題】一方、発光素子など、
種々の素子構造を形成するには、MOVPE法などの気
相成長法によって、組成の異なるGaN系結晶層を順次
積層することが必須である。気相成長用の装置では、該
装置の成長槽内に配置した出発基板に対して原料ガスを
供給し、出発基板上に目的の結晶を成長させる。
On the other hand, light-emitting elements and the like
In order to form various element structures, it is essential to sequentially stack GaN-based crystal layers having different compositions by a vapor growth method such as the MOVPE method. In an apparatus for vapor phase growth, a source gas is supplied to a starting substrate disposed in a growth tank of the apparatus, and a target crystal is grown on the starting substrate.

【0009】しかし、上記溶液成長法で得られたGaN
結晶薄膜を出発基板として、気相成長装置内でのGaN
系結晶成長を検討したところ、該GaN結晶薄膜は、取
扱いが困難である上に、該薄膜を成長槽内のテーブル上
に置いただけでは、供給される原料ガスの流れによっ
て、該薄膜が吹き飛ばされてしまい、気相成長装置内に
安定した姿勢で配置すること自体が困難であることがわ
かった。このような問題は、溶液成長法で得られるGa
N結晶薄膜またはGaN系結晶薄膜のみならず、他の方
法によって形成されるGaN系結晶薄膜を用いる場合で
あっても同様に生じる問題である。
However, the GaN obtained by the solution growth method described above
GaN in vapor phase epitaxy system using crystalline thin film as starting substrate
Examination of the system crystal growth revealed that the GaN crystal thin film was difficult to handle, and that the thin film was blown off by the flow of the supplied raw material gas if only the thin film was placed on the table in the growth tank. As a result, it has been found that it is difficult to arrange the apparatus in a stable posture in the vapor phase growth apparatus. Such a problem is caused by Ga obtained by a solution growth method.
The same problem arises not only when using an N crystal thin film or a GaN crystal thin film but also when using a GaN crystal thin film formed by another method.

【0010】本発明の課題は、上記問題を解決し、Ga
N系結晶薄膜をGaN系結晶成長の出発結晶として用い
ることが可能なGaN系結晶の製造方法、およびそのた
めの結晶成長用基材を提供することである。
[0010] An object of the present invention is to solve the above-mentioned problems and to provide Ga
An object of the present invention is to provide a method for producing a GaN-based crystal in which an N-based crystal thin film can be used as a starting crystal for growing a GaN-based crystal, and a crystal growth base material therefor.

【0011】[0011]

【課題を解決するための手段】本発明は、以下の特徴を
有するものである。 (1)単独の薄膜として形成された厚さ100μm以下
のGaN系結晶薄膜が、基板上に接合され、該薄膜の一
方の面がGaN系結晶を成長させるための出発面となっ
ていることを特徴とする結晶成長用基材。
SUMMARY OF THE INVENTION The present invention has the following features. (1) A GaN-based crystal thin film having a thickness of 100 μm or less formed as a single thin film is bonded on a substrate, and one surface of the thin film is a starting surface for growing a GaN-based crystal. Characteristic substrate for crystal growth.

【0012】(2)上記GaN系結晶薄膜が、溶液成長
法によって形成された単結晶薄膜である上記(1)記載
の結晶成長用基材。
(2) The substrate for crystal growth according to (1), wherein the GaN-based crystal thin film is a single crystal thin film formed by a solution growth method.

【0013】(3)上記GaN系結晶薄膜が、GaN結
晶薄膜であって、その窒素面を基板側に向けて該基板に
接合されており、該薄膜のガリウム面が上記出発面とな
っている上記(1)または(2)記載の結晶成長用基
材。
(3) The GaN-based crystal thin film is a GaN crystal thin film, which is bonded to the substrate with its nitrogen surface facing the substrate, and the gallium surface of the thin film serves as the starting surface. The substrate for crystal growth according to the above (1) or (2).

【0014】(4)上記基板が、GaN系結晶の成長温
度に耐え得る材料からなる基板である上記(1)記載の
結晶成長用基材。
(4) The substrate for crystal growth according to (1), wherein the substrate is a substrate made of a material that can withstand the growth temperature of the GaN-based crystal.

【0015】(5)上記基板が、サファイア、SiC、
石英、水晶、MgO、Si、AlN、SiO2、Si
X、SiO1-XX、TiO2、ZrO2、またはグラフ
ァイトのいずれかの材料からなる基板、またはこれらの
材料を複合的に用いてなる基板、またはこれらの基板の
上に直接またはバッファ層を介してGaN系結晶層を成
長させてなる基板である上記(1)または(4)記載の
結晶成長用基材。
(5) The substrate is made of sapphire, SiC,
Quartz, quartz, MgO, Si, AlN, SiO 2 , Si
A substrate made of any one of N x , SiO 1-x N x , TiO 2 , ZrO 2 , or graphite, a substrate made of a combination of these materials, or directly on or over these substrates The base material for crystal growth according to the above (1) or (4), which is a substrate formed by growing a GaN-based crystal layer via a layer.

【0016】(6)上記GaN系結晶薄膜と基板との接
合が、融点が1100℃以下の低融点ガラスを介在させ
た接合、または、融点が1100℃以下の金属を介在さ
せた接合であり、前記低融点ガラスまたは前記金属が、
GaN系結晶薄膜と基板との間に介在した状態で、その
融点以上に加熱されて接合材として作用している上記
(1)記載の結晶成長用基材。
(6) The bonding between the GaN-based crystal thin film and the substrate is bonding with a low melting point glass having a melting point of 1100 ° C. or less, or bonding with a metal having a melting point of 1100 ° C. or less, The low melting glass or the metal,
The base material for crystal growth according to (1), wherein the base material is heated above its melting point and acts as a bonding material while being interposed between the GaN-based crystal thin film and the substrate.

【0017】(7)上記金属がGa、In、およびAl
から選ばれる1以上の元素を含む金属である上記(6)
記載の結晶成長用基材。
(7) The metal is Ga, In, and Al
(6) which is a metal containing at least one element selected from the group consisting of:
The substrate for crystal growth according to the above.

【0018】(8)GaN系結晶を厚さ100μm以下
の単独の結晶薄膜として形成し、該GaN系結晶薄膜を
基板上に接合し、該結晶薄膜の一方の面からGaN系結
晶を成長させる工程を有するものであるGaN系結晶の
製造方法。
(8) A step of forming a GaN-based crystal as a single crystal thin film having a thickness of 100 μm or less, joining the GaN-based crystal thin film on a substrate, and growing a GaN-based crystal from one surface of the crystal thin film A method for producing a GaN-based crystal having:

【0019】(9)溶液成長法によって上記GaN系結
晶薄膜を形成し、該薄膜を基板上に接合するものである
上記(8)記載の製造方法。
(9) The method according to (8), wherein the GaN-based crystal thin film is formed by a solution growth method, and the thin film is bonded to a substrate.

【0020】[0020]

【発明の実施の形態】以下、本発明による結晶成長用基
材の例を挙げながら、同時に、本発明による製造方法を
説明する。図1、2は、本発明による結晶成長用基材の
構造の一例を示す模式図である。これらの図に示すよう
に、単独の薄膜として形成された厚さ100μm以下の
GaN系結晶薄膜1が、基板2上に接合され、該薄膜1
の一方の面1bがGaN系結晶を成長させるための出発
面となっている。また、本発明による製造方法は、該薄
膜1を基板2上に接合した後、該薄膜1の一方の面1b
からGaN系結晶を成長させる工程を有するものであ
る。後述するように、図1の例では、接合材3が介在す
ることによって、薄膜1と基板2との接合が達成されて
おり、図2の例では、保持構造によって、薄膜1と基板
2との直接的な接合が達成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the production method according to the present invention will be described while giving examples of the substrate for crystal growth according to the present invention. 1 and 2 are schematic diagrams showing an example of the structure of a substrate for crystal growth according to the present invention. As shown in these figures, a GaN-based crystal thin film 1 having a thickness of 100 μm or less formed as a single thin film is bonded on a substrate 2,
Is a starting surface for growing a GaN-based crystal. Further, in the manufacturing method according to the present invention, after bonding the thin film 1 on the substrate 2, one surface 1b of the thin film 1 is formed.
From the step of growing a GaN-based crystal. As described later, in the example of FIG. 1, the bonding of the thin film 1 and the substrate 2 is achieved by the interposition of the bonding material 3, and in the example of FIG. Direct bonding has been achieved.

【0021】上記構成のように、結晶成長装置へのセッ
トが困難な割れやすいGaN系結晶薄膜であっても、基
板で支持することによって、破壊することなく容易に取
り扱うことが可能となり、また、種々の結晶成長装置、
特に原料ガス流が作用する気相成長装置内にセットして
も、原料ガス流に吹き飛ばされることなく、装置内で安
定した姿勢を保ち、GaN系結晶薄膜面から好ましいG
aN系結晶の成長が可能となる。
As described above, even a fragile GaN-based crystal thin film which is difficult to set in a crystal growth apparatus can be easily handled without being broken by supporting it on a substrate. Various crystal growth equipment,
In particular, even when set in a vapor phase growth apparatus in which a source gas flow acts, a stable posture is maintained in the apparatus without being blown off by the source gas stream, and a preferable G from the GaN-based crystal thin film surface.
An aN-based crystal can be grown.

【0022】本発明に用いられるGaN系結晶薄膜は、
厚さ100μm以下であって、その結晶品質が、高品質
なGaN系結晶を成長させ得る成長の起点(成長出発
面)となり得るものであればよい。例えば、転位密度
が、107cm-2以下であれば、サフィア基板上に成長
するよりはるかに高品質、低欠陥密度のGaNエピタキ
シャル結晶を得ることができる。厚さ100μmを超え
た結晶薄膜は、薄膜全体の重量が増加しているので、原
料ガス流に吹き飛ばされ難く、本発明が解決しようとす
る問題が軽減されている。
The GaN-based crystal thin film used in the present invention comprises:
Any thickness may be used as long as the thickness is 100 μm or less and the crystal quality can be a starting point of growth (growth starting surface) for growing a high-quality GaN-based crystal. For example, when the dislocation density is 10 7 cm −2 or less, a GaN epitaxial crystal with much higher quality and lower defect density than that grown on a sapphire substrate can be obtained. The crystal thin film having a thickness exceeding 100 μm is hard to be blown off by the raw material gas flow because the weight of the whole thin film is increased, and the problem to be solved by the present invention is reduced.

【0023】GaN系結晶とは、AlxGa1-x-yIny
N(0≦x≦1、0≦y≦1、0≦x+y≦1)で示さ
れる化合物半導体結晶をいう。結晶薄膜としては、前記
式中の組成比x、yを変化させたものとして、特にGa
Nが重要である。また、結晶薄膜上に成長させるべきG
aN系結晶としては、例えば、GaN、AlGaN(例
えば、Al0.2Ga0.8N)、InGaN(例えば、In
0.4Ga0.6N)などが挙げられる。
The GaN-based crystal is Al x Ga 1-xy In y
A compound semiconductor crystal represented by N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). As the crystalline thin film, the composition ratio x, y in the above formula is changed,
N is important. G to be grown on a crystalline thin film
Examples of the aN-based crystal include GaN, AlGaN (eg, Al 0.2 Ga 0.8 N), InGaN (eg, In
0.4 Ga 0.6 N).

【0024】高品質でありながら単独の薄膜として存在
するGaN系結晶薄膜の形成方法としては、従来技術の
説明で述べた、高圧溶液成長法、圧力制御溶液成長法な
どを含む溶液成長法が挙げられる。前記溶液成長法によ
れば、転位密度が1×105cm-2にも達するような低
転位のGaN系結晶薄膜、特に重要な組成のものとして
GaN結晶薄膜が得られる。前記溶液成長法が今後さら
なる発展をとげ、100μmを超える厚さのGaN系結
晶膜が得られるようになったとしても、本発明では、こ
れらの方法によって得られる厚さ100μm以下のGa
N系結晶薄膜を利用すればよい。以下、結晶薄膜の例と
してGaN結晶薄膜を挙げて、本発明を説明する。
As a method of forming a GaN-based crystal thin film which exists as a single thin film while having high quality, a solution growth method including a high-pressure solution growth method, a pressure control solution growth method and the like described in the description of the prior art can be cited. Can be According to the solution growth method, a GaN-based crystal thin film having a low dislocation density as high as 1 × 10 5 cm −2 , particularly a GaN crystal thin film having an important composition, can be obtained. Even if the solution growth method further develops in the future, and a GaN-based crystal film having a thickness exceeding 100 μm can be obtained, the present invention does not limit the thickness of the Ga film having a thickness of 100 μm or less obtained by these methods.
An N-based crystal thin film may be used. Hereinafter, the present invention will be described using a GaN crystal thin film as an example of the crystal thin film.

【0025】GaN結晶薄膜の面の大きさ(外周形状)
は、限定されないが、ウエハとして用いる点から、例え
ば、10mm×10mmの正方形を包含し得る外周形状
など、より大きい形状であることが好ましい。
Surface size of GaN crystal thin film (peripheral shape)
Is not limited, but is preferably a larger shape such as an outer peripheral shape that can include a square of 10 mm × 10 mm from the viewpoint of use as a wafer.

【0026】上記GaN結晶薄膜を接合すべき基板は、
取扱いが容易であり、気相成長装置内において原料ガス
流で吹き飛ばされることのないような、十分な厚さ、外
形、重量を有するものであればよい。
The substrate to which the GaN crystal thin film is to be bonded is
Any material may be used as long as it is easy to handle and has a sufficient thickness, outer shape and weight so as not to be blown off by the source gas flow in the vapor phase growth apparatus.

【0027】基板の厚さは、薄膜の取扱いを改善し得る
よう、100μm以上、特に250μm以上が好まし
い。基板の外形は限定されないが、例えば、図1(a)
に示すようにGaN結晶薄膜と同程度の大きさ、また
は、図1(b)に示すようにGaN結晶薄膜以上の大き
さが好ましい。また、図1(c)に示すように、基板に
凹部2aを設け、GaN結晶薄膜1を該凹部2a内には
め込んで接合し、基板面における該薄膜の位置を固定す
る態様であってもよい。
The thickness of the substrate is preferably 100 μm or more, particularly preferably 250 μm or more so that the handling of the thin film can be improved. Although the outer shape of the substrate is not limited, for example, as shown in FIG.
As shown in FIG. 1, the size is preferably about the same as the GaN crystal thin film, or as shown in FIG. Further, as shown in FIG. 1C, a mode in which a concave portion 2a is provided in the substrate, the GaN crystal thin film 1 is fitted into the concave portion 2a and joined, and the position of the thin film on the substrate surface may be fixed. .

【0028】基板の材料としては、1000℃を超える
GaN系結晶の成長条件に耐え得ること、即ち、GaN
系結晶を成長させる際の圧力、温度下で蒸発しないこと
が必要であり、融点が1100℃以上の材料からなる基
板が好ましい。そのような材料としては、サファイア、
SiC、石英、水晶、MgO、Si、AlNなどが挙げ
られる。また、前記材料からなる結晶基板上に、GaN
系低温バッファ層などの種々のバッファ層を介する等し
て、GaN系結晶(特にGaN結晶)を成長させた基板
などであってもよい。また、基板の材料または基板表面
の材料として、GaN系結晶が実質的に成長し得ない材
料、例えば、SiO2、SiNX、SiO1-XX、TiO
2、ZrO2、グラファイト等を用いてもよい。これら基
板は、結晶であっても非晶質であってもよい。
As a material of the substrate, a material capable of withstanding the growth conditions of a GaN-based crystal exceeding 1000 ° C.
It is necessary not to evaporate under the pressure and temperature at which the system crystal is grown, and a substrate made of a material having a melting point of 1100 ° C. or more is preferable. Such materials include sapphire,
SiC, quartz, quartz, MgO, Si, AlN and the like can be mentioned. Also, GaN is placed on a crystal substrate made of the above material.
A substrate on which a GaN-based crystal (especially, a GaN crystal) is grown through various buffer layers such as a low-temperature-based buffer layer may be used. In addition, as a material of the substrate or a material of the substrate surface, a material in which a GaN-based crystal cannot substantially grow, for example, SiO 2 , SiN x , SiO 1-x N x , TiO
2, ZrO 2, may be used graphite. These substrates may be crystalline or amorphous.

【0029】上記の溶液成長法では、GaN結晶薄膜の
外形(膜面の外周形状)は、通常、不規則に成長した形
状となるので、これを包含して支持し得る外形の基板が
好ましい。現段階での溶液成長法で得られるGaN結晶
薄膜に対しては、標準品として流通しているサファイア
基板(厚さ350μm、直径50mmの円板状)程度の
大きさが取扱いの点でも好適である。
In the above-mentioned solution growth method, the outer shape (outer peripheral shape of the film surface) of the GaN crystal thin film usually has an irregularly grown shape. Therefore, a substrate having an outer shape that can support the GaN crystal thin film is preferable. For the GaN crystal thin film obtained by the solution growth method at the present stage, the size of a sapphire substrate (350 μm thick, 50 mm diameter disk-shaped), which is distributed as a standard product, is preferable in terms of handling. is there.

【0030】GaN結晶薄膜と基板との接合は、両者を
一体的に取り扱うことができ、かつ、結晶成長装置内に
おいて該薄膜が基板から剥離しない状態、特に、気相成
長装置内において、GaN系結晶の成長条件下で原料ガ
ス流を受けても、該薄膜が基板から剥離しない状態であ
ればよい。両者の接合は、接合材を介在させた接合で
も、両者の直接的な接合でもよい。両者の直接的な接合
としては、溶着や化学的結合など界面での両者の一体的
結合、保持手段によって両者の接触状態が維持された状
態となっている接合、基板に形成された保持構造によっ
て薄膜が保持され両者の接触状態が維持された状態とな
っている接合などが挙げられる。例えば、参照文献(J.
Crystal Growth 174(1997)213.D. A. Va
nderwaterら)に記載の方法に準じた手法(熱圧着)に
よって、サフィア基板上にGaNを成長させたエピ基板
と、GaN結晶薄膜とを貼り合わすことができる。ま
た、これらを組み合せた接合であってもよい。
The bonding of the GaN crystal thin film and the substrate can be performed integrally with each other, and the GaN-based thin film is not separated from the substrate in the crystal growth apparatus. It is sufficient if the thin film does not peel off from the substrate even when the source gas flow is received under crystal growth conditions. The joining of both may be a joining with a joining material interposed or a direct joining of both. The direct joining of the two includes the integral joining of the two at the interface, such as welding or chemical bonding, the joining in which the contact state is maintained by the holding means, and the holding structure formed on the substrate Bonding in which the thin film is held and the state of contact between the two is maintained. For example, the reference (J.
Crystal Growth 174 (1997) 213. DA Va
The epi-substrate obtained by growing GaN on a sapphire substrate and a GaN crystal thin film can be bonded by a method (thermocompression bonding) according to the method described in Nderwater et al. Further, a combination of these may be used.

【0031】上記薄膜と基板とを接合材を介在させて接
合する場合、接合材としては、GaN系結晶の成長条件
においても、蒸発しない材料であって、かつ、上記した
ように両者を剥離させないように両者の間に介在し得る
ものであればよい。そのような接合材としては、低融点
ガラス、低融点金属が好ましいものとして挙げられる。
ここで言う低融点とは、1100℃以下、特に150℃
〜900℃程度の融点である。また、選択される基板に
対しては、その基板の融点未満のものを選択することが
好ましい。接合材として低融点のものを用いることによ
って、上記GaN結晶薄膜と基板の熱損傷を防ぐことが
できる。
When the thin film and the substrate are joined with a joining material interposed therebetween, the joining material is a material that does not evaporate even under the growth conditions of the GaN-based crystal, and does not separate the two as described above. As long as it can intervene between them as described above. Preferred examples of such a bonding material include low-melting glass and low-melting metal.
Here, the low melting point is 1100 ° C. or less, particularly 150 ° C.
The melting point is about 900 ° C. Further, it is preferable to select a substrate having a melting point lower than the melting point of the selected substrate. By using a material having a low melting point as the bonding material, thermal damage to the GaN crystal thin film and the substrate can be prevented.

【0032】上記低融点ガラスとしては、(PbO−S
iO2−B23)系、(PbO−SiO2−ZnO)系、
(PbO−ZnO−B23)系に、MoO3、MnO2
ZrO2を固溶させたガラス、あるいは(BaO−Zr
2−B23)系にSiO2、Al23が添加されたガラ
スなどが挙げられる。これらのガラス粉末を介存させて
650〜950℃の熱処理する方法などで接合が得られ
る。
As the low melting point glass, (PbO—S
iO 2 —B 2 O 3 ), (PbO—SiO 2 —ZnO),
(PbO—ZnO—B 2 O 3 ) -based MoO 3 , MnO 2 ,
Glass in which ZrO 2 is dissolved, or (BaO-Zr
O 2 -B 2 O 3) based glass or the like SiO 2, Al 2 O 3 is added can be mentioned in the. Bonding can be obtained by a heat treatment at 650 to 950 ° C. with these glass powders interposed.

【0033】また、上記低融点金属としては、Ga、I
n、Al、Sn、Sb、Au、Bi、Agなどが挙げら
れる。特に好ましいものとして、単一金属としてのG
a、In、Al、または、これらのうちの2以上の金属
からなる合金、または、前記単一金属や合金と、他の金
属(Siなど)との合金などが挙げられる。Ga、I
n、Alは、GaN結晶薄膜上に結晶成長するAlIn
GaNの構成元素であり不純物汚染の危惧が少ないので
望ましい材料である。
As the low melting point metal, Ga, I
n, Al, Sn, Sb, Au, Bi, Ag and the like. Particularly preferred is G as a single metal.
a, In, Al, or an alloy composed of two or more of these metals, or an alloy of the single metal or alloy and another metal (such as Si). Ga, I
n and Al are AlIn grown on a GaN crystal thin film.
This is a desirable material because it is a constituent element of GaN and has little risk of impurity contamination.

【0034】上記低融点ガラス、低融点金属を接合材と
して用い、上記薄膜と基板とを接合するには、これら接
合材を、板状、粒状、粉状、ペースト状として、上記薄
膜と基板との間に介在させ、RTA(Rapid Thermal An
neal)、加熱炉によって、その融点以上に加熱すればよ
い。上記薄膜が極めて割れやすく、接合時の密着に圧力
を作用させ難い点を考慮すれば、両者の平行な接合に
は、接合材を板状とする態様が好ましい。図1(c)の
例では、接合材3は、薄膜1の下面と、基板凹部2aの
底面との間に介在しているが、薄膜外周壁と凹部内周壁
との間に介在する態様でもよい。
In order to bond the thin film and the substrate by using the low-melting glass and the low-melting metal as a bonding material, the bonding material is formed into a plate, a particle, a powder, and a paste. RTA (Rapid Thermal An
neal), it may be heated above its melting point by a heating furnace. In consideration of the fact that the thin film is extremely fragile and it is difficult to apply pressure to the adhesion at the time of joining, it is preferable that the joining material be plate-like for joining both in parallel. In the example of FIG. 1C, the bonding material 3 is interposed between the lower surface of the thin film 1 and the bottom surface of the concave portion 2a of the substrate, but may be interposed between the outer peripheral wall of the thin film and the inner peripheral wall of the concave portion. Good.

【0035】500℃未満の温度ではGaN結晶薄膜の
熱損傷はほとんど無いが、500℃以上に温度を上げる
時には、急熱急冷の温度プロファイル(時間の経過に対
する温度変化曲線)に従うことが、熱損傷対策という意
味で望ましい。この時の温度勾配は、1〜20℃/se
cが望ましい。
At a temperature lower than 500 ° C., there is almost no thermal damage to the GaN crystal thin film. However, when the temperature is raised to 500 ° C. or higher, it is necessary to follow a rapid thermal quenching temperature profile (temperature change curve over time). It is desirable in terms of measures. The temperature gradient at this time is 1 to 20 ° C./sec.
c is desirable.

【0036】接合材を過熱するに際しては、アンモニア
を含んだガス雰囲気中で行うことが好ましい。これは、
N分圧が発生するので、GaN結晶薄膜を保護する作用
効果があり、また、接合材が窒化されて固体化する場合
もあり好ましい態様となる。
It is preferable to heat the bonding material in a gas atmosphere containing ammonia. this is,
Since the N partial pressure is generated, there is an effect of protecting the GaN crystal thin film, and the bonding material may be nitrided and solidified, which is a preferable embodiment.

【0037】金属系の接合材を用いる時には、同質のあ
るいは異質の金属で接合面をメタライズすることが好ま
しく、これによって、接合材とのぬれ性が高まり、接合
の状態が向上する。
When a metal-based joining material is used, it is preferable to metallize the joining surface with a homogeneous or dissimilar metal, thereby increasing the wettability with the joining material and improving the joining condition.

【0038】接合材の厚さは1μm〜100μm程度、
特に、5μm〜50μm程度が好ましい。接合材の介在
は、必ずしも両者の界面全体にわたる必要はなく、外周
縁など、必要な部分だけであってもよい。
The thickness of the joining material is about 1 μm to 100 μm,
Particularly, it is preferably about 5 μm to 50 μm. The interposition of the bonding material does not necessarily have to extend over the entire interface between them, but may be only necessary parts such as the outer peripheral edge.

【0039】上記低融点ガラス、低融点金属を接合材と
して用いた場合、GaN系結晶を成長させる際には、1
000℃以上にも達する結晶成長温度によって、該接合
材は溶融した状態となるが、上記薄膜の接合面は溶融し
た接合材によって濡れ、溶融した接合材から表面張力を
受ける。これによって、気相成長装置内の原料ガス流に
さらされても上記薄膜が基板から吹き飛ばされることは
ない。
When the above low melting point glass or low melting point metal is used as a bonding material, when growing a GaN-based crystal,
The bonding material is in a molten state by the crystal growth temperature reaching 000 ° C. or more, but the bonding surface of the thin film is wetted by the molten bonding material and receives a surface tension from the molten bonding material. Thus, the thin film is not blown off from the substrate even when exposed to the source gas flow in the vapor phase growth apparatus.

【0040】上記薄膜と基板とを直接的に接合する場合
の構成例としては、例えば、図2(a)、(b)に示す
ような種々の保持手段4を用いた保持構造が挙げられ
る。図2(a)に示す構成例は、基板2上に上記薄膜1
を置き、その上から周囲を保持プレート4bで抑え込ん
だ態様である。保持プレート4bは、部分的に上記薄膜
1を抑え込むものでもよく、また、図2(a)に示すよ
うに、大面積のプレートに上記薄膜1を露出させるため
の開口4cを設けた態様でもよい。図2(a)の構成例
における4aは、保持プレート4bを基板に保持するた
めのスペーサ兼接合材である。該スペーサ兼接合材4a
は、上記薄膜1よりも薄く形成し強い保持力を該薄膜に
作用させてもよいが、該薄膜が原料ガス流に吹き飛ばさ
れない範囲で、該薄膜よりも厚く形成してもよい。
As an example of a structure in which the thin film and the substrate are directly bonded, for example, a holding structure using various holding means 4 as shown in FIGS. 2A and 2B can be mentioned. The configuration example shown in FIG.
Is placed, and the periphery is suppressed from above by the holding plate 4b. The holding plate 4b may partially hold down the thin film 1 or, as shown in FIG. 2A, a mode in which an opening 4c for exposing the thin film 1 is provided in a large-area plate. . 2a in the configuration example of FIG. 2A is a spacer / joining material for holding the holding plate 4b on the substrate. The spacer / joining material 4a
May be formed thinner than the thin film 1 to apply a strong holding force to the thin film, but may be formed thicker than the thin film as long as the thin film is not blown off by the source gas flow.

【0041】図2(b)に示す構成例は、基板2に凹部
を形成し、内部に上記薄膜1をはめ込み、その上から保
持具(保持プレート)4で抑え込んだ態様である。図2
(a)の例と同様、保持プレート4は、部分的に上記薄
膜1を抑え込むものでもよく、大面積のプレートに上記
薄膜1を露出させるための開口4cを設けた態様でもよ
い。
FIG. 2B shows a configuration example in which a concave portion is formed in the substrate 2, the thin film 1 is fitted inside the substrate 2, and the holding member (holding plate) 4 holds down the thin film 1 from above. FIG.
As in the example of (a), the holding plate 4 may partially suppress the thin film 1 or may have a mode in which an opening 4c for exposing the thin film 1 is provided in a large-area plate.

【0042】上記保持プレート等の保持手段の材料は、
基板と同様の材料を用いてよく、また、GaN系結晶が
実質的に成長し得ない材料を用いて、該保持手段からの
GaN系結晶成長を抑制してもよい。
The material of the holding means such as the holding plate is as follows:
The same material as that of the substrate may be used, or the growth of the GaN-based crystal from the holding means may be suppressed by using a material in which the GaN-based crystal cannot substantially grow.

【0043】GaN結晶薄膜は、その両面のうち一方の
面が窒素面、他方の面がガリウム面となっている。Ga
N系結晶を成長させる場合、ガリウム面を成長面として
用いることが、高品質の結晶薄膜を成長するためには重
要である。よって、図1(a)に示すように、GaN結
晶薄膜1を基板2に接合するに際しては、該薄膜の窒素
面1aを基板との接合面とし、該薄膜のガリウム面1b
を上側に向けて、GaN系結晶成長のための出発面とす
ることが好ましい。
The GaN crystal thin film has a nitrogen surface on one surface and a gallium surface on the other surface. Ga
When growing an N-based crystal, it is important to use a gallium plane as a growth plane in order to grow a high-quality crystal thin film. Therefore, as shown in FIG. 1A, when bonding the GaN crystal thin film 1 to the substrate 2, the nitrogen surface 1a of the thin film is used as a bonding surface with the substrate, and the gallium surface 1b of the thin film is bonded.
Is preferably directed upward to be a starting surface for GaN-based crystal growth.

【0044】[0044]

【実施例】実施例1 本実施例では、圧力制御溶液成長法によってGaN結晶
薄膜を形成し、これをメタライジングを施したエピ基板
に接合して結晶成長用基材とし、これにGaN系結晶を
成長させて、発光素子とし、成長工程での接合状態、G
aN系結晶の品質(発光素子の出力)を評価した。
EXAMPLE 1 In this example, a GaN crystal thin film was formed by a pressure controlled solution growth method, and this was bonded to a metallized epi-substrate to form a base material for crystal growth. To form a light emitting element, and the bonding state in the growth process, G
The quality of the aN-based crystal (output of the light emitting element) was evaluated.

【0045】GaN結晶薄膜として、圧力制御溶液成長
法によって形成され、厚さ30μm、25mm×25m
mの大きさに切り出されたものを用意した。該GaN結
晶薄膜の転位密度は、カソードルミネッセンス(CL)
観察の結果、約2×104cm-2と推定された。このG
aN結晶薄膜の窒素面に、メタライジングとして、Al
を2μm蒸着した。
A GaN crystal thin film is formed by a pressure control solution growth method and has a thickness of 30 μm, 25 mm × 25 m
A piece cut into a size of m was prepared. The dislocation density of the GaN crystal thin film is determined by cathodoluminescence (CL).
As a result of observation, it was estimated to be about 2 × 10 4 cm −2 . This G
Al metallizing on the nitrogen surface of the aN crystal thin film
Was deposited at 2 μm.

【0046】サファイア基板上に、低温成長AlNバッ
ファ層を介してGaN層を2μm成長させたエピ基板を
用意し、該GaN層表面にメタライジングとして、Al
を2μm蒸着し、本発明で用いる基板とした。
An epi-substrate was prepared by growing a GaN layer on a sapphire substrate through a low-temperature-grown AlN buffer layer at a thickness of 2 μm.
Was deposited by 2 μm to obtain a substrate used in the present invention.

【0047】GaN結晶薄膜と基板の、各々メタライジ
ングした側を合わせて、RTA装置で700℃×2分間
の熱処理を行い、本発明による結晶成長用基材を得た。
前記熱処理における昇温速度は5℃/sec、降温速度
も略同じ速度とした。雰囲気はアンモニアを10%含有
した窒素ガスとした。但し、急冷時は窒素ガスのみとし
た。得られた結晶成長用基材におけるGaN結晶薄膜と
基板とは室温で十分な接合強度を有していた。
The metallized sides of the GaN crystal thin film and the substrate were combined and heat-treated at 700 ° C. for 2 minutes using an RTA apparatus to obtain a substrate for crystal growth according to the present invention.
The rate of temperature rise in the heat treatment was 5 ° C./sec, and the rate of temperature decrease was approximately the same. The atmosphere was nitrogen gas containing 10% ammonia. However, during quenching, only nitrogen gas was used. The GaN crystal thin film and the substrate in the obtained substrate for crystal growth had sufficient bonding strength at room temperature.

【0048】上記で得られた結晶成長用基板を、常圧横
型MOVPE装置に装填し、GaN結晶薄膜の表面上へ
のホモエピタキシャル成長およびヘテロエピタキシャル
成長により、発光波長375nmのLED用のエピ基板
の結晶成長を行った。即ち、n-GaNコンタクト層、
n-AlGaNクラッド層、4層の井戸層を有したMQ
W構造の発光層、p-AlGaNクラッド層、p-GaN
コンタクト層を成長させた。
The substrate for crystal growth obtained above is loaded into an atmospheric-pressure horizontal MOVPE apparatus, and homoepitaxial growth and heteroepitaxial growth on the surface of a GaN crystal thin film are used to grow an epitaxial substrate for an LED having an emission wavelength of 375 nm. Was done. That is, an n-GaN contact layer,
MQ having n-AlGaN cladding layer and four well layers
Light emitting layer of W structure, p-AlGaN cladding layer, p-GaN
A contact layer was grown.

【0049】MOVPE装置から取り出し、通常の素子
化プロセスを経てLEDチップを完成した。このとき、
素子分離を容易に行うことを目的としてサファイア基板
に研磨を施したが、接合面は研磨に耐える十分な接着強
度を有していた。上記プロセスで採取されたLEDチッ
プの各出力(ベアチップ状態、波長375nm、通電2
0mAにて)を測定した。測定結果(平均値)を下記表
1に示す。
The LED chip was taken out of the MOVPE apparatus and completed through a normal element forming process. At this time,
The sapphire substrate was polished for the purpose of facilitating element separation, but the bonding surface had sufficient adhesive strength to withstand the polishing. Each output of the LED chip collected in the above process (bare chip state, wavelength 375 nm, energization 2
At 0 mA). Table 1 below shows the measurement results (average values).

【0050】実施例2 本実施例では、圧力制御溶液成長法によって得られたG
aN結晶薄膜と、エピ基板とを、接合材を介することな
く直接的に接合し、実施例1と同様に成長工程での接合
状態、GaN系結晶の品質(発光素子の出力)を評価し
た。
Example 2 In this example, G obtained by the pressure controlled solution growth method was used.
The aN crystal thin film and the epi-substrate were directly joined without the interposition of a joining material, and the joining state in the growth step and the quality of the GaN-based crystal (output of the light emitting element) were evaluated in the same manner as in Example 1.

【0051】圧力制御溶液成長法によって得られた、厚
さ35μm、25mm×25mmの大きさに切り出した
GaN結晶薄膜を用意した。該GaN結晶薄膜の転位密
度は、CL観察の結果、約3×104cm-2と推定され
た。
A GaN crystal thin film cut out to a size of 25 mm × 25 mm and having a thickness of 35 μm obtained by a pressure control solution growth method was prepared. As a result of CL observation, the dislocation density of the GaN crystal thin film was estimated to be about 3 × 10 4 cm −2 .

【0052】サファイア基板上に低温成長AlNバッフ
ァ層を介してGaNを2μm成長したエピ基板を用意し
た。この該エピ基板面(ガリウム面)に、上記GaN結
晶薄膜の窒素面を、結晶方位を合わせて重ね合わせ、8
50℃、10分間の熱処理を行い、本発明による結晶成
長用基材を得た。
An epi-substrate was prepared by growing GaN to a thickness of 2 μm on a sapphire substrate via a low-temperature-grown AlN buffer layer. On the epi-substrate surface (gallium surface), the nitrogen surface of the GaN crystal thin film is superposed with the same crystal orientation.
Heat treatment was performed at 50 ° C. for 10 minutes to obtain a substrate for crystal growth according to the present invention.

【0053】前記熱処理におけるガス雰囲気は、GaN
結晶の熱損傷を防止する目的でアンモニアガスと窒素ガ
スの混合ガスを用いた。熱処理にはRTA装置を用い、
昇温速度は5℃/sec、降温速度も略同じ速度とし
た。RTA装置から取り出された当該結晶成長用基板
は、室温で十分な接着強度を有していた。
The gas atmosphere in the heat treatment is GaN
A mixed gas of ammonia gas and nitrogen gas was used to prevent thermal damage to the crystal. RTA equipment is used for heat treatment.
The rate of temperature rise was 5 ° C./sec, and the rate of temperature decrease was approximately the same. The crystal growth substrate taken out of the RTA apparatus had a sufficient adhesive strength at room temperature.

【0054】上記で得られた結晶成長用基板を、常圧横
型MOVPE装置に装填し、上記実施例1と同様のプロ
セスでLEDチップを完成した。このとき、実施例1と
同様、サファイア基板に研磨を施したが、接合面は研磨
に耐える十分な接着強度を有していた。上記プロセスで
採取されたLEDチップの各出力を実施例1と同様に測
定した結果(平均値)を下記表1に示す。
The substrate for crystal growth obtained above was loaded into an atmospheric pressure horizontal MOVPE apparatus, and an LED chip was completed in the same process as in Example 1 above. At this time, as in Example 1, the sapphire substrate was polished, but the bonding surface had a sufficient adhesive strength to withstand the polishing. Table 1 below shows the results (average values) of the outputs of the LED chips collected in the above process, which were measured in the same manner as in Example 1.

【0055】比較例 上記実施例に対する比較例として、本発明による結晶成
長用基材を用いず、サファイア基板上に低温成長AlN
バッファ層を介して素子層を成長させたこと以外は実施
例1と同様のプロセスでLEDチップを完成した。実施
例1と同様に測定した発光出力の平均値を下記表1に示
す。
COMPARATIVE EXAMPLE As a comparative example with respect to the above embodiment, low-temperature growth of AlN on a sapphire substrate without using the substrate for crystal growth according to the present invention.
An LED chip was completed by the same process as in Example 1 except that the element layer was grown via the buffer layer. Table 1 below shows the average value of the light emission output measured in the same manner as in Example 1.

【0056】[0056]

【表1】 [Table 1]

【0057】上記実施例1、2の結果から明らかなとお
り、圧力制御溶液成長法による厚さ35μmもの薄いG
aN結晶薄膜であっても、これを容易に取り扱うことが
でき、気相成長装置内においてGaN系結晶を成長させ
ることができた。また、基板との接合状態も、機械加工
に耐え得る充分な接合強度を有していることがわかっ
た。また、圧力制御溶液成長法によって得られた高品質
なGaN結晶をGaN系結晶の成長出発面として用いた
ことによって、得られた発光素子の出力も充分に向上し
ていた。
As is apparent from the results of Examples 1 and 2, G as thin as 35 μm by the pressure-controlled solution growth method was used.
Even an aN crystal thin film could be easily handled and a GaN-based crystal could be grown in a vapor phase growth apparatus. Also, it was found that the bonding state with the substrate also had sufficient bonding strength to withstand machining. In addition, by using a high-quality GaN crystal obtained by the pressure-controlled solution growth method as a growth starting surface of a GaN-based crystal, the output of the obtained light-emitting element has been sufficiently improved.

【0058】[0058]

【発明の効果】本発明によって、厚さ100nm以下の
GaN系結晶薄膜であっても、気相成長装置内での原料
ガス流に吹き飛ばされることがなく、該薄膜面をGaN
系結晶の成長出発面として用いることが可能となった。
According to the present invention, even if a GaN-based crystal thin film having a thickness of 100 nm or less is not blown off by the source gas flow in the vapor phase growth apparatus, the thin film surface is
It can be used as a growth starting surface for a system crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の結晶成長用基材の構造例を示す模式図
である。同図では、識別のために、GaN結晶薄膜1に
のみハッチングを施している。
FIG. 1 is a schematic view showing a structural example of a substrate for crystal growth of the present invention. In the figure, only the GaN crystal thin film 1 is hatched for identification.

【図2】本発明の結晶成長用基材の他の構造例を示す模
式図である。同図では、識別のために、GaN結晶薄膜
1、保持手段4にハッチングを施している。
FIG. 2 is a schematic view showing another example of the structure of the substrate for crystal growth of the present invention. In the figure, the GaN crystal thin film 1 and the holding means 4 are hatched for identification.

【符号の説明】[Explanation of symbols]

1 GaN結晶薄膜(GaN系結晶薄膜) 2 基板 3 接合材 1 GaN crystal thin film (GaN-based crystal thin film) 2 Substrate 3 Bonding material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 洋一郎 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 常川 高志 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 5F041 CA05 CA40 CA46 CA63 CA65 5F052 KB06 5F053 AA03 BB27 DD20 GG01 HH04 LL02 RR03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoichiro Ouchi 4-3 Ikejiri, Itami-shi, Hyogo Prefecture Mitsubishi Cable Industries, Ltd. Itami Works (72) Inventor Takashi Tsunekawa 4-3-1 Ikejiri, Itami-shi, Hyogo Mitsubishi Electric Wire F-term (reference) in Itami Works 5F041 CA05 CA40 CA46 CA63 CA65 5F052 KB06 5F053 AA03 BB27 DD20 GG01 HH04 LL02 RR03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 単独の薄膜として形成された厚さ100
μm以下のGaN系結晶薄膜が、基板上に接合され、該
薄膜の一方の面がGaN系結晶を成長させるための出発
面となっていることを特徴とする結晶成長用基材。
1. Thickness 100 formed as a single thin film
A base material for crystal growth, characterized in that a GaN-based crystal thin film of μm or less is bonded on a substrate, and one surface of the thin film is a starting surface for growing a GaN-based crystal.
【請求項2】 上記GaN系結晶薄膜が、溶液成長法に
よって形成された単結晶薄膜である請求項1記載の結晶
成長用基材。
2. The substrate for crystal growth according to claim 1, wherein said GaN-based crystal thin film is a single crystal thin film formed by a solution growth method.
【請求項3】 上記GaN系結晶薄膜が、GaN結晶薄
膜であって、その窒素面を基板側に向けて該基板に接合
されており、該薄膜のガリウム面が上記出発面となって
いる請求項1または2記載の結晶成長用基材。
3. The GaN-based crystal thin film, wherein the GaN crystal thin film is bonded to the substrate with its nitrogen surface facing the substrate, and the gallium surface of the thin film is the starting surface. Item 3. The substrate for crystal growth according to item 1 or 2.
【請求項4】 上記基板が、GaN系結晶の成長温度に
耐え得る材料からなる基板である請求項1記載の結晶成
長用基材。
4. The substrate for crystal growth according to claim 1, wherein the substrate is a substrate made of a material that can withstand the growth temperature of the GaN-based crystal.
【請求項5】 上記基板が、サファイア、SiC、石
英、水晶、MgO、Si、AlN、SiO2、SiNX
SiO1-XX、TiO2、ZrO2、またはグラファイト
のいずれかの材料からなる基板、またはこれらの材料を
複合的に用いてなる基板、またはこれらの基板の上に直
接またはバッファ層を介してGaN系結晶層を成長させ
てなる基板である請求項1または4記載の結晶成長用基
材。
Wherein said substrate is sapphire, SiC, quartz, quartz, MgO, Si, AlN, SiO 2, SiN X,
A substrate made of any of SiO 1 -XN X , TiO 2 , ZrO 2 , or graphite, a substrate using these materials in combination, or directly on these substrates or via a buffer layer The substrate for crystal growth according to claim 1, wherein the substrate is a substrate on which a GaN-based crystal layer is grown.
【請求項6】 上記GaN系結晶薄膜と基板との接合
が、融点が1100℃以下の低融点ガラスを介在させた
接合、または、融点が1100℃以下の金属を介在させ
た接合であり、前記低融点ガラスまたは前記金属が、G
aN系結晶薄膜と基板との間に介在した状態で、その融
点以上に加熱されて接合材として作用している請求項1
記載の結晶成長用基材。
6. The bonding between the GaN-based crystal thin film and the substrate is a bonding with a low melting point glass having a melting point of 1100 ° C. or less, or a bonding with a metal having a melting point of 1100 ° C. or less. When the low melting glass or the metal is G
2. The semiconductor device according to claim 1, which is heated above its melting point and acts as a bonding material while being interposed between the aN-based crystal thin film and the substrate.
The substrate for crystal growth according to the above.
【請求項7】 上記金属がGa、In、およびAlから
選ばれる1以上の元素を含む金属である請求項6記載の
結晶成長用基材。
7. The base material for crystal growth according to claim 6, wherein the metal is a metal containing one or more elements selected from Ga, In, and Al.
【請求項8】 GaN系結晶を厚さ100μm以下の単
独の結晶薄膜として形成し、該GaN系結晶薄膜を基板
上に接合し、該結晶薄膜の一方の面からGaN系結晶を
成長させる工程を有するものであるGaN系結晶の製造
方法。
8. A step of forming a GaN-based crystal as a single crystal thin film having a thickness of 100 μm or less, joining the GaN-based crystal thin film on a substrate, and growing a GaN-based crystal from one surface of the crystal thin film. A method for producing a GaN-based crystal.
【請求項9】 溶液成長法によって上記GaN系結晶薄
膜を形成し、該薄膜を基板上に接合するものである請求
項8記載の製造方法。
9. The method according to claim 8, wherein the GaN-based crystal thin film is formed by a solution growth method, and the thin film is bonded to a substrate.
JP2001123345A 2001-04-20 2001-04-20 MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH Pending JP2002319545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123345A JP2002319545A (en) 2001-04-20 2001-04-20 MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001123345A JP2002319545A (en) 2001-04-20 2001-04-20 MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH

Publications (1)

Publication Number Publication Date
JP2002319545A true JP2002319545A (en) 2002-10-31

Family

ID=18972918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123345A Pending JP2002319545A (en) 2001-04-20 2001-04-20 MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH

Country Status (1)

Country Link
JP (1) JP2002319545A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054864A (en) * 2007-08-28 2009-03-12 Sumitomo Electric Ind Ltd Nitride gallium-based semiconductor surface light emitting element and method of fabricating same
JP2011193010A (en) * 2011-04-28 2011-09-29 Hitachi Cable Ltd Semiconductor wafer and semiconductor wafer for high frequency electronic device
WO2014057748A1 (en) * 2012-10-12 2014-04-17 住友電気工業株式会社 Group iii nitride composite substrate, manufacturing method therefor, and group iii nitride semiconductor device manufacturing method
JP2014157982A (en) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Group iii nitride composite substrate, method for manufacturing the same, lamination group iii nitride composite substrate, group iii nitride semiconductor device and method for manufacturing the same
JP2014524675A (en) * 2011-09-07 2014-09-22 株式会社東芝 Light emitting device and manufacturing method thereof
US9136337B2 (en) 2012-10-12 2015-09-15 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
US9312165B2 (en) 2013-02-08 2016-04-12 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9923063B2 (en) 2013-02-18 2018-03-20 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144932A (en) * 1984-01-05 1985-07-31 Oki Electric Ind Co Ltd Molecular beam growth method of compound semiconductor crystal
JPH07263345A (en) * 1994-03-25 1995-10-13 Sumitomo Electric Ind Ltd Method and device for growing bulk single crystal of compound semiconductor
JPH0963951A (en) * 1995-08-25 1997-03-07 Matsushita Electric Works Ltd Manufacture of semiconductor substrate and manufacture of semiconductor device
JPH11189498A (en) * 1997-06-11 1999-07-13 Hitachi Cable Ltd Production of nitride crystal, mixture, liquid phase growth, nitride crystal, nitride crystal powder, and vapor growth
JPH11224856A (en) * 1998-02-05 1999-08-17 Sony Corp Growth method of gallium nitride group semiconductor and substrate for growing the gan group semiconductor
JPH11243253A (en) * 1998-02-25 1999-09-07 Sony Corp Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JP2000244068A (en) * 1998-12-22 2000-09-08 Pioneer Electronic Corp Nitride semiconductor laser and fabrication thereof
JP2001007394A (en) * 1999-06-18 2001-01-12 Ricoh Co Ltd Semiconductor substrate, manufacture thereof and semiconductor light emitting element
JP2001102316A (en) * 1999-09-29 2001-04-13 Ricoh Co Ltd Method and device for crystal growth and iii group nitride crystal and semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144932A (en) * 1984-01-05 1985-07-31 Oki Electric Ind Co Ltd Molecular beam growth method of compound semiconductor crystal
JPH07263345A (en) * 1994-03-25 1995-10-13 Sumitomo Electric Ind Ltd Method and device for growing bulk single crystal of compound semiconductor
JPH0963951A (en) * 1995-08-25 1997-03-07 Matsushita Electric Works Ltd Manufacture of semiconductor substrate and manufacture of semiconductor device
JPH11189498A (en) * 1997-06-11 1999-07-13 Hitachi Cable Ltd Production of nitride crystal, mixture, liquid phase growth, nitride crystal, nitride crystal powder, and vapor growth
JPH11224856A (en) * 1998-02-05 1999-08-17 Sony Corp Growth method of gallium nitride group semiconductor and substrate for growing the gan group semiconductor
JPH11243253A (en) * 1998-02-25 1999-09-07 Sony Corp Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JP2000244068A (en) * 1998-12-22 2000-09-08 Pioneer Electronic Corp Nitride semiconductor laser and fabrication thereof
JP2001007394A (en) * 1999-06-18 2001-01-12 Ricoh Co Ltd Semiconductor substrate, manufacture thereof and semiconductor light emitting element
JP2001102316A (en) * 1999-09-29 2001-04-13 Ricoh Co Ltd Method and device for crystal growth and iii group nitride crystal and semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054864A (en) * 2007-08-28 2009-03-12 Sumitomo Electric Ind Ltd Nitride gallium-based semiconductor surface light emitting element and method of fabricating same
JP2011193010A (en) * 2011-04-28 2011-09-29 Hitachi Cable Ltd Semiconductor wafer and semiconductor wafer for high frequency electronic device
JP2014524675A (en) * 2011-09-07 2014-09-22 株式会社東芝 Light emitting device and manufacturing method thereof
US10600676B2 (en) 2012-10-12 2020-03-24 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
WO2014057748A1 (en) * 2012-10-12 2014-04-17 住友電気工業株式会社 Group iii nitride composite substrate, manufacturing method therefor, and group iii nitride semiconductor device manufacturing method
US20150194442A1 (en) * 2012-10-12 2015-07-09 Sumitomo Electric Industries, Ltd Group iii nitride composite substrate and method for manufacturing the same, and method for manufacturing group iii nitride semiconductor device
US9136337B2 (en) 2012-10-12 2015-09-15 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
US9917004B2 (en) 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US11094537B2 (en) 2012-10-12 2021-08-17 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9312165B2 (en) 2013-02-08 2016-04-12 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US10186451B2 (en) 2013-02-08 2019-01-22 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
JP2014157982A (en) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Group iii nitride composite substrate, method for manufacturing the same, lamination group iii nitride composite substrate, group iii nitride semiconductor device and method for manufacturing the same
US9923063B2 (en) 2013-02-18 2018-03-20 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101321654B1 (en) Substrate for growing group-iii nitride semiconductors, epitaxial substrate for group-iii nitride semiconductors, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductors, and methods for manufacturing the preceding
JP4849296B2 (en) GaN substrate
JP5026271B2 (en) Method for producing hexagonal nitride single crystal, method for producing hexagonal nitride semiconductor crystal and hexagonal nitride single crystal wafer
US11913136B2 (en) Thermal control for formation and processing of aluminum nitride
TW201031027A (en) Method for manufacturing light emitting device
JP4886711B2 (en) Method for producing group III nitride single crystal
TW201145569A (en) GaN-based semiconductor light-emitting device and method for the fabrication thereof
US10030318B2 (en) Composite substrate, method for fabricating same, function element, and seed crystal substrate
JP3568112B2 (en) Semiconductor substrate manufacturing method
US9287453B2 (en) Composite substrates and functional device
JP2002319545A (en) MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH
JP2002053399A (en) Nitride semiconductor substrate and method for producing the same
JP4313478B2 (en) AlGaInP light emitting diode
JP6117821B2 (en) Composite substrate and functional element
JP4728460B2 (en) Method for producing gallium nitride compound semiconductor single crystal
JP4493427B2 (en) Method for producing group III nitride single crystal
JP2019172488A (en) Gallium nitride substrate, free-standing substrate and functional element
JP2002237458A (en) Method for manufacturing nitride semiconductor substrate
KR20130049590A (en) Substrate having thin film of joined and method of fabricating thereof
JP2005008517A (en) Method for manufacturing nitride semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327