JP2002304992A - Nickel hydroxide powder for alkaline secondary battery and its evaluation method - Google Patents

Nickel hydroxide powder for alkaline secondary battery and its evaluation method

Info

Publication number
JP2002304992A
JP2002304992A JP2001384202A JP2001384202A JP2002304992A JP 2002304992 A JP2002304992 A JP 2002304992A JP 2001384202 A JP2001384202 A JP 2001384202A JP 2001384202 A JP2001384202 A JP 2001384202A JP 2002304992 A JP2002304992 A JP 2002304992A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
particles
hydroxide powder
powder
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001384202A
Other languages
Japanese (ja)
Inventor
Atsushi Yamanaka
厚志 山中
Takeshi Kamata
剛 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001384202A priority Critical patent/JP2002304992A/en
Publication of JP2002304992A publication Critical patent/JP2002304992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide nickel hydroxide powder suitable for a positive electrode active material in order to improve an output characteristic and a high- temperature characteristic of an alkaline secondary battery and to provide a method for evaluating the nickel hydroxide powder with a simple means. SOLUTION: This nickel hydroxide powder has an average fine hole diameter of 5.50 nm or less, a fine hole volume of 0.03 ml/g or less and a specific surface area of 12 m<2> /g or less. In the cross-sectional structure of each particle 1 thereof, crystal grains having two or more of a ratio a/b of the long side (a) to the short side b thereof occupies 50% or more, and crystal grains each having the long side (a) thereof >=1/2 of the radius R of the particle are present or the compression strength of the particle 1 is 40 MPa or above. The cross-sectional structure of the particles 1 is evaluated by electron microscope observation by making a sample with ruptured surfaces of the particles 1 exposed by embedding the nickel hydroxide powder with a resin and by rupturing it after cooling it below the embrittling temperature of the resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非焼結式アルカリ
二次電池の正極用活物質として好適な水酸化ニッケル粉
末、及びその水酸化ニッケル粉末を評価する方法に関す
る。
The present invention relates to a nickel hydroxide powder suitable as a positive electrode active material for a non-sintered alkaline secondary battery and a method for evaluating the nickel hydroxide powder.

【0002】[0002]

【従来の技術】ポータブルエレクトロニクス機器の小型
軽量化により、その電源である電池においては、高エネ
ルギー密度化が要求されてきた。それに伴って二次電池
のエネルギー密度は年々向上し、現在では、容量エネル
ギー密度は約350Wh/lを達成するようになってい
る。
2. Description of the Related Art As portable electronic devices have become smaller and lighter, batteries having a high power density have been required. Accordingly, the energy density of the secondary battery has been improving year by year, and at present, the capacity energy density has reached about 350 Wh / l.

【0003】更に近年では、機器の多機能・高性能化が
進む中、電池性能に対する要求はますます高まり、機器
の発熱からくる高温状態での高性能化、あるいは高負荷
での使用に対しての高出力化、長寿命化など、高温特性
及び出力特性のより一層の向上が望まれている。
[0003] In recent years, with the advancement of multifunctional and high-performance devices, demands for battery performance are increasing, and high-performance in a high-temperature state resulting from heat generation of the devices, or use under high loads. There is a demand for further improvement in high-temperature characteristics and output characteristics, such as higher output and longer life.

【0004】例えばEUのように、環境への配慮からニ
ッケル・カドミウム二次電池の使用を規制する動きがあ
る(「レアメタルニュース」、1998年3月16日
号)。このため、ニッケル・カドミウム二次電池に代わ
る、出力特性に優れた電池の開発が急がれている。安価
なニッケル・カドミウム二次電池の代替品としては、コ
ストの面からニッケル水素二次電池が有力視されてお
り、その出力特性及び高温特性の改良が特に切望されて
いる。
For example, as in the EU, there is a movement to restrict the use of nickel-cadmium secondary batteries in consideration of the environment (“Rare Metal News”, March 16, 1998). For this reason, development of a battery having excellent output characteristics in place of a nickel-cadmium secondary battery is urgently required. As a substitute for an inexpensive nickel-cadmium secondary battery, a nickel-metal hydride secondary battery is considered to be promising in terms of cost, and improvement of its output characteristics and high-temperature characteristics is particularly desired.

【0005】ニッケル水素二次電池の出力特性の改良に
ついては、例えば、USP5023155や特開平7−
320738号公報によるホウ素の添加、特開平10−
74513号公報によるCaFの添加等が提案されて
いるが、実用化には至っていない。また、電極構造の改
良及びコーティングによる改質等も検討されているが、
コストアップを招くため望ましくない。このような事情
から、正極活物質である水酸化ニッケル粉末自体の改良
が望まれている。
[0005] The improvement of the output characteristics of a nickel-metal hydride secondary battery is described, for example, in US Pat.
Addition of boron according to JP-A-320738,
No. 74513 proposes addition of CaF 2 or the like, but has not been put to practical use. In addition, improvement of the electrode structure and modification by coating have been studied,
It is not desirable because it causes an increase in cost. Under such circumstances, improvement of the nickel hydroxide powder itself, which is a positive electrode active material, is desired.

【0006】また、ニッケル水素電池の高温特性の向上
については、現状ではCo化合物の添加/固溶という手
段が採用されているが、更に高温下での充電効率を改善
することが多く提案がされている。例えば、特開平5−
182663号公報には、亜鉛、マグネシウム、カドミ
ウム、バリウム等の固溶により改善する方法が記載され
ている。また、特開平7−37586号公報には、板状
の単結晶で、そのサイズが長径0.005〜1μm、厚
み(C軸)が0.001〜0.1μmの水酸化ニッケルが
提案されている。しかしながら、これらの方法では、固
溶元素による活物質自体の容量低下、あるいは粉体密度
低下による電池容量の低下が同時に生じるという問題が
あった。
In order to improve the high-temperature characteristics of nickel-metal hydride batteries, a means of adding / dissolving a Co compound is currently employed, but many proposals have been made to further improve the charging efficiency at high temperatures. ing. For example, Japanese Patent Application Laid-Open
Japanese Patent No. 182663 describes a method for improving the solution by solid solution of zinc, magnesium, cadmium, barium and the like. JP-A-7-37586 proposes nickel hydroxide having a plate-like single crystal, a major axis of 0.005 to 1 μm, and a thickness (C axis) of 0.001 to 0.1 μm. I have. However, these methods have a problem that a decrease in the capacity of the active material itself due to the solid solution element or a decrease in the battery capacity due to a decrease in the powder density occur simultaneously.

【0007】一方、二次電池の正極活物質用原料として
使用される水酸化ニッケル粉末の評価についても、タッ
プ密度やかさ密度、粒度分布測定など、粉末の外観的な
物性を評価する方法が主なものであり、正極活物質とし
て用いたときの電池特性の判断指標として、粉末の内部
組織を評価する方法は用いられていなかった。
On the other hand, nickel hydroxide powder used as a raw material for a positive electrode active material of a secondary battery is also evaluated mainly by a method of evaluating the external physical properties of the powder, such as measurement of tap density, bulk density, and particle size distribution. The method of evaluating the internal structure of the powder was not used as a judgment index of battery characteristics when used as a positive electrode active material.

【0008】一般的に、各種粉末の内部組織を評価する
方法としては、粉末粒子を樹脂に包埋した後に断面研磨
を行い、露出した研磨面を顕微鏡を用いて観察する方法
が最も広く用いられている。また、樹脂包埋した粉末を
超ミクロトーム法にて断面切削する方法も、試料前処理
技術として確立されている。しかし、これらの方法では
試料の観察面を非常に平滑に仕上げるため、目的とする
粉末の内部組織に起因した凹凸、即ち結晶粒の形状等に
ついての情報を観察することができないという問題点が
あった。
In general, the most widely used method for evaluating the internal structure of various powders is to embed the powder particles in a resin, then polish the cross section, and observe the exposed polished surface using a microscope. ing. Also, a method of cutting a cross section of a resin-embedded powder by a supermicrotome method has been established as a sample pretreatment technique. However, in these methods, since the observation surface of the sample is finished very smoothly, there is a problem in that it is not possible to observe information on irregularities caused by the internal structure of the target powder, that is, information on the shape of crystal grains and the like. Was.

【0009】このような問題を解決し、粉末の内部組織
を観察評価する方法として、銅やステンレスなどの金属
粉末においては、樹脂包埋した粉末の断面をエッチング
処理して粒界を観察しやすくする方法が採られている。
しかしながら、水酸化ニッケル粉末の場合は最適なエッ
チング液が明らかとなっておらず、簡便に内部組織を観
察することは難しい現状であった。僅かに結晶性を評価
するX線回析法を利用して、得られる単結晶オーダーの
測定結果から、数〜10μm単位の内部組織を推測して
いたに過ぎなかった。
As a method of solving such a problem and observing and evaluating the internal structure of the powder, in the case of a metal powder such as copper or stainless steel, the cross section of the resin-embedded powder is etched to make it easier to observe the grain boundaries. The method is adopted.
However, in the case of nickel hydroxide powder, the optimum etching solution has not been clarified, and it has been difficult to easily observe the internal structure. The X-ray diffraction method for slightly evaluating the crystallinity was used to merely estimate the internal structure in the order of several to 10 μm from the measurement result of the obtained single crystal order.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記した従
来の事情に鑑み、非焼結式アルカリ二次電池の出力特性
及び高温特性の向上を図るため、その正極活物質として
好適な水酸化ニッケル粉体を提供することを第一の目的
とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention aims at improving the output characteristics and the high-temperature characteristics of a non-sintered alkaline secondary battery, and therefore, it is preferable to use a suitable hydroxide as a positive electrode active material. A primary object is to provide a nickel powder.

【0011】本発明は、また、簡便な手段で水酸化ニッ
ケル粉末の内部組織や物性を評価して、非焼結式アルカ
リ二次電池の正極活物質材料として好適な水酸化ニッケ
ル粉末を評価する方法を提供することを第二の目的とす
る。
The present invention also evaluates the internal structure and physical properties of the nickel hydroxide powder by simple means to evaluate a nickel hydroxide powder suitable as a positive electrode active material for a non-sintered alkaline secondary battery. A second object is to provide a method.

【0012】[0012]

【課題を解決するための手段】上記第一の目的を達成す
るため、本発明が提供するアルカリ二次電池用水酸化ニ
ッケル粉末は、平均細孔径が5.50nm以下、細孔容
積が0.03ml/g以下、及び比表面積が12m
g以下であって、粉末粒子の断面組織において、結晶粒
の長辺aと短辺bの比が2以上である結晶粒が50%以
上を占め、且つ結晶粒の長辺aが該粒子の半径Rの1/
2以上である結晶粒が存在していることを特徴とする。
In order to achieve the first object, the nickel hydroxide powder for an alkaline secondary battery provided by the present invention has an average pore diameter of 5.50 nm or less and a pore volume of 0.03 ml. / G or less, and a specific surface area of 12 m 2 /
g or less, and in the cross-sectional structure of the powder particle, the crystal grains in which the ratio of the long side a to the short side b is 2 or more occupy 50% or more, and the long side a of the crystal grain is 1 / radius R
It is characterized in that there are two or more crystal grains.

【0013】また、本発明が提供するアルカリ二次電池
用水酸化ニッケル粉末は、第二に、平均細孔径が5.5
0nm以下、細孔容積が0.03ml/g以下、及び比
表面積が12m/g以下であって、粉末粒子の圧縮強
度が40MPa以下であることを特徴とするものであ
る。
Secondly, the nickel hydroxide powder for an alkaline secondary battery provided by the present invention has an average pore diameter of 5.5.
0 nm or less, a pore volume of 0.03 ml / g or less, a specific surface area of 12 m 2 / g or less, and a compressive strength of powder particles of 40 MPa or less.

【0014】上記第二の目的を達成するため、本発明が
提供するアルカリ二次電池用水酸化ニッケル粉末の第1
の評価方法は、水酸化ニッケル粉末を樹脂包埋した後、
該樹脂の脆化温度以下まで冷却して破断することによ
り、水酸化ニッケル粒子の破断面が露出した試料を作製
し、この試料中の水酸化ニッケル粒子の破断面を観察す
ることにより、観察される内部組織に基づいて正極活物
質材料としての評価を行うことを特徴とする。
In order to achieve the second object, the first aspect of the nickel hydroxide powder for an alkaline secondary battery provided by the present invention is provided.
The evaluation method is that after embedding nickel hydroxide powder in resin,
By cooling to below the embrittlement temperature of the resin and fracturing, a sample was prepared in which the fracture surface of the nickel hydroxide particles was exposed, and this was observed by observing the fracture surface of the nickel hydroxide particles in this sample. It is characterized in that an evaluation as a positive electrode active material is performed based on the internal structure.

【0015】本発明によるアルカリ二次電池用水酸化ニ
ッケル粉末の第2の評価方法は、水酸化ニッケル粉末の
粒子について圧縮強度を測定し、得られる圧縮強度に基
づいて正極活物質材料としての評価を行うことを特徴と
するものである。
In a second method for evaluating nickel hydroxide powder for an alkaline secondary battery according to the present invention, the compression strength of particles of nickel hydroxide powder is measured, and the evaluation as a positive electrode active material is made based on the obtained compression strength. It is characterized by performing.

【0016】[0016]

【発明実施の形態】本発明者らは、アルカリ二次電池の
正極活物質材料である水酸化ニッケル粉末に関して種々
研究・検討を重ねた結果、水酸化ニッケル粒子の内部組
織あるいは水酸化ニッケル粒子の圧縮強度と、アルカリ
二次電池の出力特性及び高温特性との間に密接な相関関
係があることを見いだし、本発明に至ったものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies and studies on nickel hydroxide powder, which is a positive electrode active material of an alkaline secondary battery, and found that the internal structure of nickel hydroxide particles or nickel hydroxide particles The present inventors have found that there is a close correlation between the compressive strength and the output characteristics and high-temperature characteristics of the alkaline secondary battery, and have reached the present invention.

【0017】球状の粒子からなるアルカリ二次電池用の
水酸化ニッケル粉末は、中心から放射状に伸びた組織を
呈している。これは、粉末合成中に微細な一次粒子が凝
結することで粒子が成長し、放射状に組織が形成される
ためと考えられる。この放射状組織が発達すると、粒子
の結晶性は特に(001)面が発達する傾向にあり、こ
れに伴って水酸化ニッケル粒子は電極活物質としての反
応性を向上させることが判明した。
The nickel hydroxide powder for an alkaline secondary battery composed of spherical particles has a structure extending radially from the center. This is considered to be because fine primary particles condense during powder synthesis to grow the particles and form a texture radially. When this radial structure develops, the crystallinity of the particles tends to develop particularly in the (001) plane, and accordingly, it has been found that the nickel hydroxide particles improve the reactivity as an electrode active material.

【0018】この水酸化ニッケル粉末の内部組織に関し
ては、粉末粒子の断面組織を観察したとき、結晶粒の長
辺aと短辺bの比が2以上、即ちa/b≧2の関係を有
する結晶粒が50%以上を占め、且つ結晶粒の長辺aが
水酸化ニッケル粒子の半径Rの1/2以上、即ちa≧R
/2の関係を有する結晶粒が存在していることが必要で
ある。特に、a≧R/2の関係を有する結晶粒が50%
以上存在していることが好ましい。
Regarding the internal structure of the nickel hydroxide powder, when observing the cross-sectional structure of the powder particles, the ratio of the long side a to the short side b of the crystal grain is 2 or more, that is, a / b ≧ 2. The crystal grains occupy 50% or more, and the long side a of the crystal grains is 以上 or more of the radius R of the nickel hydroxide particles, that is, a ≧ R
It is necessary that crystal grains having a relationship of / 2 exist. In particular, 50% of the crystal grains have a relationship of a ≧ R / 2.
It is preferable that these exist.

【0019】水酸化ニッケル粒子の内部組織における結
晶粒を調べるためには、粒子の断面をSEM等の観察機
器で観察する。例えば、後述するように、多数の水酸化
ニッケル粉末を樹脂包埋した後、これを樹脂の脆化温度
以下まで冷却して破断すれば、得られる試料の破断面に
は水酸化ニッケル粒子の破断面が露出するので、そのま
ま内部組織を直接観察することができる。
In order to examine the crystal grains in the internal structure of the nickel hydroxide particles, the cross section of the particles is observed with an observation instrument such as an SEM. For example, as described later, after embedding a large number of nickel hydroxide powders in a resin and cooling them to a temperature lower than the embrittlement temperature of the resin and breaking the resin, the fracture surface of the obtained sample has broken nickel hydroxide particles. Since the cross section is exposed, the internal tissue can be directly observed as it is.

【0020】また、このような発達した放射状の内部組
織を有する水酸化ニッケル粉末においては、(001)
面の結晶子径が大きくなるため、粒子の圧縮強度が40
MPa以下となることも判った。尚、圧縮強度Stは、
下記数式1に示す平松らの式(「日本鉱業会誌」第81
巻、第932号、1965年12月号、第1024〜1
030頁)により求めた値である。
In the nickel hydroxide powder having such a developed radial internal structure, (001)
Since the crystallite diameter of the surface is large, the compressive strength of the particles is 40
It was also found that the pressure was below MPa. Note that the compression strength St is
Hiramatsu et al.'S formula shown in the following formula 1
Vol. 932, December 1965, 1024-1
030).

【0021】[0021]

【数1】St=2.8P/πd (d:粒子径、P:粒子にかかった荷重)## EQU1 ## St = 2.8P / πd2  (D: particle diameter, P: load applied to particles)

【0022】上記した粉末粒子の内部組織の変化は、同
時に、その集合体である水酸化ニッケル粉末の特性にも
影響を及ぼす。即ち、水酸化ニッケル粉末の平均細孔
径、細孔容積、及び比表面積は、放射状組織の発達と共
に小さくなる傾向が認められた。具体的には、平均細孔
径については5.50nm以下、細孔容積については0.
03ml/g以下、及び比表面積については12m
g以下であることが必要であり、これらいずれかの値を
超えると電池の出力特性が低下してしまう。好ましく
は、平均細孔径は5.00nm以下、細孔容積は0.02
ml以下、及び比表面積は10m/g以下である。
The change in the internal structure of the powder particles also affects the characteristics of the aggregated nickel hydroxide powder. That is, the average pore diameter, the pore volume, and the specific surface area of the nickel hydroxide powder tended to decrease with the development of the radial structure. Specifically, the average pore diameter is 5.50 nm or less, and the pore volume is 0.5 mm.
03 ml / g or less, and a specific surface area of 12 m 2 / g
g or less, and if any of these values is exceeded, the output characteristics of the battery deteriorate. Preferably, the average pore size is 5.00 nm or less and the pore volume is 0.02.
ml or less, and the specific surface area is 10 m 2 / g or less.

【0023】従って、このような放射状組織が発達した
内部組織を有する水酸化ニッケル粉末を正極活物質材料
として用いることにより、アルカリ二次電池の出力特性
及び高温特性を向上させることができる。尚、水酸化ニ
ッケル粉末は、コバルト、マンガン及び周期律表の2族
元素から選ばれた少なくとも1種の元素を固溶している
ことが望ましい。
Therefore, by using the nickel hydroxide powder having the internal structure in which the radial structure is developed as the positive electrode active material, the output characteristics and the high temperature characteristics of the alkaline secondary battery can be improved. The nickel hydroxide powder desirably contains at least one element selected from the group consisting of cobalt, manganese, and Group 2 elements of the periodic table.

【0024】次に、アルカリ二次電池用の正極活物質と
して好適な、即ち電池の出力特性及び高温特性を向上さ
せることができる水酸化ニッケル粉末の評価方法につい
て説明する。
Next, a method for evaluating a nickel hydroxide powder suitable as a positive electrode active material for an alkaline secondary battery, that is, capable of improving the output characteristics and high-temperature characteristics of the battery will be described.

【0025】本発明における水酸化ニッケル粉末の第1
の評価方法は、電子顕微鏡などを用いて粒子の破断面を
観察する方法である。即ち、この第1の評価方法では、
多数の水酸化ニッケル粉末を樹脂包埋した後に、液体窒
素などを用いて樹脂の脆化温度以下に冷却して破断する
ことにより、観察試料を作製する。得られる試料の破断
面には個々の水酸化ニッケル粒子の破断面が露出するの
で、その粒子破断面の内部組織を走査電子顕微鏡などで
直接観察することができる。
The first of the nickel hydroxide powders in the present invention
Is a method of observing the fracture surface of the particles using an electron microscope or the like. That is, in this first evaluation method,
After embedding a large number of nickel hydroxide powders in a resin, the sample is cooled by using liquid nitrogen or the like to a temperature lower than the embrittlement temperature of the resin and broken to prepare an observation sample. Since the fracture surface of each nickel hydroxide particle is exposed in the fracture surface of the obtained sample, the internal structure of the fracture surface of the particle can be directly observed with a scanning electron microscope or the like.

【0026】上記第1の評価方法における特徴点は、水
酸化ニッケル粉末を包埋した樹脂を脆化温度以下に冷却
して破断することにある。室温で樹脂を破断すると、樹
脂自身の延性により伸び切られたような形で破断される
ため、包埋されている粉末粒子自体は破断されない。そ
こで、本発明においては、樹脂の延性を極力排除するた
め、樹脂の脆化温度以下に冷却した後に破断するのであ
り、これにより樹脂と共に内部の粉末粒子も破断するこ
とができる。樹脂を脆化温度以下まで冷却する手段とし
ては、液体窒素のほか、例えば液体窒素又はドライアイ
スとエタノールやメタノールなどのアルコールとの混合
溶液などの寒剤、冷凍機などを利用することができる。
The feature of the first evaluation method is that the resin in which the nickel hydroxide powder is embedded is cooled to a temperature lower than the embrittlement temperature and broken. When the resin is broken at room temperature, the resin particles are broken in a stretched manner due to the ductility of the resin itself, so that the embedded powder particles themselves are not broken. Therefore, in the present invention, in order to eliminate ductility of the resin as much as possible, the resin is broken after cooling to a temperature lower than the embrittlement temperature of the resin, whereby the internal powder particles can be broken together with the resin. As a means for cooling the resin to the embrittlement temperature or lower, in addition to liquid nitrogen, for example, a cryogen such as a mixed solution of liquid nitrogen or dry ice and an alcohol such as ethanol or methanol, a refrigerator, or the like can be used.

【0027】具体的には、例えば、包埋樹脂として市販
の冷間樹脂を用い、水酸化ニッケル粉末を約1g程度分
散させた後、樹脂を室温で静置して固化させる。固化し
た粉末入り樹脂を破断しやすくするため、固化のときに
底部になったところから約1〜2mm上方で切断し、切
断したディスク状試料の一部に切り込みを入れた後、液
体窒素中に1〜2分浸して冷却する。その後、液体窒素
から取り出して直ちに破断する。最後の処理として、破
断面に通常の導電処理(カーボン真空蒸着や白金−パラ
ジウム合金のスパッタコーティング)を施し、走査電子
顕微鏡用の観察試料とする。
Specifically, for example, a commercially available cold resin is used as the embedding resin, and after about 1 g of nickel hydroxide powder is dispersed, the resin is allowed to stand at room temperature and solidified. In order to easily break the solidified powder-containing resin, it was cut about 1-2 mm upward from the bottom at the time of solidification, and a cut was made in a part of the cut disk-shaped sample. Let cool for 1-2 minutes. Then, it is taken out of liquid nitrogen and broken immediately. As a final treatment, the fracture surface is subjected to a normal conductive treatment (carbon vacuum evaporation or platinum-palladium alloy sputter coating) to obtain an observation sample for a scanning electron microscope.

【0028】従って、この方法によれば、従来の電子顕
微鏡用試料の作製における複雑な前処理が必要なくな
り、簡単な破断作業で確実に試料作製を行うことができ
る。しかも、水酸化ニッケル粒子の内部組織が試料の破
断面に露出しているので、そのまま電子顕微鏡での観察
が可能であり、水酸化ニッケル粉末の内部組織を観察し
て評価することができる。
Therefore, according to this method, complicated pretreatment is not required in the preparation of a conventional sample for an electron microscope, and the preparation of the sample can be reliably performed by a simple breaking operation. Moreover, since the internal structure of the nickel hydroxide particles is exposed on the fracture surface of the sample, observation with an electron microscope is possible as it is, and the internal structure of the nickel hydroxide powder can be observed and evaluated.

【0029】特に、水酸化ニッケル粉末を内部組織に基
づいて評価するに際しては、試料間での内部組織の相違
を比較できるように数値化した評価指標を定めることが
好ましい。具体的には、上記のごとく作製した試料の破
断面を観察し、水酸化ニッケル粒子中に存在する結晶粒
の長辺と短辺の比、並びに水酸化ニッケル粒子の半径に
対する結晶粒の長さによって結晶粒を分類し、各分類の
結晶粒の混在度に基づいて水酸化ニッケル粉末の内部組
織の評価指標を定める。
In particular, when evaluating the nickel hydroxide powder based on the internal structure, it is preferable to determine a numerical evaluation index so that the difference in the internal structure between the samples can be compared. Specifically, the fracture surface of the sample prepared as described above was observed, and the ratio of the long side to the short side of the crystal grains present in the nickel hydroxide particles, and the length of the crystal grains with respect to the radius of the nickel hydroxide particles The crystal grains are classified according to the classification, and the evaluation index of the internal structure of the nickel hydroxide powder is determined based on the degree of mixture of the crystal grains of each classification.

【0030】評価指標の好ましい具体例として、例え
ば、図1に示すように、電子顕微鏡で観察された水酸化
ニッケル粒子1の破断面に存在する結晶粒2a、2b、
2cの形状と大きさに基づいて内部組織指数を定める場
合について説明する。即ち、各結晶粒2a、2b、2c
の大きさを測定し、結晶粒の長辺aが水酸化ニッケル粒
子1の半径Rの1/2以上である結晶粒2aは柱状(a
≧R/2)、結晶粒の長辺aと短辺bとの比が2倍未満
の結晶粒2cは粒状(a/b<2)とし、両者の間の大
きさの結晶粒2bは棒状として分類する。尚、電子顕微
鏡での観察条件は任意のもので良く、破断面に存在する
結晶粒の形状が最も明確に観察できる条件が好ましい。
As a preferred specific example of the evaluation index, for example, as shown in FIG. 1, crystal grains 2a, 2b present on the fracture surface of nickel hydroxide particles 1 observed by an electron microscope,
A case where the internal texture index is determined based on the shape and size of 2c will be described. That is, each crystal grain 2a, 2b, 2c
Is measured, and the crystal grain 2a whose long side a is equal to or more than 1 / of the radius R of the nickel hydroxide particle 1 is columnar (a
.Gtoreq.R / 2), the crystal grains 2c having a ratio of the long side a to the short side b of the crystal grains less than twice are granulated (a / b <2), and the crystal grains 2b having a size between the two are rod-shaped. Classify as The observation conditions with an electron microscope may be any conditions, and are preferably conditions under which the shape of crystal grains existing on the fractured surface can be most clearly observed.

【0031】この基準で類別した各結晶粒2a、2b、
2cが破断面中に存在する割合(混在度)に基づいて、
下記表1に示すように、主に柱状で構成されているか又
は主に粒状で構成されているかによって数値化した内部
組織指数を定める。
Each of the crystal grains 2a, 2b,
Based on the ratio of 2c present in the fractured surface (mixture degree),
As shown in Table 1 below, the internal structure index quantified is determined depending on whether it is mainly composed of columns or mainly granular.

【0032】[0032]

【表1】 [Table 1]

【0033】この内部組織指数は、X線回拆で測定した
結晶性のデータと良好な相関関係が認められる。従っ
て、この内部組織指数を用いることによって、X線回拆
を測定することなく、走査電子顕微鏡による観察のみ
で、水酸化ニッケル粉末の内部組織と結晶性を簡単且つ
正確に評価することができる。
This internal texture index has a good correlation with the crystallinity data measured by X-ray analysis. Therefore, by using this internal structure index, the internal structure and the crystallinity of the nickel hydroxide powder can be easily and accurately evaluated only by observation with a scanning electron microscope without measuring X-ray diffraction.

【0034】本発明における水酸化ニッケル粉末の第2
の評価方法は、水酸化ニッケル粉末の粒子について圧縮
強度を測定する方法である。水酸化ニッケル粒子の圧縮
強度は、内部組織の状態によって大きく変化し、付加さ
れる荷重方向に平行な組織の場合は容易に破壊される。
このため放射状の組織形態と圧縮強度の間に相関関係が
生じ、組織の発達と共に粒子は容易に破断するようにな
る。
The second aspect of the nickel hydroxide powder of the present invention
Is a method of measuring the compressive strength of the particles of the nickel hydroxide powder. The compressive strength of the nickel hydroxide particles varies greatly depending on the state of the internal structure. In the case of a structure parallel to the applied load direction, the structure is easily broken.
This results in a correlation between the radial tissue morphology and the compressive strength, and the particles easily break as the tissue develops.

【0035】この特性を利用することにより、圧縮強度
に基づいて水酸化ニッケル粉末の内部組織を評価するこ
とが可能となり、更には電池特性を予測することができ
る。即ち、上記した水酸化ニッケル粒子の内部組織、又
はその粉末を用いた電池の特性と、水酸化ニッケル粒子
の圧縮強度との相関関係を予め求めておけば、評価すべ
き水酸化ニッケル粉末について粒子の圧縮強度を測定す
るだけで、予め求めた相関関係から水酸化ニッケル粉末
を評価することが可能である。
By utilizing these characteristics, the internal structure of the nickel hydroxide powder can be evaluated based on the compressive strength, and further, the battery characteristics can be predicted. That is, if the correlation between the internal structure of the nickel hydroxide particles or the characteristics of the battery using the powder and the compressive strength of the nickel hydroxide particles is determined in advance, the particle size of the nickel hydroxide powder to be evaluated can be improved. It is possible to evaluate the nickel hydroxide powder from the correlation obtained in advance simply by measuring the compressive strength of the powder.

【0036】水酸化ニッケル粉末粒子の圧縮強度を測定
するには、粒子径が10〜20μmと非常に微細である
ため、粉末用のプローブを有する装置を用いて行う。測
定する粒子は任意に選択し、粒子が圧壊するまで荷重を
加え続け、粒子が破壊された時点で加えられた力(荷
重)を計測する。精度を向上させるためには、可能な限
り多くの粒子について測定して平均値を求めることが望
ましいが、任意の10個程度の粒子について強度を求
め、平均値を圧縮強度とすれば本発明での評価には十分
である。
The compressive strength of the nickel hydroxide powder particles is measured using an apparatus having a powder probe because the particle size is very fine, 10 to 20 μm. The particles to be measured are arbitrarily selected, a load is continuously applied until the particles are crushed, and the force (load) applied when the particles are broken is measured. In order to improve the accuracy, it is desirable to measure as many particles as possible to obtain an average value. However, if the strength is obtained for about 10 arbitrary particles and the average value is taken as the compressive strength, the present invention provides Is sufficient for the evaluation.

【0037】[0037]

【実施例】[水酸化ニッケル粉末の製造]正極活物質材
料である高嵩密度水酸化ニッケルは、例えば特開平9−
017429号公報に記載された方法で製造することが
できる。即ち、ニッケルを含む水溶液と水酸化アルカリ
とアンモニウム水とを、撹拌機を備えた反応槽に同時に
且つ連続的に供給し、反応液中のニッケルイオン濃度を
5〜50mg/l、アンモニア濃度を6〜16g/l、
反応温度を40〜70℃、撹拌機の撹拌羽根の吐出ヘッ
ドを14〜70m/sec、及び生成する水酸化ニ
ッケルの反応槽内での滞留時間を6時間以上として合成
する方法である。
EXAMPLES [Production of Nickel Hydroxide Powder] High bulk density nickel hydroxide, which is a positive electrode active material, is disclosed in, for example,
It can be produced by the method described in JP-A-017429. That is, an aqueous solution containing nickel, an alkali hydroxide, and an aqueous ammonium solution are simultaneously and continuously supplied to a reaction tank equipped with a stirrer, and the concentration of nickel ions in the reaction solution is 5 to 50 mg / l and the concentration of ammonia is 6 to 6. ~ 16g / l,
This is a method in which the reaction temperature is 40 to 70 ° C., the discharge head of the stirring blade of the stirrer is 14 to 70 m 2 / sec 2 , and the residence time of the generated nickel hydroxide in the reaction tank is 6 hours or more.

【0038】この方法により、製造条件を変えることに
よって、試料となる6種類の水酸化ニッケル粉末A〜F
を製造した。全ての試料の水酸化ニッケル粉末は、同一
組成(Ni:57wt%、Co:1.0wt%、Zn:
4.0wt%)とした。尚、本発明例の3種類の水酸化
ニッケル粉末D〜Fは、反応溶液中のニッケル濃度の変
動幅を設定値±2mg/l以下、アンモニア濃度の変動
幅を設定値±1g/l以下、反応温度の変動幅を±1℃
以下に抑えながら、1週間以上安定に操業させることに
より製造することができる。
By changing the manufacturing conditions by this method, six types of nickel hydroxide powders A to F serving as samples are obtained.
Was manufactured. The nickel hydroxide powder of all the samples had the same composition (Ni: 57 wt%, Co: 1.0 wt%, Zn:
4.0 wt%). The three types of nickel hydroxide powders D to F of the present invention have a variation range of the nickel concentration in the reaction solution of ± 2 mg / l or less, a variation range of the ammonia concentration of ± 1 g / l or less, ± 1 ° C fluctuation range of reaction temperature
It can be manufactured by operating stably for one week or more while keeping the temperature below.

【0039】得られた試料A〜Fの各水酸化ニッケル粉
末について、X線回折により実測した(001)面の結
晶子径と共に、BETの1点法により求めた比表面積、
細孔径分布測定より求めた平均細孔径と細孔容積を、そ
れぞれ下記表2に示した。
For each of the obtained nickel hydroxide powders of Samples A to F, together with the crystallite diameter of the (001) plane actually measured by X-ray diffraction, the specific surface area determined by the BET one-point method,
The average pore diameter and the pore volume obtained from the pore diameter distribution measurement are shown in Table 2 below.

【0040】[粉末断面の組織観察]得られた水酸化ニ
ッケル粉末A〜Fについて、内部組織を観察するための
走査電子顕微鏡用の観察用試料を作製した。即ち、各試
料の水酸化ニッケル粉末を樹脂に分散させ、室温で静置
して固化させた後、その底部から約1.5mm上方で切
断した。このディスク状試料の一部に切り込みを入れ、
液体窒素中に1〜2分浸して冷却した後、液体窒素から
取り出して直ちに破断した。その破断面に通常の導電処
理を施し、走査電子顕微鏡での観察用試料とした。
[Observation of Structure of Powder Cross Section] Observation samples for a scanning electron microscope for observing the internal structure of the obtained nickel hydroxide powders A to F were prepared. That is, the nickel hydroxide powder of each sample was dispersed in a resin, allowed to stand at room temperature and solidified, and then cut about 1.5 mm above the bottom. Cut a part of this disk-shaped sample,
After being immersed in liquid nitrogen for 1 to 2 minutes and cooled, it was taken out of liquid nitrogen and immediately broken. A normal conductive treatment was applied to the fractured surface to obtain a sample for observation with a scanning electron microscope.

【0041】次に、得られた各観察用試料について、そ
の導電処理を施した破断面を走査電子顕微鏡で観察し
た。結晶子径が小さい試料Aでは破断面で観察される大
部分の結晶粒の形状が粒状であるのに対して、結晶子径
が大きな試料Fでは大部分の結晶粒の形状が柱状であっ
た。他の試料も同様に観察し、結晶粒の混在度と内部組
織指数との関係を定めた表1に従って内部組織指数を求
め、その結果を下記表2に示した。
Next, with respect to each of the obtained observation samples, the fracture surface subjected to the conductive treatment was observed with a scanning electron microscope. In sample A having a small crystallite diameter, the shape of most of the crystal grains observed in the fracture surface was granular, whereas in sample F having a large crystallite diameter, the shape of most of the crystal grains was columnar. . Other samples were observed in the same manner, and the internal structure index was determined in accordance with Table 1 which defines the relationship between the degree of mixture of crystal grains and the internal structure index. The results are shown in Table 2 below.

【0042】また、X線回折により実測した水酸化ニッ
ケル粒子の(001)面の結晶子径と、上記のごとく求
めた内部組織指数との相関関係を図2に示した。結晶子
径が大きくなると内部組織指数が増加する正の相関関係
が認められ、その相関係数も0.9以上と良い相関関係
であることが分かる。また、X線回折による結晶子径で
は単結晶の成長のみが数値化できるが、内部組織指数で
は結晶性の向上に関するデータに加えて、ミクロンオー
ダー以上の粒子の成長も評価できることが明らかとなっ
た。
FIG. 2 shows the correlation between the crystallite diameter of the (001) plane of nickel hydroxide particles actually measured by X-ray diffraction and the internal structure index determined as described above. As the crystallite diameter increases, a positive correlation in which the internal texture index increases is observed, and the correlation coefficient is 0.9 or more, which is a good correlation. In addition, it is clear that only the growth of a single crystal can be quantified by the crystallite diameter by X-ray diffraction, but the growth of grains on the order of microns or more can be evaluated by the internal texture index in addition to data on the improvement of crystallinity. .

【0043】[圧縮強度の測定]次に、水酸化ニッケル
粉末A〜Fについて、島津製作所の微小圧縮試験機MC
TM−200を用いて圧縮強度を測定した。即ち、試験
荷重を50mN、負荷速度19.34mN/secと
し、直径50μmの平面タイプの圧子を用いて、任意の
粒子10個について測定を行い、その平均値を圧縮強度
とした。得られた結果を下記表2に示した。
[Measurement of Compressive Strength] Next, for nickel hydroxide powders A to F, a micro compression tester MC of Shimadzu Corporation was used.
The compressive strength was measured using TM-200. That is, a test load was set to 50 mN, a load speed was set to 19.34 mN / sec, and measurement was performed for 10 arbitrary particles using a flat type indenter having a diameter of 50 μm, and the average value was defined as the compressive strength. The results obtained are shown in Table 2 below.

【0044】[0044]

【表2】 [Table 2]

【0045】また、各水酸化ニッケル粉末の(001)
面の結晶子径と圧縮強度のと関係を図3に、内部組織指
数と圧縮強度との関係を図4に示した。圧縮強度と結晶
子径及び内部組織指数との相関は、いずれも非常に良い
直線性を示していることが分かる。このことから、水酸
化ニッケル粒子の圧縮強度を測定することで、その内部
組織に関する情報を得ることができ、X線回拆測定や電
子顕微鏡観察を行わなくても、水酸化ニッケル粉末の評
価が可能であることが分かる。
The (001) of each nickel hydroxide powder was
FIG. 3 shows the relationship between the crystallite diameter of the plane and the compressive strength, and FIG. 4 shows the relationship between the internal structure index and the compressive strength. It can be seen that the correlation between the compressive strength, the crystallite diameter and the internal structure index all show very good linearity. From this, by measuring the compressive strength of the nickel hydroxide particles, it is possible to obtain information on the internal structure, and the evaluation of the nickel hydroxide powder can be performed without performing X-ray removal measurement or electron microscope observation. It turns out that it is possible.

【0046】[電池の作製]上記の試料A〜Fの水酸化
ニッケル粉末を用いて、以下のように正極を作製した。
即ち、水酸化ニッケル粉末に水酸化コバルト粉末(伊勢
化学製)を正極中のCo量が8wt%となるように添加
し、バインダー量が2wt%となるようにHPC(ヒド
ロキシプロピルセルロース1000、粘度4000c
P;和光純薬工業製、試薬1級)水溶液を加え、ノンバ
ブリングニーダー(日本精工製)を用いてペースト化
し、発泡ニッケル(住友電工製「セルメット」;多孔度
97%)に充填し、乾燥した後、2ton/cmの圧
力で静水圧プレスした。
[Preparation of Battery] Using the nickel hydroxide powders of Samples A to F, a positive electrode was prepared as follows.
That is, cobalt hydroxide powder (manufactured by Ise Chemical Co., Ltd.) is added to nickel hydroxide powder so that the amount of Co in the positive electrode becomes 8 wt%, and HPC (hydroxypropyl cellulose 1000, viscosity 4000 c) is added so that the binder amount becomes 2 wt%.
P; Wako Pure Chemical Industries, first grade reagent) aqueous solution is added, paste is formed using a non-babbling kneader (manufactured by Nippon Seiko), filled into foamed nickel ("Celmet" manufactured by Sumitomo Electric; porosity 97%), and dried. After that, isostatic pressing was performed at a pressure of 2 ton / cm 2 .

【0047】このようにして作製した正極と共に、カド
ミウム電極を負極とし、セパレータとしてスルホン化ポ
リオレフィン不識布を用い、電解液には7.2mol/
lの水酸化カリウム水溶液を用いて、アルカリ二次電池
を作製した。
Along with the positive electrode thus prepared, a cadmium electrode was used as a negative electrode, a sulfonated polyolefin insulative cloth was used as a separator, and 7.2 mol / mol of electrolyte was used.
Using 1 l of aqueous potassium hydroxide solution, an alkaline secondary battery was produced.

【0048】[電池の評価]上記試料A〜Fの水酸化ニ
ッケル粉末ごとに作製した電池(テストセル)は、恒温
槽に保持して温度を一定(20℃)にし、充電は0.1
Cで理論容量(289mAh/g)の150%まで行
い、放電は0.2C、1C、3Cでそれぞれ1.0Vまで
行った。このとき利用率は、理論容量に対する放電容量
の百分率で表わされる。更に、高温特性として、50℃
にて同様に0.1Cでの充電と、0.2Cでの放電とを行
い、そのときの利用率を求め、上記20℃/0.2Cで
の利用率との比率(%)を算出した。得られた結果をま
とめて下記表3に示した。
[Evaluation of Batteries] Batteries (test cells) prepared for each of the nickel hydroxide powders of Samples A to F above were kept in a thermostat to keep the temperature constant (20 ° C.) and charged at 0.1.
C was performed up to 150% of the theoretical capacity (289 mAh / g), and discharge was performed up to 1.0V at 0.2C, 1C and 3C. At this time, the utilization is expressed as a percentage of the discharge capacity with respect to the theoretical capacity. Furthermore, as high temperature characteristics, 50 ° C
In the same manner, charging at 0.1 C and discharging at 0.2 C were performed, the utilization at that time was obtained, and the ratio (%) to the utilization at 20 ° C./0.2 C was calculated. . The results obtained are summarized in Table 3 below.

【0049】[0049]

【表3】 [Table 3]

【0050】上記の結果から、粒子内部の組織が発達
し、従って内部組織指数が高いものほど、あるいは粒子
の圧縮強度の小さいものほど、利用率が高く且つ高率放
電時の劣化が少ないことが明らかである。また、高温特
性に関しても、20℃の利用率と比較した50℃の利用
率の比は、内部組織指数が高く又は圧縮強度の小さいも
のほど大きくなっており、高温での利用率の低下が低く
抑制されていることが分かる。
From the above results, it can be concluded that the structure inside the particles develops, and therefore, the higher the internal structure index or the smaller the compressive strength of the particles, the higher the utilization factor and the less the deterioration during high-rate discharge. it is obvious. Regarding the high-temperature properties, the ratio of the utilization rate at 50 ° C. as compared with the utilization rate at 20 ° C. is higher as the internal structure index is higher or the compressive strength is lower, and the decrease in the utilization rate at high temperatures is lower. It turns out that it is suppressed.

【0051】尚、本発明は、実施例で示した組成の水酸
化ニッケル粉末に限定されるものではない。高温特性は
水酸化ニッケル粉末のコバルト固溶量を増加させること
でも改善が可能であり、また水酸化コバルトをコートす
ることによっても向上させることが可能であるが、これ
らの改善を予め行った水酸化ニッケル粉末も本発明を適
用でき、同様な効果を得ることができる。
The present invention is not limited to the nickel hydroxide powder having the composition shown in the examples. The high-temperature characteristics can be improved by increasing the amount of nickel hydroxide powder in the solid solution of cobalt, and can also be improved by coating with cobalt hydroxide. The present invention can be applied to nickel oxide powder, and a similar effect can be obtained.

【0052】[0052]

【発明の効果】本発明によれば、アルカリ二次電池の正
極活物質材料として好適な水酸化ニッケルを提供するこ
とができ、この水酸化ニッケル粉末を用いることによっ
て出力特性及び高温特性に優れたアルカリ二次電池を作
製することができる。また、アルカリ二次電池の正極活
物質材料として好適な水酸化ニッケル粉末を、粉末粒子
の内部組織の評価又は粒子の圧縮強度に基づく評価によ
り、簡便且つ確実に選定管理することができる。
According to the present invention, it is possible to provide nickel hydroxide which is suitable as a positive electrode active material of an alkaline secondary battery. By using this nickel hydroxide powder, excellent output characteristics and high temperature characteristics are obtained. An alkaline secondary battery can be manufactured. In addition, nickel hydroxide powder suitable as a positive electrode active material for an alkaline secondary battery can be easily and reliably selected and controlled by evaluation of the internal structure of the powder particles or evaluation based on the compressive strength of the particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電子顕微鏡で観察された水酸化ニッケル粒子の
破断面に存在する結晶粒を模試的に示した断面図であ
る。
FIG. 1 is a cross-sectional view schematically showing crystal grains present in a fracture surface of nickel hydroxide particles observed by an electron microscope.

【図2】水酸化ニッケル粒子の(001)結晶粒径と内
部組織指数との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the (001) crystal grain size of nickel hydroxide particles and the internal texture index.

【図3】水酸化ニッケル粒子の(001)結晶粒径と圧
縮強度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the (001) crystal grain size of nickel hydroxide particles and compressive strength.

【図4】水酸化ニッケル粒子の内部組織指数と圧縮強度
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the internal structure index of nickel hydroxide particles and compressive strength.

【符号の説明】 1 水酸化ニッケル粒子 2a、2b、2c 結晶粒[Description of Signs] 1 Nickel hydroxide particles 2a, 2b, 2c Crystal grains

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA02 AB02 AC06 AD03 AD06 AE05 5H050 AA05 BA11 CA03 CA04 CB16 FA17 GA02 GA05 GA28 HA00 HA05 HA06 HA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA02 AB02 AC06 AD03 AD06 AE05 5H050 AA05 BA11 CA03 CA04 CB16 FA17 GA02 GA05 GA28 HA00 HA05 HA06 HA07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均細孔径が5.50nm以下、細孔容
積が0.03ml/g以下、及び比表面積が12m
g以下であって、粉末粒子の断面組織において、結晶粒
の長辺aと短辺bの比が2以上である結晶粒が50%以
上を占め、且つ結晶粒の長辺aが該粒子の半径Rの1/
2以上である結晶粒が存在していることを特徴とするア
ルカリ二次電池用水酸化ニッケル粉末。
1. An average pore size of 5.50 nm or less, a pore volume of 0.03 ml / g or less, and a specific surface area of 12 m 2 / g.
g or less, and in the cross-sectional structure of the powder particle, the crystal grains in which the ratio of the long side a to the short side b is 2 or more occupy 50% or more, and the long side a of the crystal grain is 1 / radius R
A nickel hydroxide powder for an alkaline secondary battery, wherein two or more crystal grains are present.
【請求項2】 前記結晶粒の長辺aが該粒子の半径Rの
1/2以上である結晶粒が50%以上存在することを特
徴とする、請求項1に記載のアルカリ二次電池用水酸化
ニッケル粉末。
2. The water for an alkaline secondary battery according to claim 1, wherein 50% or more of the crystal grains whose long side a of the crystal grains is at least の of the radius R of the particles are present. Nickel oxide powder.
【請求項3】 平均細孔径が5.50nm以下、細孔容
積が0.03ml/g以下、及び比表面積が12m
g以下であって、粉末粒子の圧縮強度が40MPa以下
であることを特徴とするアルカリ二次電池用水酸化ニッ
ケル粉末。
3. An average pore diameter of 5.50 nm or less, a pore volume of 0.03 ml / g or less, and a specific surface area of 12 m 2 / g.
g or less, and the compressive strength of the powder particles is 40 MPa or less, the nickel hydroxide powder for an alkaline secondary battery.
【請求項4】 水酸化ニッケル粉末を樹脂包埋した後、
該樹脂の脆化温度以下まで冷却して破断することによ
り、水酸化ニッケル粒子の破断面が露出した試料を作製
し、この試料中の水酸化ニッケル粒子の破断面を観察す
ることにより、観察される内部組織に基づいて正極活物
質材料としての評価を行うことを特徴とするアルカリ二
次電池用水酸化ニッケル粉末の評価方法。
4. After embedding the nickel hydroxide powder in a resin,
By cooling to below the embrittlement temperature of the resin and fracturing, a sample was prepared in which the fracture surface of the nickel hydroxide particles was exposed, and this was observed by observing the fracture surface of the nickel hydroxide particles in this sample. A method for evaluating a nickel hydroxide powder for an alkaline secondary battery, wherein the evaluation as a positive electrode active material is performed based on the internal structure.
【請求項5】 水酸化ニッケル粒子の破断面における結
晶粒の長辺aと短辺b及び該粒子の半径Rを求め、結晶
粒の長辺aと短辺bの比並びに結晶粒の長辺aと該粒子
の半径Rの比によって結晶粒を分類し、各分類の結晶粒
の混在度に基づいて水酸化ニッケル粉末の内部組織の評
価指標を定め、この評価指標に基づいて評価を行うこと
を特徴とする、請求項4に記載のアルカリ二次電池用水
酸化ニッケル粉末の評価方法。
5. The long side a and the short side b of the crystal grain in the fracture surface of the nickel hydroxide particle and the radius R of the grain are determined, the ratio of the long side a to the short side b of the crystal grain, and the long side of the crystal grain. Classifying the crystal grains according to the ratio of a to the radius R of the particles, determining an evaluation index of the internal structure of the nickel hydroxide powder based on the degree of mixture of the crystal grains of each classification, and performing evaluation based on the evaluation index The method for evaluating a nickel hydroxide powder for an alkaline secondary battery according to claim 4, characterized in that:
【請求項6】 水酸化ニッケル粉末の粒子について圧縮
強度を測定し、得られる圧縮強度に基づいて正極活物質
材料としての評価を行うことを特徴とするアルカリ二次
電池用水酸化ニッケル粉末の評価方法。
6. A method for evaluating a nickel hydroxide powder for an alkaline secondary battery, comprising measuring the compressive strength of particles of the nickel hydroxide powder, and performing an evaluation as a positive electrode active material based on the obtained compressive strength. .
JP2001384202A 2001-02-01 2001-12-18 Nickel hydroxide powder for alkaline secondary battery and its evaluation method Pending JP2002304992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384202A JP2002304992A (en) 2001-02-01 2001-12-18 Nickel hydroxide powder for alkaline secondary battery and its evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001025522 2001-02-01
JP2001-25522 2001-02-01
JP2001384202A JP2002304992A (en) 2001-02-01 2001-12-18 Nickel hydroxide powder for alkaline secondary battery and its evaluation method

Publications (1)

Publication Number Publication Date
JP2002304992A true JP2002304992A (en) 2002-10-18

Family

ID=26608770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384202A Pending JP2002304992A (en) 2001-02-01 2001-12-18 Nickel hydroxide powder for alkaline secondary battery and its evaluation method

Country Status (1)

Country Link
JP (1) JP2002304992A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043559A1 (en) * 2006-10-13 2008-04-17 Toda Kogyo Europe Gmbh Pulverulent compounds, processes for the preparation thereof and the use thereof in electrochemical applications
JP2012206929A (en) * 2011-03-16 2012-10-25 Nippon Chem Ind Co Ltd Method for producing lithium-nickel-manganese-cobalt composite oxide
JP2014237573A (en) * 2013-06-10 2014-12-18 住友金属鉱山株式会社 Method for producing nickel cobalt compound hydroxide for nonaqueous electrolyte secondary battery positive electrode active substance and nickel cobalt compound hydroxide particle
JP2016155696A (en) * 2015-02-23 2016-09-01 戸田工業株式会社 Nickel hydroxide particle powder and manufacturing method therefor, cathode active material particle powder and manufacturing method therefor and nonaqueous electrolyte secondary battery
WO2018020845A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
WO2018021556A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018021557A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2018084531A (en) * 2016-11-25 2018-05-31 住友金属鉱山株式会社 Method for x-ray diffraction analysis of powder sample
JP2018536972A (en) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド Precursor of positive electrode active material for secondary battery and positive electrode active material produced using the same
JP2022529818A (en) * 2020-03-26 2022-06-24 エルジー・ケム・リミテッド Manufacturing method of positive electrode active material
US12009517B2 (en) 2016-07-29 2024-06-11 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505733A (en) * 2006-10-13 2010-02-25 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Compound powder, process for its production and its use in electrochemical applications
US8663507B2 (en) 2006-10-13 2014-03-04 Toda Kogyo Europe Gmbh Pulverulent compounds, processes for the preparation thereof and the use thereof in electrochemical applications
KR101397317B1 (en) * 2006-10-13 2014-05-22 토다 고교 유럽 게엠베하 Pulverulent compounds, processes for the preparation thereof and the use thereof in electrochemical applications
WO2008043559A1 (en) * 2006-10-13 2008-04-17 Toda Kogyo Europe Gmbh Pulverulent compounds, processes for the preparation thereof and the use thereof in electrochemical applications
JP2012206929A (en) * 2011-03-16 2012-10-25 Nippon Chem Ind Co Ltd Method for producing lithium-nickel-manganese-cobalt composite oxide
JP2014237573A (en) * 2013-06-10 2014-12-18 住友金属鉱山株式会社 Method for producing nickel cobalt compound hydroxide for nonaqueous electrolyte secondary battery positive electrode active substance and nickel cobalt compound hydroxide particle
JP2016155696A (en) * 2015-02-23 2016-09-01 戸田工業株式会社 Nickel hydroxide particle powder and manufacturing method therefor, cathode active material particle powder and manufacturing method therefor and nonaqueous electrolyte secondary battery
JP2018536972A (en) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド Precursor of positive electrode active material for secondary battery and positive electrode active material produced using the same
JP6991530B2 (en) 2016-03-04 2022-01-12 エルジー・ケム・リミテッド A precursor of a positive electrode active material for a secondary battery and a positive electrode active material manufactured using the precursor.
JP2021180191A (en) * 2016-03-04 2021-11-18 エルジー・ケム・リミテッド Precursor of positive electrode active material for secondary battery, and positive electrode active material prepared using the same
US10700352B2 (en) 2016-03-04 2020-06-30 Lg Chem, Ltd. Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using the same
CN109843811A (en) * 2016-07-29 2019-06-04 住友金属矿山株式会社 Nickel-manganese composite hydroxide and its manufacturing method, non-aqueous electrolyte secondary battery positive active material and its manufacturing method and non-aqueous electrolyte secondary battery
US11387453B2 (en) 2016-07-29 2022-07-12 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JPWO2018021556A1 (en) * 2016-07-29 2019-05-23 住友金属鉱山株式会社 Nickel-manganese composite hydroxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
CN109803929A (en) * 2016-07-29 2019-05-24 住友金属矿山株式会社 Nickel-manganese composite hydroxide and its manufacturing method, non-aqueous electrolyte secondary battery positive active material and its manufacturing method and non-aqueous electrolyte secondary battery
CN109803927A (en) * 2016-07-29 2019-05-24 住友金属矿山株式会社 Nickel-manganese composite hydroxide and its manufacturing method, non-aqueous electrolyte secondary battery positive active material and its manufacturing method and non-aqueous electrolyte secondary battery
US12009517B2 (en) 2016-07-29 2024-06-11 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JPWO2018021557A1 (en) * 2016-07-29 2019-06-13 住友金属鉱山株式会社 Nickel-manganese composite hydroxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
WO2018021557A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018021556A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018020845A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US11742483B2 (en) 2016-07-29 2023-08-29 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JPWO2018020845A1 (en) * 2016-07-29 2019-05-16 住友金属鉱山株式会社 Nickel-manganese composite hydroxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
JP7120012B2 (en) 2016-07-29 2022-08-17 住友金属鉱山株式会社 Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
CN109803929B (en) * 2016-07-29 2022-08-26 住友金属矿山株式会社 Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
CN109843811B (en) * 2016-07-29 2022-08-26 住友金属矿山株式会社 Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
CN109803927B (en) * 2016-07-29 2022-08-26 住友金属矿山株式会社 Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
JP7135855B2 (en) 2016-07-29 2022-09-13 住友金属鉱山株式会社 Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP7135856B2 (en) 2016-07-29 2022-09-13 住友金属鉱山株式会社 Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
US11476460B2 (en) 2016-07-29 2022-10-18 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US11670765B2 (en) 2016-07-29 2023-06-06 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2018084531A (en) * 2016-11-25 2018-05-31 住友金属鉱山株式会社 Method for x-ray diffraction analysis of powder sample
JP2022529818A (en) * 2020-03-26 2022-06-24 エルジー・ケム・リミテッド Manufacturing method of positive electrode active material
US11824193B2 (en) 2020-03-26 2023-11-21 Lg Chem, Ltd. Method of manufacturing positive electrode active material
JP7399539B2 (en) 2020-03-26 2023-12-18 エルジー・ケム・リミテッド Manufacturing method of positive electrode active material

Similar Documents

Publication Publication Date Title
KR100387017B1 (en) Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
KR100809570B1 (en) Cathode material for manufacturing a rechargeable battery
JP4254267B2 (en) Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof
EP0892451B1 (en) Hydrogen-absorbing alloy
JP2002304992A (en) Nickel hydroxide powder for alkaline secondary battery and its evaluation method
JP2004528691A (en) Improved cathode composition for lithium ion batteries
JP4919147B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
JP2017510968A (en) Beta delithiated layered nickel oxide electrochemically active cathode material and battery containing said material
EP3113257B1 (en) Negative electrode active substance material, negative electrode, and cell
CN114703544A (en) Single crystal type multi-element anode material and preparation method and application thereof
TW201937791A (en) Silicon-based powder, electrode and battery comprising such a powder
JP2011127177A (en) Hydrogen storage alloy, method for producing the same, and alkali storage battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
CN104220613B (en) Hydrogen storage alloy powder, negative pole and nickel-hydrogen secondary cell
EP2579367A1 (en) Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
US8409754B2 (en) Positive electrode active material for secondary cell and nonaqueous electrolyte secondary cell using the same, and method for analysis of positive electrode active material for secondary cell
EP1892220A1 (en) Nickel hydroxide powder, nickel oxyhydroxide powder, method for producing these and alkaline dry battery
CN116845195A (en) Carbon-coated positive electrode material, preparation method thereof and lithium ion battery
CN113972369A (en) High-compaction-density ternary cathode material
JPH09270258A (en) Nickel-cobalt hydroxide for nonaqueous electrolyte battery active material
US5688341A (en) Hydrogen-absorbing alloy electrode and method for evaluating hydrogen-absorbing alloys for electrode
Barnard et al. Effects of charge rate and cycling on the morphology of Cd and Cd (OH) 2 in sintered plate electrodes
EP4144877A1 (en) Hydrogen storage alloy
CN111615768B (en) Composite powder for use in negative electrode of battery and battery comprising such composite powder