JP2002303563A - Device for controlling collection tunnel pressure of blowout type wind tunnel - Google Patents

Device for controlling collection tunnel pressure of blowout type wind tunnel

Info

Publication number
JP2002303563A
JP2002303563A JP2001106222A JP2001106222A JP2002303563A JP 2002303563 A JP2002303563 A JP 2002303563A JP 2001106222 A JP2001106222 A JP 2001106222A JP 2001106222 A JP2001106222 A JP 2001106222A JP 2002303563 A JP2002303563 A JP 2002303563A
Authority
JP
Japan
Prior art keywords
pressure
collecting cylinder
measurement
ventilation
regulating valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001106222A
Other languages
Japanese (ja)
Other versions
JP3403394B2 (en
Inventor
Fumihito Kimura
史仁 木村
Isamu Morita
勇 森田
Taisuke Kujime
泰典 久次米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2001106222A priority Critical patent/JP3403394B2/en
Publication of JP2002303563A publication Critical patent/JP2002303563A/en
Application granted granted Critical
Publication of JP3403394B2 publication Critical patent/JP3403394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deformation and breakage of a straightening member 63 such as a punching metal in a collection tunnel and a model 64 or the like in a measurement chamber 58 by preventing a phenomenon that a pressure in the collection tunnel 56 of a blowout type wind tunnel fluctuates periodically positively and negatively during stop of ventilation measurement. SOLUTION: An opening of a regulator 55 is controlled so that the pressure in the collection tunnel 56 detected by a sensor 71 during the ventilation measurement becomes a pressure P1 for ventilation measurement set by a pressure setting means 72 for ventilation measurement. The opening of the regulator 55 is controlled so that a pressure P2 detected by the sensor 71 during stop of the measurement becomes the atmospheric pressure P0 set by an atmospheric pressure setting means 73. Thereby, during the stop of the measurement, the pressure in the collection tunnel 56 is maintained to the atmospheric pressure. Therefore, the pressure in the collection tunnel 56 does not fluctuate periodically, and the air flows in one direction the same as during the ventilation measurement and without flow back.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吹出式風胴の集合
胴圧力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure control device for a collective cylinder of a blow-out type wind tunnel.

【0002】[0002]

【従来の技術】図11は、先行技術の系統図である。吹
出式風胴21において、貯気槽22に圧縮空気を高圧力
で充填し、通風計測時、管路46に介在されている元弁
23を開き、調圧弁24から集合胴25に圧縮空気を流
入し、第1スロート部26から、通風計測が行われるべ
き模型が配置される測定室27に導き、第2スロート部
28から拡散胴29を経て減速され、消音塔31を通り
大気放出される。集合胴25内には、流れ方向に沿って
複数の整流部材32が設けられる。整流部材32は、測
定室27への圧縮空気を整流し、その圧縮空気の流れ方
向に垂直な断面における圧力分布を均一にする働きを果
たす。整流部材32は、たとえば金網、多孔板、パンチ
ングメタルなどから成る。
2. Description of the Related Art FIG. 11 is a system diagram of the prior art. In the blow-out type wind tunnel 21, the air storage tank 22 is filled with compressed air at high pressure, and at the time of ventilation measurement, the main valve 23 interposed in the pipeline 46 is opened, and the compressed air is sent from the pressure regulating valve 24 to the collecting cylinder 25. It flows into the measuring chamber 27 where the model to be subjected to the ventilation measurement is to be arranged from the first throat section 26, is decelerated from the second throat section 28 through the diffusion cylinder 29, and is released to the atmosphere through the silencer 31. . A plurality of flow regulating members 32 are provided in the collecting cylinder 25 along the flow direction. The rectifying member 32 functions to rectify the compressed air to the measurement chamber 27 and make the pressure distribution uniform in a cross section perpendicular to the flow direction of the compressed air. The rectifying member 32 is made of, for example, a wire mesh, a perforated plate, or a punching metal.

【0003】計測の停止時、全閉指令信号発生手段34
からの出力は、スイッチ35から減算手段36に与えら
れ、この減算手段36には、調圧弁24の弁体の位置、
すなわち調圧弁24のストロークを検出する位置検出手
段37の出力が与えられる。減算手段36からの全閉指
令の出力は、位置制御手段38に与えられ、調圧弁駆動
手段39によって調圧弁24の弁体が変位駆動される。
こうして調圧弁24は、全閉指令信号発生手段34の出
力によって全閉状態に保たれる。
When the measurement is stopped, the fully closed command signal generating means 34
Is supplied from a switch 35 to a subtraction means 36, which includes a position of a valve body of the pressure regulating valve 24,
That is, the output of the position detecting means 37 for detecting the stroke of the pressure regulating valve 24 is provided. The output of the fully closed command from the subtracting means 36 is given to the position control means 38, and the valve body of the pressure regulating valve 24 is driven to be displaced by the pressure regulating valve driving means 39.
Thus, the pressure regulating valve 24 is maintained in the fully closed state by the output of the fully closed command signal generating means 34.

【0004】通風計測時、元弁23が開かれている状態
で、圧縮空気が調圧弁24から集合胴25内に流入さ
れ、通風計測が行われる。圧力設定手段41によって設
定された通風計測用圧力を表す出力は、もう一つの減算
手段42に与えられる。減算手段42には、集合胴25
内の圧力を検出するセンサ43からの出力もまた与えら
れる。減算手段42の出力は、圧力制御手段44に与え
られる。圧力制御手段44の圧力は、停止時から通風計
測のために切換えられたスイッチ45を経て、調圧弁2
4の駆動のための減算手段36に与えられる。このとき
スイッチ35は遮断されている。集合胴25内のセンサ
43によって検出される圧力が、圧力設定手段41によ
って設定された通風計測用圧力に保たれるように、調圧
弁駆動手段39は、調圧弁24の弁体を変位駆動する。
At the time of ventilation measurement, with the main valve 23 open, compressed air flows from the pressure regulating valve 24 into the collecting cylinder 25, and ventilation measurement is performed. The output indicating the ventilation measurement pressure set by the pressure setting means 41 is given to another subtraction means 42. The subtracting means 42 includes the collecting cylinder 25
An output from a sensor 43 that detects the pressure in the chamber is also provided. The output of the subtraction means 42 is given to the pressure control means 44. The pressure of the pressure control means 44 passes through a switch 45 switched for ventilation measurement from the time of stoppage, and
4 is provided to a subtraction means 36 for driving. At this time, the switch 35 is shut off. The pressure regulating valve driving means 39 drives the valve body of the pressure regulating valve 24 so that the pressure detected by the sensor 43 in the collecting cylinder 25 is maintained at the ventilation measurement pressure set by the pressure setting means 41. .

【0005】このような通風計測が終了した後、再びス
イッチ45は遮断され、スイッチ35が導通され、これ
によって調圧弁24は全閉状態とされる。
After the measurement of the ventilation, the switch 45 is turned off again, and the switch 35 is turned on, whereby the pressure regulating valve 24 is fully closed.

【0006】図12は、図11に示される先行技術の本
件発明者による実験結果を示すグラフである。時刻t1
以前では、元弁23は全開しており、スイッチ35は図
11のように閉じており、スイッチ45は開いている。
時刻t1においてスイッチ35を切換え、通風計測を開
始する。計測停止の時刻t2では、スイッチ35を、閉
じ、スイッチ45を開いて調圧弁24を全閉状態に保
つ。図12のラインa〜aの表す内容は、表1のと
おりである。
FIG. 12 is a graph showing experimental results of the prior art shown in FIG. 11 by the present inventor. Time t1
Previously, the main valve 23 was fully opened, the switch 35 was closed as shown in FIG. 11, and the switch 45 was open.
At time t1, the switch 35 is switched to start ventilation measurement. At the time t2 at which the measurement is stopped, the switch 35 is closed and the switch 45 is opened to keep the pressure regulating valve 24 in a fully closed state. The contents indicated by the lines a to a in FIG. 12 are as shown in Table 1.

【0007】[0007]

【表1】 [Table 1]

【0008】図12では、ラインa,a;a;
aの大気圧を表す図12の縦軸の位置は、図解の便宜の
ために、異ならせてあり、大気圧の位置は、ライン
a,aに関して参照符11で示され、ラインaに関
して参照符14で示され、ラインaに関して参照符1
7で示される。
In FIG. 12, lines a, a; a;
The position of the vertical axis in FIG. 12 representing the atmospheric pressure of a is different for convenience of illustration, and the position of the atmospheric pressure is indicated by reference numeral 11 with respect to the lines a, a and by reference numeral with respect to the line a. 14 and reference 1 for line a
Indicated by 7.

【0009】図12のラインaで示されるように、計
測の停止時刻t2以降で集合胴25内の圧力が大気圧1
7を中心として変動し、また測定室27の静圧が大気圧
の上下に周期的に変動することが判る。このような集合
胴25内の圧力の周期的な変動が生じることを、本件発
明者は発見した。
As shown by a line a in FIG. 12, after the measurement stop time t2, the pressure in the collecting cylinder 25 becomes 1 at atmospheric pressure.
7, the static pressure in the measurement chamber 27 periodically fluctuates above and below the atmospheric pressure. The present inventor has found that such a periodic fluctuation of the pressure in the collecting cylinder 25 occurs.

【0010】本件発明者は、このような圧力の周期的な
変動の現象が生じる理由を、次のように説明する。すな
わち時刻t2において調圧弁24を調圧弁24の開度の
閉弁時間変化率の最大値で急速に全閉にすると、集合胴
25内に溜まっている高圧力の圧縮空気は、第1スロー
ト部26、測定室27、第2スロート部28、拡散胴2
9を経て消音塔31から排気される。このとき第1およ
び第2スロート部26,27の状態および集合胴25内
の圧力によって、集合胴25からの空気の流失は、その
空気の慣性力によって、集合胴25内の圧力が大気圧未
満に低下しても、続き、集合胴25および測定室27は
負圧状態になる。集合胴25が負圧になると、その後、
消音塔31、拡散胴29、第2スロート部28、測定室
27および第1スロート部26を通って集合胴25内に
空気が流入して逆流する。これによって集合胴25内の
圧力は、大気圧よりも高くなる。このような圧力の正負
の上下変動が2〜3回から12〜13回繰返される現象
が生じる。
The inventor of the present invention explains the reason why such a phenomenon of periodic fluctuation of pressure occurs as follows. That is, when the pressure control valve 24 is fully closed at the maximum value of the rate of change of the opening degree of the pressure control valve 24 during the closing time at the time t2, the high-pressure compressed air accumulated in the collecting cylinder 25 is discharged to the first throat portion. 26, measuring chamber 27, second throat section 28, diffusion cylinder 2
After passing through 9, the gas is exhausted from the silencer 31. At this time, due to the state of the first and second throat portions 26 and 27 and the pressure in the collecting cylinder 25, the flow of air from the collecting cylinder 25 is reduced, and the pressure in the collecting cylinder 25 is lower than the atmospheric pressure due to the inertial force of the air. , The collecting cylinder 25 and the measuring chamber 27 are kept in a negative pressure state. When the collecting cylinder 25 becomes negative pressure,
Air flows into the collecting drum 25 through the silencer tower 31, the diffusion drum 29, the second throat portion 28, the measurement chamber 27, and the first throat portion 26, and flows backward. Thereby, the pressure in the collecting cylinder 25 becomes higher than the atmospheric pressure. A phenomenon occurs in which such positive and negative fluctuations in pressure are repeated from two to three times to 12 to 13 times.

【0011】このように調圧弁25を全閉状態にした
後、集合胴25内の圧力が正負に周期的に変動すること
によって、整流部材32の変形、破損、また測定室27
内の模型への悪影響(消音塔からの異物の侵入、検出器
への影響など)、さらに消音塔31から外部の空気が吸
入、排気されることによって低音域の騒音が発生する。
整流部材32は、調圧弁24側から流れてくる高圧力の
圧縮空気には充分に耐える強度を有するけれども、その
逆方向の空気の流れに対する補強は行われておらず、上
述のように長期間の使用において変形、破損してしま
う。これらは、必ず破損するとは言えないものでも、長
期間の使用において破損に至る。長期間の使用によって
寿命を縮める結果になる。したがって従来技術では、破
損に至らない損傷は、発見されていない。
After the pressure regulating valve 25 is fully closed as described above, the pressure in the collecting cylinder 25 periodically fluctuates in the positive and negative directions, thereby deforming and breaking the rectifying member 32 and causing the measurement chamber 27 to move.
The noise in the low-frequency range is generated by adverse effects on the model inside (intrusion of foreign matter from the silencer, influence on the detector, and the like), and furthermore, external air is sucked in and exhausted from the silencer 31.
Although the rectifying member 32 has sufficient strength to withstand high-pressure compressed air flowing from the pressure regulating valve 24 side, reinforcement for the air flow in the opposite direction is not performed, and as described above, the rectifying member 32 has a long Deformation and breakage during use. Even if these are not necessarily broken, they will be broken after long-term use. Prolonged use results in shortened life. Therefore, no damage that does not result in damage has been found in the prior art.

【0012】集合胴25内が負圧になることによって空
気が逆流し、整流部材32が変形、破損することを防ぐ
ために、整流部材32を補強することが考えられるけれ
ども、そのようにすれば、整流部材32による圧力損失
が増大する。そのため測定室27における測定結果に悪
影響が及ぼされる。
It is conceivable to reinforce the rectifying member 32 in order to prevent the air from flowing backward due to the negative pressure inside the collecting cylinder 25 and deforming or damaging the rectifying member 32. The pressure loss due to the rectifying member 32 increases. Therefore, the measurement result in the measurement chamber 27 is adversely affected.

【0013】吹出式風胴の集合胴の圧力を制御する先行
技術は、たとえば特公平6−19301、特公平6−1
9302および特公平6−29826などに開示されて
いる。これらの先行技術もまた、前述の図11および図
12に示される先行技術と同様な問題点を有する。
Prior art techniques for controlling the pressure of a collecting cylinder of a blow-out type wind tunnel include, for example, Japanese Patent Publication No. 6-19301 and Japanese Patent Publication No. 6-1.
9302 and Japanese Patent Publication No. 6-29826. These prior arts also have the same problems as the prior arts shown in FIGS. 11 and 12 described above.

【0014】要約すると、先行技術では、通風計測の停
止後、調圧弁によって集合胴を全閉状態としたとき、集
合胴25内の圧力が大気圧の上下に周期的に変動する現
象が知られていない。したがって先行技術では、そのよ
うな現象による上述の問題点を解決するための動機付け
は、なされていない。
In summary, in the prior art, a phenomenon is known in which the pressure in the collecting cylinder 25 periodically fluctuates above and below the atmospheric pressure when the collecting cylinder is fully closed by the pressure regulating valve after the measurement of the ventilation is stopped. Not. Therefore, in the prior art, no motivation has been made to solve the above-mentioned problems caused by such a phenomenon.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、通風
計測を停止して運転を終了し、集合胴内の圧力が周期的
に変動する現象を防ぐようにした吹出式風胴の集合胴圧
力制御装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to stop a ventilation measurement, terminate the operation, and prevent a phenomenon in which the pressure in the collecting cylinder fluctuates periodically. It is to provide a pressure control device.

【0016】[0016]

【課題を解決するための手段】本発明は、貯気槽に貯え
られた圧縮空気が、開度を可変とする調圧弁から集合胴
に導かれ、集合胴の下流に、スロート部および測定部が
連なって設けられる吹出式風胴の集合胴圧力制御装置に
おいて、集合胴内の圧力を検出するセンサ71と、通風
計測中、集合胴内の予め定める通風計測用圧力を設定す
る通風計測用圧力設定手段72と、センサと通風計測用
圧力設定手段との出力に応答し、通風計測中、センサの
検出圧力が通風計測用圧力になるように調圧弁の開度を
制御し、計測の停止のために、調圧弁の開度を通風計測
中の開度よりも小さくし、または全閉に制御する制御手
段と、停止時に、集合胴内の圧力が負圧にならないよう
に、集合胴内に空気を導入する負圧防止手段とを含むこ
とを特徴とする吹出式風胴の集合胴圧力制御装置であ
る。
According to the present invention, a compressed air stored in an air storage tank is guided to a collecting cylinder from a pressure regulating valve having a variable opening, and a throat section and a measuring section are provided downstream of the collecting cylinder. Are provided in series, a sensor 71 for detecting the pressure in the collecting cylinder, and a ventilation measuring pressure for setting a predetermined ventilation measuring pressure in the collecting cylinder during ventilation measurement. In response to the output of the setting means 72, the sensor and the pressure setting means for ventilation measurement, the opening degree of the pressure regulating valve is controlled so that the detection pressure of the sensor becomes the pressure for ventilation measurement during ventilation measurement, and the measurement is stopped. In order to reduce the opening of the pressure regulating valve to less than the opening during ventilation measurement, or to control the valve fully closed, and at the time of stoppage, the pressure in the collecting cylinder should be And means for preventing negative pressure for introducing air. A collecting cylinder pressure controller Shikifudo.

【0017】本発明に従えば、図1〜図10に関連して
後述されるように、間欠式風胴の1種である吹出式風胴
では、貯気槽に圧縮空気を充填し、貯気槽の高圧力の圧
縮空気の集合胴への流入流量を調圧弁によって制御し、
集合胴内の通風計測中の圧力を、希望する所定圧力に
し、この所定圧力は、通風計測中、一定値であってもよ
いが、時間経過に伴って変化する値であってもよい。集
合胴の高圧力の圧縮空気は、スロート部を通り、模型が
配置された測定部に、10秒〜60秒程度、高速度の気
流を作る。この高速気流は、測定部からさらに、もう1
つのスロート部、拡散胴を経て減速され、消音塔を通る
ように構成されてもよく、こうして大気放出される。
According to the present invention, as will be described later with reference to FIGS. 1 to 10, in a blow-out type wind tunnel, which is a kind of an intermittent type wind tunnel, a compressed air is filled in an air storage tank and stored therein. The flow rate of high-pressure compressed air in the air tank into the collecting cylinder is controlled by a pressure regulating valve,
The pressure during the ventilation measurement inside the collecting cylinder is set to a desired predetermined pressure. The predetermined pressure may be a constant value during the ventilation measurement, or may be a value that changes with time. The high-pressure compressed air of the collecting cylinder passes through the throat part and creates a high-speed airflow for about 10 to 60 seconds in the measuring unit where the model is arranged. This high-speed airflow is transmitted from the measurement unit to another
The two throats may be decelerated via a diffuser and configured to pass through a muffler tower, thus being vented to the atmosphere.

【0018】通風計測の停止時に、制御手段によって調
圧弁の開度は通風計測中の開度よりも小さくされ、また
は全閉にされ、この停止時に、集合胴内の圧力が負圧に
ならないように、図1〜図10の負圧防止手段によって
集合胴内に空気が導入される。この空気は、調圧弁を経
て集合胴内に導入されるように構成してもよいが、本発
明の実施の他の形態では、貯気槽からの圧縮空気が導か
れる調圧弁よりも上流側の管路からの圧縮空気が集合胴
内に導入されるようにしてもよく、または外部の大気が
集合胴内に供給されるように構成してもよく、そのほか
の構成によって、集合胴内の圧力が負圧にならないよう
に構成される。
When the measurement of the ventilation is stopped, the opening of the pressure regulating valve is made smaller than the opening during the measurement of the ventilation or is completely closed by the control means. At the time of the stop, the pressure in the collecting cylinder does not become negative. Then, air is introduced into the collecting cylinder by the negative pressure prevention means shown in FIGS. Although this air may be configured to be introduced into the collecting cylinder via the pressure regulating valve, in another embodiment of the present invention, the air upstream from the pressure regulating valve through which the compressed air from the air storage tank is guided is provided. The compressed air from the pipe of the collecting cylinder may be introduced into the collecting cylinder, or the outside air may be supplied into the collecting cylinder. It is configured so that the pressure does not become negative.

【0019】先行技術では、通風計測の停止時、すなわ
ち運転停止後、集合胴内の圧力が大気圧未満となって負
圧となり、これによって集合胴内への空気の往復移動が
発生するという現象が発見されておらず、したがってそ
のような問題点を解決するための動機付けが存在しな
い。本件発明者は、集合胴内や周期的に負圧になって集
合胴内の空気の圧力が周期的に変動するという現象を、
前述のように発見した。本発明によれば、集合胴内の圧
力が負圧にならないようにするための負圧防止手段を設
け、これによって集合胴内で停止時に、空気の往復移動
を防ぐことができる。したがって集合胴内に設けられる
整流手段の変形、寿命の低下を防ぐことができ、また集
合胴にスロート部を介して連なる測定室内の模型への悪
影響を防ぐことができる。
In the prior art, when the measurement of ventilation is stopped, that is, after the operation is stopped, the pressure in the collecting cylinder becomes lower than the atmospheric pressure and becomes a negative pressure, which causes a reciprocating movement of air into the collecting cylinder. Have not been discovered, and thus there is no motivation to solve such problems. The inventor of the present invention has a phenomenon that the pressure of the air in the collecting cylinder periodically fluctuates due to the negative pressure in the collecting cylinder or periodically,
Discovered as described above. According to the present invention, the negative pressure preventing means for preventing the pressure in the collecting cylinder from becoming negative pressure is provided, whereby the reciprocating movement of the air can be prevented when stopping in the collecting cylinder. Therefore, it is possible to prevent deformation and shortening of the life of the rectifying means provided in the collecting cylinder, and to prevent adverse effects on the model in the measuring chamber connected to the collecting cylinder via the throat portion.

【0020】また本発明は、貯気槽に貯えられた圧縮空
気が、開度を可変とする調圧弁から集合胴に導かれ、集
合胴の下流に、スロート部および測定部が連なって設け
られる吹出式風胴の集合胴圧力制御装置において、集合
胴内の圧力を検出するセンサ71と、通風計測中、集合
胴内の予め定める通風計測用圧力を設定する通風計測用
圧力設定手段72と、大気圧を設定する大気圧設定手段
73と、センサと通風計測用圧力設定手段と大気圧設定
手段との出力に応答し、通風計測中、センサの検出圧力
が通風計測用圧力となるように、かつ計測の停止時、集
合胴内の圧力が大気圧となるように調圧弁の開度を制御
する手段とを含むことを特徴とする吹出式風胴の集合胴
圧力制御装置である。
Further, according to the present invention, the compressed air stored in the air storage tank is guided to the collecting cylinder from a pressure regulating valve whose opening degree is variable, and a throat section and a measuring section are provided in series downstream of the collecting cylinder. In the collective cylinder pressure control device of the blow-out type wind tunnel, a sensor 71 for detecting a pressure in the collective cylinder, a ventilation measurement pressure setting means 72 for setting a predetermined ventilation measurement pressure in the collective cylinder during ventilation measurement, Atmospheric pressure setting means 73 for setting the atmospheric pressure, in response to the output of the sensor and the pressure setting means for ventilation measurement and the atmospheric pressure setting means, during ventilation measurement, so that the detection pressure of the sensor becomes the pressure for ventilation measurement, And means for controlling the opening of the pressure regulating valve so that the pressure in the collecting cylinder becomes the atmospheric pressure when the measurement is stopped.

【0021】また本発明は、制御手段は、通風計測用圧
力設定手段と大気圧設定手段との出力を切換えて導出す
る切換え手段74と、センサと切換え手段との出力の差
を演算する減算手段78と、減算手段の出力に応答し、
前記差が零となるように、調圧弁の開度を駆動制御する
調圧弁駆動制御手段とを含むことを特徴とする。
Further, according to the present invention, the control means includes a switching means 74 for switching and outputting the outputs of the ventilation measurement pressure setting means and the atmospheric pressure setting means, and a subtracting means for calculating a difference between the outputs of the sensor and the switching means. 78 and in response to the output of the subtraction means,
Pressure regulating valve drive control means for controlling the opening of the pressure regulating valve so that the difference becomes zero.

【0022】本発明に従えば、図1〜図4に示されるよ
うに、通風計測中には、集合胴内のセンサによって検出
された圧力が、通風計測用圧力設定手段によって設定さ
れた予め定める通風計測用圧力となるように調圧弁の開
度が制御される。この通風計測の停止時、すなわち運転
終了後には、センサによって検出される集合胴内の圧力
が、大気圧設定手段73によって設定される大気圧とな
るように、調圧弁の開度が制御される。したがって集合
胴内の圧力が負圧になることはなく、集合胴内の空気の
往復移動がなくなる。
According to the present invention, as shown in FIGS. 1 to 4, during ventilation measurement, the pressure detected by the sensor in the collecting cylinder is determined in advance by the ventilation measurement pressure setting means. The opening degree of the pressure regulating valve is controlled so as to be a ventilation measurement pressure. When the ventilation measurement is stopped, that is, after the operation is completed, the opening of the pressure regulating valve is controlled such that the pressure in the collecting cylinder detected by the sensor becomes the atmospheric pressure set by the atmospheric pressure setting means 73. . Therefore, the pressure in the collecting cylinder does not become a negative pressure, and the reciprocating movement of the air in the collecting cylinder is eliminated.

【0023】このような制御手段は、通風計測用圧力と
大気圧との設定値を切換える切換え手段74を含み、セ
ンサと切換え手段との出力の差を減算手段78によって
減算し、調圧弁駆動制御手段によって調圧弁の開度を駆
動制御する。これによって集合胴内のセンサによって検
出された圧力が、通風計測用圧力または大気圧に保たれ
ることになる。
The control means includes a switching means 74 for switching a set value between the ventilation measurement pressure and the atmospheric pressure. The difference between the output of the sensor and the output of the switching means is subtracted by a subtraction means 78, and the pressure regulating valve drive control is performed. The opening of the pressure regulating valve is drive-controlled by the means. As a result, the pressure detected by the sensor in the collecting cylinder is maintained at the ventilation measurement pressure or the atmospheric pressure.

【0024】また本発明は、貯気槽に貯えられた圧縮空
気が、開度を可変とする調圧弁から集合胴に導かれ、集
合胴の下流に、スロート部および測定部が連なって設け
られる吹出式風胴の集合胴圧力制御装置において、集合
胴内の圧力を検出するセンサと、通風計測中、集合胴内
の予め定める通風計測用圧力を設定する通風計測用圧力
設定手段と、大気圧を設定する大気圧設定手段と、セン
サと通風計測用圧力設定手段と大気圧設定手段との出力
に応答し、通風計測中、センサの検出圧力が通風計測用
圧力となるように、かつ計測の停止時、集合胴内の圧力
が大気圧となるように集合胴圧力の設定の圧力低下時間
変化率の最大値未満である緩やかな低下時間変化率a
で、小さく制御する手段を含むことを特徴とする吹出式
風胴の集合胴圧力制御装置である。
Further, according to the present invention, the compressed air stored in the air storage tank is guided to the collecting cylinder from a pressure regulating valve whose opening degree is variable, and a throat section and a measuring section are provided in series downstream of the collecting cylinder. In a collective cylinder pressure control device for a blow-out type wind tunnel, a sensor for detecting a pressure in the collective cylinder, a ventilation setting pressure setting means for setting a predetermined ventilation measurement pressure in the collective cylinder during ventilation measurement, and an atmospheric pressure In response to the outputs of the atmospheric pressure setting means, the sensor, the ventilation pressure setting means and the atmospheric pressure setting means, during the ventilation measurement, the detection pressure of the sensor becomes the ventilation measurement pressure, and When stopped, a gradual decrease time change rate a that is less than the maximum value of the pressure decrease time change rate of the collection cylinder pressure setting so that the pressure in the collection cylinder becomes the atmospheric pressure.
And a means for controlling the pressure of the blow-out type wind tunnel.

【0025】本発明に従えば、図2に示されるように、
リミッタ92などによって、大気圧設定手段からの大気
圧を設定する信号の時間変化率を、小さく制御し、これ
によって集合胴内の圧力の低下速度をゆるやかにし、負
圧になることを防ぐことができる。この集合胴圧力設定
を変化する低下時間変化率を緩やかな値aとし、この低
下時間変化率を、最大時間変化率未満の値aにする。こ
うして通風計測停止時、集合胴圧力はゆるやかに低下
し、集合胴内の負圧になる現象を、回避することができ
る。図2のリミッタ92は、圧力設定値の時間変化率リ
ミッタであり、調圧弁55の閉弁時間変化率リミッタで
はない。調圧弁の閉弁時間変化率リミッタは、図5の参
照符99で示される。
According to the present invention, as shown in FIG.
The time change rate of the signal for setting the atmospheric pressure from the atmospheric pressure setting means is controlled to be small by the limiter 92 or the like, so that the rate of decrease in the pressure in the collecting cylinder is moderated to prevent the pressure from becoming negative. it can. The rate of change of the drop time for changing the setting of the collecting cylinder pressure is set to a gentle value a, and the rate of change of the drop time is set to a value a less than the maximum rate of change of time. In this way, when the ventilation measurement is stopped, the phenomenon that the collecting cylinder pressure gradually decreases and the negative pressure inside the collecting cylinder becomes negative can be avoided. The limiter 92 in FIG. 2 is a time change rate limiter of the pressure set value, and is not a valve closing time change rate limiter of the pressure regulating valve 55. The valve closing time change rate limiter of the pressure regulating valve is indicated by reference numeral 99 in FIG.

【0026】また本発明は、制御手段は、通風計測用圧
力設定手段と大気圧設定手段との出力を切換えて導出す
る切換え手段と、センサと切換え手段との出力の差を演
算する減算手段と、減算手段の出力に応答し、前記差が
零となるように、調圧弁の開度を駆動制御する調圧弁駆
動制御手段と、大気圧設定手段から調圧弁駆動制御手段
までの間に介在され、集合胴圧力の設定の圧力低下時間
変化率aを、予め定める値未満に制限するリミッタ92
とを含むことを特徴とする。
According to the present invention, the control means includes switching means for switching and outputting the outputs of the ventilation measurement pressure setting means and the atmospheric pressure setting means, and subtraction means for calculating the difference between the outputs of the sensor and the switching means. In response to the output of the subtracting means, the pressure regulating valve drive control means for driving and controlling the opening of the pressure regulating valve so that the difference becomes zero is interposed between the atmospheric pressure setting means and the pressure regulating valve drive control means. A limiter 92 for limiting the rate of change a in pressure drop time of the setting of the collecting cylinder pressure to less than a predetermined value.
And characterized in that:

【0027】本発明に従えば、集合胴圧力の設定の低下
時間変化率を小さく制御するための制御手段は、低下時
間変化率に関するリミッタ92を含み、集合胴圧力が急
変することを防ぎ、すなわち低下時間変化率aが大きい
値になることを抑制する。したがって集合胴圧力が、運
転停止時に、緩やかに小さくされる。こうして調圧弁が
緩やかに閉じて行き、そのため集合胴内の圧力が負圧に
なることを防ぐことができる。
According to the present invention, the control means for controlling the falling time rate of change of the setting of the collecting cylinder pressure to a small value includes a limiter 92 relating to the falling time rate of change, thereby preventing a sudden change in the collecting cylinder pressure. It is possible to suppress the decrease time change rate a from becoming a large value. Therefore, the collecting cylinder pressure is gradually reduced when the operation is stopped. In this way, the pressure regulating valve gradually closes, so that the pressure in the collecting cylinder can be prevented from becoming negative.

【0028】また本発明は、貯気槽に貯えられた圧縮空
気が、開度を可変とする調圧弁から集合胴に導かれ、集
合胴の下流に、スロート部および測定部が連なって設け
られる吹出式風胴の集合胴圧力制御装置において、集合
胴内の圧力を検出するセンサと、通風計測中、集合胴内
の予め定める通風計測用圧力を設定する通風計測用圧力
設定手段と、調圧弁を全閉とする全閉指令信号を発生す
る全閉指令信号発生手段88と、全閉指令信号発生手段
の出力を、計測の停止時、集合胴内の圧力が負圧になら
ないように、調圧弁の開度の閉弁時間変化率の最大値未
満である緩やかな閉弁時間変化率bで、時間経過に伴っ
て変化する閉弁時間変化率リミッタ99と、センサと通
風計測用圧力設定手段と閉弁時間変化率リミッタとの出
力に応答し、通風計測中、センサの検出出力が通風計測
用圧力になるように調圧弁の開度を制御し、計測の停止
時、閉弁時間変化率リミッタの出力によって調圧弁の開
度を駆動制御する調圧弁駆動制御手段とを含むことを特
徴とする吹出式風胴の集合胴圧力制御装置である。
Further, according to the present invention, the compressed air stored in the air storage tank is guided to the collecting cylinder from a pressure regulating valve whose opening degree is variable, and a throat section and a measuring section are provided in series downstream of the collecting cylinder. In a collective cylinder pressure control device for a blow-out type wind tunnel, a sensor for detecting pressure in the collective cylinder, a pressure setting means for ventilation measurement for setting a predetermined pressure for ventilation measurement in the collective cylinder during ventilation measurement, and a pressure regulating valve The output of the fully-closed command signal generating means 88 for generating a fully-closed command signal for fully closing and the output of the fully-closed command signal generating means are adjusted so that the pressure in the collecting cylinder does not become negative when the measurement is stopped. A valve closing time rate of change limiter 99 that changes with time at a gradual valve closing time rate of change b that is less than the maximum value of the valve closing time rate of change of the opening degree of the pressure valve, a sensor and a pressure setting means for ventilation measurement Response to the output of the valve closing time change rate limiter During measurement, the opening of the pressure regulating valve is controlled so that the detection output of the sensor becomes the pressure for ventilation measurement, and when the measurement is stopped, the opening of the pressure regulating valve is driven and controlled by the output of the valve closing time change rate limiter. And a drive control means.

【0029】本発明に従えば、図5に示されるように、
通風計測の停止時に、全閉指令信号発生手段88からの
全閉指令信号を、閉弁時間変化率リミッタ99によって
緩やかな閉弁時間変化率bに矯正してその調圧弁の開度
の急激な閉弁動作を制限する。このことによってもま
た、集合胴内の圧力が負圧になって空気の往復移動が生
じることを防ぐことができる。
According to the present invention, as shown in FIG.
When the ventilation measurement is stopped, the fully-closed command signal from the fully-closed command signal generating means 88 is corrected by the valve-closing time rate-of-change limiter 99 to a gentle valve-closing time change rate b, and the opening of the pressure regulating valve is sharply increased. Restrict valve closing action. This also prevents the pressure in the collecting cylinder from becoming negative and causing reciprocation of air.

【0030】また本発明は、貯気槽に貯えられた圧縮空
気が、管路を経て開度を可変とする調圧弁から集合胴に
導かれ、集合胴の下流に、スロート部および測定部が連
なって設けられる吹出式風胴の集合胴圧力制御装置にお
いて、集合胴内の圧力を検出するセンサと、通風計測
中、集合胴内の予め定める通風計測用圧力を設定する通
風計測用圧力設定手段と、管路と集合胴とを連結する連
結管104と、連結管に介在される負圧防止弁105
と、通風計測中、負圧防止弁を全閉とし、計測の停止
時、負圧防止弁を開いて、集合胴内の圧力が負圧になら
ないように、管路内の圧縮空気を集合胴内に導入させる
制御手段とを含むことを特徴とする吹出式風胴の集合胴
圧力制御装置である。
Further, according to the present invention, the compressed air stored in the air storage tank is guided to the collecting cylinder from a pressure regulating valve whose opening degree is variable via a pipe, and a throat section and a measuring section are provided downstream of the collecting cylinder. In a collective cylinder pressure control device for a blow-out type wind tunnel provided in series, a sensor for detecting a pressure in the collective cylinder, and a ventilation setting pressure setting means for setting a predetermined ventilation measurement pressure in the collective cylinder during ventilation measurement , A connecting pipe 104 connecting the pipe and the collecting cylinder, and a negative pressure prevention valve 105 interposed in the connecting pipe.
During ventilation measurement, the negative pressure prevention valve is fully closed, and when measurement is stopped, the negative pressure prevention valve is opened and compressed air in the pipeline is collected so that the pressure in the collection cylinder does not become negative. And a control unit for introducing the pressure into the inside of the air blower.

【0031】また本発明は、連結管に介在される絞り1
08をさらに含むことを特徴とする。
The present invention also provides a throttle 1 interposed in a connecting pipe.
08 is further included.

【0032】また本発明は、負圧防止手段は、集合胴に
設けられ、集合胴内の圧力が負圧になったとき、外気を
導入する逆止弁109であることを特徴とする。
Further, the present invention is characterized in that the negative pressure preventing means is a check valve 109 provided in the collecting cylinder and for introducing outside air when the pressure in the collecting cylinder becomes negative.

【0033】本発明に従えば、図8、図9および図10
に示されるように、貯気槽からの圧縮空気を集合胴から
調圧弁に導く管路内の圧縮空気を、連結管104および
負圧防止弁105を経て、通風計測の停止時、集合胴内
に導入し、これによって集合胴内の圧力が、運転停止
時、負圧になることを防ぐことができる。
According to the present invention, FIGS. 8, 9 and 10
As shown in the figure, the compressed air in the conduit for guiding the compressed air from the air storage tank from the collecting cylinder to the pressure regulating valve passes through the connecting pipe 104 and the negative pressure prevention valve 105, and when the ventilation measurement is stopped, To prevent the pressure in the collecting cylinder from becoming negative when the operation is stopped.

【0034】本発明に従えば、図9のように、負圧防止
弁にさらに絞り108を設け、負圧防止弁の開閉動作を
正確に行うようにすることもまた可能であり、さらに図
10に示されるように、集合胴に逆止弁109を設け、
集合胴内の圧力が負圧になったとき、外気を集合胴の外
部から内部に取込む。
According to the present invention, as shown in FIG. 9, it is also possible to further provide a throttle 108 in the negative pressure check valve so that the opening and closing operation of the negative pressure check valve can be performed accurately. As shown in, a check valve 109 is provided on the collecting cylinder,
When the pressure in the collecting cylinder becomes negative, outside air is taken into the collecting cylinder from the outside.

【0035】[0035]

【発明の実施の形態】図1は、本発明の実施の一形態の
系統図である。吹出式風洞51において、貯気槽52に
は、圧縮空気が高圧力がたとえば12kg/cm2以上
に充填されている。貯気槽52からの圧縮空気は、管路
53から元弁54を経て、調圧弁55から集合胴56内
に流入される。集合胴56には、圧縮空気の流れ方向に
沿って図1の左から右に、第1スロート部57と、測定
室58と、第2スロート部59とがこの順序で配置され
る。第2スロート部59にはさらに、圧縮空気を減速す
る拡散胴61が接続され、拡散胴61には、消音塔62
が接続され、圧縮空気が大気放出される。集合胴56内
には、流れ方向に沿って複数の整流部材63が設けられ
る。整流部材63は、測定室58への圧縮空気を整流
し、その圧縮空気の流れ方向に垂直な断面における圧力
分布を均一にする働きを果たす。この圧縮の整流部材6
3は、たとえば金網、多孔板、パンチングメタル、ハニ
カム板状体などから成ってもよい。整流部材63は、調
圧弁55からの圧縮空気の下流側(図1の右方)への流
れにより変形、破損しないように、設置される。測定室
58内には、風洞試験が行われるべき模型64が配置さ
れる。
FIG. 1 is a system diagram of an embodiment of the present invention. In the blow-out type wind tunnel 51, the air storage tank 52 is filled with compressed air at a high pressure of, for example, 12 kg / cm 2 or more. The compressed air from the air storage tank 52 flows into the collecting cylinder 56 from the pressure regulating valve 55 via the main valve 54 through the pipe 53. A first throat portion 57, a measurement chamber 58, and a second throat portion 59 are arranged in the collecting cylinder 56 in this order from left to right in FIG. 1 along the flow direction of the compressed air. The second throat portion 59 is further connected to a diffusion drum 61 for decelerating the compressed air.
Is connected, and the compressed air is released to the atmosphere. A plurality of flow regulating members 63 are provided in the collecting cylinder 56 along the flow direction. The rectifying member 63 functions to rectify the compressed air to the measurement chamber 58 and to make the pressure distribution uniform in a cross section perpendicular to the flow direction of the compressed air. Rectifying member 6 for this compression
3 may be made of, for example, a wire mesh, a perforated plate, a punched metal, a honeycomb plate, or the like. The rectifying member 63 is installed so as not to be deformed or damaged by the flow of the compressed air from the pressure regulating valve 55 downstream (to the right in FIG. 1). In the measurement chamber 58, a model 64 on which a wind tunnel test is to be performed is arranged.

【0036】調圧弁55は、集合胴56の管路53との
接続部付近に設けられた弁座65に、弁体66が近接離
反変位することができるように構成される。弁体66が
弁座65に当接して着座している状態では、調圧弁55
は全閉状態である。弁体66が弁座65から図1の右方
に離間変位することによって開度が大きくなる。弁体6
6は、油圧シリンダなどを含む調圧弁駆動手段67によ
って往復変位駆動され、これによって調圧弁55の開度
が変化される。弁体66の位置、したがって調圧弁55
の開度は、位置検出手段68によって検出される。
The pressure regulating valve 55 is configured such that a valve body 66 can be displaced toward and away from a valve seat 65 provided near a connection portion of the collecting cylinder 56 with the conduit 53. When the valve element 66 is seated in contact with the valve seat 65, the pressure regulating valve 55
Is a fully closed state. The opening is increased by the valve body 66 being displaced away from the valve seat 65 to the right in FIG. Valve 6
6 is driven reciprocally by a pressure regulating valve driving means 67 including a hydraulic cylinder and the like, whereby the opening of the pressure regulating valve 55 is changed. The position of the valve body 66 and therefore the pressure regulating valve 55
Is detected by the position detecting means 68.

【0037】集合胴56内の空気の圧力P2は、センサ
71によって検出され、通風計測中には、たとえば1.
5kg/cm2以上である。通風計測用圧力設定手段7
2は、通風計測中における集合胴56内の予め定める通
風計測用圧力P1を設定する。大気圧設定手段73は、
集合胴56内の空気の圧力を大気圧P0に設定する信号
を導出する。これらの設定手段72,73の各出力は、
切換え手段74の各スイッチ75,76にそれぞれ接続
される。これらのスイッチ75,76の出力は、ライン
77を介して減算手段78の一方の入力に与えられる。
減算手段78の他方の入力には、センサ71によって検
出された圧力P2を表す信号が与えられる。切換え手段
74において、通風計測の停止時、図1に示されるよう
にスイッチ75は遮断され、スイッチ76は導通された
ままである。通風計測中、スイッチ75が導通され、ス
イッチ76が遮断される。減算手段78のライン79に
導出される信号が表す圧力制御偏差P12は、通風計測
の停止時、P12=P0−P2であり、通風計測中、P
12=P1−P2である。
The pressure P2 of the air in the collecting cylinder 56 is detected by the sensor 71. During the measurement of the ventilation, for example, 1.
5 kg / cm 2 or more. Ventilation measurement pressure setting means 7
2 sets a predetermined ventilation measurement pressure P1 in the collecting cylinder 56 during ventilation measurement. Atmospheric pressure setting means 73
A signal for setting the pressure of the air in the collecting cylinder 56 to the atmospheric pressure P0 is derived. Each output of these setting means 72, 73 is
Each of the switches 75 and 76 of the switching means 74 is connected. Outputs of these switches 75 and 76 are supplied to one input of a subtraction means 78 via a line 77.
A signal representing the pressure P2 detected by the sensor 71 is provided to the other input of the subtracting means 78. In the switching means 74, when the ventilation measurement is stopped, the switch 75 is turned off and the switch 76 is kept on as shown in FIG. During the ventilation measurement, the switch 75 is turned on and the switch 76 is turned off. The pressure control deviation P12 represented by the signal derived from the line 79 of the subtracting means 78 is P12 = P0−P2 when the ventilation measurement is stopped, and P12 = P0−P2 during the ventilation measurement.
12 = P1-P2.

【0038】減算手段78からライン79に導出される
信号は、圧力制御手段81に与えられる。この圧力制御
手段81は、圧力制御偏差P12に対応する調圧弁55
の開度、したがって調圧弁55の弁体66のストローク
位置を表す信号をライン82に導出する。停止強制切換
え手段83は、スイッチ84,85を有する。圧力制御
手段81からライン82に導出される信号は、スイッチ
84を介してライン86から減算手段87の一方の入力
に与えられる。
The signal output from the subtracting means 78 to the line 79 is supplied to the pressure control means 81. The pressure control means 81 is provided with a pressure regulating valve 55 corresponding to the pressure control deviation P12.
, And thus a signal representing the stroke position of the valve element 66 of the pressure regulating valve 55 is derived to a line 82. The forced stop switching means 83 has switches 84 and 85. A signal derived from the pressure control means 81 to a line 82 is supplied to one input of a subtraction means 87 from a line 86 via a switch 84.

【0039】調圧弁55の弁体66が弁座65に着座し
て全閉状態となる全閉開度を表す指令信号を出力する全
閉位置設定手段88の出力は、スイッチ85を介してラ
イン86から減算手段87に与えられる。停止強制切換
え手段83は、平常の通風計測中、スイッチ84が導通
しており、スイッチ85が遮断している。この通風計測
時に異常が生じて調圧弁55を全閉状態とすべきとき、
または通風計測の停止時において調圧弁55の弁体66
を弁座65に着座して全閉状態とすべきとき、この停止
強制切換え手段83が切換え動作し、スイッチ84が遮
断し、スイッチ85が導通する。
The output of the fully closed position setting means 88 which outputs a command signal indicating the fully closed position at which the valve body 66 of the pressure regulating valve 55 is seated on the valve seat 65 to be fully closed is supplied via a switch 85 to a line. 86 is given to the subtraction means 87. In the forced stop switching means 83, during normal ventilation measurement, the switch 84 is conducting and the switch 85 is off. When an abnormality occurs during the ventilation measurement and the pressure regulating valve 55 should be fully closed,
Or, when the ventilation measurement is stopped, the valve body 66 of the pressure regulating valve 55
Is to be seated on the valve seat 65 to be in the fully closed state, the stop compulsory switching means 83 performs a switching operation, the switch 84 is turned off, and the switch 85 is turned on.

【0040】減算手段87の他方の入力には、位置検出
手段68の出力が与えられる。位置制御手段89は、減
算手段87の出力が零となるように、すなわち位置検出
手段68によって検出される調圧弁55の弁体66の位
置が、減算手段87にライン86を介して与えられる指
令位置に位置するための変位量を表す信号を導出し、調
圧弁駆動手段67に与える。調圧弁駆動手段67は、位
置制御手段89からの出力に応答し、調圧弁55の弁体
66をストローク変位駆動する。
The output of the position detecting means 68 is given to the other input of the subtracting means 87. The position control means 89 gives a command to the subtraction means 87 via the line 86 so that the output of the subtraction means 87 becomes zero, that is, the position of the valve element 66 of the pressure regulating valve 55 detected by the position detection means 68. A signal representing the amount of displacement for positioning at the position is derived and given to the pressure regulating valve driving means 67. The pressure regulating valve driving means 67 drives the valve body 66 of the pressure regulating valve 55 by stroke displacement in response to the output from the position control means 89.

【0041】通風計測前において、吹出式風洞51の完
全停止状態では、停止強制切換え手段83では、スイッ
チ84が遮断され、スイッチ85が導通されている。し
たがって全閉位置設定手段88の出力は、スイッチ85
を経て減算手段87に与えられる。これによって位置制
御手段89の出力によって調圧弁駆動手段67は調圧弁
55の弁体66を弁座65に着座するように駆動し、こ
の着座状態における位置検出手段68の出力が減算手段
87に与えられ、減算手段87の位置制御偏差が零とな
っている。
Before the ventilation measurement, when the blow-out type wind tunnel 51 is completely stopped, the switch 84 is turned off and the switch 85 is turned on in the forced stop switching means 83. Therefore, the output of the fully closed position setting means 88 is
Is given to the subtraction means 87. Accordingly, the output of the position control means 89 causes the pressure regulating valve driving means 67 to drive the valve element 66 of the pressure regulating valve 55 to be seated on the valve seat 65, and the output of the position detecting means 68 in this seated state is given to the subtracting means 87. Thus, the position control deviation of the subtracting means 87 is zero.

【0042】通風計測に先立ち、停止強制切換え手段8
3では、スイッチ84が導通され、スイッチ85が遮断
される。通風計測の前で、その計測の停止中、切換え手
段74のスイッチ75は遮断され、スイッチ76は導通
された状態となっている。したがって圧力制御手段81
は、集合胴56内のセンサ71によって検出される圧力
P2が、大気圧設定手段73によって設定される大気圧
P0となって、減算手段78の圧力制御偏差P12が零
となるための調圧弁55の弁体66の指令位置を表す信
号を導出し、減算手段87に与える。こうして集合胴5
6内は大気圧に保たれており、調圧弁55は全閉状態で
ある。したがって測定室58側から第1スロート部57
を経て集合胴56内に空気が逆流することはない。
Prior to the ventilation measurement, the forced stop switching means 8
In 3, the switch 84 is turned on and the switch 85 is turned off. Before the ventilation measurement, while the measurement is stopped, the switch 75 of the switching means 74 is shut off, and the switch 76 is in a conductive state. Therefore, the pressure control means 81
Is a pressure regulating valve 55 for the pressure P2 detected by the sensor 71 in the collecting cylinder 56 to become the atmospheric pressure P0 set by the atmospheric pressure setting means 73 and the pressure control deviation P12 of the subtracting means 78 to become zero. A signal representing the command position of the valve body 66 is derived and given to the subtraction means 87. Thus, the collecting cylinder 5
6 is maintained at the atmospheric pressure, and the pressure regulating valve 55 is in a fully closed state. Therefore, the first throat 57
The air does not flow back into the collecting cylinder 56 after passing through.

【0043】通風計測にあたっては、元弁54が開かれ
ている状態で、切換えスイッチ74が、図1に示される
状態から切換え動作され、スイッチ75が導通され、ス
イッチ76が遮断される。これによって通風計測用圧力
設定手段72からの予め定める通風計測用圧力P1を表
す出力が、スイッチ75およびライン77を経て減算手
段78に与えられる。これによって圧力制御手段81
は、集合胴56内のセンサ71によって検出される圧力
P2が、通風計測用圧力P1に等しくなるための調圧弁
55の弁体66の位置を表す信号を導出する。こうして
貯気槽52からの高圧力の圧縮空気は、管路53から元
弁54を経て調圧弁55から集合胴56内に供給され
る。集合胴56内の圧縮空気は、整流部材63によって
整流されるとともに、圧力分布が均一化され、第1スロ
ート部57からマッハ0.6〜4.0の高速気流で測定
室58に導入され、模型64の通風計測が行われる。測
定室58からの圧縮空気は、第2スロート部59、拡散
胴61および消音塔62を経て大気放出される。
In the ventilation measurement, the switch 74 is switched from the state shown in FIG. 1 while the main valve 54 is open, the switch 75 is turned on, and the switch 76 is turned off. As a result, an output representing the predetermined ventilation measurement pressure P1 from the ventilation measurement pressure setting unit 72 is given to the subtraction unit 78 via the switch 75 and the line 77. Thereby, the pressure control means 81
Derives a signal indicating the position of the valve element 66 of the pressure regulating valve 55 so that the pressure P2 detected by the sensor 71 in the collecting cylinder 56 becomes equal to the ventilation measurement pressure P1. In this way, the high-pressure compressed air from the air storage tank 52 is supplied from the line 53 through the main valve 54 to the inside of the collecting cylinder 56 from the pressure regulating valve 55. The compressed air in the collecting cylinder 56 is rectified by the rectifying member 63, the pressure distribution is made uniform, and the compressed air is introduced from the first throat 57 into the measuring chamber 58 with a high-speed airflow of Mach 0.6 to 4.0. The ventilation of the model 64 is measured. The compressed air from the measurement chamber 58 is discharged to the atmosphere via the second throat section 59, the diffusion drum 61 and the silencer 62.

【0044】通風計測が終了し、その計測の停止時、切
換えスイッチ74では、スイッチ75が遮断され、スイ
ッチ76が導通される。したがって大気圧設定手段73
によって設定された大気圧P0を表す出力が、スイッチ
76を経てライン77から減算手段78に与えられる。
したがって圧力制御手段81は、集合胴56内のセンサ
71によって検出される圧力P2が、大気圧P0に等し
くなるように、調圧弁55の弁体66の位置を表す信号
を導出する。こうして集合胴56内の圧力は、計測の停
止時において、常に大気圧P0に保たれたままとなる。
大気圧P0に保たれたまま、風胴内の気流の流れが無く
なった状態(停止時からタイマの時間経過後、または大
気圧が維持され調圧弁が全閉になった状態)に、スイッ
チ83ではスイッチ84が遮断され、スイッチ85が導
通される。こうして通風計測前の状態へ戻される。した
がって測定室58から第1スロート部57を経て集合胴
56内に空気が逆流するおそれはない。これによって集
合胴56内の整流部材63が、逆流する空気によって変
形、破損するおそれはなく、また測定室58内でも空気
が逆流しないので、模型64への悪影響が生じるおそれ
はない。またこの空気の逆流が生じないことによって、
消音塔62に、外部からの空気が吸入されるおそれはな
く、したがって空気の逆流による低周波数域の騒音が発
生することはない。
When the ventilation measurement is completed and the measurement is stopped, the switch 75 of the changeover switch 74 is turned off and the switch 76 is turned on. Therefore, the atmospheric pressure setting means 73
The output representing the atmospheric pressure P0 set by the above is supplied to the subtracting means 78 from the line 77 via the switch 76.
Therefore, the pressure control means 81 derives a signal indicating the position of the valve body 66 of the pressure regulating valve 55 so that the pressure P2 detected by the sensor 71 in the collecting cylinder 56 becomes equal to the atmospheric pressure P0. Thus, the pressure in the collecting cylinder 56 is always kept at the atmospheric pressure P0 when the measurement is stopped.
While the atmospheric pressure P0 is maintained, the switch 83 is switched to a state in which the airflow in the wind tunnel is stopped (after a timer has elapsed from the time of stop, or in a state where the atmospheric pressure is maintained and the pressure regulating valve is fully closed). Then, the switch 84 is turned off and the switch 85 is turned on. Thus, the state is returned to the state before the ventilation measurement. Therefore, there is no possibility that air flows backward from the measurement chamber 58 into the collecting cylinder 56 via the first throat portion 57. As a result, there is no risk that the rectifying member 63 in the collecting cylinder 56 will be deformed or damaged by the backflowing air, and since the air does not flow back in the measurement chamber 58, there is no possibility that the model 64 will be adversely affected. Also, because this backflow of air does not occur,
There is no danger that air from the outside will be sucked into the silencer 62, and therefore no noise in the low frequency range due to the backflow of air will occur.

【0045】図2は、本発明の実施の他の形態の系統図
である。この図2の実施の形態は、前述の図1の実施の
形態に類似し、対応する部分には同一の参照符を付す。
注目すべきはこの実施の形態では、切換え手段74と減
算手段78との間のライン77に、時間変化率リミッタ
92が介在される。時間変化率リミッタ92は、集合胴
圧力の設定の圧力低下時間変化率を、予め定める値a未
満に制限する働きを果たす。
FIG. 2 is a system diagram of another embodiment of the present invention. The embodiment of FIG. 2 is similar to the embodiment of FIG. 1 described above, and corresponding parts are denoted by the same reference numerals.
It should be noted that in this embodiment, a time rate-of-change limiter 92 is interposed in the line 77 between the switching means 74 and the subtracting means 78. The time rate-of-change limiter 92 functions to limit the pressure-decrease time-change rate of the setting of the collecting cylinder pressure to less than a predetermined value a.

【0046】図3は、時間変化率リミッタ92の動作を
説明するためのフローチャートである。時間変化率リミ
ッタ92は、たとえばマイクロコンピュータなどの処理
回路によって実現される。ステップs1からステップs
2に移り、時間変化率リミタ92に、切換え手段74か
ら入力される設定圧力P1またはP0を表す入力をXと
し、時間変化率リミッタ92から減算手段78に与えら
れる出力をYとするとき、式1が成立するかどうかを判
断する。tは、時間を表す。
FIG. 3 is a flowchart for explaining the operation of the time change rate limiter 92. The time change rate limiter 92 is realized by a processing circuit such as a microcomputer, for example. Step s1 to step s
When the input representing the set pressure P1 or P0 inputted from the switching means 74 to the time change rate limiter 92 and the output given to the subtraction means 78 from the time change rate limiter 92 are represented by Y, the following equation is obtained. It is determined whether 1 is established. t represents time.

【0047】[0047]

【数1】 (Equation 1)

【0048】式1が成立するとき、ステップs2からス
テップs3に移り、時間変化率リミタ92の出力Y
nは、式2のように、導出される。 Yn = Yn-1+a (Yn-1:前回出力) …(2)
When the equation 1 is satisfied, the process proceeds from step s2 to step s3, where the output Y of the time change rate limiter 92 is output.
n is derived as in Equation 2. Y n = Y n-1 + a (Y n-1: previous output) ... (2)

【0049】こうして切換え手段74から時間変化率リ
ミッタ92に与えられる入力Xの時間変化率dX/dt
が、予め定める値a未満であるとき、その時間変化率
を、予め定める値aに抑え、出力Yの急変を防ぐ。これ
によって集合胴56内のセンサ71によって検出される
圧力P2が、前記予め定める値aを超える大きな時間変
化率で変化することが抑制される。そのため集合胴56
に、測定室58および第1スロート部57からの空気の
逆流を防ぐことができる。ステップs3からステップs
4に移り、一連の動作を終了する。
Thus, the time change rate dX / dt of the input X given to the time change rate limiter 92 from the switching means 74.
Is less than the predetermined value a, the time change rate is suppressed to the predetermined value a to prevent a sudden change in the output Y. As a result, the pressure P2 detected by the sensor 71 in the collecting cylinder 56 is suppressed from changing at a large time change rate exceeding the predetermined value a. Therefore the collecting cylinder 56
In addition, backflow of air from the measurement chamber 58 and the first throat portion 57 can be prevented. Step s3 to step s
Then, the sequence goes to 4 to end a series of operations.

【0050】ステップs2において式1が成立しないと
き、すなわち式3が成立するとき、ステップs5に移
る。
When Expression 1 is not satisfied in Step s2, that is, when Expression 3 is satisfied, the process proceeds to Step s5.

【0051】[0051]

【数2】 (Equation 2)

【0052】切換え手段74から時間変化率リミッタ9
2に与えられる入力Xの時間変化率が、予め定める値a
未満であるとき、出力Yは、入力Xのまま、式4のよう
に、ステップs5において導出する。 Y = X …(4)
The time change rate limiter 9 from the switching means 74
2 is a predetermined value a
When the value is less than the value, the output Y is derived in the step s5 as the expression 4 while keeping the input X. Y = X (4)

【0053】図4は、時間変化率リミッタ92の動作を
説明するための図である。図4(1)に示されるよう
に、時刻t12以前では、集合胴56内の圧力は、通風
計測用圧力P1に保たれている。通風計測の停止時刻t
2以降において、図2に示されるように切換え手段74
に備えられたスイッチ75が遮断され、スイッチ76が
導通される。したがって時刻t2後では、切換え手段7
4からライン77には、大気圧設定手段73によって設
定された大気圧P0を表す信号が、図4(2)の参照符
93で示されるように導出される。こうしてライン77
の信号の表す圧力は、時刻t2の前後で、圧力P1から
P0に急変する。
FIG. 4 is a diagram for explaining the operation of the time change rate limiter 92. As shown in FIG. 4A, before time t12, the pressure in the collecting cylinder 56 is maintained at the ventilation measurement pressure P1. Stop time t of ventilation measurement
2 and thereafter, as shown in FIG.
Is turned off, and the switch 76 is turned on. Therefore, after time t2, switching means 7
From 4, a signal indicating the atmospheric pressure P 0 set by the atmospheric pressure setting means 73 is derived from the line 77 as indicated by reference numeral 93 in FIG. Thus line 77
Changes rapidly from P1 to P0 around time t2.

【0054】本発明では、時間変化率リミッタ92の働
きによって、この時間変化率リミッタ92の出力Yは、
図4(2)の参照符94で示されるように、前述の予め
定める値aで、時間経過に伴ってたとえば1次直線で減
少する指令圧力を表す信号であり、この信号が減算手段
78に与えられることになる。本発明の実施の一形態で
は、a=−5kPa/secに選ばれてもよい。
In the present invention, the output Y of the time change rate limiter 92 is given by the function of the time change rate limiter 92.
As indicated by reference numeral 94 in FIG. 4B, the predetermined value a is a signal representing a command pressure that decreases with a lapse of time, for example, on a linear line with the lapse of time. Will be given. In one embodiment of the present invention, a = −5 kPa / sec may be selected.

【0055】本発明の実施の他の形態では、図2におけ
る時間変化率リミッタ92を、切換え手段74のスイッ
チ76と時間変化率リミッタ92の入力との間に、参照
符92aで示されるように介在されるように構成されて
もよく、あるいはまた減算手段78の出力が導出される
ライン79に、参照符92bで示されるように介在され
てもよく、このような実施の他の各形態では、ライン7
7には、時間変化率リミッタ92は設けられず、そのラ
イン77の信号は、減算手段78に直接に与えられる。
In another embodiment of the present invention, the time change rate limiter 92 in FIG. 2 is connected between the switch 76 of the switching means 74 and the input of the time change rate limiter 92 as shown by reference numeral 92a. It may be configured to be interposed, or may be interposed as indicated by reference numeral 92b in the line 79 from which the output of the subtraction means 78 is derived, and in other embodiments of such an implementation , Line 7
7 is not provided with a time rate of change limiter 92, and the signal on its line 77 is provided directly to the subtraction means 78.

【0056】図5は、本発明の実施のさらに他の形態の
系統図である。この実施の形態は、前述の図1〜図4の
実施の形態に類似し、対応する部分には同一の参照符を
付す。注目すべきはこの実施の形態では、通風計測用圧
力設定手段72の出力は、ライン77を介して減算手段
78に与えられる。圧力制御手段81と減算手段87と
の間には、切換え手段96が介在される。この切換え手
段96は、圧力制御手段81の出力をライン86を介し
て減算手段87に与えるスイッチ97と、全閉位置設定
手段88の出力を導出するもう1つのスイッチ98とを
有する。通風計測中、スイッチ97が導通し、スイッチ
98は遮断している。計測の停止時、スイッチ97は図
5のように遮断し、スイッチ98が導通する。
FIG. 5 is a system diagram of still another embodiment of the present invention. This embodiment is similar to the embodiment of FIGS. 1 to 4 described above, and corresponding parts are denoted by the same reference numerals. It should be noted that in this embodiment, the output of the ventilation measurement pressure setting means 72 is provided to the subtraction means 78 via the line 77. Switching means 96 is interposed between the pressure control means 81 and the subtraction means 87. The switching means 96 has a switch 97 for providing the output of the pressure control means 81 to the subtraction means 87 via a line 86, and another switch 98 for outputting the output of the fully closed position setting means 88. During the ventilation measurement, the switch 97 is turned on and the switch 98 is turned off. When the measurement is stopped, the switch 97 is turned off as shown in FIG. 5, and the switch 98 is turned on.

【0057】スイッチ98と減算手段87との間には、
閉弁時間変化率リミッタ99が介在される。閉弁時間変
化率リミッタ99は、たとえばマイクロコンピュータな
どの処理回路によって実現することができる。
Between the switch 98 and the subtraction means 87,
The valve closing time change rate limiter 99 is interposed. The valve closing time change rate limiter 99 can be realized by a processing circuit such as a microcomputer.

【0058】図6は、閉弁時間変化率リミッタ99の動
作を説明するためのフローチャートである。ステップr
1からステップr2に移り、調圧弁55の弁体66の全
閉開度の位置θ0を表す信号、したがって閉弁時間変化
率リミッタ99の入力X1の時間変化率dX1/dt
が、予め定める値b以上であるかどうか、すなわち式5
が成立するかどうかが判断される。
FIG. 6 is a flowchart for explaining the operation of the valve closing time change rate limiter 99. Step r
The process proceeds from step 1 to step r2, where the signal representing the position θ0 of the fully closed position of the valve body 66 of the pressure regulating valve 55, and therefore the time change rate dX1 / dt of the input X1 of the valve closing time change rate limiter 99.
Is greater than or equal to a predetermined value b, that is,
Is determined.

【0059】[0059]

【数3】 (Equation 3)

【0060】式5が成立するとき、閉弁時間変化率リミ
ッタ99の入力X1に関して、閉弁時間変化率リミッタ
99の出力をY1nとするとき、式6で示される出力Y
1を導出する。 Y1n = Y1n-1+b …(6)
[0060] When the equation 5 is satisfied, with respect to the input X1 of the closing time variation rate limiter 99, when the output of the valve closing time variation rate limiter 99 and Y1 n, the output Y of Formula 6
1 is derived. Y1 n = Y1 n-1 + b (6)

【0061】こうして閉弁時間変化率リミッタ99の入
力X1の時間変化率dX1/dtが予め定める値b以上
であるとき、その時間変化率を予め定める値bに抑えて
制限する。こうしてステップr3からステップr4に移
り、一連の動作を終了する。
When the time change rate dX1 / dt of the input X1 of the valve closing time change rate limiter 99 is equal to or larger than the predetermined value b, the time change rate is limited to the predetermined value b. Thus, the process moves from step r3 to step r4, and a series of operations is completed.

【0062】ステップr2において式5が成立しないと
き、ステップr5では、入力X1を、式8のように、そ
のまま出力Y1とするように、閉弁時間変化率リミッタ
99が動作する。 Y1 = X1 …(7)
When Expression 5 is not satisfied in Step r2, in Step r5, the valve closing time change rate limiter 99 operates so that the input X1 is directly used as the output Y1 as in Expression 8. Y1 = X1 (7)

【0063】図7は、閉弁時間変化率リミッタ99の動
作を説明するための図である。時刻t2以前において、
通風計測動作を行っており、時刻t12において切換え
手段96のスイッチ97が遮断し、スイッチ98が導通
するスイッチング状態に切換わったものと想定する。こ
のとき閉弁時間変化率リミッタ99の入力には、通風計
測中の調圧弁55の開度θ1を表す圧力制御手段81か
らの弁体66のストローク位置を表す出力から、全閉位
置設定手段88の表す全閉開度θ0の位置の出力に、参
照符101で示されるように急変される。
FIG. 7 is a diagram for explaining the operation of the valve closing time change rate limiter 99. Before time t2,
It is assumed that the ventilation measurement operation is being performed, and the switch 97 of the switching means 96 has been turned off at time t12, and the switch 98 has been switched to the conducting state. At this time, the input to the valve closing time change rate limiter 99 is obtained from the output indicating the stroke position of the valve element 66 from the pressure control unit 81 indicating the opening degree θ1 of the pressure regulating valve 55 during the ventilation measurement, from the fully closed position setting unit 88. Is suddenly changed as indicated by reference numeral 101 to the output at the position of the fully closed opening θ0 represented by

【0064】閉弁時間変化率リミッタ99は、このよう
な入力X1の位置θ1からθ0への時間変化率が予め定
める値b以上であるとき、前述のステップr3におい
て、参照符102で示される指令値である出力Y1を導
出する。これによって調圧弁55の開度が緩やかに変化
させられて全閉状態となる。
When the time rate of change from the position θ1 to θ0 of the input X1 is equal to or greater than the predetermined value b, the valve closing time change rate limiter 99 outputs the command indicated by the reference numeral 102 in step r3. An output Y1 which is a value is derived. As a result, the opening of the pressure regulating valve 55 is gradually changed, and the pressure regulating valve 55 is fully closed.

【0065】本発明の実施の他の形態では、時間変化率
リミッタ92および閉弁時間変化率リミッタ99の時間
変化率a,bは、図4(2)の参照符94および図7
(2)の参照符102で示されるように、1次直線状に
変化されたけれども、本発明の実施の他の形態では、そ
のほかのたとえば図4(2)および図7(2)の曲線9
4a,102aなどで時間経過に伴って変化されるよう
に構成されてもよい。
In another embodiment of the present invention, the time change rates a and b of the time change rate limiter 92 and the valve closing time change rate limiter 99 are represented by reference numerals 94 and 7 in FIG.
As shown by reference numeral 102 in (2), although it is changed linearly in the first order, in another embodiment of the present invention, another curve 9 in FIGS. 4 (2) and 7 (2) is used.
4a, 102a and the like may be configured to change with time.

【0066】図8は、本発明の実施のさらに他の形態の
系統図である。この実施の形態は、図1〜図7の実施の
形態に類似し、対応する部分には同一の参照符を付す。
注目すべきはこの実施の形態では、管路53の元弁54
と調圧弁55との間に、連結管104が介在される。こ
の連結管104の一端部は、管路53に、前述のように
元弁54と調圧弁55との間で接続される。連結管10
4の他端部は、集合胴56に接続される。連結管54の
途中には、流量制御および全閉可能な負圧防止弁105
が介在される。
FIG. 8 is a system diagram of still another embodiment of the present invention. This embodiment is similar to the embodiment of FIGS. 1 to 7, and corresponding parts are denoted by the same reference numerals.
It should be noted that in this embodiment, the main valve 54
A connection pipe 104 is interposed between the pressure control valve 55 and the pressure control valve 55. One end of the connecting pipe 104 is connected to the pipe 53 between the main valve 54 and the pressure regulating valve 55 as described above. Connecting pipe 10
The other end of 4 is connected to collecting cylinder 56. In the middle of the connecting pipe 54, a negative pressure prevention valve 105 capable of controlling flow and fully closing
Is interposed.

【0067】位置制御手段89の出力は、調圧弁駆動手
段67に与えられるとともに、時間変化率リミッタ10
6に与えられる。この時間変化率リミッタ106は、前
述の図2の時間変化率リミッタ99に類似した構成を有
し、調圧弁55の弁体66の予め定める大きな時間変化
率の値c以上では、その時間変化率を、予め定める値c
に抑える働きをする。時間変化率リミッタ106の出力
は、負圧防止弁105を開閉駆動して絞り量を調整する
駆動手段107に与えられる。こうして通風計測の停止
時、調圧弁55は大きな時間変化率で移動して直ちに全
閉状態となるのに対して、負圧防止弁105は、通風計
測が停止された時刻から時間経過を伴って全開状態から
全閉状態に、予め定める値c以下の時間変化率で開度が
制御されて流量調整される。これによって集合胴56内
の圧力が急変することはなく、集合胴56内の空気の測
定室58から第1スロート部57を経て集合胴56に逆
流する空気の流れを防ぐことができる。
The output of the position control means 89 is supplied to the pressure regulating valve driving means 67 and the time change rate limiter 10
6 given. The time change rate limiter 106 has a configuration similar to the time change rate limiter 99 in FIG. 2 described above, and when the value of the valve element 66 of the pressure regulating valve 55 is equal to or larger than a predetermined large time change rate value c, the time change rate With a predetermined value c
It works to suppress. The output of the time rate-of-change limiter 106 is provided to a driving unit 107 that opens and closes the negative pressure prevention valve 105 to adjust the aperture amount. In this way, when the ventilation measurement is stopped, the pressure regulating valve 55 moves at a large time rate of change and immediately enters the fully closed state, whereas the negative pressure prevention valve 105 moves with time from the time when the ventilation measurement is stopped. From the fully open state to the fully closed state, the opening is controlled at a time rate of change equal to or less than a predetermined value c to adjust the flow rate. As a result, the pressure in the collecting cylinder 56 does not suddenly change, and the flow of air flowing backward from the measuring chamber 58 for air in the collecting cylinder 56 to the collecting cylinder 56 via the first throat portion 57 can be prevented.

【0068】前述の実施の各形態において値a,b,c
は、調圧弁55の開度の閉弁時間変化率の最大値未満で
ある緩やかな閉弁時間変化率に定められ、こうして前述
のように集合胴56における空気の逆流が生じる現象を
防ぐことができる。
In each of the above embodiments, the values a, b, c
Is set to a gradual valve closing time change rate that is less than the maximum value of the valve closing time change rate of the opening degree of the pressure regulating valve 55, and thus it is possible to prevent the phenomenon that the backflow of air in the collecting cylinder 56 occurs as described above. it can.

【0069】図9は、本発明の実施のさらに他の形態の
系統図である。この図9に示される実施の形態は、前述
の図8に示される実施の形態に類似し、対応する部分に
は同一の参照符を付す。特にこの実施の形態では、連結
管104には、負圧防止弁105だけでなく、絞り10
8もまた介在される。これによって集合胴56内の圧力
を、通風計測の停止時、できるだけ小さい時間変化率で
変化して低下し、大気圧にもたらすことができ、前述の
空気の逆流の現象を防ぐことができる。図9の実施の形
態では、図8において用いられる時間変化率リミッタ1
06は省略されることができる。
FIG. 9 is a system diagram of still another embodiment of the present invention. The embodiment shown in FIG. 9 is similar to the embodiment shown in FIG. 8 described above, and corresponding portions are denoted by the same reference numerals. In particular, in this embodiment, the connecting pipe 104 includes not only the negative pressure prevention valve 105 but also the throttle 10.
8 is also interposed. As a result, when the ventilation measurement is stopped, the pressure in the collecting cylinder 56 is changed and reduced with a time change rate as small as possible to bring the pressure to the atmospheric pressure, and the above-described phenomenon of the backflow of air can be prevented. In the embodiment of FIG. 9, the time change rate limiter 1 used in FIG.
06 can be omitted.

【0070】図10は、本発明の実施の他の形態の系統
図である。この実施の形態は、図1〜図9の実施の形態
に類似し、対応する部分には同一の参照符を付す。特に
この実施の形態では、集合胴56には、逆止弁109が
接続される。逆止弁109は、集合胴56内の空気の圧
力が大気圧未満の負圧になったとき、外部の空気を、集
合胴56内に導入する。集合胴56内の圧力が、大気圧
以上であるとき、逆止弁109は遮断したままである。
このような図10に示される構成は簡単であり、本発明
の実施が容易である。
FIG. 10 is a system diagram of another embodiment of the present invention. This embodiment is similar to the embodiment of FIGS. 1 to 9 and corresponding parts are denoted by the same reference numerals. In this embodiment, in particular, a check valve 109 is connected to the collecting cylinder 56. The check valve 109 introduces external air into the collecting cylinder 56 when the pressure of the air in the collecting cylinder 56 becomes a negative pressure lower than the atmospheric pressure. When the pressure in the collecting cylinder 56 is higher than the atmospheric pressure, the check valve 109 remains shut off.
Such a configuration shown in FIG. 10 is simple, and implementation of the present invention is easy.

【0071】本発明は、超音速、亜音速、遷音速の各風
胴に関連して実施されることができる。
The present invention can be implemented in connection with supersonic, subsonic, and transonic wind tunnels.

【0072】[0072]

【発明の効果】本発明によれば、集合胴内の圧力が負圧
になることを防ぐことができ、これによって集合胴内の
圧縮空気の流れは、調圧弁から集合胴、スロート部およ
び測定室に一方向に流れることになり、集合胴への圧縮
空気の逆流は生じることはなく、空気の集合胴への流出
入の周期的な繰返しの現象が生じない。これによって集
合胴内に設けられる整流手段の変形、寿命の低下が生じ
ることはなく、また測定室に設けられる模型への悪影響
の発生はなく、さらに空気の周期的な流れによる低周波
数域の騒音の発生を防ぐことができる。本発明によれ
ば、集合胴への通風計測の停止時における空気の周期的
な出入りが発生するという現象が生じることが防がれ
る。
According to the present invention, it is possible to prevent the pressure in the collecting cylinder from becoming negative, so that the flow of compressed air in the collecting cylinder is controlled by the pressure regulating valve from the collecting cylinder, the throat section, and the measuring section. Since the compressed air flows into the chamber in one direction, the backflow of the compressed air to the collecting cylinder does not occur, and the phenomenon of periodic repetition of the flow of air into and out of the collecting cylinder does not occur. As a result, the rectifying means provided in the collecting cylinder is not deformed and the life is not shortened, and there is no adverse effect on the model provided in the measuring chamber. Can be prevented. Advantageous Effects of Invention According to the present invention, it is possible to prevent a phenomenon that air periodically enters and exits when measurement of ventilation to the collecting cylinder is stopped.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】本発明の実施の他の形態の系統図である。FIG. 2 is a system diagram of another embodiment of the present invention.

【図3】時間変化率リミッタ92の動作を説明するため
のフローチャートである。
FIG. 3 is a flowchart for explaining an operation of a time change rate limiter 92;

【図4】時間変化率リミッタ92の動作を説明するため
の図である。
FIG. 4 is a diagram for explaining an operation of a time change rate limiter 92;

【図5】本発明の実施のさらに他の形態の系統図であ
る。
FIG. 5 is a system diagram of still another embodiment of the present invention.

【図6】閉弁時間変化率リミッタ99の動作を説明する
ためのフローチャートである。
FIG. 6 is a flowchart for explaining the operation of a valve closing time change rate limiter 99;

【図7】閉弁時間変化率リミッタ99の動作を説明する
ための図である。
FIG. 7 is a diagram for explaining the operation of the valve closing time change rate limiter 99;

【図8】本発明の実施のさらに他の形態の系統図であ
る。
FIG. 8 is a system diagram of still another embodiment of the present invention.

【図9】本発明の実施のさらに他の形態の系統図であ
る。
FIG. 9 is a system diagram of still another embodiment of the present invention.

【図10】本発明の実施の他の形態の系統図である。こ
の実施の形態は、
FIG. 10 is a system diagram of another embodiment of the present invention. In this embodiment,

【図11】先行技術の系統図である。FIG. 11 is a system diagram of the prior art.

【図12】図11に示される先行技術の本件発明者によ
る実験結果を示すグラフである。
FIG. 12 is a graph showing experimental results of the prior art shown in FIG. 11 by the present inventor.

【符号の説明】[Explanation of symbols]

51 吹出式風胴 52 貯気槽 53 管路 54 元弁 55 調圧弁 56 集合胴 57 第1スロート部 58 測定室 59 第2スロート部 61 拡散胴 62 消音塔 63 整流部材 64 模型 67 調圧弁駆動手段 68 位置検出手段 71 センサ 72 通風計測用圧力設定手段 73 大気圧設定手段 80 調圧弁駆動制御手段 81 圧力制御手段 83 停止強制切換え手段 88 全閉位置設定手段 89 位置制御手段 92,106 時間変化率リミッタ 96 切換え手段 99 閉弁時間変化率リミッタ 104 連結管 105 負圧防止弁 107 駆動手段 108 絞り 109 逆止弁 REFERENCE SIGNS LIST 51 blow-out wind tunnel 52 air storage tank 53 conduit 54 main valve 55 pressure regulating valve 56 collecting cylinder 57 first throat section 58 measuring chamber 59 second throat section 61 diffusion drum 62 silencer 63 rectifying member 64 model 67 pressure regulator driving means 68 Position detection means 71 Sensor 72 Ventilation measurement pressure setting means 73 Atmospheric pressure setting means 80 Pressure regulating valve drive control means 81 Pressure control means 83 Forced stop switching means 88 Fully closed position setting means 89 Position control means 92, 106 Time change rate limiter Reference numeral 96 Switching means 99 Valve closing time change rate limiter 104 Connecting pipe 105 Negative pressure prevention valve 107 Driving means 108 Throttle 109 Check valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久次米 泰典 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 Fターム(参考) 2G023 AA04 AB01 AC06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasunori Kusume 3-1, 1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo F-term in Kawasaki Heavy Industries, Ltd. Kobe factory (reference) 2G023 AA04 AB01 AC06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 貯気槽に貯えられた圧縮空気が、開度を
可変とする調圧弁から集合胴に導かれ、集合胴の下流
に、スロート部および測定部が連なって設けられる吹出
式風胴の集合胴圧力制御装置において、 集合胴内の圧力を検出するセンサ71と、 通風計測中、集合胴内の予め定める通風計測用圧力を設
定する通風計測用圧力設定手段72と、 センサと通風計測用圧力設定手段との出力に応答し、通
風計測中、センサの検出圧力が通風計測用圧力になるよ
うに調圧弁の開度を制御し、計測の停止のために、調圧
弁の開度を通風計測中の開度よりも小さくし、または全
閉に制御する制御手段と、 停止時に、集合胴内の圧力が負圧にならないように、集
合胴内に空気を導入する負圧防止手段とを含むことを特
徴とする吹出式風胴の集合胴圧力制御装置。
1. A compressed air stored in an air storage tank is guided to a collecting cylinder from a pressure regulating valve having a variable opening, and a blow-out type wind provided with a throat portion and a measuring portion connected downstream of the collecting cylinder. A pressure sensor for detecting pressure in the collecting cylinder; a pressure setting means for measuring ventilation for setting a predetermined pressure for measuring ventilation in the collecting cylinder during ventilation measurement; In response to the output from the measurement pressure setting means, during ventilation measurement, the opening of the pressure regulating valve is controlled so that the pressure detected by the sensor becomes the pressure for ventilation measurement. Control means for controlling the opening degree to be smaller than the opening degree during ventilation measurement or for fully closing; and negative pressure preventing means for introducing air into the collecting cylinder so that the pressure in the collecting cylinder does not become negative when stopped. Pressure control of a blow-out type wind tunnel characterized by including Apparatus.
【請求項2】 貯気槽に貯えられた圧縮空気が、開度を
可変とする調圧弁から集合胴に導かれ、集合胴の下流
に、スロート部および測定部が連なって設けられる吹出
式風胴の集合胴圧力制御装置において、 集合胴内の圧力を検出するセンサ71と、 通風計測中、集合胴内の予め定める通風計測用圧力を設
定する通風計測用圧力設定手段72と、 大気圧を設定する大気圧設定手段73と、 センサと通風計測用圧力設定手段と大気圧設定手段との
出力に応答し、通風計測中、センサの検出圧力が通風計
測用圧力となるように、かつ計測の停止時、集合胴内の
圧力が大気圧となるように調圧弁の開度を制御する手段
とを含むことを特徴とする吹出式風胴の集合胴圧力制御
装置。
2. A compressed air stored in an air storage tank is guided to a collecting cylinder from a pressure regulating valve having a variable opening, and a blow-out type wind provided with a throat portion and a measuring portion connected downstream of the collecting cylinder. In the cylinder collecting cylinder pressure control device, a sensor 71 for detecting a pressure in the collecting cylinder, a ventilation measuring pressure setting means 72 for setting a predetermined ventilation measuring pressure in the collecting cylinder during the ventilation measurement, In response to the output of the atmospheric pressure setting means 73 to be set, the sensor, the pressure setting means for ventilation measurement, and the atmospheric pressure setting means, during the ventilation measurement, the detection pressure of the sensor becomes the pressure for ventilation measurement, and Means for controlling the opening of the pressure regulating valve so that the pressure inside the collecting cylinder is at atmospheric pressure when the collecting cylinder is stopped.
【請求項3】 制御手段は、 通風計測用圧力設定手段と大気圧設定手段との出力を切
換えて導出する切換え手段74と、 センサと切換え手段との出力の差を演算する減算手段7
8と、 減算手段の出力に応答し、前記差が零となるように、調
圧弁の開度を駆動制御する調圧弁駆動制御手段とを含む
ことを特徴とする請求項2記載の吹出式風胴の集合胴圧
力制御装置。
3. The control means includes: a switching means 74 for switching and outputting the outputs of the ventilation measurement pressure setting means and the atmospheric pressure setting means; and a subtracting means 7 for calculating a difference between outputs of the sensor and the switching means.
And a pressure regulating valve drive control means for controlling the opening of the pressure regulating valve so as to make the difference zero in response to the output of the subtraction means. Pressure control device for the collecting cylinder.
【請求項4】 貯気槽に貯えられた圧縮空気が、開度を
可変とする調圧弁から集合胴に導かれ、集合胴の下流
に、スロート部および測定部が連なって設けられる吹出
式風胴の集合胴圧力制御装置において、 集合胴内の圧力を検出するセンサと、 通風計測中、集合胴内の予め定める通風計測用圧力を設
定する通風計測用圧力設定手段と、 大気圧を設定する大気圧設定手段と、 センサと通風計測用圧力設定手段と大気圧設定手段との
出力に応答し、通風計測中、センサの検出圧力が通風計
測用圧力となるように、かつ計測の停止時、集合胴内の
圧力が大気圧となるように集合胴圧力の設定の圧力低下
時間変化率の最大値未満である緩やかな低下時間変化率
aで、小さく制御する手段を含むことを特徴とする吹出
式風胴の集合胴圧力制御装置。
4. A compressed air stored in an air storage tank is guided to a collecting cylinder from a pressure regulating valve having a variable opening, and a blow-out type wind provided with a throat portion and a measuring portion connected downstream of the collecting cylinder. A pressure sensor for detecting pressure in the collecting cylinder, a pressure measuring means for setting a predetermined ventilation measuring pressure in the collecting cylinder during ventilation measurement, and an atmospheric pressure. Atmospheric pressure setting means, in response to the output of the sensor and the ventilation pressure setting means and the atmospheric pressure setting means, during ventilation measurement, so that the detection pressure of the sensor becomes the ventilation measurement pressure, and when the measurement is stopped, A blowing means characterized by including means for controlling the pressure in the collecting cylinder to a small value with a gradual decreasing time change rate a that is less than the maximum value of the pressure decreasing time change rate in the setting of the collecting cylinder pressure so that the pressure in the collecting cylinder becomes the atmospheric pressure. Collective cylinder pressure control device for wind tunnel.
【請求項5】 制御手段は、 通風計測用圧力設定手段と大気圧設定手段との出力を切
換えて導出する切換え手段と、 センサと切換え手段との出力の差を演算する減算手段
と、 減算手段の出力に応答し、前記差が零となるように、調
圧弁の開度を駆動制御する調圧弁駆動制御手段と、 大気圧設定手段から調圧弁駆動制御手段までの間に介在
され、集合胴圧力の設定の圧力低下時間変化率aを、予
め定める値未満に制限するリミッタ92とを含むことを
特徴とする請求項4記載の吹出式風胴の集合胴圧力制御
装置。
5. The control means includes: a switching means for switching and outputting an output of the ventilation measurement pressure setting means and the atmospheric pressure setting means; a subtraction means for calculating a difference between outputs of the sensor and the switching means; A pressure regulating valve drive control means for controlling the opening of the pressure regulating valve so that the difference becomes zero in response to the output of the pressure control valve; The apparatus according to claim 4, further comprising a limiter (92) for limiting a rate of change (a) of the pressure drop time in setting the pressure to a value less than a predetermined value.
【請求項6】 貯気槽に貯えられた圧縮空気が、開度を
可変とする調圧弁から集合胴に導かれ、集合胴の下流
に、スロート部および測定部が連なって設けられる吹出
式風胴の集合胴圧力制御装置において、 集合胴内の圧力を検出するセンサと、 通風計測中、集合胴内の予め定める通風計測用圧力を設
定する通風計測用圧力設定手段と、 調圧弁を全閉とする全閉指令信号を発生する全閉指令信
号発生手段88と、 全閉指令信号発生手段の出力を、計測の停止時、集合胴
内の圧力が負圧にならないように、調圧弁の開度の閉弁
時間変化率の最大値未満である緩やかな閉弁時間変化率
bで、時間経過に伴って変化する閉弁時間変化率リミッ
タ99と、 センサと通風計測用圧力設定手段と閉弁時間変化率リミ
ッタとの出力に応答し、通風計測中、センサの検出出力
が通風計測用圧力になるように調圧弁の開度を制御し、
計測の停止時、閉弁時間変化率リミッタの出力によって
調圧弁の開度を駆動制御する調圧弁駆動制御手段とを含
むことを特徴とする吹出式風胴の集合胴圧力制御装置。
6. A compressed air stored in an air storage tank is guided to a collecting cylinder from a pressure regulating valve having a variable opening, and a blow-out type wind provided with a throat section and a measuring section connected downstream of the collecting cylinder. A sensor for detecting the pressure in the collecting cylinder, a ventilation setting pressure setting means for setting a predetermined ventilation measuring pressure in the collecting cylinder during the measurement of the ventilation, and a pressure regulating valve fully closed. The output of the full-close command signal generating means 88 for generating a full-close command signal, and the output of the full-close command signal generating means are controlled so that the pressure in the collecting cylinder does not become negative when the measurement is stopped. Valve closing time rate of change b that is less than the maximum value of the valve closing time rate of change, the valve closing time rate of change limiter 99 that changes with time, a sensor, a pressure setting means for ventilation measurement, and valve closing. In response to the output of the time rate of change limiter, The detection output of Sa controls the degree of opening of the pressure regulating valve so that the air flow measuring pressure,
A pressure regulating valve drive control means for controlling the opening of the pressure regulating valve in accordance with the output of the valve closing time change rate limiter when the measurement is stopped.
【請求項7】 貯気槽に貯えられた圧縮空気が、管路を
経て開度を可変とする調圧弁から集合胴に導かれ、集合
胴の下流に、スロート部および測定部が連なって設けら
れる吹出式風胴の集合胴圧力制御装置において、 集合胴内の圧力を検出するセンサと、 通風計測中、集合胴内の予め定める通風計測用圧力を設
定する通風計測用圧力設定手段と、 管路と集合胴とを連結する連結管104と、 連結管に介在される負圧防止弁105と、 通風計測中、負圧防止弁を全閉とし、計測の停止時、負
圧防止弁を開いて、集合胴内の圧力が負圧にならないよ
うに、管路内の圧縮空気を集合胴内に導入させる制御手
段とを含むことを特徴とする吹出式風胴の集合胴圧力制
御装置。
7. A compressed air stored in an air storage tank is guided to a collecting cylinder from a pressure regulating valve whose opening degree is variable via a pipeline, and a throat section and a measuring section are provided downstream of the collecting cylinder in series. A pressure sensor for detecting a pressure in the collecting cylinder; a pressure measuring means for setting a predetermined ventilation measuring pressure in the collecting cylinder during ventilation measurement; and a pipe. A connecting pipe 104 connecting the road and the collecting cylinder, a negative pressure prevention valve 105 interposed in the connecting pipe, a negative pressure preventing valve is fully closed during ventilation measurement, and the negative pressure preventing valve is opened when measurement is stopped. A control means for introducing compressed air in the pipeline into the collecting cylinder so that the pressure in the collecting cylinder does not become negative pressure.
【請求項8】 連結管に介在される絞り108をさらに
含むことを特徴とする請求項7記載の吹出式風胴の集合
胴圧力制御装置。
8. The apparatus according to claim 7, further comprising a throttle (108) interposed in the connecting pipe.
【請求項9】 負圧防止手段は、 集合胴に設けられ、集合胴内の圧力が負圧になったと
き、外気を導入する逆止弁109であることを特徴とす
る請求項1記載の吹出式風胴の集合胴圧力制御装置。
9. The check valve according to claim 1, wherein the negative pressure preventing means is a check valve provided in the collecting cylinder and for introducing outside air when the pressure in the collecting cylinder becomes negative. Collective cylinder pressure control device for blow-out type wind tunnel.
JP2001106222A 2001-04-04 2001-04-04 Collecting cylinder pressure control device for blow-out type wind tunnel Expired - Lifetime JP3403394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106222A JP3403394B2 (en) 2001-04-04 2001-04-04 Collecting cylinder pressure control device for blow-out type wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106222A JP3403394B2 (en) 2001-04-04 2001-04-04 Collecting cylinder pressure control device for blow-out type wind tunnel

Publications (2)

Publication Number Publication Date
JP2002303563A true JP2002303563A (en) 2002-10-18
JP3403394B2 JP3403394B2 (en) 2003-05-06

Family

ID=18958768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106222A Expired - Lifetime JP3403394B2 (en) 2001-04-04 2001-04-04 Collecting cylinder pressure control device for blow-out type wind tunnel

Country Status (1)

Country Link
JP (1) JP3403394B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680181A (en) * 2011-03-14 2012-09-19 铁道部运输局 Method and device for testing vehicle body airtightness and fatigue of railway vehicle
JP2019117129A (en) * 2017-12-27 2019-07-18 株式会社コーアツ Air duct structure of wind tunnel device
CN116256144A (en) * 2023-05-16 2023-06-13 中国航空工业集团公司沈阳空气动力研究所 Large continuous wind tunnel matched vacuum system and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680181A (en) * 2011-03-14 2012-09-19 铁道部运输局 Method and device for testing vehicle body airtightness and fatigue of railway vehicle
JP2019117129A (en) * 2017-12-27 2019-07-18 株式会社コーアツ Air duct structure of wind tunnel device
JP7043698B2 (en) 2017-12-27 2022-03-30 株式会社コーアツ Wind tunnel structure of wind tunnel device
CN116256144A (en) * 2023-05-16 2023-06-13 中国航空工业集团公司沈阳空气动力研究所 Large continuous wind tunnel matched vacuum system and control method thereof

Also Published As

Publication number Publication date
JP3403394B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
JP2754079B2 (en) Control method and control device for compressor system
KR102250967B1 (en) Pressure type flow control device and flow control method
US9182143B2 (en) Room pressure controlling system
JP2002303563A (en) Device for controlling collection tunnel pressure of blowout type wind tunnel
US8070459B2 (en) Pressure control method
KR101966720B1 (en) Pressure control device
JP5215831B2 (en) Pressure control device and flow rate control device
JPH11294631A (en) Flow rate controller
CN108612664A (en) A kind of automatic detection of surge in centrifugal compressors, regulating system
JP6903946B2 (en) Mass flow control device and mass flow control method
KR101884184B1 (en) Exhaust control system for maintaining indoor pressure and control method thereof
EP0053057A2 (en) Emission control system and method of controlling emissions
JPH06346893A (en) Compressor system
CN217886082U (en) Constant pressure pneumoperitoneum machine
JP3688458B2 (en) Compressor control device
JP2002276440A (en) Malfunction detecting device for sensor
WO2023203848A1 (en) Particle detection device
JP2948421B2 (en) Compressor control device
JP2001185599A (en) Maintenance apparatus
JPH062021A (en) Method for changing over blower in blast furnace
JPH01134167A (en) Expansion valve controller for air conditioner
KR930004385Y1 (en) The seesaw device of snore inhibiting pillow
CN115950021A (en) Switching control method for air conditioner fan of biological safety laboratory
KR950033030A (en) Engine control device of car
EP1995209A1 (en) A vapour recovery system, a method for control thereof, and a fuel dispensing apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3403394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

EXPY Cancellation because of completion of term