JP2002317256A - Production method for hydrogen storage alloy - Google Patents

Production method for hydrogen storage alloy

Info

Publication number
JP2002317256A
JP2002317256A JP2001120316A JP2001120316A JP2002317256A JP 2002317256 A JP2002317256 A JP 2002317256A JP 2001120316 A JP2001120316 A JP 2001120316A JP 2001120316 A JP2001120316 A JP 2001120316A JP 2002317256 A JP2002317256 A JP 2002317256A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001120316A
Other languages
Japanese (ja)
Inventor
Yoshiki Sakaguchi
善樹 坂口
Kiyotaka Yasuda
清隆 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001120316A priority Critical patent/JP2002317256A/en
Publication of JP2002317256A publication Critical patent/JP2002317256A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for a hydrogen storage alloy which has a homogeneous structure in all parts, and enables the improvement of the service life of a battery. SOLUTION: The raw material of a hydrogen storage alloy is heated and melted, and the molten alloy is cast, and is thereafter heat-treated in an inert gas atmosphere to produce the hydrogen storage alloy. In this production method, in a temperature region of 500 to 1,000 deg.C on the heat treatment, the calorie of >=26 W per ml of the alloy is applied thereto to increase its temperature, and the alloy is heat-treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の製
造方法に関し、詳しくは合金組織を均質化して電池寿命
を向上させた水素吸蔵合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy, and more particularly to a method for producing a hydrogen storage alloy having a homogenized alloy structure and improved battery life.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ニッケル−カドミウム蓄電池に代わる高容量アルカリ蓄
電池として、水素吸蔵合金を負極に用いたニッケル−水
素蓄電池(二次電池)が注目されている。
2. Description of the Related Art In recent years,
As a high-capacity alkaline storage battery that replaces a nickel-cadmium storage battery, a nickel-hydrogen storage battery (secondary battery) using a hydrogen storage alloy for a negative electrode has attracted attention.

【0003】この水素吸蔵合金は、水素吸蔵合金原料を
加熱溶融し、合金溶湯とした後、鋳型に流し込んで鋳造
し、急冷することによって水素吸蔵合金を得、次いで熱
処理することによって水素吸蔵合金を均質化していた。
この熱処理において、従来は、二相分離領域である温度
領域を1〜3時間費やして昇温させるため、このとき二
相分離が促進され、偏折相の存在比率が大きくなり、そ
の後、単相領域にて温度を保持し、合金組織は単相化が
促進されていた。
[0003] This hydrogen storage alloy is prepared by heating and melting a hydrogen storage alloy raw material to form a molten alloy, casting it into a mold, casting it, quenching it to obtain a hydrogen storage alloy, and then heat-treating the hydrogen storage alloy. It was homogenized.
Conventionally, in this heat treatment, the temperature region, which is a two-phase separation region, is spending 1 to 3 hours to raise the temperature. At this time, the two-phase separation is promoted, and the existence ratio of the deviated phase increases. The temperature was maintained in the region, and the alloy structure was promoted to have a single phase.

【0004】しかしながら、熱処理による均質化におい
ても、厳密にいえば、ある部位では、偏拆相が少なから
ず存在し均質とはいえず、これが水素吸蔵合金の特性バ
ラツキの一因となり、電池寿命劣化の原因となってい
た。
[0004] However, in homogenization by heat treatment, strictly speaking, at a certain site, there is a considerable amount of a dislodged phase, which cannot be said to be homogenous. Was the cause.

【0005】従って、本発明の目的は、全ての部位にお
いて均質な組織を有し、電池寿命を向上させた水素吸蔵
合金の製造方法を提供することにある。
Accordingly, it is an object of the present invention to provide a method for producing a hydrogen storage alloy having a homogeneous structure in all parts and improving the battery life.

【0006】[0006]

【課題を解決するための手段】本発明者らは、検討の結
果、合金をほぼ完全に均質化させるためには、熱処理条
件が重要であり、特に、昇温時に二相分離領域である7
00〜1000℃の温度領域を極力短時間で急速加熱し
て通過させ、最適熱処理温度に到達させると均質化度が
増し、上記目的が達成し得ることを知見した。
As a result of investigations, the present inventors have found that heat treatment conditions are important in order to make alloys almost completely homogenous.
It has been found that when the temperature range of 00 to 1000 ° C. is rapidly heated and passed as quickly as possible to reach the optimal heat treatment temperature, the degree of homogenization increases, and the above object can be achieved.

【0007】本発明は、上記知見に基づきなされたもの
で、水素吸蔵合金原料を加熱溶解し、これを鋳造した
後、不活性ガス雰囲気中で熱処理する水素吸蔵合金の製
造方法において、上記熱処理における500〜1000
℃の温度領域において、合金1モル当たり26W以上の
熱量を投入して昇温、熱処理されることを特徴とする水
素吸蔵合金の製造方法を提供するものである。
The present invention has been made on the basis of the above-mentioned findings, and a method for producing a hydrogen storage alloy in which a hydrogen storage alloy material is heated and melted, cast, and then heat-treated in an inert gas atmosphere. 500-1000
An object of the present invention is to provide a method for producing a hydrogen storage alloy, in which a heat amount of 26 W or more per mol of an alloy is applied in a temperature range of ° C. to raise the temperature and heat treatment.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明では、所定の合金組成となるよう
に、水素吸蔵合金原料を秤量、混合し、例えば誘導加熱
による高周波加熱溶解炉を用いて、上記水素吸蔵合金原
料を溶解して溶湯となす、これを鋳型、例えば水冷型の
鋳型に流し込んで水素吸蔵合金を1350〜1550℃
で鋳造する。また、この際の鋳湯温度は1200〜14
50℃である。ここでいう鋳造温度とは、鋳造開始時の
ルツボ内溶湯温度であり、鋳湯温度とは鋳型注ぎ込み口
温度(鋳型前温度)である。
Embodiments of the present invention will be described below. In the present invention, the hydrogen storage alloy raw material is weighed and mixed so as to have a predetermined alloy composition, for example, by using a high-frequency heating melting furnace by induction heating, melting the hydrogen storage alloy raw material to form a molten metal. The hydrogen storage alloy is poured into a mold, for example, a water-cooled mold, at 1350 to 1550 ° C.
Cast in. In addition, the casting temperature at this time is 1200 to 14
50 ° C. Here, the casting temperature is the temperature of the molten metal in the crucible at the start of casting, and the temperature of the casting metal is the temperature of the mold pouring port (the temperature before the mold).

【0009】次に、得られた水素吸蔵合金を不活性ガス
雰囲気中、例えばアルゴンガス中で熱処理する。熱処理
条件は1000〜1100℃、1〜10時間である。
Next, the obtained hydrogen storage alloy is heat-treated in an inert gas atmosphere, for example, in an argon gas. The heat treatment is performed at 1000 to 1100 ° C. for 1 to 10 hours.

【0010】本発明では、この熱処理において、500
〜1000℃の温度領域において、合金1モル当たり2
6W以上、好ましくは26〜52Wの熱量を投入して昇
温、熱処理されることが必要である。このような温度領
域を極力短時間で急速加熱して通過させることによっ
て、得られる水素吸蔵合金の均質化が図れる。
According to the present invention, in this heat treatment, 500
In the temperature range of ~ 1000 ° C, 2 per mole of alloy
It is necessary to input a heat amount of 6 W or more, preferably 26 to 52 W, to raise the temperature and heat treatment. By rapidly heating and passing through such a temperature range as short as possible, the obtained hydrogen storage alloy can be homogenized.

【0011】図1は、合金組成と熱処理温度の関係を示
すグラフであり、合金組成によって相違はあるものの、
一般には700〜1000℃が二相分離領域であり、こ
の領域をなるべく早く通過するとが好ましい。
FIG. 1 is a graph showing the relationship between the alloy composition and the heat treatment temperature.
Generally, 700-1000 ° C. is a two-phase separation region, and it is preferable to pass through this region as soon as possible.

【0012】このようにして、いずれの部位においても
均質化された水素吸蔵合金が得られる。そして、この水
素吸蔵合金をニッケル−水素蓄電池の負極として用いる
ことによって電池寿命を向上させることができる。
[0012] In this manner, a homogenized hydrogen storage alloy can be obtained at any position. Then, by using this hydrogen storage alloy as a negative electrode of a nickel-hydrogen storage battery, the battery life can be improved.

【0013】[0013]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like.

【0014】〔実験例1〕 (昇温速度依存性の評価)組成がMm(La20重量
%)Al0.3 Mn0.5 Co0.3 Ni4.20(AB5.30)で
ある水素吸蔵合金を鋳造法によって作製した。
Experimental Example 1 (Evaluation of Dependence on Heating Rate) A hydrogen storage alloy having a composition of Mm (La 20% by weight) Al 0.3 Mn 0.5 Co 0.3 Ni 4.20 (AB 5.30 ) was produced by a casting method.

【0015】この水素吸蔵合金について下記の条件によ
りアルゴンガス雰囲気で熱処理を行った。なお、この処
理量は20gとし、熱電対の温度と合金の実測温度は同
一であった。
The hydrogen storage alloy was heat-treated in an argon gas atmosphere under the following conditions. The processing amount was 20 g, and the temperature of the thermocouple and the measured temperature of the alloy were the same.

【0016】実施例1:500〜1050℃における投
入熱量26W/モル、その後1060℃、3時間保持 実施例2:500〜1050℃における投入熱量52W
/モル、その後1060℃、3時間保持 比較例1:500〜1050℃における投入熱量5W/
モル、その後1060℃、3時間保持 比較例2:500〜1050℃における投入熱量1W/
モル、その後1060℃3時間保持
Example 1: 26 W / mol of input heat at 500 to 1050 ° C., and then hold at 1060 ° C. for 3 hours Example 2: 52 W of input heat at 500 to 1050 ° C.
/ Mol, then maintained at 1060 ° C. for 3 hours Comparative Example 1: Heat input at 500 to 1050 ° C. 5 W /
Mol, then maintained at 1060 ° C. for 3 hours Comparative Example 2: Heat input 1W / 500 to 1050 ° C.
Mol, then hold at 1060 ° C for 3 hours

【0017】このように熱処理された実施例1〜2及び
比較例1〜2の水素吸蔵合金ついて、下記に示す方法に
よって、PCT特性、組織観察(顕微鏡写真)、物性
(a軸長、b軸長、微粉化残存率、腐食特性)を評価し
た。PCT特性を図2、組成観察(顕微鏡写真)を図3
〜6、物性を表1にそれぞれ示す。
With respect to the hydrogen storage alloys of Examples 1 and 2 and Comparative Examples 1 and 2 thus heat-treated, PCT characteristics, microstructure observation (micrograph), and physical properties (a-axis length, b-axis) were obtained by the following methods. Length, fine powder residual ratio, corrosion characteristics) were evaluated. Fig. 2 shows PCT characteristics and Fig. 3 shows composition observations (micrographs).
Table 6 shows the physical properties of each of Tables 1 to 6.

【0018】<PCT容量>45℃で測定した吸蔵特性
から求めた。
<PCT capacity> Determined from the storage characteristics measured at 45 ° C.

【0019】<格子長>CuKα線を用いた粉末X線回
折法により測定した。
<Lattice length> Measured by a powder X-ray diffraction method using CuKα radiation.

【0020】<微粉化残存率>PCT装置で、粒度22
〜53ミクロンに調整した水素吸蔵合金に、30bar
の水素ガスを導入して水素を吸蔵させ、その後脱蔵排気
する処理を10回繰り返した後、サイクル試験前の平均
粒度に対するサイクル試験後の平均粒度の比で計算し
た。
<Residual rate of pulverization>
30 bar for hydrogen storage alloy adjusted to ~ 53 microns
After the process of introducing hydrogen gas to occlude hydrogen and then evacuating and evacuating hydrogen was repeated 10 times, the ratio was calculated by the ratio of the average particle size after the cycle test to the average particle size before the cycle test.

【0021】<保存腐食>保存時の腐食挙動を評価する
のに、分級した水素吸蔵合金粉末をPCT評価用セルで
水素を1回吸蔵させて活性化処理を施し、これをアルゴ
ン不活性ガス中で比重1.30のKOH水溶液中に投入
し、80℃で4時間放置し、溶出試験を行い合金成分の
腐食量である表面析出量と溶出量を定量し、トータル腐
食量を比較例1の値を100とした指数で表示した。
<Storage Corrosion> In order to evaluate the corrosion behavior during storage, the classified hydrogen storage alloy powder was activated once by storing hydrogen once in a PCT evaluation cell, and the activated hydrogen storage alloy powder was placed in an argon inert gas. Into a KOH aqueous solution having a specific gravity of 1.30, and allowed to stand at 80 ° C. for 4 hours to perform an elution test to determine the amount of surface precipitation and the amount of elution, which are the amounts of corrosion of the alloy components. It was indicated by an index with the value being 100.

【0022】[0022]

【表1】 [Table 1]

【0023】図2において、PCT曲線のプラトー領域
を比較すると、比較例1〜2は平坦性が良好でないが、
これに比べて実施例1〜2は平坦性が良好である。これ
は、合金が均質で、かつ結晶性が良好であることを示唆
している。
In FIG. 2, comparing the plateau regions of the PCT curves, Comparative Examples 1 and 2 are not good in flatness,
In comparison, Examples 1 and 2 have good flatness. This suggests that the alloy is homogeneous and has good crystallinity.

【0024】図3〜6は、合金の部位のうち、冷却面か
ら最も遠い位置、即ち合金中心部の組織をそれぞれ比較
したものであり、実施例1〜2においては、均質であっ
たが(図3〜4参照)、比較例1〜2においては、マン
ガン−ニッケルリッチの偏拆相が認められ、部位によっ
ては、均質とはいい難い(図5〜6参照)。
FIGS. 3 to 6 show the comparison of the structure of the alloy at the position farthest from the cooling surface, that is, the structure at the center of the alloy. In FIGS. 3 and 4) and Comparative Examples 1 and 2, a manganese-nickel rich phase was observed, and it was difficult to say that the composition was homogeneous depending on the site (see FIGS. 5 and 6).

【0025】表1から明らかなように、結晶構造につい
ては、比較例1〜2に比べて実施例1〜2はa軸が短
く、c軸が長い。即ち、非化学量論組成における「ダン
ベル構造」をより好適に形成している。これは、合金組
成の均質性が向上していることを示唆している。
As is clear from Table 1, with respect to the crystal structure, Examples 1 and 2 have a shorter a-axis and a longer c-axis than Comparative Examples 1 and 2. That is, the “dumbbell structure” in the non-stoichiometric composition is more suitably formed. This suggests that the homogeneity of the alloy composition has been improved.

【0026】このように、好適なダンベル構造を有する
実施例1〜2は、比較例1〜2に比べて微粉化特性及び
腐食特性の向上が認められる。これは電池寿命の向上に
結びつくと考えられる。
As described above, in Examples 1 and 2 having a suitable dumbbell structure, improvement in pulverization characteristics and corrosion characteristics is recognized as compared with Comparative Examples 1 and 2. This is considered to lead to an improvement in battery life.

【0027】[0027]

【発明の効果】本発明の製造方法においては、二相分離
領域を極力短時間で通過するため、単相領域での温度保
持が極めて効果的であり、合金組織の均質化が図れる。
その結果として電池寿命が向上する。
According to the manufacturing method of the present invention, since the material passes through the two-phase separation region in as short a time as possible, it is extremely effective to maintain the temperature in the single-phase region and to homogenize the alloy structure.
As a result, the battery life is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、水素吸蔵合金組成と熱処理温度の関係
を示すグラである。
FIG. 1 is a graph showing a relationship between a hydrogen storage alloy composition and a heat treatment temperature.

【図2】図2は、実施例1〜2及び比較例1〜2のPC
T曲線である。
FIG. 2 shows PCs of Examples 1 and 2 and Comparative Examples 1 and 2.
It is a T curve.

【図3】図3は、実施例1の顕微鏡写真である(×20
0)。
FIG. 3 is a micrograph of Example 1 (× 20
0).

【図4】図4は、実施例2の顕微鏡写真である(×20
0)。
FIG. 4 is a photomicrograph of Example 2 (× 20).
0).

【図5】図5は、比較例1の顕微鏡写真である(×20
0)。
FIG. 5 is a micrograph of Comparative Example 1 (× 20).
0).

【図6】図6は、比較例2の顕微鏡写真である(×20
0)。
FIG. 6 is a micrograph of Comparative Example 2 (× 20).
0).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/02 C22F 1/02 // H01M 4/38 H01M 4/38 A Fターム(参考) 5H050 AA07 BA14 CA03 CB16 CB17 GA02 GA27 HA14 HA20 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/02 C22F 1/02 // H01M 4/38 H01M 4/38 A F term (Reference) 5H050 AA07 BA14 CA03 CB16 CB17 GA02 GA27 HA14 HA20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金原料を加熱溶解し、これを
鋳造した後、不活性ガス雰囲気中で熱処理する水素吸蔵
合金の製造方法において、 上記熱処理における500〜1000℃の温度領域にお
いて、合金1モル当たり26W以上の熱量を投入して昇
温、熱処理されることを特徴とする水素吸蔵合金の製造
方法。
1. A method for producing a hydrogen storage alloy in which a hydrogen storage alloy raw material is heated and melted, cast, and then heat-treated in an inert gas atmosphere. A method for producing a hydrogen storage alloy, wherein a heat quantity of 26 W or more per mol is supplied to heat and heat-treat.
【請求項2】 上記昇温後、1000〜1100℃、1
〜10時間保持される請求項1又は2記載の水素吸蔵合
金の製造方法。
2. After the temperature is raised, 1000-1100 ° C.,
The method for producing a hydrogen storage alloy according to claim 1, wherein the method is held for 10 to 10 hours.
JP2001120316A 2001-04-18 2001-04-18 Production method for hydrogen storage alloy Pending JP2002317256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001120316A JP2002317256A (en) 2001-04-18 2001-04-18 Production method for hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001120316A JP2002317256A (en) 2001-04-18 2001-04-18 Production method for hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JP2002317256A true JP2002317256A (en) 2002-10-31

Family

ID=18970377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001120316A Pending JP2002317256A (en) 2001-04-18 2001-04-18 Production method for hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2002317256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010397A1 (en) * 2010-03-19 2013-01-10 Sinfonia Technology Co., Ltd. Electromagnetic vibration suppression device and electromagnetic vibration suppression control program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010397A1 (en) * 2010-03-19 2013-01-10 Sinfonia Technology Co., Ltd. Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
US9080232B2 (en) * 2010-03-19 2015-07-14 Sinfonia Technology Co., Ltd. Electromagnetic vibration suppression device and electromagnetic vibration suppression control program

Similar Documents

Publication Publication Date Title
CN102892908B (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
KR100207906B1 (en) Age-preciptating rare earth metal-nickel alloy, its manufacture and negative electrode for nickel-hydrogen secondary cell
CN112011712B (en) Component formula and preparation process of light refractory high-entropy alloy
KR20210067133A (en) High entropy alloy and method for manufacturing the same
JP2022020892A (en) HYDROGEN STORAGE ALLOY POWDER OF LOW Co CONTENT
JP4647910B2 (en) Hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
JP2002294373A (en) Hydrogen storage alloy, production method therefor and negative electrode for nickel-hydrogen secondary battery
JP4503915B2 (en) Hydrogen storage alloy and method for producing the same
WO2024008003A1 (en) Heat-resistant aluminum alloy wire and preparation method therefor
JP5437544B2 (en) Manufacturing method of negative electrode for secondary battery
JP2001040442A (en) Hydrogen storage alloy
JP2002317256A (en) Production method for hydrogen storage alloy
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP2001348636A (en) Hydrogen storage alloy and its production method
JPH0335801B2 (en)
JP2796966B2 (en) Ultra-low thermal expansion alloy and manufacturing method
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP4158337B2 (en) Method for producing chromium-zirconium-based copper alloy for continuous casting mold
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP2001234261A (en) Producing method for hydrogen storage alloy
CN118186276B (en) High-entropy alloy and preparation method thereof
CN116024477B (en) VCoNi medium-entropy alloy and preparation method thereof
CN115216677B (en) High-entropy alloy material with second phases uniformly distributed and reinforced and preparation method thereof
CN114672689B (en) Rare earth copper alloy material with electromagnetic shielding function and preparation method thereof