JP2002316369A - Tubular aromatic polyimide resin multilayered film and its manufacturing method - Google Patents
Tubular aromatic polyimide resin multilayered film and its manufacturing methodInfo
- Publication number
- JP2002316369A JP2002316369A JP2001120590A JP2001120590A JP2002316369A JP 2002316369 A JP2002316369 A JP 2002316369A JP 2001120590 A JP2001120590 A JP 2001120590A JP 2001120590 A JP2001120590 A JP 2001120590A JP 2002316369 A JP2002316369 A JP 2002316369A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- polyimide resin
- aromatic polyimide
- resin
- thermoplastic aromatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特に異種の芳香族
ポリイミド樹脂の積層によりなる管状芳香族ポリイミド
樹脂系多層フイルム及びその製造方法に関する。該多層
フイルムは、例えばカラー複写機の中間転写ベルト用と
して有効である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tubular aromatic polyimide resin-based multilayer film formed by laminating different kinds of aromatic polyimide resins, and a method for producing the same. The multilayer film is effective, for example, for an intermediate transfer belt of a color copying machine.
【0002】[0002]
【従来の技術】多くの機能性樹脂の中にあって、特にポ
リイミド樹脂は多くの点で卓越していることで、電気・
電子分野を中心に種々の分野で利用されている。電気・
電子分野ではプリント基板(主としてFPC)、絶縁
材、更に最近ではカラー複写機の部材、取り分けベルト
部材への用途展開が盛んに行われている。カラー複写機
のベルト部材への用途展開は、具体的には、中間転写方
式採用で必要になる中間転写ベルトである。本来カラー
(トナー)複写は、静電気引力の作用によって行われる
印刷方式であるので、ポリイミド樹脂本来の特性は勿論
必要であるが、帯電性と除電性、つまり適正な静電容量
(誘電率)(帯電寿命)が得られる機能の付与が必要に
なる。2. Description of the Related Art Among many functional resins, in particular, a polyimide resin is superior in many respects.
It is used in various fields mainly in the electronic field. Electrical·
In the field of electronics, applications to printed circuit boards (mainly FPCs), insulating materials, and more recently, members for color copying machines and, in particular, belt members have been actively developed. The application development to the belt member of the color copying machine is, specifically, an intermediate transfer belt required by adopting the intermediate transfer method. Originally, color (toner) copying is a printing method which is performed by the action of electrostatic attraction. Therefore, it is necessary to have the inherent characteristics of polyimide resin, but it is necessary to have the proper chargeability and static elimination property, that is, appropriate capacitance (dielectric constant) ( It is necessary to provide a function that can obtain a charging life.
【0003】前記の適正な静電容量の付与については、
ポリイミド樹脂ベルトに適正な半導電性、つまり電気抵
抗(具体的には表面抵抗率か体積抵抗率で表現)をもた
せることであるが、これは一般に導電性カーボンブラッ
ク等の導電性粉体を混合分散することで行われている。[0003] Regarding the provision of the above-mentioned proper capacitance,
This is to give the polyimide resin belt appropriate semi-conductivity, that is, electrical resistance (specifically, expressed in terms of surface resistivity or volume resistivity). This is generally done by mixing conductive powder such as conductive carbon black. This is done by dispersing.
【0004】ところで、前記半導電性のポリイミド樹脂
ベルトは、これまでは単層の管状フイルムをベースとし
て検討され開発されてきている。しかしこの単層では、
電気抵抗が一義的に決まってしまうので電気抵抗を適宜
コントロールして、より適正な静電容量を得るようにす
ることはできない。特に最近では、より一層の高い画像
品質と寿命、更には種々の機種(種々のメーカー)があ
ることで、従来の単層ベルトでは対応できなくなってき
ているのが実状でもある。[0004] The semiconductive polyimide resin belt has been studied and developed based on a single-layer tubular film. But in this single layer,
Since the electrical resistance is uniquely determined, it is not possible to appropriately control the electrical resistance to obtain a more appropriate capacitance. Particularly in recent years, with the ever-higher image quality and longer life, and also with various models (various manufacturers), the actual situation is that conventional single-layer belts are no longer compatible.
【0005】本特許出願人は前記のような問題に対し
て、既にその解決策の一つを見出し特許出願も行ってい
る(特開平7−156283号公報)。この解決手段
は、電気抵抗の異なる少なくとも二種のポリイミド樹脂
によって、少なくとも二層からなる管状積層フイルムと
するものである。その後このポリイミド樹脂積層手段に
関し、種々の特許出願を行ってきてもいる(未公開)
が、他社からの特許出願もある。例えば他社からのもの
としては、特開平11−235765号公報、特開20
001−22189号公報がある。該両公報は、該特開
平7−156283号公報に対して、(課題に実質的差
もなく)若干の異なる条件が付与されたものとして提案
されている。[0005] The present applicant has already found one of the solutions to the above-mentioned problem and has filed a patent application (Japanese Patent Application Laid-Open No. Hei 7-156283). This solution is to form a tubular laminated film composed of at least two layers by using at least two kinds of polyimide resins having different electric resistances. Since then, various patent applications have been filed for this polyimide resin laminating means (unpublished).
However, there are patent applications from other companies. For example, Japanese Patent Application Laid-Open Nos. 11-235765 and 20
No. 001-22189. Both of these publications are proposed as being provided with slightly different conditions (with no substantial difference in the subject) from JP-A-7-156283.
【0006】[0006]
【発明が解決しようとする課題】ところで前記本特許出
願人による解決手段は、当時としては極めて有効なもの
として評価されるが、(カラー)トナー画像技術の進歩
と共に、更に解決せねばならない問題も起きてきてい
る。これは前記他社特許技術も同じである。The solution by the present applicant has been evaluated as being extremely effective at the time, but with the advance of (color) toner image technology, the problem which must be further solved is also raised. I'm getting up. This is the same for the patented technologies of other companies.
【0007】その問題は、まず一般に熱硬化性と呼ばれ
ているポリイミド樹脂による単層管状フイルムは、収縮
(特に加熱によるイミド化処理時)し易くその為か内又
は外方に向かって湾曲する傾向がある。これが二層にな
ると更にその湾曲が大きくなるという傾向がある。これ
は特に該樹脂に見られる好ましくない特性と言える。こ
の湾曲は、(程度にもよるが)画像の乱れ(前記中間転
写ベルトとして使用の場合)とか、回転蛇行の原因にな
る。又特に二層になると、いずれか一方が導電性カーボ
ンブラックを含有することも相加され、より厚くなる分
柔軟性が低下する傾向があり、これをより小径のローラ
に張架し回転して使用するような場合には、従順な回転
に支障をきたすものである。The problem is that a single-layer tubular film made of a polyimide resin, which is generally called thermosetting, tends to shrink (especially at the time of imidization treatment by heating) and is therefore bent inward or outward. Tend. When this has two layers, the curvature tends to be further increased. This can be said to be an unfavorable property particularly observed in the resin. This curvature causes (depending on the degree) image disturbance (when used as the intermediate transfer belt) or rotational meandering. In addition, especially when two layers are formed, one of them contains the conductive carbon black, and the flexibility tends to decrease due to the increase in thickness. When used, it hinders obedient rotation.
【0008】更に特に二層ベルトで使用する場合に、帯
電の為の印加電圧が使用途中に急に高くなるとか、より
高い印加電圧での帯電使用の場合に、絶縁破壊を起こし
やすい傾向がある(耐絶縁破壊性)。この原因はよく分
からないが、積層工程の段階で二層間に噛み込こまれた
微細なゴミのためか、層境界でいずれか一方の導電性カ
ーボンブラックが他方の層側にブリードアウトしてき
て、本来各層で必要な電気抵抗が変化し、これが耐絶縁
破壊性(耐電圧とも呼ぶ)の変化となって現れるのでは
ないかとも考えられる。In particular, when using a double-layer belt, the applied voltage for charging suddenly increases during use, or when using a charged battery with a higher applied voltage, the dielectric breakdown tends to occur. (Dielectric breakdown resistance). Although the cause is not well understood, either because of the fine dust caught between the two layers at the stage of the lamination process, one of the conductive carbon black bleeds out to the other layer side at the layer boundary, It is conceivable that the electrical resistance originally required in each layer changes, and this may appear as a change in dielectric breakdown resistance (also referred to as withstand voltage).
【0009】更には二層の場合、層間の密着性が十分満
足できない状況にある。これはベルト回転寿命を低下さ
せることにもなる。Furthermore, in the case of two layers, there is a situation where the adhesion between the layers cannot be sufficiently satisfied. This also reduces the belt rotation life.
【0010】本発明者等は前記の各問題を解決し、更に
改良されたポリイミド系ベルトを製造するべき鋭意検討
してきた。その結果下記する一つの有力な解決手段を見
出すことができた。The present inventors have intensively studied to solve the above-mentioned problems and to produce a further improved polyimide-based belt. As a result, one of the following effective solutions was found.
【0011】[0011]
【課題を解決するための手段】即ち本発明は、前記の通
り請求項1を主発明とし、請求項10までの9項の従属
発明によりなる。つまりその主発明とするところは、非
熱可塑性芳香族ポリイミド樹脂基体層に熱可塑性芳香族
ポリアミドイミド樹脂層が積層されてなる管状多層フイ
ルムであって、且つ該非熱可塑性芳香族ポリイミド樹脂
基体層又は該熱可塑性芳香族ポリアミドイミド樹脂層の
いずれか一方又は両方が異なる半導電性を有しているこ
とを特徴とする管状芳香族ポリイミド樹脂系多層フイル
ムである。That is, as described above, the present invention has claim 1 as a main invention and claims 9 to 10 as dependent inventions. That is, the main invention is a tubular multilayer film in which a thermoplastic aromatic polyamide-imide resin layer is laminated on a non-thermoplastic aromatic polyimide resin base layer, and the non-thermoplastic aromatic polyimide resin base layer or A tubular aromatic polyimide resin-based multilayer film, wherein one or both of the thermoplastic aromatic polyamide-imide resin layers have different semiconductivity.
【0012】そして請求項2では前記主発明における基
体層、これに積層する樹脂層を構成する主成分である、
非熱可塑性芳香族ポリイミド(以下PI樹脂と略す)と
熱可塑性芳香族ポリアミドイミド(以下PAI樹脂と略
す)を各々ガラス転移点でもって特定し、請求項3では
両層の半導電性の付与が導電性カーボンブラックによる
こと、そして請求項4では非熱可塑性芳香族ポリイミド
樹脂基体層(以下PI基体層と略す)と熱可塑性芳香族
ポリアミドイミド樹脂層(以下PAI層と略す)の表裏
面関係を特定し、そして請求項5ではPI基体層とPA
I層の層厚関係を特定し、そして請求項6ではPI基体
層とPAI層との間に特定の中間接着層を介在させるこ
とを特定して提供している。According to the second aspect of the present invention, the base layer according to the main invention, which is a main component constituting the resin layer laminated thereon,
The non-thermoplastic aromatic polyimide (hereinafter abbreviated as PI resin) and the thermoplastic aromatic polyamideimide (hereinafter abbreviated as PAI resin) are each specified by a glass transition point. The conductive carbon black is used, and in claim 4, the front-back relationship between the non-thermoplastic aromatic polyimide resin base layer (hereinafter abbreviated as PI base layer) and the thermoplastic aromatic polyamideimide resin layer (hereinafter abbreviated as PAI layer) is described. And claim 5 wherein the PI substrate layer and the PA
The layer thickness relationship of the I layer is specified, and claim 6 specifies and provides that a specific intermediate adhesive layer is interposed between the PI base layer and the PAI layer.
【0013】又特に請求項7〜10は、前記主発明にお
ける管状芳香族ポリイミド樹脂系多層フイルムの製造方
法に関し提供している。つまり、その製造方法の主体で
ある請求項7では、次の(A)〜(C)に記載の各工程
が順次行われてなることを特徴としている。 (A)ガラス転移点300℃以上の非熱可塑性芳香族ポ
リイミド樹脂前駆体の有機溶媒溶液を、回転ドラム内で
回転成形・加熱して、まず無端管状の該前駆体フイルム
に成形した後、これを一旦該回転ドラム内から剥離・除
去し、そして別途設けられた熱風加熱手段により加熱し
て、残存溶媒の完全除去と共にイミド化を完了し、無端
管状の非熱可塑性芳香族ポリイミド樹脂裏面層(基体
層)を形成する第一工程、(B)前記A工程で得られた
無端管状非熱可塑性芳香族ポリイミド樹脂裏面層の表面
全周に、5〜30重量%の導電性カーボンブラックを含
有する非熱可塑性芳香族ポリイミド樹脂前駆体の有機溶
媒溶液を塗布し加熱して中間接着層としての該前駆体層
を設ける第二工程、(C)前記B工程で設けられた中間
接着層の表面全周に、5〜30重量%の導電性カーボン
ブラックを含有する有機溶媒に溶解されたガラス転移点
200〜310℃の熱可塑性芳香族ポリアミドイミド樹
脂溶液を塗布し加熱して該溶媒の除去と前記前駆体層の
イミド化を行って、半導電性の熱可塑性芳香族ポリアミ
ドイミド樹脂表面層を形成する第三工程。In particular, claims 7 to 10 provide a method for producing a tubular aromatic polyimide resin-based multilayer film according to the main invention. In other words, the seventh aspect of the manufacturing method is characterized in that the following steps (A) to (C) are sequentially performed. (A) An organic solvent solution of a non-thermoplastic aromatic polyimide resin precursor having a glass transition point of 300 ° C. or higher is rotationally molded and heated in a rotating drum to first form an endless tubular precursor film. Is once removed and removed from the inside of the rotary drum, and heated by a separately provided hot air heating means to completely remove the residual solvent and complete imidization, thereby forming an endless tubular non-thermoplastic aromatic polyimide resin back layer ( First step of forming the base layer), (B) 5 to 30% by weight of conductive carbon black is contained on the entire surface of the endless tubular non-thermoplastic aromatic polyimide resin back layer obtained in the step A. A second step in which an organic solvent solution of a non-thermoplastic aromatic polyimide resin precursor is applied and heated to provide the precursor layer as an intermediate adhesive layer; (C) the entire surface of the intermediate adhesive layer provided in the step B; Around A solution of a thermoplastic aromatic polyamideimide resin having a glass transition point of 200 to 310 ° C. dissolved in an organic solvent containing 5 to 30% by weight of conductive carbon black is applied and heated to remove the solvent and remove the precursor layer. In which a semiconductive thermoplastic aromatic polyamideimide resin surface layer is formed by imidation of
【0014】そして請求項8〜10は、請求項7をより
好ましく達成するための発明である。尚以上の請求項2
〜10は、主発明である請求項1を好ましい形態として
特定した発明であり、これに限定されるものではないこ
とは言うまでもない。以下本発明を次の実施形態でより
詳細に説明することにする。Claims 8 to 10 are inventions for achieving claim 7 more preferably. Claim 2 above
Nos. 10 to 10 are inventions in which claim 1 which is the main invention is specified as a preferred embodiment, and it is needless to say that the invention is not limited thereto. Hereinafter, the present invention will be described in more detail with the following embodiments.
【0015】[0015]
【発明の実施の形態】まず前記請求項1におけるPI樹
脂は、熱的性質として非熱可塑性に特定される。ここで
非熱可塑性の意味は、一般にマレイミドとかナジック酸
又はアセチレン等を末端にもったイミドプレポリマが、
更にその末端基付加重合して架橋(三次元化)した状態
の硬化ポリイミド樹脂ではなくて、あくまでも一次元
(直鎖状)を基本とする全芳香族ポリイミド樹脂である
ことが前提であり、そしてその中で実質的イミド化した
ポリイミドでは、一般のポリイミドの有機溶剤として知
られる非プロトン有機溶剤(例えばN−メチルピロリド
ン、ジメチルアセトアミド、ジメチルホルムアミド、ジ
メチルスルフォオキシド等)には溶解せずに、その前駆
体、つまりポリアミド酸の段階ではじめて該溶媒に溶解
するということである。つまり実質的イミド化したポリ
イミドでも該溶媒に溶解するポリイミドは、熱可塑性芳
香族ポリイミド樹脂と呼び、これとは区別される芳香族
ポリイミド樹脂である。従って非熱可塑性芳香族ポリイ
ミド樹脂は、ポリアミド酸の段階でフイルム状に成形
し、最後にイミド化を行うという、二工程経由を必須と
して成形される。BEST MODE FOR CARRYING OUT THE INVENTION First, the PI resin in claim 1 is specified as non-thermoplastic as a thermal property. Here, the meaning of non-thermoplastic is generally an imide prepolymer terminated with maleimide or nadic acid or acetylene.
Furthermore, it is not a cured polyimide resin in a state of cross-linking (three-dimensionalization) by addition polymerization of the terminal group, but is a prerequisite that it is a wholly aromatic polyimide resin based on one dimension (linear). Among them, the substantially imidized polyimide does not dissolve in an aprotic organic solvent known as a general polyimide organic solvent (eg, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, etc.), It means that it is dissolved in the solvent only at the stage of the precursor, that is, the polyamic acid. In other words, a polyimide which is substantially imidized and which dissolves in the solvent, is called a thermoplastic aromatic polyimide resin, and is an aromatic polyimide resin that is distinguished from this. Therefore, the non-thermoplastic aromatic polyimide resin is formed into a film at the stage of the polyamic acid, and finally imidation is performed.
【0016】PI樹脂が特に基体層とされるが、その理
由は熱可塑性芳香族ポリイミドと異なり、より薄い厚さ
でも耐熱性は勿論、耐屈曲性、耐伸縮性等卓越している
からである。その為により薄い厚さの層として設定する
ことができるので、これをベルトとして使用する場合
に、より小径のローラでの従順回転もできるようになる
というものである。The PI resin is particularly used as the base layer because, unlike the thermoplastic aromatic polyimide, even if the thickness is smaller, the PI is excellent in heat resistance, bending resistance, stretch resistance and the like. . For this reason, the layer can be set as a thinner layer, so that when this is used as a belt, compliant rotation with a roller having a smaller diameter can be performed.
【0017】前記する特性を有するPI樹脂であれば、
特に制限はされず使用できるが、その中でも好ましいも
のがあり、これをガラス転移点(以下PI・Tgと呼
ぶ)で示すと、300℃以上、好ましくは350℃以上
である。上限は500℃程度のものもあるが、測定でき
ないものも含まれる(実質的にTgをもたない)。しか
しTgがないPI樹脂と言っても、フイルム成形できな
いとか、できたとしても脆くて使用できないものまでは
含まれない。より大きいTgを有するPI樹脂が好まし
いのは、一般に該Tgの高いPI樹脂ほど収縮傾向(つ
まり湾曲傾向)が強く、密着性も低下傾向にあり、この
ような該樹脂程、本発明手段による改善効果が大きいと
いう理由による。With a PI resin having the above-mentioned properties,
Although it can be used without any particular limitation, some of them are preferable, and when they are shown by a glass transition point (hereinafter referred to as PI · Tg), they are 300 ° C. or higher, preferably 350 ° C. or higher. Although there is an upper limit of about 500 ° C., there is also an unmeasurable one (substantially has no Tg). However, even if the PI resin has no Tg, it does not include a film that cannot be molded or a brittle one that cannot be used. A PI resin having a larger Tg is preferred because a PI resin having a higher Tg generally has a stronger tendency to shrink (that is, a tendency to curve) and a lower adhesiveness. This is because the effect is great.
【0018】一般に、TgはPI樹脂の分子構造に依存
する。例えば芳香環に直結するイミド基以外に、主鎖中
にどの様な基が、そしてそれが幾つ結合しているかによ
っても変わる。この様な基とは、例えば−O−、−CO
−、−SO2−、−(CH2)n−等である。前記PI
・Tgの範囲ではかかる基はないか、あったとしても、
せいぜいいずれか一個が主鎖結合に関わった構造のもの
が非熱可塑性的になる。Generally, Tg depends on the molecular structure of the PI resin. For example, in addition to the imide group directly bonded to the aromatic ring, it depends on what groups are in the main chain and how many are bonded. Such groups include, for example, -O-, -CO
-, - SO 2 -, -, and the like - (CH 2) n. The PI
-If there is no such group in the Tg range,
At most one of the structures in which any one is involved in the main chain bond becomes non-thermoplastic.
【0019】PI樹脂は、三成分による共重合体もある
が、主として二成分によるホモポリマである。具体的に
は、例えばピロメリット酸二無水物とp−フエニレンジ
アミンとからのPI樹脂(Tgは実質的にない)、3,
3′,4,4′−ビフェニルテトラカルボン酸二無水物
とp−フエニレンジアミンとからのPI樹脂(Tg約5
00℃)、ピロメリット酸二無水物と4,4′−ジアミ
ノジフェニルエーテルとからのPI樹脂(Tg約420
℃)、ピロメリット酸二無水物と4,4′−ジアミノジ
フェニルエーテル及び4,4′−ジアミノ3,3′−ジ
メチルビフェニルとからの共重合PI樹脂(Tg約35
0℃)、3,3′,4,4′−ビフェニルテトラカルボ
ン酸二無水物と4,4′−ジアミノジフェニルエーテル
とからのPI樹脂(Tg約310℃)等が挙げられる。
ここで該ジアミン成分がジイソシアネート成分であって
も良い。The PI resin is a homopolymer mainly composed of two components, although there is a copolymer composed of three components. Specifically, for example, a PI resin (having substantially no Tg) from pyromellitic dianhydride and p-phenylenediamine, 3,
PI resin from 3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine (Tg about 5
00 ° C.), PI resin from pyromellitic dianhydride and 4,4′-diaminodiphenyl ether (Tg about 420
C), a copolymerized PI resin of pyromellitic dianhydride with 4,4'-diaminodiphenyl ether and 4,4'-diamino3,3'-dimethylbiphenyl (Tg about 35).
0 ° C.), and a PI resin (Tg of about 310 ° C.) from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether.
Here, the diamine component may be a diisocyanate component.
【0020】一方PAI樹脂は、基本的には3又は4価
の芳香環に1又は2個のイミド基と2価の芳香環に2個
のアミド基が主鎖結合し、これを反復単位とする直鎖状
ポリマにあって、実質的イミド化状態でも前記する非プ
ロトン有機溶剤に溶解する樹脂を言う。そして、このP
AI樹脂も前記特性を有すれば特に制限はされず使用で
きるが、その中でも好ましいものがあり、これをガラス
転移点(以下PAI・Tgと呼ぶ)で示すと、200〜
310℃、好ましくは230〜300℃のものである。
これは200℃未満では、特に乾・湿の変化に対して伸
縮が大きく、又PI樹脂との積層で層間剥離も起こりや
すく、更に安定した半導電性に変化(経時的)を起こし
易いと言ったことによる。一方310℃を超えると、前
記するPI樹脂フイルムの欠点である湾曲の改善効果が
小さく、また該フイルムとの密着性も悪くなる傾向にな
る等による。On the other hand, the PAI resin basically has one or two imide groups bonded to a trivalent or tetravalent aromatic ring and two amide groups bonded to a divalent aromatic ring, and this is called a repeating unit. And a resin which is soluble in the above-mentioned aprotic organic solvent even in a substantially imidized state. And this P
The AI resin can also be used without any particular limitation as long as it has the above-mentioned properties, and among them, preferred are those having a glass transition point (hereinafter referred to as PAI · Tg) of 200 to 200.
The temperature is 310 ° C, preferably 230 to 300 ° C.
This is because, when the temperature is lower than 200 ° C., expansion and contraction are particularly large with respect to changes in dryness and humidity, and delamination is likely to occur in lamination with a PI resin, and a stable semiconductive property is likely to change (with time). It depends. On the other hand, when the temperature exceeds 310 ° C., the effect of improving the curvature, which is a drawback of the PI resin film, is small, and the adhesiveness to the film tends to deteriorate.
【0021】前記PAI・Tgの変化は、アミド基の結
合数と共に、主として前記PI樹脂の場合と同様に分子
構造に依存する。従って、PI樹脂に対していくらのT
gのPAI樹脂を選ぶかは、種々の原料(トリカルボン
酸、テトラカルボン酸、ジアミンの各成分)の種類と組
み合わせ、そして三成分の場合は反応モル比によっても
変化する。事前に十分に検討しておくことが望まれる。The change in the PAI.Tg, together with the number of amide groups, mainly depends on the molecular structure as in the case of the PI resin. Therefore, how much T for PI resin
The choice of g of PAI resin depends on the type and combination of various raw materials (tricarboxylic acid, tetracarboxylic acid, and diamine components), and in the case of three components, also depends on the reaction molar ratio. It is hoped that this will be thoroughly considered in advance.
【0022】又PAI樹脂の選択にあたっては、PI樹
脂との親和性、つまりこれは層間密着力に作用するの
で、より良化するようにすることも必要である。一般的
にこれは、前記する−O−、−CO−、−SO2−のよ
うな極性を高くする基に対しても作用する。更にはPA
Iの構成の一部に、PI樹脂と同じ4価の芳香族環に結
合する2個のイミド基が導入された構造のPAI樹脂も
有利に作用するので、これらのことも勘案し選ぶのが良
い。In selecting the PAI resin, it is necessary to further improve the affinity with the PI resin, that is, since this affects the interlayer adhesion. This is generally the to -O -, - CO -, - SO 2 - also acts against polarity high to groups such as. And PA
A PAI resin having a structure in which two imide groups bonded to the same tetravalent aromatic ring as the PI resin are introduced into a part of the structure of I also has an advantageous effect. good.
【0023】前記勘案して、PAI樹脂を具体的に例示
すると次の通りである。トリメリット酸無水物とジフェ
ニルエーテル−(4,4´)ジイソシアネート又ジフェ
ニルケトン−4,4´ジイソシアネート又はジフェニル
スルホン−(4,4´)ジイソシアネートとからのPA
I樹脂(Tg約280〜300℃)、トリメリット酸無
水物とヘキサメチレン1,6−ジイソシアネート及びト
リレン−2,4−ジイソシアネートとからの共重合PA
I樹脂(Tg約240〜250℃)、トリメリット酸無
水物とヘキサメチレン1,6−ジイソシアネート及びジ
フェニルケトン−4,4´ジイソシアネートとからの共
重合PAI樹脂(Tg約200〜220℃)、トリメリ
ット酸無水物及びベンゾフェノンテトラカルボン酸二無
水物とビトリレンジイソシアネートとからの共重合PA
I樹脂(Tg約280〜300℃)、該ビトリレンジイ
ソシアネートに変えてジフェニルエーテル−4,4´ジ
イソシアネート又はジフェニルスルホン−4,4´ジイ
ソシアネートとからの共重合PAI樹脂(Tg約220
〜260℃)等である。尚PAI樹脂の重縮合手段に
は、前記ジイソシアネートに変えてジアミン、トリメリ
ット酸無水物に変えてトリメリット酸モノクロライド一
無水物を使う方法もあるので、その方法には特に限定さ
れない。Taking the above into consideration, a specific example of the PAI resin is as follows. PA from trimellitic anhydride and diphenyl ether- (4,4 ') diisocyanate or diphenyl ketone-4,4' diisocyanate or diphenyl sulfone- (4,4 ') diisocyanate
I resin (Tg about 280-300 ° C.), copolymer PA from trimellitic anhydride and hexamethylene 1,6-diisocyanate and tolylene-2,4-diisocyanate
I resin (Tg about 240 to 250 ° C), copolymerized PAI resin from trimellitic anhydride with hexamethylene 1,6-diisocyanate and diphenylketone-4,4 'diisocyanate (Tg about 200 to 220 ° C), Copolymer PA from melitic anhydride and benzophenonetetracarboxylic dianhydride with vitriylene diisocyanate
I resin (Tg about 280-300 ° C.), copolymerized PAI resin from diphenyl ether-4,4 ′ diisocyanate or diphenyl sulfone-4,4 ′ diisocyanate instead of the vitriylene diisocyanate (Tg about 220
To 260 ° C.). The polycondensation means of the PAI resin is not particularly limited, since there is a method of using diamine instead of the diisocyanate and using trimellitic acid monochloride monoanhydride instead of trimellitic anhydride.
【0024】PI樹脂、PAI樹脂は前記の通りである
が、特に両者が選択され組み合わされたのは次の理由に
よる。前記の通りPI樹脂は、熱可塑性芳香族ポリイミ
ド樹脂よりも、そして他のいかなる機能性樹脂よりも耐
熱性、各種物性、環境(特に高温多湿下)等に対して優
れているので、例えばベルト状での使用に極めて有効な
素材である。しかしながら前記するように湾曲し易いと
いう欠点がある。使用前又は使用中に湾曲するというこ
とは、特に平面でトナー画像を形成し、その画像を平面
で転写する複写機のベルトにとっては微少の湾曲変形も
許されない。この湾曲の危険性を完全に解消する手段
が、熱可塑性芳香族ポリイミド樹脂でもなければ、他の
樹脂でもない該PAI樹脂との組み合わせということで
ある。この作用機構は、はっきりしないが、PAI樹脂
がPI樹脂と強固に密着し、PAI樹脂自身の特性がP
I樹脂の湾曲作用を打ち消す作用をする為とも考えられ
る尚、PAI樹脂の中でもプロトン系の有機溶剤(例え
ばγ−ブチルラクトン、シクロヘキサン、トルエン、ア
ルコール、テトラヒドロフラン等)に溶解するものもあ
るが密着性とか、耐熱性とかの点で好ましいものとは言
えない。The PI resin and the PAI resin are as described above, but the two are particularly selected and combined for the following reason. As described above, the PI resin is more excellent in heat resistance, various physical properties, the environment (especially under high temperature and high humidity), etc. than the thermoplastic aromatic polyimide resin and any other functional resin. It is a very effective material for use in However, as described above, there is a drawback that it is easily curved. Curling before or during use does not allow slight curvature deformation, especially for copier belts that form toner images in a plane and transfer that image in a plane. A means for completely eliminating the risk of this bending is to use a combination with the PAI resin which is neither a thermoplastic aromatic polyimide resin nor another resin. Although the mechanism of this action is not clear, the PAI resin adheres firmly to the PI resin,
It is also considered to have a function of canceling the curving action of the I resin. Among the PAI resins, there are some which dissolve in a protonic organic solvent (for example, γ-butyl lactone, cyclohexane, toluene, alcohol, tetrahydrofuran, etc.). It is not preferable in terms of heat resistance.
【0025】又前記従来技術で説明したように、例えば
カラー複写機の中間転写ベルトとして使用する場合の性
能要求が、最近では特に電気抵抗が適宜コントロールで
きて、より適正な静電容量が自由に得られるベルトに向
けられている。これはどうしても電気抵抗の異なる二層
ベルトでの解決ということになり、現状では前記するよ
うに、この二層を熱硬化性ポリイミド樹脂でもって行っ
ている。しかしながらこの同じ該樹脂での二層では、よ
り回転屈曲性にも欠け、湾曲もより助長されるという物
性面以外に、耐絶縁破壊性が悪くなる傾向がある。この
問題点も特に前記PI樹脂を基体層(一層)にして、こ
の上層又は下層にして前記PAI樹脂を積層することで
解決するというものである。これの作用も定かでない
が、まずPI樹脂に対して選択されたPAI樹脂が親和
的で密着性し易くなっていること、そして後述するよう
にPAI層を積層するPI基体層が、既に実質的にイミ
ド化を完了し(従って前記溶剤も含有していない)した
もので、そしてPAI樹脂自身も実質的にイミド化を完
了したものでもって両者が積層されるので、積層工程の
中での加熱は、有機溶媒の蒸発除去のみでイミド化の為
のより高温加熱は必要でない。。イミド化が必要でない
ことは、副生する縮合成分(CO2、H2O、HClの
いずれか)の一切の発生がないので、層間は勿論層内部
でも気泡等の抱き込みもなく、又含有される導電性カー
ボンの層境界でのブリードアウト現象もない結果と考え
られる。この気泡のないことは密着性をより良化する作
用にも繋がることになる。As described in the above-mentioned prior art, for example, the performance requirement when used as an intermediate transfer belt of a color copying machine has recently been increasing, especially since the electric resistance can be appropriately controlled and a more appropriate capacitance can be freely set. Pointed at the resulting belt. This inevitably results in a solution with two-layer belts having different electrical resistances. At present, as described above, these two layers are formed of a thermosetting polyimide resin. However, in the same two layers made of the same resin, there is a tendency that the dielectric breakdown resistance is deteriorated, in addition to the physical properties that the rotation bending property is further lacked and the curvature is further promoted. This problem is also solved particularly by forming the PI resin as a base layer (one layer) and laminating the PAI resin as an upper layer or a lower layer. The effect of this is not clear, but first, the PAI resin selected for the PI resin has an affinity and is easy to adhere, and as described later, the PI base layer for laminating the PAI layer is substantially Since the imidization has been completed (therefore, the solvent has not been contained), and the PAI resin itself has been substantially imidized, both are laminated. Does not require higher-temperature heating for imidization only by evaporating and removing the organic solvent. . The fact that imidization is not required is because no by-product condensation component (one of CO 2 , H 2 O, and HCl) is generated, so that there is no entrapped air bubbles or the like inside the layer as well as inside the layer, and it is contained. It is considered that there is no bleed-out phenomenon at the layer boundary of the conductive carbon to be performed. The absence of the bubbles leads to a function of improving the adhesion.
【0026】そして前記PI樹脂によって基体層が、P
AI樹脂によって上層又は下層が形成されるが、この時
いずれか一方の層または両層が異なる半導電性を有して
いる。この半導電性は種々の手段で付与されるが、本発
明では請求項3で提供するように該樹脂に導電性カーボ
ンブラック(以下CB粉体と呼ぶ)を混合分散させるこ
とで好ましく行なわれる。The substrate layer is made of P
An upper layer or a lower layer is formed by the AI resin. At this time, one or both layers have different semiconductivity. The semiconductivity is imparted by various means. In the present invention, the semiconductivity is preferably achieved by mixing and dispersing conductive carbon black (hereinafter referred to as CB powder) in the resin.
【0027】CB粉体は、他の導電性粉体と比較して、
PI樹脂、PAI樹脂との分散性(バラツキが小さ
い)、分散後の安定性、比較的少量添加で所望する半導
電性の付与ができる等の理由で好ましい。これもその製
造原料(天然ガス、アセチレンガス、コールタール等)
と製造条件(燃焼条件)とによって種々の物性(電気抵
抗、揮発分、比表面積、粒径、pH値、DBP吸油量
等)を有したものがあり、この中で更に好ましいものが
ある。実際に選択に際しては、可能なかぎり少量の混合
分散でもって、より所望する前記表面抵抗率が安定して
得られるようなものを選ぶのがよい。例えばストラクチ
ャーの発達した導電指標の高いものとか(これはアセチ
レンガスを原料として製造して得たCB粉体に多い)、
或いは導電指標はあまり高くないが(pH値を低くする
ような)、揮発分を多く含有するもの等適当なパラメー
ターでもってチェックし適正はものを選ぶのがよい。尚
混合分散手段、混合量については後述する製造方法で説
明する。CB powder is compared with other conductive powders.
It is preferable because the dispersibility with the PI resin and the PAI resin (the dispersion is small), the stability after dispersion, and the desired semiconductivity can be imparted by adding a relatively small amount. This is also its raw material (natural gas, acetylene gas, coal tar, etc.)
Some have various physical properties (electrical resistance, volatile matter, specific surface area, particle size, pH value, DBP oil absorption, etc.) depending on the production conditions (combustion conditions), and among them, more preferable are those. In actual selection, it is preferable to select a material that can obtain the desired surface resistivity more stably with as little mixing and dispersion as possible. For example, a material with a high conductivity index with a developed structure (this is common in CB powders obtained by using acetylene gas as a raw material),
Alternatively, the conductivity index is not so high (such as lowering the pH value), but it is better to check with appropriate parameters such as those containing a large amount of volatile matter and select an appropriate one. The mixing and dispersing means and the mixing amount will be described later in the production method.
【0028】前記PI基体層とPAI層との表裏面関係
は、いずれでも前記課題は達成されるが、特にベルト回
転で使用する場合、裏面における回転ローラとの接触耐
摩耗とか、表面での感光ドラム又は複写紙との接触に関
しては裏面に該基体層を、表面にPAI層をもって構成
する方が好ましい(請求項4)。又これは、後述する製
造方法からも好ましいことである。Regarding the relationship between the front and back surfaces of the PI base layer and the PAI layer, the above-mentioned problems can be achieved in any case, but in particular, when used in belt rotation, contact abrasion with the rotating roller on the back surface, photosensitivity on the front surface, etc. Regarding contact with a drum or copy paper, it is preferable to form the base layer on the back surface and the PAI layer on the front surface (claim 4). This is also preferable from the manufacturing method described later.
【0029】尚、前記各層の異なる半導電性と表裏面と
の関係は、使い方、ユーザー、機種により異なる。例え
ば静電容量を主体に帯電性能を管理する場合には表面層
を半導電性にして裏面層を実質的電気絶縁性にするのが
良い。The relationship between the different semiconductivity of each layer and the front and back surfaces differs depending on the usage, the user, and the model. For example, when the charging performance is controlled mainly by the capacitance, it is preferable to make the surface layer semiconductive and make the backside layer substantially electric insulating.
【0030】又、表面層の表面抵抗に対して、全体の体
積抵抗を自由に変えたい場合には、両層とも半導電性に
するが、表面層の表面抵抗よりも裏面層のそれが大きく
なる範囲で適宜変えるように設定するのが良い。これは
電荷寿命が長くもなく短くもないという性質の維持に有
効でもあるからである。尚、ここでいう半導電性を表面
抵抗率で示すと105〜1014Ω/□、実質的電気絶
縁性のそれは1015Ω/□以上と例示できる。When it is desired to freely change the entire volume resistance with respect to the surface resistance of the surface layer, both layers are made semiconductive, but the back layer has a larger resistance than the surface resistance of the surface layer. It is good to set so as to be appropriately changed within a certain range. This is because it is effective for maintaining the property that the charge life is not long or short. In addition, when the semiconductivity referred to here is expressed in terms of surface resistivity, it can be exemplified as 10 5 to 10 14 Ω / □, and the substantial electrical insulation can be exemplified as 10 15 Ω / □ or more.
【0031】又PI基体層とPAI層との層厚関係は、
後者を厚くするのが効果的のようにも考えられるが、敢
えてその必要もない。寧ろ後者を薄く設定する方が前記
課題解決に有利に作用する(請求項5)。この層厚関係
は、まず全厚として約80〜150μmとし、就中該基
体層としてはPAI層よりも厚くするのが良い。これは
基体層としての強度的役割、従順なベルト回転を行う等
の理由による。The layer thickness relationship between the PI base layer and the PAI layer is as follows:
It may seem effective to make the latter thicker, but it is not necessary. On the contrary, setting the latter thinner is advantageous for solving the problem (claim 5). This layer thickness relationship is about 80 to 150 μm in total thickness, and it is particularly preferable that the substrate layer be thicker than the PAI layer. This is due to the role of strength as the base layer, the compliant belt rotation, and the like.
【0032】本発明の管状芳香族ポリイミド樹脂系多層
フイルムは、基本的には前記PI基体層とPAI層との
二層から構成されるが、三層であっても良い。この場合
は特に両層をより強固に密着する作用をする接着層の介
在が望ましい。該層として望ましいのは、請求項6でも
提供するように、導電性カーボンブラック含有又は非含
有の非熱可塑性ポリイミド樹脂による中間接着層であ
る。これは前記両層だけで十分な密着力でもって積層さ
れてはいるが、特にベルト回転のような過酷な使い方で
は、部分的ではあるが、層間剥離を起こす危険性があ
る。この危険性を払拭する為には、より強固な密着手段
を講じておいた方がよいからである。The tubular aromatic polyimide resin-based multilayer film of the present invention is basically composed of two layers of the PI base layer and the PAI layer, but may be three layers. In this case, it is particularly desirable to interpose an adhesive layer that acts to firmly adhere both layers. Desirable as the layer is an intermediate adhesive layer made of a non-thermoplastic polyimide resin containing or not containing conductive carbon black, as also provided in claim 6. Although the two layers are laminated with a sufficient adhesive force only by the above-mentioned layers, there is a risk of delamination, although partially, particularly in severe use such as belt rotation. This is because, in order to eliminate this danger, it is better to take stronger adhesion means.
【0033】前記PI基体層とPAI層との間の密着力
改善には、一般にポリイミドフイルムの密着力改善の手
段として知られ、又特許出願等でも提案されているよう
に、密着力改善の為の表面処理手段、例えば研磨等の物
理的処理方法、プラズマ等による電気化学的処理方法、
酸化剤とかアルカリによる化学的処理方法等でも良い。
しかし本発明においては、大きな改善効果は得られな
い。これも両層が異なる樹脂との組み合わせによるもの
と考えられる。前記中間接着層の介在は、このような従
来技術に立ってより好ましい手段として見出されたもの
である。In order to improve the adhesion between the PI base layer and the PAI layer, it is generally known as a means for improving the adhesion of a polyimide film. Surface treatment means, for example, a physical treatment method such as polishing, an electrochemical treatment method using plasma or the like,
A chemical treatment method using an oxidizing agent or an alkali may be used.
However, in the present invention, a great improvement effect cannot be obtained. This is also thought to be due to the combination of the two layers with different resins. The interposition of the intermediate adhesive layer has been found as a more preferable means based on such prior art.
【0034】つまり前記中間接着層は、前記の通りの組
成分により成るが、ここでの導電性カーンブラック、非
熱可塑性ポリイミド樹脂は前記で説明したCB粉体、P
I樹脂と同じものである。但し実際に使用する場合はP
I基体層と同一成分・組成とする場合もあれば異なる場
合もある。これは異なっても密着力改善には差がないか
らであるが、取り扱い上からは同一なものであるのがよ
い。ここでPI樹脂の使用は、これに変えて前記する熱
可塑性芳香族ポリイミド樹脂でも良いが、これの使用は
PI基体層との間の密着力に若干欠けることと、湾曲改
善作用が抑制される傾向があるので、あまり好ましいも
のとは言えないことによる。That is, the intermediate adhesive layer is composed of the same components as described above, and the conductive cahn black and the non-thermoplastic polyimide resin here are CB powder and P
It is the same as I resin. However, when actually using
It may be the same component or composition as the I base layer, or may be different. This is because there is no difference in the improvement of the adhesion even if they are different, but it is preferable that they are the same in terms of handling. Here, the use of the PI resin may be replaced by the thermoplastic aromatic polyimide resin described above, but the use of the PI resin results in a slight lack of adhesion to the PI base layer and a curving effect is suppressed. Due to the tendency, it is not very favorable.
【0035】又、中間接着層のCB粉体の含有有無は、
次の三つの場合によって決まる。その一つが、PI基体
層が電気絶縁性(CB粉体含有せず)で、PAI層が半
導電性(CB粉体含有)の場合である。該中間接着層に
はCB粉体を含有して半導電性にするが、少なくとも抵
抗率桁数は同じの半導電性の該PAI層とするのが良
い。ここで該中間接着層を特に半導電性した方が良いの
は、これが異なると、該中間接着層と該PAI層との境
界でCB粉体の移動があって、該PAI層の当初設定さ
れた電気抵抗が変化する危険性があるからである。The presence or absence of CB powder in the intermediate adhesive layer is determined by
It depends on the following three cases. One of the cases is when the PI base layer is electrically insulating (does not contain CB powder) and the PAI layer is semiconductive (containing CB powder). The intermediate adhesive layer contains CB powder to make it semiconductive, but it is preferable to use the semiconductive PAI layer having at least the same digit of resistivity. Here, it is better to make the intermediate adhesive layer particularly semiconductive because if it is different, the CB powder moves at the boundary between the intermediate adhesive layer and the PAI layer, and the initial setting of the PAI layer is performed. This is because there is a risk that the electrical resistance may change.
【0036】その二つがPI基体層が半導電性で、PA
I層が電気絶縁性である場合である。この場合の中間接
着層は、CB粉体無しで電気絶縁性にした方が良い。こ
れも前記のバリヤー効果と電気抵抗無変化の効果に有効
であるからである。Two of them are those in which the PI base layer is semiconductive and PA
This is the case when the I layer is electrically insulating. In this case, it is preferable that the intermediate adhesive layer be electrically insulating without CB powder. This is also effective for the barrier effect and the effect of no change in electric resistance.
【0037】その三つがPI基体層、PAI層の両層が
異なる半導電性である場合である。この場合は前記その
一つの場合と同じ中間接着層をPAI層と同じ半導電性
とすることで良い。該PI基体層が、実質的にイミド化
された完全固相状態であるからである。The three cases are cases where both the PI base layer and the PAI layer have different semiconductivity. In this case, the same intermediate adhesive layer as that in the above one case may be made to have the same semiconductivity as the PAI layer. This is because the PI substrate layer is in a substantially imidized and completely solid state.
【0038】尚、前記中間接着層は接着機能のみが発現
されれば良いので、その層厚は可能な限り薄層であるの
が良い。Since the intermediate adhesive layer only needs to exhibit an adhesive function, the thickness of the intermediate adhesive layer is preferably as thin as possible.
【0039】次に前記管状芳香族ポリイミド樹脂系多層
フイルムの製造方法について例示するが、ここでの例示
は前記請求項3〜6で提供する管状芳香族ポリイミド樹
脂系多層フイルムに関するものである。尚該製造方法
は、該請求項記載に関わらず、他の例での場合にも必要
によっては使われる製造方法である。Next, a method for producing the tubular aromatic polyimide resin-based multilayer film will be described by way of example. This example relates to the tubular aromatic polyimide resin-based multilayer film provided in the third to sixth aspects. This manufacturing method is a manufacturing method that is used as necessary in other examples regardless of the claims.
【0040】つまり前記製造方法は請求項7にて提供す
るもので、次の(A)〜(C)に記載の各工程を順次行
なって達成する。尚、ここでの管状成形は、例えばウエ
ッブフイルムの両端を繋いで管状にする方法とは異な
り、一挙に無端管状(エンドレス)で成形する方法であ
り、そしてPI基体層を電気絶縁性の裏面層とし、PA
I層を半導電性の表面層として構成する例である。That is, the manufacturing method is provided in claim 7, and is achieved by sequentially performing the following steps (A) to (C). Note that the tubular molding here is a method of forming an endless tube (endless) at a stroke, unlike a method of connecting both ends of a web film to form a tube. And PA
This is an example in which the I layer is configured as a semiconductive surface layer.
【0041】まずPI基体層が(A)記載の第一工程で
成形される。それには成形原料となる、ガラス転移点3
00℃以上の非熱可塑性芳香族ポリイミド樹脂前駆体
(単にポリアミド酸と呼び、以下PA酸と略す)の有機
溶媒溶液を調製する必要がある。該溶液は、前記PI樹
脂として例示する原料(芳香族テトラカルボン酸二無水
物成分と芳香族ジアミン成分)が当モルで前記非プロト
ン系有機溶剤中、常温以下で重縮合(PA酸の段階ま
で)反応することで製造できる。この反応の際に副生す
る水をキャッチする捕捉剤とか、後のイミド化の促進剤
等を添加しておいても良い。この段階では若干のイミド
化(例えば20%以内)は許容されるが、イミド化反応
が起こるようなことは避ける必要がある。First, the PI base layer is formed in the first step described in (A). Glass transition point 3
It is necessary to prepare an organic solvent solution of a non-thermoplastic aromatic polyimide resin precursor (hereinafter simply referred to as polyamic acid and abbreviated as PA acid) at a temperature of 00 ° C. or higher. The solution is prepared by equiconstituting the raw materials exemplified as the PI resin (the aromatic tetracarboxylic dianhydride component and the aromatic diamine component) in equimolar amounts in the aprotic organic solvent at ordinary temperature or lower at a polycondensation (up to the stage of PA acid). ) It can be produced by reacting. A scavenger for catching water produced as a by-product during this reaction, an accelerator for imidization to be performed later, or the like may be added. At this stage, some imidization (for example, within 20%) is permissible, but it is necessary to avoid imidization reaction.
【0042】次に前記得られたPA酸溶液を回転ドラム
内で回転成形・加熱するが、これに先駆して該溶液は適
正な溶液粘度に調整する。調整の必要でない場合は原液
そのままで良いが、調整の場合は前記反応と同一の有機
溶媒で希釈する。該回転成形は、一般に知られている遠
心成形法である。例えば内面鏡面仕上げされた金属ドラ
ムが4個の回転ローラに載置され、該ローラの回転によ
って遠心力が作用する速度で該ドラムを回転する。所定
量の該溶液が該ドラム内に供給されると、遠心力によっ
て内面に均一に流延されるので、今度は回転しながら徐
々に温度を上げ、まず有機溶剤を蒸発除去する。該蒸発
につれて固形化し、PA酸の無端管状フイルムが成形さ
れる。このまま引き続き除々に昇温して残存溶媒の完全
除去と共にイミド化反応を行って、該ドラム中で一挙に
PI基体層として剥離し取り出しても良いし、該PA酸
の無端管状フイルムの段階で、該ドラムから剥離し取り
出して、これを円筒金型に外嵌して別途熱風乾燥機に投
入して、残存溶媒の完全除去と共にイミド化反応を行う
という方法を採っても良い。前記PI樹脂の場合は、
(構造上と考えられるが)イミド化反応と共に若干の収
縮傾向が見られるので、後者の別途熱風加熱方式でもっ
てイミド化を行った方が良い。Next, the obtained PA acid solution is subjected to rotary molding and heating in a rotary drum. Prior to this, the solution is adjusted to an appropriate solution viscosity. When no adjustment is necessary, the stock solution may be used as it is, but in the case of adjustment, it is diluted with the same organic solvent as in the above reaction. The rotational molding is a generally known centrifugal molding method. For example, a metal drum having an internally mirror-finished surface is mounted on four rotating rollers, and the drum rotates at a speed at which centrifugal force acts due to the rotation of the rollers. When a predetermined amount of the solution is supplied into the drum, the solution is uniformly cast on the inner surface by centrifugal force. Therefore, the temperature is gradually increased while rotating, and the organic solvent is first evaporated and removed. As it evaporates, it solidifies to form an endless tubular film of PA acid. The temperature is gradually increased as it is, and the imidization reaction is carried out together with the complete removal of the remaining solvent, and the PI substrate layer may be peeled off and taken out at a stroke in the drum, or at the stage of the endless tubular film of the PA acid, A method may be adopted in which the film is peeled off from the drum, taken out of the drum, externally fitted to a cylindrical mold, separately put into a hot-air dryer, and the imidization reaction is performed together with complete removal of the residual solvent. In the case of the PI resin,
Since a slight shrinkage tendency is observed with the imidization reaction (though it is considered structural), it is better to perform the imidization by the latter separate hot air heating method.
【0043】尚、PI基体層が半導電性である場合は、
無遠心力成形方法によるのが良い。これはCB粉体含有
のPA酸溶液を噴霧状で供給しつつ無遠心力(金属ドラ
ムの回転は極めてゆっくり)作用下で成形するので、該
CB粉体が偏在分散することもなく、均一に分散するの
で好ましいからである。又遠心成形と異なり金属ドラム
の回転が極めてゆっくり(遠心力が働かない)であるの
で、大口径の該ドラムを使ってもそれ自身がブレるよう
なこともないので、より大口径の無端管状フイルムも高
精度で成形できることにもよる。勿論CB粉体を含有し
ない場合でも、この無遠心力成形方法によっても良い。When the PI base layer is semiconductive,
It is better to use a centrifugal force forming method. This is because the PA acid solution containing the CB powder is molded under the action of centrifugal force (rotation of the metal drum is extremely slow) while being supplied in the form of a spray, so that the CB powder is uniformly dispersed without uneven distribution. This is because the dispersion is preferable. Also, unlike centrifugal molding, the rotation of the metal drum is extremely slow (the centrifugal force does not work), so even if the drum with a large diameter is used, it does not shake itself, so a larger diameter endless tubular It also depends on the fact that the film can be molded with high precision. Of course, even when CB powder is not contained, this centrifugal force forming method may be used.
【0044】次に前記の無端管状のPI基体層表面全周
に、5〜30重量%のCB粉体を含有するPA酸有機溶
媒溶液を塗布し加熱して中間接着層を設けるという、
(B)に記載の第二工程を実施する。まずここで該CB
粉体の実際の添加量は、次の(C)記載の第三工程で行
うPAI樹脂溶液と同量添加する。混合は予め羽根付き
混合機で予備混合し、最後にボールミル混合機で本格混
合する方法を採るのがよい。Next, a PA acid organic solvent solution containing 5 to 30% by weight of CB powder is applied over the entire surface of the endless tubular PI base layer and heated to form an intermediate adhesive layer.
The second step described in (B) is performed. First, here the CB
The actual amount of the powder added is the same as the amount of the PAI resin solution to be added in the third step described in the following (C). It is preferable to adopt a method of preliminarily mixing with a bladed mixer, and finally performing full mixing with a ball mill mixer.
【0045】そして前記CB粉体含有PA酸溶液は、無
端管状PI基体層の表面に均一に塗布されるが、ここで
該塗布手段には、例えば一般に知られている方法(球体
を該液と共に表面走行させる方法、グラビヤロール法、
スプレー法等)が適用できるが、中でもスプレーコーテ
ィング法が好ましい(請求項8)。この該コーティング
法は該基体層を回転しながら該溶液をノズル口から噴霧
状(噴射状)で供給してコーティングする方法である
が、他の方法よりもより薄く、迅速に、均一にコーティ
ングできる。The CB powder-containing PA acid solution is uniformly applied to the surface of the endless tubular PI base layer. Here, the applying means may be, for example, a generally known method (together with a sphere and the liquid). Surface running method, gravure roll method,
Spray method) can be applied, and among them, the spray coating method is preferable (claim 8). This coating method is a method in which the solution is supplied in the form of a spray (spray) from a nozzle port while rotating the base layer to coat the solution. However, thinner, quicker and more uniform coating than other methods is possible. .
【0046】スプレーコーティングの条件は、基本的に
はコーティング厚さの設定によって決まる。その因子
は、主として該溶液の状態(粘度と固形分濃度)、噴射
量、回転速度、ノズルも移動(前記基体層装着の回転体
に対して上下又は左右)させつつ噴射する場合はその速
度、往復回数もある。実際の条件設定に際しては、これ
らの要因を事前検討して最適条件を決めることが求めら
れる。ここでのコーティング厚さは、密着力発現に必要
な最小厚さに留めることが望ましいので、これは最終的
に形成されるPI樹脂中間接着層の厚さ換算で約0.5
〜5.0μm(請求項9)、好ましくは1〜3μmにな
るようにする(有機溶媒が残存している分若干厚くな
る)。The conditions for spray coating are basically determined by the setting of the coating thickness. The factors are mainly the state of the solution (viscosity and solids concentration), the injection amount, the rotation speed, the speed when the nozzle is also moved (up and down or left and right with respect to the rotating body mounted on the base layer), There are also round trip times. In setting actual conditions, it is required to consider these factors in advance and determine the optimum conditions. Since the coating thickness here is desirably kept to the minimum thickness necessary for expressing the adhesion, this is about 0.5% in terms of the thickness of the finally formed PI resin intermediate adhesive layer.
The thickness is set to about 5.0 μm (claim 9), preferably 1 to 3 μm (it becomes slightly thicker due to the remaining organic solvent).
【0047】前記コーティング後は、CB粉体含有PA
酸固形膜が密着形成される迄、加熱乾燥(熱風がよい)
される。ここで加熱乾燥における特に温度は、少なくと
も有機溶媒が蒸発除去される温度(全ての該溶媒が除去
されるよりも、若干残存、例えば5〜20%程度が望ま
しい)は必要である。そして若干のイミド化(例えば約
50%未満)は行われても良いが、過度に進行しないよ
うな温度(例えば180℃以下)で乾燥する。これは特
に次の(C)記載の第三工程で行うPAI層との密着力
が、より強固に作用するからである。この作用効果は非
イミド化部分(つまりアミド酸部分)にPAI樹脂分子
が絡み合って、そこで最終的にイミド化が行われること
で、より大きな密着力発現に寄与するからではないかと
も考えられる。After the coating, the CB powder-containing PA
Heat drying (hot air is good) until an acid solid film is formed tightly.
Is done. Here, in particular, the temperature in the heating and drying needs to be at least a temperature at which the organic solvent is removed by evaporation (a little remaining, for example, about 5 to 20% is desirable rather than removing all the solvent). And although some imidization (for example, less than about 50%) may be performed, drying is performed at a temperature (for example, 180 ° C. or lower) that does not excessively proceed. This is because the adhesion to the PAI layer, which is performed in the third step described in (C) below, acts more strongly. It is conceivable that this action and effect may be due to the fact that the PAI resin molecule is entangled with the non-imidated portion (that is, the amide acid portion), and the imidization is finally performed there, thereby contributing to the development of greater adhesion.
【0048】尚、前記中間接着層を設ける前に、前記基
体層の表面を、前記する(0030)表面処理手段を講
じることは悪いことではない。It is not bad to take the above-mentioned (0030) surface treatment means on the surface of the base layer before providing the intermediate adhesive layer.
【0049】次に最後に行う、(C)記載の第三工程に
ついて説明する。ここではCB粉体含有のPAI樹脂
(Tg200〜310℃)有機溶媒(前記非プロトン
系)溶液(塗布原料)が前記中間接着層形成と同じ塗布
手段によってコーティングされる。その為にまず該塗布
原料が調製されるが、これは前記例示する原料成分(芳
香族トリカルボン酸一無水物又はこれに更に芳香族テト
ラカルボン酸二無水物を加えた酸成分と芳香族ジイソシ
アネート成分)の当モルを有機溶剤中で重縮合・イミド
化することによって得られる。イミド化反応まで行うの
で温度は高温(例えば150〜200℃)で行うが、重
縮合(アミド化)を先行してより高分子化をするため
に、最初からかかる高温にせずに徐々に昇温して行くよ
うな配慮が必要である。ここでは完全イミド化のPAI
樹脂であるが、若干の未閉環部分(例えば約1〜10%
程度)があっても良い。そして得られたPAI溶液に、
5〜30重量%のCB粉体を添加混合する。混合につい
ては前記中間接着層での説明と同じである。かかるCB
粉体混合量で、付与される半導電性は、表面抵抗率で1
05〜1014Ω/□程度である。該抵抗率は、例えば
中間(紙搬送兼)転写ベルトとしての使用の場合に要求
される範囲である。尚、前記得られたPAI溶液に非溶
媒を添加して、一旦PAI樹脂を粉体として析出し乾燥
し、改めて有機溶剤に溶解し、これに同様にCB粉体を
添加混合しても良い。Next, the third step (C), which is performed last, will be described. Here, a CB powder-containing PAI resin (Tg 200 to 310 ° C.) organic solvent (the aprotic) solution (coating material) is coated by the same coating means as that for forming the intermediate adhesive layer. For this purpose, first, the coating material is prepared, which is composed of the above-mentioned raw material components (an aromatic tricarboxylic acid monoanhydride or an acid component obtained by further adding an aromatic tetracarboxylic dianhydride and an aromatic diisocyanate component). Is obtained by polycondensation / imidization of an equivalent mole of the above in an organic solvent. The reaction is performed at a high temperature (for example, 150 to 200 ° C.) because the reaction is performed up to the imidization reaction. It is necessary to consider it. Here, PAI of complete imidization
Resin, but some unring closed part (for example, about 1 to 10%
Degree). And in the obtained PAI solution,
5 to 30% by weight of CB powder is added and mixed. The mixing is the same as described for the intermediate adhesive layer. Such CB
The semiconductivity given by the amount of powder mixed is 1 in surface resistivity.
It is about 0 5 to 10 14 Ω / □. The resistivity is, for example, in a range required for use as an intermediate (paper transport / transfer) transfer belt. A non-solvent may be added to the obtained PAI solution, the PAI resin may be once precipitated as a powder, dried, dissolved again in an organic solvent, and CB powder may be added and mixed in the same manner.
【0050】前記得られた塗布原料は、前記第二工程で
行うと同じ塗布手段によって前記中間接着層の表面全周
にコーティングする。ここでの噴射コーティング条件も
基本的には、コーティング厚さの設定によって決まる。
その要因は主として、該溶液の状態(粘度と固形分濃
度)、噴射量、回転速度、ノズルも移動(前記基体層装
着の回転体に対して上下又は左右)させつつ噴射する場
合はその速度、往復(上下又は左右)回数にもある。実
際の条件設定に際しては、これらの要因を事前検討して
最適条件を決めることが求められる。ここでのコーティ
ング厚さは、加熱乾燥して最終得られるPAI層として
PI基体層よりも薄く、中間接着層よりも厚くなるよう
な厚さ調整をする。このPAI層厚としては、PI基体
層の約1/3〜3/4倍(請求項9)、好ましくは1.
5/3〜2.5/4倍であるのがよい。The coating material thus obtained is coated on the entire surface of the intermediate adhesive layer by the same coating means as used in the second step. The spray coating conditions here are also basically determined by the setting of the coating thickness.
The main factors are the state of the solution (viscosity and solid content concentration), the injection amount, the rotation speed, and the speed when the nozzle is also moved (up and down or left and right with respect to the rotating body mounted on the base layer), There are also round trips (up and down or left and right). In setting actual conditions, it is required to consider these factors in advance and determine the optimum conditions. The coating thickness here is adjusted so that the PAI layer finally obtained by heating and drying is thinner than the PI base layer and thicker than the intermediate adhesive layer. The thickness of the PAI layer is about 1/3 to 3/4 times that of the PI base layer (Claim 9), preferably 1.
The ratio is preferably 5/3 to 2.5 / 4.
【0051】前記塗布が終了したら加熱(熱風)乾燥す
るが、ここでの加熱温度は、有機溶媒の除去と前記中間
接着層の前駆体層をイミド化(100%でなくても良
い)してしまうものである。この温度は、約200〜3
00℃であるが、一気に該温度で加熱するのではなく、
徐々に階段的に昇温して、まず有機溶媒の除去を先行
し、最後にイミド化を終了するように調整するのが良
い。When the coating is completed, the coating is dried by heating (hot air). The heating temperature is such that the organic solvent is removed and the precursor layer of the intermediate adhesive layer is imidized (not necessarily 100%). It is a mess. This temperature is about 200-3
Although it is 00 ° C, instead of heating at a stretch,
It is preferable that the temperature is gradually increased stepwise so that the removal of the organic solvent is performed first and the imidization is completed last.
【0052】前記製造方法でも例示するように、裏面層
を電気絶縁性のPI層とし、表面層を半導電性のPAI
層とするという構成の場合は、この逆の構成(表面層を
電気絶縁性のPAI層とする)のものと比較して、次の
ような点でも有利に作用する。例えば中間転写ベルトと
してカラー複写機に使用した場合に、ベルト表面のクリ
ーニングをウレタンゴムヘラで擦って除去する場合に静
摩擦(又は動摩擦)の度合いが適正に制御され易く、そ
の結果回転起動が円滑(スリップなく)に行われるので
起電流に過度の負荷がかからないことと、感光ドラムか
らの一次転写が忠実に、確実に行われ易くもなることに
よる。As exemplified in the above manufacturing method, the back surface layer is an electrically insulating PI layer, and the front surface layer is a semiconductive PAI.
In the case of the structure in which the layers are formed as layers, compared to the structure in which the structure is reversed (the surface layer is formed of an electrically insulating PAI layer), the following points are also advantageous. For example, when the belt is used as an intermediate transfer belt in a color copying machine, the degree of static friction (or kinetic friction) is easily controlled properly when the belt surface is cleaned by rubbing with a urethane rubber spatula. ), So that an excessive load is not applied to the electromotive current, and that the primary transfer from the photosensitive drum is easily and reliably performed.
【0053】[0053]
【実施例】以下に比較例と共に、実施例によって更に詳
述する。尚、本例における湾曲度、表面抵抗率(Ω/
□)(以下ρsと略す)、耐絶縁破壊性(耐電圧で測定
し、耐電圧値とする)、層間密着力及びTgは次の通り
測定した値である。 ●湾曲度 まず幅380mmのサンプルを直径40mmのロール1
に引っかけ、他端には同径で、重さ2kgのロール2を
装填して垂下し吊り下げ状態にする。そしてロール1の
横中心線から100mm下の位置で該サンプルが内側又
は外側への曲りを測定してそれをmmで示した値。いず
れも曲りのない垂直の場合は40mmとする。 ●ρs サンプルに付き、三菱化学株式会社製の抵抗測定器“ハ
イレスタIP・HRプローブ”を使って、幅方向に等ピ
ッチで3カ所と縦(周)方向に8カ所の合計24ヶ所を
500V印加、10秒後に測定し、幅方向と縦(周)方
向を平均して示した値。 ●耐電圧値 測定器は“KIKUSUI ELECTRONICS
CORP社製の電圧テスター(WITHSTANDIN
G VOLTAG TESTER)/機種 TOS87
50”を使用。測定条件は、60×60mmにカットし
たサンプルを60×60mmの板状電極に挟んで、1k
V/10秒の昇電速度で1〜5kVの電圧(直流)を印
加し、電流値が10mAを超えた時点の電圧をもって耐
電圧値とした。 ●層間密着力 各例で得られた最終管状フイルムのサイドカット品を等
間隔で60×100mmにカットした3サンプルについ
て、JIS K6894(1976)中“6.4 付着
力”の項に記載する試験法(試験機は東洋精機株式会社
製の塗料描面試験機)によって剥離の状態を観察し、評
点1〜5に区分された付着力判定基準に基づいて判定し
た。評点4〜5を問題なし、1〜3は部分的又はほぼ全
部剥離で問題ありとした。尚、加重は160gであっ
た。 ●Tg (株)島津製作所製の示差走査熱量計“DSC−50”
にて測定した値。The present invention will be described in more detail with reference to the following examples together with comparative examples. In this example, the degree of curvature and the surface resistivity (Ω /
□) (hereinafter abbreviated as ρs), dielectric breakdown resistance (measured by withstand voltage, referred to as withstand voltage value), interlayer adhesion and Tg are values measured as follows. ● Degree of curvature First, a sample with a width of 380 mm was rolled into a roll 1 with a diameter of 40 mm.
The other end is loaded with a roll 2 of the same diameter and weighing 2 kg, and is suspended from the roll. A value obtained by measuring the inward or outward bending of the sample at a position 100 mm below the horizontal center line of the roll 1 and expressing the result in mm. In each case, the length is 40 mm in the case of a vertical without bending. ● Apply 500V to a total of 24 points, 3 points at equal pitch in the width direction and 8 points in the vertical (circumferential) direction, using a resistance measurement device “Hiresta IP / HR probe” manufactured by Mitsubishi Chemical Corporation with ρs sample. A value measured after 10 seconds and averaged in the width direction and the longitudinal (circumferential) direction. ● The withstand voltage measurement device is “KIKUSUI ELECTRONICS”
CORP voltage tester (WITHSTANDIN)
G VOLTAG TESTER) / model TOS87
50 "was used. The measurement conditions were as follows: a sample cut to 60 × 60 mm was sandwiched between plate electrodes of 60 × 60 mm, and 1 k
A voltage (DC) of 1 to 5 kV was applied at a voltage raising rate of V / 10 seconds, and the voltage at the time when the current value exceeded 10 mA was defined as the withstand voltage value. ● Interlayer adhesion The test described in JIS K6894 (1976) in the section of "6.4 Adhesion" for three samples obtained by cutting the side cut product of the final tubular film obtained in each example into 60 x 100 mm at equal intervals. The state of the peeling was observed by a method (the tester was a paint drawing tester manufactured by Toyo Seiki Co., Ltd.), and the evaluation was made based on the adhesive force criterion classified into 1 to 5 points. A rating of 4 to 5 was no problem, and a rating of 1 to 3 was partial or almost all peeling. The weight was 160 g. ● Tg Differential scanning calorimeter “DSC-50” manufactured by Shimadzu Corporation
Value measured in.
【0054】まず各成形原料の製造を参考例で示す。First, the production of each forming raw material will be described by reference examples.
【0055】(参考例1)(PI樹脂前駆体の合成) 3,3′,4,4′−ビフェニルテトラカルボン酸二無
水物とp−フエニレンジアミンとの等モル量をN−メチ
ルピロリドン中、常温で攪拌しながら重縮合反応してP
A酸(前駆体)の溶液(溶液粘度は4.9Pa・s、固
形分濃度18重量%)を2kg得た。これに更にN−メ
チルピロリドンを攪拌しながら添加し希釈して、溶液粘
度1.9Pa・s、固形分濃度14重量%とした。以下
これをPA酸液1と呼ぶ。尚、PA酸液1の一部を採取
し、これをガラス板に流延し、熱風乾燥機に入れて徐々
に昇温して200℃迄を30分間要して徐々に昇温し、
更に徐々に昇温して300℃に達したら、その温度で4
0分間、更に徐々に昇温して400℃に達したら、その
温度で40分間加熱した。厚さ50μmのPI樹脂フイ
ルムを得、これのTgを測定したら約502℃であっ
た。(Reference Example 1) (Synthesis of PI resin precursor) Equimolar amounts of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine were added to N-methylpyrrolidone. , A polycondensation reaction with stirring at room temperature
2 kg of a solution of A acid (precursor) (solution viscosity: 4.9 Pa · s, solid content concentration: 18% by weight) was obtained. Further, N-methylpyrrolidone was further added thereto with stirring to dilute the solution to a solution viscosity of 1.9 Pa · s and a solid content concentration of 14% by weight. Hereinafter, this is referred to as PA acid solution 1. In addition, a part of the PA acid solution 1 was collected, cast on a glass plate, placed in a hot air drier, and gradually heated to 200 ° C. for 30 minutes, and gradually heated.
When the temperature gradually rises to 300 ° C.,
The temperature was further gradually increased for 0 minutes, and when the temperature reached 400 ° C., heating was performed at that temperature for 40 minutes. A PI resin film having a thickness of 50 μm was obtained, and its Tg was measured to be about 502 ° C.
【0056】(参考例2)(PI樹脂前駆体の合成) ピロメリット酸二無水物と4,4′−ジアミノジフェニ
ルエーテルとの等モル量をN−メチルピロリドン中、常
温で攪拌しながら重縮合反応してPA酸(前駆体)の溶
液(溶液粘度は2.0Pa・s、固形分濃度15重量
%)を2kg得た。以下これをPA酸液2と呼ぶ。尚、
PA酸液2の一部を採取し、ガラス板に流延して参考例
1と同じ条件で加熱乾燥をしイミド化を行った。Tgを
測定したら約415℃であった。Reference Example 2 (Synthesis of PI Resin Precursor) Polycondensation reaction of equimolar amounts of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether in N-methylpyrrolidone while stirring at room temperature As a result, 2 kg of a PA acid (precursor) solution (solution viscosity: 2.0 Pa · s, solid content concentration: 15% by weight) was obtained. Hereinafter, this is referred to as PA acid solution 2. still,
A part of the PA acid solution 2 was collected, cast on a glass plate, and heated and dried under the same conditions as in Reference Example 1 to perform imidization. The measured Tg was about 415 ° C.
【0057】(参考例3)(PA酸液2の半導電化) 前記PA酸液2の1kgを採取し、これに24gのCB
粉体(体積抵抗率10 −1Ω・cm)(固形分に対して
13.8重量%)を羽根付き攪拌機で攪拌しつつ混合
し、更にボールミルに移し換えて混合し十分に均一分散
した。以下これをPA酸液3と呼ぶ。Reference Example 3 (Semiconductivity of PA Acid Solution 2) 1 kg of the above PA acid solution 2 was sampled, and 24 g of CB was added thereto.
Powder (volume resistivity 10 -1Ω · cm) (for solid content)
13.8% by weight) while stirring with a stirrer with blades
Transfer to a ball mill and mix thoroughly
did. Hereinafter, this is referred to as PA acid solution 3.
【0058】(参考例4)(PAI樹脂の合成) 酸成分としてトリメリット酸無水物0.85モル及びベ
ンゾフェノンテトラカルボン酸二無水物0.15モルの
合計1モルとビトリレンジイソシアネート1モルとをN
−メチルピロリドン中に加え、攪拌しながら徐々に昇温
して190℃に到達したら、その温度で7時間維持し本
反応を終了した。この溶液の一部をとってIR分析して
完全イミド化されていることを確認した。得られた溶液
量は2kg、溶液粘度は20Pa・s、固形分濃度20
重量%であった。以下これをPAI液4と呼ぶ。尚、P
AI液4の一部を採取し、溶液粘度2.5Pa・sにな
るようにN−メチルピロリドンで希釈し、これをガラス
板に流延した。次にこれを熱風乾燥機に入れて徐々に昇
温して130℃に到達したら15分間、更に徐々に昇温
して290℃に到達したら40分間加熱した。厚さ50
μmのPAI樹脂フイルムを得、これのTgを測定した
ら約292℃であった。Reference Example 4 (Synthesis of PAI Resin) A total of 1 mol of 0.85 mol of trimellitic anhydride and 0.15 mol of benzophenonetetracarboxylic dianhydride and 1 mol of vitriylene diisocyanate were used as acid components. To N
-Methylpyrrolidone, the temperature was gradually increased with stirring, and when the temperature reached 190 ° C, the temperature was maintained for 7 hours to complete the reaction. A part of this solution was analyzed by IR to confirm that it was completely imidized. The amount of the obtained solution was 2 kg, the solution viscosity was 20 Pa · s, and the solid content concentration was 20.
% By weight. This is hereinafter referred to as PAI solution 4. Note that P
A part of the AI solution 4 was collected, diluted with N-methylpyrrolidone so that the solution viscosity became 2.5 Pa · s, and cast on a glass plate. Next, this was put into a hot-air dryer and gradually heated to 130 ° C. for 15 minutes, and further gradually heated to 290 ° C. for 40 minutes. Thickness 50
A μm PAI resin film was obtained, and its Tg was measured to be about 292 ° C.
【0059】(参考例5)(PAI樹脂の合成) トリメリット酸無水物1モルを苛性ソーダ(該無水物に
対して5モル%添加)と共にN−メチルピロリドンに溶
解し、これに攪拌しながらヘキサメチレン1,6−ジイ
ソシアネート0.25モルとトリレン−2,4−ジイソ
シアネート0.75モルとを添加した。そして200℃
まで徐々に昇温し、その温度で1時間反応を行った。こ
の溶液の一部をとってIR分析して完全イミド化されて
いることを確認した。得られたPAI溶液は2kgで、
その溶液粘度は10.0Pa・s、固形分濃度19.5
重量%でった。以下これをPAI液5と呼ぶ。尚、ここ
での苛性ソーダの添加は、一般に知られている重合触媒
で、特に脂肪族ジイソシアネートの存在している場合に
有効であることによる。又、PAI液5の一部を採取
し、これにN−メチルピロリドンを添加して3.0Pa
・sとしてガラス板に流延した。そしてこれを熱風乾燥
機に入れて徐々に昇温し、150℃に到達したら30分
間、更に徐々に昇温して240℃に到達したら60分間
加熱した。厚さ50μmのPAI樹脂フイルムを得、こ
れのTgを測定したら約245℃であった。(Reference Example 5) (Synthesis of PAI resin) 1 mol of trimellitic anhydride was dissolved in N-methylpyrrolidone together with caustic soda (added at 5 mol% based on the anhydride). 0.25 mole of methylene 1,6-diisocyanate and 0.75 mole of tolylene-2,4-diisocyanate were added. And 200 ° C
, And the reaction was carried out at that temperature for 1 hour. A part of this solution was analyzed by IR to confirm that it was completely imidized. The resulting PAI solution is 2 kg,
The solution viscosity is 10.0 Pa · s, and the solid content concentration is 19.5.
% By weight. This is hereinafter referred to as PAI solution 5. The addition of caustic soda here is based on the fact that it is effective when a generally known polymerization catalyst is used, particularly when an aliphatic diisocyanate is present. In addition, a part of the PAI solution 5 was collected, and N-methylpyrrolidone was added thereto to add 3.0 Pa.
・ It was cast on a glass plate as s. Then, this was put into a hot air drier and gradually heated. When the temperature reached 150 ° C., it was heated for 30 minutes. When the temperature reached 240 ° C., it was heated for 60 minutes. A PAI resin film having a thickness of 50 μm was obtained, and its Tg was measured to be about 245 ° C.
【0060】(参考例6)(PAI液4の半導電化) 前記PAI液4の1kgを採取し、これにN−メチルピ
ロリドンを攪拌しながら溶解希釈して溶液粘度2.1P
a・sとした後、これに30gのCB粉体(体積抵抗率
10−1Ω・cm)(固形分に対して15重量%)を羽
根付き攪拌機で攪拌しつつ混合し、更にボールミルに移
し換えて混合し十分に均一分散した。この溶液粘度は
2.2Pa・sであった。以下これをPAI液6と呼
ぶ。(Reference Example 6) (Semiconductivity of PAI solution 4) 1 kg of the PAI solution 4 was collected, and N-methylpyrrolidone was dissolved and diluted with stirring to obtain a solution viscosity of 2.1 P.
Then, 30 g of CB powder (volume resistivity: 10 -1 Ω · cm) (15% by weight based on the solid content) was mixed with the mixture by stirring with a blade, and further transferred to a ball mill. Instead, they were mixed and dispersed sufficiently uniformly. The solution viscosity was 2.2 Pa · s. This is hereinafter referred to as PAI solution 6.
【0061】(参考例7)(PAI液5の半導電化) 前記PAI液5の1kgを採取し、これにN−メチルピ
ロリドンを攪拌しながら溶解希釈して溶液粘度2.1P
a・sとした後、これに29gのCB粉体(体積抵抗率
10−1Ω・cm)(固形分に対して14.8重量%)
を羽根付き攪拌機で攪拌しつつ予備混合し、更にボール
ミルに移し換えて攪拌混合し十分に均一分散した。この
溶液粘度は2.2Pa・sであった。以下これをPAI
液7と呼ぶ。Reference Example 7 (Semiconductivity of PAI solution 5) 1 kg of the PAI solution 5 was collected, and N-methylpyrrolidone was dissolved and diluted with stirring to obtain a solution viscosity of 2.1 P.
a · s, 29 g of CB powder (volume resistivity: 10 −1 Ω · cm) (14.8% by weight based on solid content)
Was premixed while being stirred by a stirrer with blades, and was further transferred to a ball mill to be stirred and mixed sufficiently to be uniformly dispersed. The solution viscosity was 2.2 Pa · s. This is called PAI
Called Liquid 7.
【0062】(実施例1)まず参考例1のPA酸液1の
160gを採取し、これを4個の回転ローラに載置され
ている内径200mm、幅500mmの回転金属ドラム
(内面は鏡面仕上げ)の内面に左右均等に流し入れて、
ゆっくりと回転を始めた。内面全面にほぼ均一に流延塗
布されたことを確認したら、徐々に加速し400r.
p.m.に到達したらそのままで5分間回転し、今度は
該ドラムの加熱を始め、120℃に到達したらその温度
で30分間加熱した。内面にはエンドレスのPA酸管状
フイルムが形成されていた。これを常温に冷却して該ド
ラムから剥離し取り出した。(Example 1) First, 160 g of the PA acid solution 1 of Reference Example 1 was collected, and this was placed on a rotating metal drum having an inner diameter of 200 mm and a width of 500 mm placed on four rotating rollers (the inner surface was mirror-finished). ) And pour it evenly into the inner surface of
It started spinning slowly. When it was confirmed that the coating was substantially uniformly applied to the entire inner surface, the speed was gradually increased to 400 r.
p. m. When the temperature reached 120 ° C., the drum was rotated for 5 minutes, and then heating of the drum was started. When the temperature reached 120 ° C., the drum was heated at that temperature for 30 minutes. An endless PA acid tubular film was formed on the inner surface. This was cooled to room temperature, peeled from the drum and taken out.
【0063】そして、前記PA酸管状フイルムを円筒状
の金型に外嵌して、これを別設の加熱乾燥機に入れて次
の条件で加熱乾燥し残存溶媒の除去とイミド化を行い、
裏面基体層としての無端管状PI樹脂フイルムを得た。
まず200℃迄を30分間要して徐々に昇温し、更に徐
々に昇温して300℃に達したら、その温度で40分
間、更に徐々に昇温して400℃に達したら、その温度
で40分間各々加熱した。常温に放冷して該金型から抜
き取った。得られた該PI樹脂フイルムの厚さは50μ
m、内径は199.9mm、幅500mmであった。Then, the PA acid tubular film was externally fitted to a cylindrical mold, placed in a separate heating dryer, and heated and dried under the following conditions to remove the residual solvent and imidize.
An endless tubular PI resin film as a back substrate layer was obtained.
First, the temperature was gradually raised to 200 ° C. for 30 minutes, and then gradually raised to 300 ° C., at that temperature for 40 minutes, and gradually further raised to 400 ° C., at that temperature. For 40 minutes each. It was allowed to cool to room temperature and extracted from the mold. The thickness of the obtained PI resin film is 50 μm.
m, the inner diameter was 199.9 mm and the width was 500 mm.
【0064】次に、前記無端管状PI樹脂フイルムの表
面をプラズマ処理して、これを垂直に固定された1本の
回転金属円筒治具(外径199.7mm)に嵌入し(嵌
着固定)、そして該フイルム表面に対して10mm離し
て(ノズル口)設けられた上下に垂直移動のスプレーガ
ンから次の条件で半導電性のPAI表面層2をスプレー
コーティングした。まず円筒治具を40r.p.m.の
速度で回転し、それに同期して該スプレーガンを13m
m/秒の速度で上下垂直移動を開始し、丁度該ノズル口
が最上段に来た時点で6.8g/分の量で、前記半導電
性PAI液6(参考例6)の噴射を開始した。ノズル口
が最下段に来たら同条件で上昇し、この上下を1サイク
ルとし5サイクルでコーティングを終了した。最後にそ
のまま回転は続行しスプレーガンを離脱して、今度は該
フイルムの全体を加熱乾燥して有機溶媒を蒸発除去しつ
つ表面層を形成した。加熱は遠赤外線ヒーターを熱源と
して行い、100℃で10分間、290℃で30分間加
熱し放冷した。得られた積層フイルムを円筒治具から離
脱し、両端をトリミングして幅380mmとして製品と
した。この全厚を測定したら80μmであったので、従
って半導電性PAI表面層2の厚さは30μmである。
このフイルムの湾曲度、ρs、耐電圧値及び層間密着力
を測定し表1にまとめた。Next, the surface of the endless tubular PI resin film is subjected to plasma treatment, and this is fitted (fitted and fixed) into one vertically fixed rotating metal cylindrical jig (outer diameter: 199.7 mm). A semi-conductive PAI surface layer 2 was spray-coated under the following conditions from a vertically moving spray gun provided 10 mm apart from the film surface (nozzle port). First, set the cylindrical jig to 40 r. p. m. Spin at 13m
Start vertical and vertical movement at a speed of m / sec, and start jetting the semiconductive PAI liquid 6 (Reference Example 6) at a rate of 6.8 g / min just when the nozzle port comes to the uppermost stage. did. When the nozzle port reached the lowermost stage, it rose under the same conditions, and the upper and lower sides were defined as one cycle, and the coating was completed in five cycles. Finally, the rotation was continued as it was, the spray gun was detached, and this time the whole film was heated and dried to form a surface layer while evaporating and removing the organic solvent. Heating was performed using a far-infrared heater as a heat source, and heating was performed at 100 ° C. for 10 minutes, 290 ° C. for 30 minutes, and allowed to cool. The obtained laminated film was separated from the cylindrical jig, and both ends were trimmed to obtain a product having a width of 380 mm. When the total thickness was measured, it was 80 μm. Therefore, the thickness of the semiconductive PAI surface layer 2 was 30 μm.
The curvature, ρs, withstand voltage and interlayer adhesion of this film were measured and are summarized in Table 1.
【0065】[0065]
【表1】 [Table 1]
【0066】(実施例2)(中間接着層介在の例) まず実施例1と同じPA酸液1を使って、同一条件で回
転成形・加熱してエンドレスPA酸管状フイルムを得、
更に残存溶媒の除去とイミド化を行って裏面基体層とし
ての無端管状PI樹脂フイルムを得た。該フイルムの厚
さは51μm、内径は199.9mm、幅500mmで
あった。Example 2 (Example of Intermediate Adhesive Layer Interposition) First, an endless PA acid tubular film was obtained by rotational molding and heating using the same PA acid solution 1 as in Example 1 under the same conditions.
Further, the residual solvent was removed and imidation was performed to obtain an endless tubular PI resin film as a back substrate layer. The film had a thickness of 51 μm, an inner diameter of 199.9 mm, and a width of 500 mm.
【0067】次に、前記得られた無端管状PI樹脂フイ
ルムを実施例1同じ回転金属円筒治具(外径199.7
mm)に嵌入し(嵌着固定)、同様にスプレーガンを配
置し、該ガンの上下サイクルを0.5(片道)、加熱を
100℃、5分間とする以外は、同様条件で前記PA酸
液3(参考例3)をスプレー塗布・乾燥して半導電性の
中間接着層を形成した。得られたフイルムの全厚は52
μmであったので、従って該接着層の厚さは1μmであ
る。該接着層は、有機溶媒は残存しているが、イミド閉
環はされずに、PA酸液3のPA酸そのものであった。Next, the endless tubular PI resin film obtained above was used for the same rotary metal cylindrical jig (outer diameter: 199.7) as in Example 1.
mm) under the same conditions except that the spray gun is arranged in the same manner, the vertical cycle of the gun is 0.5 (one way), and the heating is 100 ° C. for 5 minutes. Liquid 3 (Reference Example 3) was applied by spraying and dried to form a semiconductive intermediate adhesive layer. The total thickness of the obtained film is 52
μm, so that the thickness of the adhesive layer is 1 μm. Although the organic solvent remained in the adhesive layer, the imide was not closed with a ring, and was the PA acid itself of the PA acid solution 3.
【0068】そして引き続き前記中間接着層の表面に、
回転金属円筒治具を回転しつつ、前記PAI液6(参考
例6)をスプレー塗布し、乾燥して半導電性のPAI表
面層を積層した。この時の塗布・乾燥条件は実施例1と
同一とした。得られた三層フイルムの全厚は84μmで
あったので、従って半導電性PAI表面層の厚さは32
μmである。両サイドをトリミングして幅380mmと
して製品とした。このフイルムの湾曲度、ρs、耐電圧
値及び層間密着力を測定し表1にまとめた。尚、本例を
図1の回転図示断面で図解した。Then, on the surface of the intermediate adhesive layer,
While rotating the rotating metal cylindrical jig, the PAI liquid 6 (Reference Example 6) was applied by spraying and dried to form a semiconductive PAI surface layer. The application and drying conditions at this time were the same as in Example 1. The total thickness of the obtained three-layer film was 84 μm, so that the thickness of the semiconductive PAI surface layer was 32 μm.
μm. Both sides were trimmed to obtain a product having a width of 380 mm. The curvature, ρs, withstand voltage and interlayer adhesion of this film were measured and are summarized in Table 1. This example is illustrated in the cross-sectional view of FIG.
【0069】(実施例3)まず前記PA酸液2(参考例
2)を使って、実施例1と同条件で回転成形し加熱して
相当するエンドレスPA酸管状フイルムを得、更に同条
件にて残存溶媒の除去とイミド化を行って、裏面基体層
としての無端管状PI樹脂フイルムを得た。但し該PA
酸液2の供給量は220gとした。得られた該フイルム
の厚さは68μm、内径は199.9mm、幅500m
mであった(Example 3) First, using the above-mentioned PA acid solution 2 (Reference example 2), it was subjected to rotational molding under the same conditions as in Example 1 and heated to obtain a corresponding endless PA acid tubular film. The remaining solvent was removed and imidation was performed to obtain an endless tubular PI resin film as a back substrate layer. However, the PA
The supply amount of the acid solution 2 was 220 g. The obtained film has a thickness of 68 μm, an inner diameter of 199.9 mm, and a width of 500 m.
m
【0070】次に前記無端管状PI樹脂フイルムの表面
を実施例1同様にプラズマにて表面処理し、これを同様
に回転金属円筒治具に嵌入固定して、上下垂直移動のス
プレーガンにより、前記半導電性PA酸液7(参考例
7)を塗布し、加熱乾燥した。但しここでの塗布はノズ
ル10サイクルとし、加熱乾燥は徐々に昇温して150
℃に到達したら30分間、更に徐々に昇温して240℃
に到達したら60分間加熱した。得られた二層フイルム
を離脱して両サイドトリミングして幅380mmにして
製品とした。全厚を測定したら97μmであったので、
従って半導電性PAI表面層2の厚さは29μmであ
る。このフイルムの湾曲度、ρs、耐電圧値及び層間密
着力を測定し表1にまとめた。Next, the surface of the endless tubular PI resin film was surface-treated with plasma in the same manner as in Example 1, and this was similarly fitted and fixed in a rotating metal cylindrical jig, and was sprayed vertically by a vertically moving spray gun. Semiconductive PA acid solution 7 (Reference Example 7) was applied and dried by heating. However, the coating here was performed with 10 nozzle cycles, and the heating and drying was performed by gradually increasing the temperature to 150.
30 ℃ for 30 minutes when temperature reaches 240 ℃
Was reached and heated for 60 minutes. The obtained two-layer film was separated and trimmed on both sides to obtain a product having a width of 380 mm. When the total thickness was measured, it was 97 μm.
Therefore, the thickness of the semiconductive PAI surface layer 2 is 29 μm. The curvature, ρs, withstand voltage and interlayer adhesion of this film were measured and are summarized in Table 1.
【0071】(比較例1)(PI樹脂のみからなる単層
管状フイルム) 実施例1と同一条件でPA酸液1を回転成形・加熱して
有機溶媒の蒸発除去とイミド化を行い、単層の無端管状
PI樹脂フイルムを得た。但しここでのPA酸液1の使
用量は256gであった。得られたフイルムの厚さは7
8μm、内径199.9mm、幅500mmであった。
同様に両サイドトリミングして幅380mmとした。同
様に湾曲度を測定し表1にまとめた。(Comparative Example 1) (Single-layer tubular film consisting only of PI resin) Under the same conditions as in Example 1, PA acid solution 1 was subjected to rotary molding and heating to evaporate and remove the organic solvent and imidize the same. Endless tubular PI resin film was obtained. However, the amount of the PA acid solution 1 used here was 256 g. The thickness of the obtained film is 7
The diameter was 8 μm, the inner diameter was 199.9 mm, and the width was 500 mm.
Similarly, both sides were trimmed to a width of 380 mm. Similarly, the degree of curvature was measured and summarized in Table 1.
【0072】(比較例2)(PI樹脂のみからなる二層
管状フイルム) まず実施例1と同一条件でPA酸液1を回転成形・加熱
して有機溶媒の蒸発除去とイミド化を行い、裏面基体層
としての無端管状PI樹脂フイルムを得た。そしてこれ
の表面を実施例2で行った表面研磨と、更に実施例1で
行ったプラズマ処理を行って、次の表面層形成に供し
た。尚、該フイルムの厚さは50μmであった。(Comparative Example 2) (Two-layered tubular film consisting of PI resin only) First, under the same conditions as in Example 1, the PA acid solution 1 was rotationally molded and heated to evaporate and remove the organic solvent and imidize the organic acid solution. An endless tubular PI resin film as a base layer was obtained. Then, the surface thereof was subjected to the surface polishing performed in Example 2 and further to the plasma treatment performed in Example 1, and used for forming the next surface layer. Incidentally, the thickness of the film was 50 μm.
【0073】前記表面処理を行ったフイルムを実施例1
と同様に、回転金属円筒治具に嵌入固定して、上下垂直
移動のスプレーガンにより、その表面に前記PA酸液3
(参考例3)をスプレー塗布し、加熱乾燥した。但しこ
こでの塗布量は、10サイクル(ノズルの上下)とし
た。但し加熱乾燥は該円筒治具上で150℃で30分間
予備乾燥を行い、そして該円筒治具から離脱して、別途
設けられた円筒金属金型に嵌入して熱風乾燥機に入れ
て、ここで200℃迄を30分間要して昇温しその温度
で30分間、更に徐々に昇温して300℃に達したらそ
の温度で40分間、更に徐々に昇温して390℃に達し
たらその温度で40分間各々加熱した。常温に放冷して
該金型から抜き取って、両サイドトリミングして比較サ
ンプルとした(得られたフイルムはTgは異なるが、同
じPI樹脂で構成されている)。その全厚は81μm、
内径は199.9mm、幅380mmであり、従って表
面層は29μmということになる。このフィルムの湾曲
度、ρs、耐電圧値及び層間密着力を測定し表1にまと
めた。The film subjected to the surface treatment was used in Example 1.
In the same manner as described above, the PA acid solution 3
(Reference Example 3) was applied by spraying and dried by heating. However, the application amount here was 10 cycles (up and down of the nozzle). However, for the heat drying, preliminary drying is performed on the cylindrical jig at 150 ° C. for 30 minutes, and then separated from the cylindrical jig, inserted into a separately provided cylindrical metal mold, and put into a hot air dryer. It takes 30 minutes to reach 200 ° C and the temperature is raised for 30 minutes at that temperature, and then gradually raised to 300 ° C for 40 minutes at that temperature, and further gradually raised to 390 ° C when it reaches 390 ° C. Each was heated at the temperature for 40 minutes. It was allowed to cool to room temperature, extracted from the mold, and trimmed on both sides to obtain a comparative sample (the obtained films have different Tg, but are composed of the same PI resin). Its total thickness is 81 μm,
The inside diameter is 199.9 mm and the width is 380 mm, so that the surface layer is 29 μm. The curvature, ρs, withstand voltage and interlayer adhesion of this film were measured and are summarized in Table 1.
【0074】[0074]
【発明の効果】本発明は前記の通り構成されているの
で、次の通り効果を奏する。The present invention is configured as described above, and has the following effects.
【0075】従来から知られている特に非熱可塑性芳香
族ポリイミド樹脂をマトリック樹脂とする単層又は二層
フイルムの湾曲傾向が、一挙に改善されるようになっ
た。The curving tendency of a conventionally known single-layer or double-layer film using a non-thermoplastic aromatic polyimide resin as a matrix resin has been improved at once.
【0076】更に前記二層フイルムの場合の軟弱な層間
密着力が大きく改善されるようになった。Further, the weak interlayer adhesion in the case of the two-layer film has been greatly improved.
【0077】更に前記二層フイルムの場合の耐絶縁破壊
性の弱さが大きく改善されるようになった等である。Further, the weakness of the dielectric breakdown resistance in the case of the two-layer film is greatly improved.
【図1】実施例3を回転図示断面図で示したものであ
る。FIG. 1 is a cross-sectional view illustrating a third embodiment of the present invention.
1 裏面層(PI基体層/電気絶縁性) 2 表面層(PAI/半導電性) 3 中間接着層(半導電性PI層) Reference Signs List 1 back layer (PI base layer / electrical insulation) 2 front layer (PAI / semi-conductive) 3 intermediate adhesive layer (semi-conductive PI layer)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B05D 7/24 303 B05D 7/24 303B B29C 41/04 B29C 41/04 B32B 27/34 B32B 27/34 // G03G 15/14 G03G 15/14 B29K 77:00 B29K 77:00 Fターム(参考) 2H200 FA02 FA09 JC04 JC15 JC16 JC17 MA04 MA14 MA20 MB02 MB05 MC20 4D075 AA01 AE03 AE16 BB24 BB33 DA03 DA04 DB31 DC16 DC19 EA17 EB39 EB51 EB53 EC01 EC54 4F100 AA37G AA37H AK49A AK49G AK50B BA02 BA25 CA21G CB01 DA11 EH462 EH811 EJ421 EJ422 GB41 JA05A JA05B JB13A JB13G JB16B JG01A JG01B JG04 JG04B JK06 JL04 YY00A YY00B YY00G 4F205 AA40 AG03 AG08 AG16 GA02 GB01 GF24 GN01 GN13 GN22 GW06 GW31 GW50 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B05D 7/24 303 B05D 7/24 303B B29C 41/04 B29C 41/04 B32B 27/34 B32B 27/34 / / G03G 15/14 G03G 15/14 B29K 77:00 B29K 77:00 F term (reference) 2H200 FA02 FA09 JC04 JC15 JC16 JC17 MA04 MA14 MA20 MB02 MB05 MC20 4D075 AA01 AE03 AE16 BB24 BB33 DA03 DA04 DB31 DC16 EB17 EB17 EB17 EC01 EC54 4F100 AA37G AA37H AK49A AK49G AK50B BA02 BA25 CA21G CB01 DA11 EH462 EH811 EJ421 EJ422 GB41 JA05A JA05B JB13A JB13G JB16B JG01A JG01B JG04 JG04B JK06 JL04 YY02A01
Claims (10)
熱可塑性芳香族ポリアミドイミド樹脂層が積層されてな
る管状多層フイルムであって、且つ該非熱可塑性芳香族
ポリイミド樹脂基体層又は該熱可塑性芳香族ポリアミド
イミド樹脂層のいずれか一方又は両方が異なる半導電性
を有していることを特徴とする管状芳香族ポリイミド樹
脂系多層フイルム。1. A tubular multilayer film comprising a thermoplastic aromatic polyamide-imide resin layer laminated on a non-thermoplastic aromatic polyimide resin substrate layer, wherein said non-thermoplastic aromatic polyimide resin substrate layer or said thermoplastic aromatic polyimide resin A tubular aromatic polyimide resin-based multilayer film, wherein one or both of the aromatic polyamideimide resin layers have different semiconductivity.
層がガラス転移点300℃以上のポリイミド樹脂よりな
り、そして前記熱可塑性芳香族ポリアミドイミド樹脂層
がガラス転移点200〜310℃のポリアミドイミド樹
脂よりなる請求項1に記載の管状芳香族ポリイミド樹脂
系多層フイルム。2. The non-thermoplastic aromatic polyimide resin base layer comprises a polyimide resin having a glass transition point of 300 ° C. or higher, and the thermoplastic aromatic polyamideimide resin layer has a glass transition point of 200 to 310 ° C. The tubular aromatic polyimide resin-based multilayer film according to claim 1, further comprising:
層又は前記熱可塑性芳香族ポリアミドイミド樹脂層のい
ずれか一方又は両方の半導電性が導電性カーボンブラッ
クにより付与されてなる請求項1又は2に記載の管状芳
香族ポリイミド樹脂系多層フイルム3. The conductive carbon black according to claim 1, wherein one or both of the non-thermoplastic aromatic polyimide resin substrate layer and the thermoplastic aromatic polyamideimide resin layer has semiconductivity. Tubular aromatic polyimide resin-based multilayer film described in
層が裏面層、前記熱可塑性芳香族ポリアミドイミド樹脂
層が表面層として積層されてなる請求項1〜3のいずれ
か1項に記載の管状芳香族ポリイミド樹脂系多層フイル
ム。4. The tube according to claim 1, wherein said non-thermoplastic aromatic polyimide resin substrate layer is laminated as a back layer, and said thermoplastic aromatic polyamideimide resin layer is laminated as a front layer. Aromatic polyimide resin-based multilayer film.
層の層厚が、前記熱可塑性芳香族ポリアミドイミド樹脂
層の層厚よりも厚く積層されてなる請求項1〜4のいず
れか1項に記載の管状芳香族ポリイミド樹脂系多層フイ
ルム。5. The method according to claim 1, wherein a layer thickness of the non-thermoplastic aromatic polyimide resin base layer is larger than a layer thickness of the thermoplastic aromatic polyamideimide resin layer. The tubular aromatic polyimide resin-based multilayer film according to the above.
層と前記熱可塑性芳香族ポリイミド樹脂との間に、導電
性カーボンブラック含有又は非含有の非熱可塑性芳香族
ポリイミド樹脂による中間接着層が介在されてなる請求
項3に記載の管状芳香族ポリイミド樹脂系多層フイル
ム。6. An intermediate adhesive layer made of a non-thermoplastic aromatic polyimide resin containing or not containing conductive carbon black is interposed between the non-thermoplastic aromatic polyimide resin base layer and the thermoplastic aromatic polyimide resin. The tubular aromatic polyimide resin-based multilayer film according to claim 3, which is formed.
行われてなることを特徴とする無端管状芳香族ポリイミ
ド樹脂系多層フイルムの製造方法。 (A)ガラス転移点300℃以上の非熱可塑性芳香族ポ
リイミド樹脂前駆体の有機溶媒溶液を、回転ドラム内で
回転成形・加熱して、まず無端管状の該前駆体フイルム
に成形した後、これを一旦該回転ドラム内から剥離・除
去し、そして別途設けられた熱風加熱手段により加熱し
て、残存溶媒の完全除去と共にイミド化を完了し、無端
管状の非熱可塑性ポリイミド樹脂裏面層(基体層)を形
成する第一工程、(B)前記A工程で得られた無端管状
非熱可塑性芳香族ポリイミド樹脂裏面層の表面全周に、
5〜30重量%の導電性カーボンブラックを含有する非
熱可塑性芳香族芳香族ポリイミド樹脂前駆体の有機溶媒
溶液を塗布し加熱して中間接着層としての該前駆体層を
設ける第二工程、(C)前記B工程で設けられた中間接
着層の表面全周に、5〜30重量%の導電性カーボンブ
ラックを含有する有機溶媒に溶解された、ガラス転移点
200〜310℃の熱可塑性芳香族ポリアミドイミド樹
脂溶液を塗布し加熱して、該溶媒の除去と前記前駆体層
のイミド化を行って、半導電性の熱可塑性芳香族ポリア
ミドイミド樹脂表面層を形成する第三工程。7. A method for producing an endless tubular aromatic polyimide resin-based multilayer film, wherein the steps (A) to (C) are sequentially performed. (A) An organic solvent solution of a non-thermoplastic aromatic polyimide resin precursor having a glass transition point of 300 ° C. or higher is rotationally molded and heated in a rotating drum to first form an endless tubular precursor film. Is once removed from the inside of the rotary drum, and is heated by a hot air heating means provided separately to complete the removal of the residual solvent and complete the imidization, thereby forming an endless tubular non-thermoplastic polyimide resin back layer (substrate layer). A) forming an endless tubular non-thermoplastic aromatic polyimide resin back layer obtained in the step A,
A second step of applying an organic solvent solution of a non-thermoplastic aromatic-aromatic polyimide resin precursor containing 5 to 30% by weight of conductive carbon black and heating to form the precursor layer as an intermediate adhesive layer, C) A thermoplastic aromatic having a glass transition point of 200 to 310 ° C., which is dissolved in an organic solvent containing 5 to 30% by weight of conductive carbon black, over the entire surface of the intermediate adhesive layer provided in the step B. A third step of applying a polyamide-imide resin solution and heating to remove the solvent and imidize the precursor layer to form a semiconductive thermoplastic aromatic polyamide-imide resin surface layer.
が、スプレーコーティング法である請求項7に記載の無
端管状芳香族ポリイミド樹脂系多層フイルムの製造方
法。8. The method for producing an endless tubular aromatic polyimide resin-based multilayer film according to claim 7, wherein the application in the second and third steps is a spray coating method.
0.5〜5.0μm、そして第三工程における熱可塑性
芳香族ポリアミドイミド樹脂裏面層の層厚が、第一工程
における非熱可塑性芳香族ポリイミド樹脂裏面層の1/
3〜3/4倍で形成される請求項7又は8に記載の無端
管状芳香族ポリイミド樹脂系多層フイルムの製造方法。9. The method according to claim 1, wherein the thickness of the intermediate adhesive layer in the second step is 0.5 to 5.0 μm, and the thickness of the thermoplastic aromatic polyamideimide resin back layer in the third step is non-thermal in the first step. 1 / of the plastic aromatic polyimide resin back layer
The method for producing an endless tubular aromatic polyimide resin-based multilayer film according to claim 7 or 8, wherein the film is formed at a ratio of 3 to 3/4.
脂表面層の表面抵抗率が105〜1015Ω/□である
請求項7〜9のいずれか1項に記載の無端管状芳香族ポ
リイミド樹脂系多層フイルムの製造方法。10. The endless tubular aromatic polyimide resin system according to claim 7, wherein the surface resistivity of the thermoplastic aromatic polyamideimide resin surface layer is 10 5 to 10 15 Ω / □. A method for manufacturing a multilayer film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001120590A JP2002316369A (en) | 2001-04-19 | 2001-04-19 | Tubular aromatic polyimide resin multilayered film and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001120590A JP2002316369A (en) | 2001-04-19 | 2001-04-19 | Tubular aromatic polyimide resin multilayered film and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002316369A true JP2002316369A (en) | 2002-10-29 |
Family
ID=18970600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001120590A Pending JP2002316369A (en) | 2001-04-19 | 2001-04-19 | Tubular aromatic polyimide resin multilayered film and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002316369A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004107367A1 (en) * | 2003-05-30 | 2004-12-09 | Sumitomo Electric Industries, Ltd. | Soft magnetic material, motor core, transformer core and process for producing soft magnetic material |
JP2006044078A (en) * | 2004-08-05 | 2006-02-16 | Shin Etsu Polymer Co Ltd | Semi-conductive belt and its manufacturing method |
JP2007115722A (en) * | 2005-10-17 | 2007-05-10 | Tdk Corp | Flexible wiring board and electronic component |
JP2007256507A (en) * | 2006-03-22 | 2007-10-04 | Tokai Rubber Ind Ltd | Endless belt for electrophotographic apparatus |
JP2012128171A (en) * | 2010-12-15 | 2012-07-05 | Yuka Denshi Co Ltd | Laminated belt for image forming apparatus, and its manufacturing method and image forming apparatus |
JP2018146635A (en) * | 2017-03-01 | 2018-09-20 | 富士ゼロックス株式会社 | Endless belt for electrophotographic device, image forming apparatus, and endless belt unit |
CN111913376A (en) * | 2019-05-10 | 2020-11-10 | 富士施乐株式会社 | Belt, intermediate transfer belt, and image forming apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07156287A (en) * | 1993-12-10 | 1995-06-20 | Gunze Ltd | Semiconductive polyimide endless bent and manufacture thereof |
JPH10226028A (en) * | 1997-02-14 | 1998-08-25 | Gunze Ltd | Endless cylindrical semiconductive polyamideimide film and its production |
WO2000069623A1 (en) * | 1999-05-12 | 2000-11-23 | Kaneka Corporation | Multi-layer endless belt, medium conveying belt consisting of it, and production methods and forming devices therefor |
-
2001
- 2001-04-19 JP JP2001120590A patent/JP2002316369A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07156287A (en) * | 1993-12-10 | 1995-06-20 | Gunze Ltd | Semiconductive polyimide endless bent and manufacture thereof |
JPH10226028A (en) * | 1997-02-14 | 1998-08-25 | Gunze Ltd | Endless cylindrical semiconductive polyamideimide film and its production |
WO2000069623A1 (en) * | 1999-05-12 | 2000-11-23 | Kaneka Corporation | Multi-layer endless belt, medium conveying belt consisting of it, and production methods and forming devices therefor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004107367A1 (en) * | 2003-05-30 | 2004-12-09 | Sumitomo Electric Industries, Ltd. | Soft magnetic material, motor core, transformer core and process for producing soft magnetic material |
JP2006044078A (en) * | 2004-08-05 | 2006-02-16 | Shin Etsu Polymer Co Ltd | Semi-conductive belt and its manufacturing method |
JP2007115722A (en) * | 2005-10-17 | 2007-05-10 | Tdk Corp | Flexible wiring board and electronic component |
JP2007256507A (en) * | 2006-03-22 | 2007-10-04 | Tokai Rubber Ind Ltd | Endless belt for electrophotographic apparatus |
JP2012128171A (en) * | 2010-12-15 | 2012-07-05 | Yuka Denshi Co Ltd | Laminated belt for image forming apparatus, and its manufacturing method and image forming apparatus |
JP2018146635A (en) * | 2017-03-01 | 2018-09-20 | 富士ゼロックス株式会社 | Endless belt for electrophotographic device, image forming apparatus, and endless belt unit |
CN111913376A (en) * | 2019-05-10 | 2020-11-10 | 富士施乐株式会社 | Belt, intermediate transfer belt, and image forming apparatus |
US10871733B2 (en) | 2019-05-10 | 2020-12-22 | Fuji Xerox Co., Ltd. | Belt, intermediate transfer belt, and image forming apparatus |
CN111913376B (en) * | 2019-05-10 | 2024-03-05 | 富士胶片商业创新有限公司 | Belt, intermediate transfer belt, and image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4406782B2 (en) | Endless tubular semiconductive aromatic polyimide film and method for producing the same | |
US8267242B2 (en) | Seamless belt | |
JP3463066B2 (en) | Semiconductive polyimide endless belt and method of manufacturing the same | |
JP2019148729A (en) | Intermediate transfer belt and image formation device | |
JP5784104B2 (en) | Semiconductive polyimide resin belt and method of manufacturing semiconductive polyimide resin belt | |
JP4619208B2 (en) | Polyimide resin belt with isotropic dielectric constant in the surface direction | |
JP2007072197A (en) | Endless tubular belt and method for producing the same | |
JP2002316369A (en) | Tubular aromatic polyimide resin multilayered film and its manufacturing method | |
JP4072669B2 (en) | Semiconductive fully aromatic polyimide tubular film and method for producing the same | |
US9005749B2 (en) | Intermediate transfer members | |
WO2002022740A1 (en) | Polyimide resin composition and, polyimide product formed into film and intermediate transfer belt comprising the same | |
JP2006272839A (en) | Seamless belt and its manufacturing method | |
JP2002162836A (en) | Electrically semiconductive seamless belt | |
JP4399656B2 (en) | Durable polyimide film, production method thereof and use thereof | |
JP2002086465A (en) | Method for producing polyimide base multi-layer endless tubular film and its use | |
JP2002086599A (en) | Polyimide multilayer endless tubular film and its manufacturing method as well as its use | |
JP2002137317A (en) | Multilayered endless tubular polyimide film and method for manufacturing the same | |
JP2004302094A (en) | Semiconductive belt and its manufacturing method | |
JP2001022189A (en) | Electrically semiconductive belt | |
JP4037950B2 (en) | Manufacturing method of polyimide multilayer belt | |
JP2001347593A (en) | Abrasion-resistant semiconductive polyimide film, method for manufacturing the same and usage of the same | |
JP2001131410A (en) | Semiconductive polyamic acid composition and its use | |
JP2002144456A (en) | Semiconductive multi-layer endless tubular polyimide film, its production method, and its application | |
US20110196124A1 (en) | Annular belt made of polyimide and a production method thereof | |
JP6936732B2 (en) | Transfer member for image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101130 |