JP2002299634A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JP2002299634A
JP2002299634A JP2001105487A JP2001105487A JP2002299634A JP 2002299634 A JP2002299634 A JP 2002299634A JP 2001105487 A JP2001105487 A JP 2001105487A JP 2001105487 A JP2001105487 A JP 2001105487A JP 2002299634 A JP2002299634 A JP 2002299634A
Authority
JP
Japan
Prior art keywords
layer
oxide film
silicon
thickness
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001105487A
Other languages
Japanese (ja)
Inventor
So Nakayama
創 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001105487A priority Critical patent/JP2002299634A/en
Publication of JP2002299634A publication Critical patent/JP2002299634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress variations in a threshold caused by a thickness of a silicon layer film of a complete depletion type SOI MOSFET. SOLUTION: A method for manufacturing a semiconductor device comprises the steps of implanting silicon ion in an embedded oxide film 2 through a silicon layer 3 of an SOI structure having the film 2 and the layer 3 sequentially provided on a silicon substrate 1, forming a fixed oxide film charge layer 4 at a silicon ion arrival distance, and providing a gate electrode on the layer 3 via a gate oxide film 5. Since the charge layer 4 has a function of reducing the threshold of the SOI MOSFET, the more the thickness of the silicon layer film is increased, the SOI MOSFET in which an effect of the variations of the thickness of the layer 3 to the threshold voltage is small, is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は SOI構造の半導
体装置およびその製造方法に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device having an SOI structure and a method of manufacturing the same.

【0002】[0002]

【従来の技術】SOI MOSFETのSOI(シリコ
ン オン インシュレータ)構造は、シリコン基板上に
埋込酸化膜層と単結晶シリコン層(Si層)とを順次形
成した構成となっている。このSi層の膜厚は極薄く製
造プロセス上のばらつきに起因してばらつく。図3に完
全空乏型SOI MOSFETにおける、Si層膜厚T
siとしきい値電圧Vthとの関係の模式図を示す。完全空
乏型SOI MOSFETのしきい値電圧VthはSi層
膜厚Tsi依存性があり、図3に点線で示したように、し
きい値特性は、Si層の膜厚Tsiばらつきの影響を受け
やすい。例えば、製造プロセス上のばらつきに起因し
て、ウエハにおける各チップのSi層膜厚T siに最小値
si-1、最大値Tsi-2のばらつきが生じたとする。する
と、それぞれの膜厚Tsi-1、Tsi-2におけるしきい値電
圧Vth′(Tsi-1)、Vth′(Tsi-2)の違いから、δ
th′に相当する大きさのしきい値電圧のばらつきを生
じる。
2. Description of the Related Art SOI MOSFET SOI (silicon silicon)
On-insulator) structure on a silicon substrate
The buried oxide film layer and the single crystal silicon layer (Si layer) are formed sequentially.
It has a completed configuration. The thickness of this Si layer is extremely thin
Variations due to manufacturing process variations. Completed in FIG.
Si layer thickness T in fully depleted SOI MOSFET
siAnd threshold voltage VthFIG. Completely empty
Threshold voltage V of scarce SOI MOSFETthIs the Si layer
Film thickness TsiDependent, as shown by the dotted line in FIG.
The threshold characteristic is the thickness T of the Si layer.siAffected by variation
Cheap. For example, due to manufacturing process variations
The thickness T of the Si layer of each chip on the wafer siMinimum
Tsi-1, Maximum value Tsi-2Is assumed to have occurred. Do
And the respective film thickness Tsi-1, Tsi-2Threshold voltage at
Pressure Vth′ (Tsi-1), Vth′ (Tsi-2), Δ
Vth′, The variation of the threshold voltage
I will.

【0003】[0003]

【数1】δVth′=Vth′(Tsi-1)−Vth′(Tsi-2) このしきい値電圧のばらつきδVth′は、半導体装置の
歩留まりを悪化させる要因となり問題視されている。M
0SFET微細化の時流に伴い、Si層膜厚T siの設計
値は薄くなる一方である。これにより、2つの要因がし
きい値電圧のばらつきをさらに増大させることになる。 (1)Si層膜厚に対するしきい値電圧の感度(Sens
itivity)が上がり、図3の点線bで示す曲線の
傾きが増大する。 (2)Si層膜厚に対する相対的な膜厚製造ばらつきの
制御が難しくなる。
## EQU1 ## δVth'= Vth′ (Tsi-1) -Vth′ (Tsi-2) Variation of this threshold voltage δVth′ For semiconductor devices
It is a factor that deteriorates the yield and is regarded as a problem. M
With the trend of miniaturization of the 0SFET, the Si layer thickness T sis design
The values are only getting thinner. This has two factors
This will further increase the variation of the threshold voltage. (1) Sensitivity of threshold voltage to Si layer thickness (Sens
3) of the curve shown by the dotted line b in FIG.
Incline increases. (2) Relative variation in film thickness relative to Si layer thickness
Control becomes difficult.

【0004】従って、このしきい値のばらつきδVth
の抑制はSOI MOSFETの生産において、いち早
く解決するべき課題である。
Therefore, the variation δV th 'of the threshold value
Is an issue to be solved promptly in the production of SOI MOSFETs.

【0005】上記しきい値ばらつきを抑制し得るように
した従来SOI MOSFET製造方法の一例(特開平
8−293610号)について図4を用いて説明する。
シリコン基板1の上に埋込酸化膜層2とSi層3を順次
形成したSOI構造に、素子分離用のフィールド酸化膜
11を形成させ、Si層3上に通常のMOSFETのプ
ロセスと同様に酸化膜12を成長させる。次に、しきい
値調整用二フッ化ボロン(BF2 +)をSi層3にイオン
注入し、次いで、Si層3の膜厚ばらつきによるしきい
値電圧変動制御用のイオン注入として、リン(P+)を
Si層3にイオン注入する。このときSi層3の膜厚よ
り深いところまでリン(P+)を打ち込む。
An example of a conventional SOI MOSFET manufacturing method (Japanese Patent Laid-Open No. 8-293610) which can suppress the above-mentioned threshold variation will be described with reference to FIG.
A field oxide film 11 for element isolation is formed in an SOI structure in which a buried oxide film layer 2 and a Si layer 3 are sequentially formed on a silicon substrate 1, and oxidation is performed on the Si layer 3 in the same manner as in a normal MOSFET process. The film 12 is grown. Next, boron difluoride (BF 2 + ) for adjusting the threshold value is ion-implanted into the Si layer 3, and then phosphorus ( P + ) is ion-implanted into the Si layer 3. At this time, phosphorus (P + ) is implanted to a depth deeper than the thickness of the Si layer 3.

【0006】その後、ゲート酸化膜12′の上にNタイ
プのポリシリコンのゲート電極13を形成してから、N
チャネル型MOSFETのソース、ドレインになるn+
拡散層14を形成し、ゲート酸化膜12′を介してゲー
ト電極13に対向する部分をボディ部15とする。この
場合、ドーパントとしてはリンを用いている。
Thereafter, an N type polysilicon gate electrode 13 is formed on the gate oxide film 12 ',
N + to be the source and drain of channel type MOSFET
The diffusion layer 14 is formed, and a portion facing the gate electrode 13 via the gate oxide film 12 'is defined as a body portion 15. In this case, phosphorus is used as a dopant.

【0007】[0007]

【発明が解決しようとする課題】上記従来しきい値ばら
つき抑制法は、リンとホウ素のイオン注入による補償後
の正味の不純物量がSi層3の膜厚により殆ど変化しな
い膜厚領域が生じるので、この領域ではしきい値が変動
しないというものであるが、ホウ素やリンのイオン注入
工程が必要であると共に、不純物も増加する。
In the conventional threshold variation suppressing method, a film thickness region in which the net impurity amount after compensation by ion implantation of phosphorus and boron hardly changes with the film thickness of the Si layer 3 is generated. Although the threshold value does not change in this region, an ion implantation step of boron or phosphorus is required, and impurities increase.

【0008】本発明は、上記課題に鑑みてなされたもの
であり、完全空乏型SOIMOSFETにおけるSi層
膜厚に起因するしきい値電圧のばらつきを固定電荷によ
り抑制するようにした半導体装置およびその製造方法を
提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a semiconductor device and a method of manufacturing a semiconductor device in which variation in threshold voltage due to the thickness of a Si layer in a fully depleted SOIMOSFET is suppressed by fixed charges. It is intended to provide a method.

【0009】[0009]

【課題を解決するための手段】本発明は、完全空乏型S
OI MOSFETなどの埋込み酸化膜の中に固定酸化
膜電荷層を設けることにより、Si層膜厚ばらつきに起
因するしきい値のばらつきを抑制するものである。
SUMMARY OF THE INVENTION The present invention provides a fully depleted S
By providing a fixed oxide film charge layer in a buried oxide film such as an OI MOSFET, variations in the threshold value due to variations in the thickness of the Si layer are suppressed.

【0010】本発明に基づく完全空乏型SOI MOS
FETのSi層膜厚−しきい値電圧特性を、図3に実線
aとして模式的示す。このSi層膜厚−しきい値電圧特
性曲線の傾きは、同図に点線bで示す従来Si層膜厚-
しきい値電圧特性曲線に比し緩くなっている。即ち、
(1)式に基づいて得られたSi層膜厚Tsiのばらつき
に起因するしきい値電圧VthのばらつきδVthが、従来
(2)式のしきい値電圧Vth′のばらつきδVth′と比
較して小さくなり改善されている((3)式)。
A fully depleted SOI MOS according to the present invention
The Si layer thickness-threshold voltage characteristic of the FET is schematically shown as a solid line a in FIG. The slope of the Si layer thickness-threshold voltage characteristic curve is expressed by the conventional Si layer thickness-dotted line b in FIG.
It is looser than the threshold voltage characteristic curve. That is,
(1) variations .DELTA.V th of the threshold voltage V th caused by variations of the resulting Si-layer thickness T si based on the equation, the conventional expression (2) of the variation .DELTA.V th of the threshold voltage V th ''Is smaller and improved (Equation (3)).

【0011】[0011]

【数2】 δVth=Vth(Tsi-1)−Vth(Tsi-2) (1) δVth′=Vth′(Tsi-1)−Vth′(Tsi-2) (2) δVth<δVth′ (3) 以下に、本発明のしきい値電圧ばらつき改善の原理につ
いて説明する。
## EQU2 ## δV th = V th (T si−1 ) −V th (T si−2 ) (1) δV th ′ = V th ′ (T si−1 ) −V th ′ (T si−2 ) (2) δV th <δV th '(3) The principle of the present invention for improving the threshold voltage variation will be described below.

【0012】本発明は、図3の点線bで示す従来のSi
膜厚−しきい値電圧特性に対して、同図の実線aで示す
ようにSi層膜厚Tsiが厚くなる程しきい値が下がるよ
うな機能を持たせる。このしきい値の変動分をSi層膜
厚Tsiの関数として△Vth(Tsi)と定義する。この機
能によって、図3の点線bで示したSi層膜厚−しきい
値電圧曲線の傾きを同図実線aに示すように緩くするこ
とが可能となる。
The present invention is based on the conventional Si shown in FIG.
Thickness - with respect to a threshold voltage characteristic, to have a function as a threshold higher the Si layer thickness T si becomes thicker drops as indicated by the solid line a in FIG. The variation of the threshold value is defined as ΔV th (T si ) as a function of the Si layer thickness T si . With this function, the slope of the Si layer thickness-threshold voltage curve shown by the dotted line b in FIG. 3 can be made gentle as shown by the solid line a in FIG.

【0013】次に、本発明に基づく上記機能を有する半
導体装置について図1を用いて説明する。この半導体装
置は、シリコン基板1とシリコン基板1の上に設けられ
た埋め込み酸化膜層2と埋め込み酸化膜層2の上に設け
られたSi層3から成るSOI構造と、このSOI構造
の上に設けられたゲート絶縁膜5とゲート電極6を有す
る。ここでは簡略的に示したが、このほかにも一般的な
半導体装置の構造、例えば、ソースやドレインなども存
在する。
Next, a semiconductor device having the above functions according to the present invention will be described with reference to FIG. This semiconductor device has an SOI structure composed of a silicon substrate 1, a buried oxide film layer 2 provided on the silicon substrate 1, an Si layer 3 provided on the buried oxide film layer 2, and It has a gate insulating film 5 and a gate electrode 6 provided. Although simplified here, there are also other general semiconductor device structures, such as a source and a drain.

【0014】本発明に係る半導体装置は、上記SOI構
造のSi層3と埋込み酸化膜層2の界面から埋込み酸化
膜層2中の一定の距離X位置に、固定酸化膜電荷層4を
設けたことを特徴とする。また、その埋込み酸化膜層2
中の固定酸化膜電荷層4の位置Xは、Si層3の膜厚T
siが薄いほど深く(X1)、厚いほど浅く(X2)設け
たことが特徴とする。 上記固定酸化膜電荷層4が上記
しきい値電圧変化分△Vth(Tsi)に与える影響は、固
定酸化膜電荷層位置Xが浅いほど強く、深いほど弱くな
る。従ってSi層3の膜厚Tsiが薄いほどしきい値電圧
変化分△Vth(Tsi)が小さく、厚いほど△V
th(Tsi)が大きくなり、図3のSi層膜厚−しきい値
電圧曲線の傾きが緩くなる。
In the semiconductor device according to the present invention, the fixed oxide film charge layer 4 is provided at a fixed distance X in the buried oxide film layer 2 from the interface between the Si layer 3 having the SOI structure and the buried oxide film layer 2. It is characterized by the following. Also, the buried oxide film layer 2
The position X of the fixed oxide film charge layer 4 is the thickness T of the Si layer 3.
It is characterized in that the si is provided deeper (X1) as it becomes thinner and shallower (X2) as it becomes thicker. The influence of the fixed oxide film charge layer 4 on the threshold voltage change ΔV th (T si ) is stronger as the position X of the fixed oxide film charge layer is shallower and weaker as the position X of the fixed oxide film charge layer is deeper. Therefore, the threshold voltage change ΔV th (T si ) is smaller as the thickness T si of the Si layer 3 is smaller, and ΔV th (T si ) is smaller as the thickness T si is larger.
th (T si ) increases, and the slope of the Si layer thickness-threshold voltage curve in FIG.

【0015】[0015]

【数3】 (Equation 3)

【0016】上記固定酸化膜電荷層位置Xと、その固定
酸化膜電荷Qfが作り出す電界と同じ電界を作り出す基
板バイアス、いわゆる等価的基板バイアス変化分△Ves
との関係を(5)式で表す。基板バイアスとしきい値電
圧の関係dVth/dVesは、いわゆるバックバイアス効
果として知られており、容易に計測可能である。そこ
で、この関係と等価的基板バイアス変化分△Vesを用い
ることによって、固定酸化膜電荷層位置Xとしきい値電
圧変化分△Vth(Tsi)との関係は(6)式のようにな
る。固定酸化膜電荷層位置Xが浅いほど、すなわち、S
i層3の膜厚が厚いほど、しきい値電圧変化分△V
th(Tsi)は大きい。
[0016] The above and fixed oxide charge layer position X, the substrate bias producing the same field as the field to produce its fixed oxide charge Q f, so-called equivalent substrate bias variation △ V es
Is expressed by equation (5). The relationship dV th / dV es between the substrate bias and the threshold voltage is known as a so-called back bias effect, and can be easily measured. Therefore, by using this relationship and the equivalent substrate bias variation ΔV es , the relationship between the fixed oxide film charge layer position X and the threshold voltage variation ΔV th (T si ) is as shown in equation (6). Become. As the fixed oxide film charge layer position X becomes shallower, that is, S
As the thickness of the i-layer 3 increases, the threshold voltage change ΔV
th (T si ) is large.

【0017】上記固定酸化膜電荷層4は、FET製造プ
ロセスにおけるSOI構造作製後、例えば、Siイオン
注入(Siioniplantation)にて過剰な
Siを打込むことにより作製する。この場合、Si層3
の膜厚Tsi、埋込酸化膜厚Tboxと固定酸化膜電荷層
位置Xとは、Siイオン到達距離Rpと(4)式の関係
にある。(4)式を(6)式に代入すれば(7)式が得
られ、Si層3の膜厚Tsiとしきい値電圧変化分△Vth
(Tsi)との関係がより明確になる。
The fixed oxide film charge layer 4 is formed by implanting excess Si by, for example, Si ion implantation after forming the SOI structure in the FET manufacturing process. In this case, the Si layer 3
The thickness T si, and is fixed oxide charge layer position X buried oxide thickness Tbox, Si ions reach R p and (4) the relationship of expression. By substituting equation (4) into equation (6), equation (7) is obtained, and the film thickness T si of the Si layer 3 and the threshold voltage change ΔV th
The relationship with (T si ) becomes clearer.

【0018】[0018]

【発明の実施の形態】本発明の実施形態について図2を
用いて説明する。図2(a)、(b)、(c)は完全空
乏型SOI MOSFETの製造方法の一例を経時的に
示している。なお、図2の左側と右側に、SOI構造を
作製するときのSi層膜厚の製造ばらっきを考慮して、
Si層膜厚の薄いものと厚いものとの製造方法を示して
いる。
An embodiment of the present invention will be described with reference to FIG. 2 (a), 2 (b) and 2 (c) show an example of a method of manufacturing a fully depleted SOI MOSFET over time. In addition, on the left and right sides of FIG. 2, in consideration of the manufacturing variation of the Si layer thickness when fabricating the SOI structure,
It shows a method for manufacturing a thin and a thick Si layer.

【0019】図2(a)に、それぞれ薄い膜厚Tsi-1
Si層3a及厚い膜厚Tsi-2のSi層3bを有するSO
I構造を示す。このSOI構造は、従来同様にシリコン
基板1の上に埋込酸化膜層2とSi層3(3a、3b)
とを順次形成して作成する。次いで図2(b)に示すよ
うに固定酸化膜電荷層4を作製する目的でSi層3を通
して埋込酸化膜層2に、Siイオン注入を施す。このS
iイオン注入は、Si層3の表面から上記課題を解決す
る手段の項で説明したSiイオン到達距離Rpの位置に
Siイオンが打ち込まれるように設計されている。そし
て、この固定酸化膜電荷層4を施したSOI構造に、図
2(c)に示すように、ゲート絶縁膜5とゲート電極6
とを作り込みFET構造とする。
FIG. 2A shows an SO having a Si layer 3a having a small thickness T si-1 and a Si layer 3b having a large thickness T si-2.
1 shows an I structure. This SOI structure has a buried oxide film layer 2 and a Si layer 3 (3a, 3b)
Are sequentially formed. Next, as shown in FIG. 2B, Si ions are implanted into the buried oxide film layer 2 through the Si layer 3 in order to form the fixed oxide film charge layer 4. This S
i ion implantation is designed to Si ions are implanted from the surface of the Si layer 3 to the position of the Si ions reach R p as described in the section of means for solving the above problems. Then, as shown in FIG. 2C, a gate insulating film 5 and a gate electrode 6 are formed on the SOI structure provided with the fixed oxide film charge layer 4.
To form an FET structure.

【0020】このFET構造のSi層3(3a、3b)
の膜厚と固定酸化膜電荷層4の位置Xとの関係は、上記
Siイオン到遠距離Rpを用いて上記(4)式で表され
る関係にしてある。従って、図2(c)に示すように、
シリコン層1、埋込酸化膜層2の界面からみた固定酸化
膜電荷層4の位置Xは、薄いSi層3aのFETの場合
深く(X1)、厚いSi層3bのSOI構造の場合浅く
(X2)作製される。
The Si layer 3 (3a, 3b) of this FET structure
Relationship between the position X of the thickness of the fixed oxide charge layer 4, are the relationship expressed by Equation (4) using the Si ion arrival far R p. Therefore, as shown in FIG.
The position X of the fixed oxide film charge layer 4 viewed from the interface between the silicon layer 1 and the buried oxide film layer 2 is deep (X1) for the FET having the thin Si layer 3a and shallow (X2) for the SOI structure having the thick Si layer 3b. ) Produced.

【0021】この製造方法によれば、図2(b)のプロ
セスでi層3a、3bの表面からSiイオン到遠距離R
pとなるようにSiイオン注入することにより、それぞ
れ固定酸化膜電荷層4の位置Xを所望のX1、X2とし
することができるので、Si層3の膜厚に関わりなくし
きい値電圧Vthのほぼ揃ったFETを製造することが可
能となる。
According to this manufacturing method, the Si ion arrival distance R from the surface of the i-layers 3a and 3b in the process of FIG.
By Si ion implantation so that p, since each position X of the fixed oxide charge layer 4 can contribute a desired X1, X2, of no threshold voltage V th regard to the thickness of the Si layer 3 It is possible to manufacture almost uniform FETs.

【0022】上記は、完全空乏型SOI MOSFET
について説明したが、本発明は完全空乏型に限定される
ものでなく、Si層3の膜厚によりFETのしきい値電
圧が変化する他の型のSOI MOSFETの製造にも
適用し得ることはいうまでもない。
The above is a fully depleted SOI MOSFET
However, the present invention is not limited to the fully depleted type, but can be applied to the manufacture of another type of SOI MOSFET in which the threshold voltage of the FET changes depending on the thickness of the Si layer 3. Needless to say.

【0023】[0023]

【発明の効果】以上詳述したように、本発明の半導体装
置は、SOI構造作成時に生じるシリコン層膜厚のばら
つきによりしきい値電圧が変化する完全空乏型などSO
I MOSFETの埋込み酸化膜層に固定酸化膜電荷層
を設けたので、固定酸化膜電荷層のシリコン層膜厚が厚
くなればなるほどしきい値を下げる機能により、シリコ
ン層膜厚のばらつきによるしきい値電圧への影響の少な
いSOI MOSFETが得られる。
As described in detail above, the semiconductor device of the present invention has a SOI structure such as a fully depleted SOI in which the threshold voltage changes due to the variation in the thickness of the silicon layer generated when the SOI structure is formed.
Since the fixed oxide film charge layer is provided in the buried oxide film layer of the IMOSFET, the threshold value decreases as the silicon layer film thickness of the fixed oxide film charge layer becomes thicker. An SOI MOSFET having little effect on the value voltage can be obtained.

【0024】また、本発明の半導体装置の製造方法によ
れば、完全空乏型などのSOI MOSFETを製造す
る際、SOI構造のシリコン層を通して埋込み酸化膜に
シリコンイオン注入し、シリコンイオン到達距離に固定
酸化膜電荷層を作成しているので、固定酸化膜電荷層の
シリコン層膜厚が厚くなればなるほどしきい値を下げる
機能により、シリコン層膜厚のばらつきによるしきい値
電圧への影響の少ないSOI MOSFETが得られ
る。そのためSOI MOSFET製造時のシリコン層
膜厚のばらつきに起因するの歩留まりを改善でき、半導
体装置の製造コストを削減することが可能となる。
According to the method of manufacturing a semiconductor device of the present invention, when manufacturing a SOI MOSFET of a complete depletion type or the like, silicon ions are implanted into a buried oxide film through a silicon layer having an SOI structure and fixed at a silicon ion arrival distance. Since the oxide film charge layer is formed, the function of lowering the threshold value as the silicon layer film thickness of the fixed oxide film charge layer becomes thicker has a small influence on the threshold voltage due to the variation of the silicon layer film thickness. An SOI MOSFET is obtained. Therefore, the yield resulting from the variation in the thickness of the silicon layer during the manufacture of the SOI MOSFET can be improved, and the manufacturing cost of the semiconductor device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明するための完全空乏型SO
I MOSFETの断面構造模式図。
FIG. 1 shows a fully depleted SO for explaining the principle of the present invention.
FIG. 3 is a schematic cross-sectional view of an IMOSFET.

【図2】本発明の実施形態にかかる完全空乏型SOI
MOSFETの製造プロセスを示すもので、(a)はS
OI構造断面図、(b)は固定酸化膜電荷層作成説明
図、(c)はFET構造説明図。
FIG. 2 shows a fully depleted SOI according to an embodiment of the present invention.
FIG. 5A shows a manufacturing process of a MOSFET, wherein FIG.
FIG. 4 is a cross-sectional view of the OI structure, FIG. 4B is an explanatory view of forming a fixed oxide charge layer, and FIG.

【図3】完全空乏型SOI MOSFETのシリコン層
膜厚−しきい値電圧特性図。
FIG. 3 is a graph showing a relationship between a silicon layer thickness and a threshold voltage of a fully depleted SOI MOSFET.

【図4】従来例にかかる完全空乏型SOI MOSFE
Tの製造プロセスを示す断面図。
FIG. 4 shows a conventional fully-depleted SOI MOSFE.
Sectional drawing which shows the manufacturing process of T.

【符号の説明】[Explanation of symbols]

1…シリコン基板 2…埋込み酸化膜層 3…シリコン層 4…固定酸化膜電荷層 5…ゲート酸化膜 6…ゲート電極 Tsi…シリコン層膜厚 Tbox…埋込み酸化膜厚 Cbox…埋込み酸化膜容量 Rp…Siイオン到達距離 X…固定酸化膜電荷位置 Qf…固定酸化膜電荷 ΔVes…等価基板バイアスREFERENCE SIGNS LIST 1 silicon substrate 2 buried oxide film layer 3 silicon layer 4 fixed oxide film charge layer 5 gate oxide film 6 gate electrode T si silicon film thickness T box buried oxide film thickness C box buried oxide film Capacitance R p : reach distance of Si ions X ... fixed oxide film charge position Q f ... fixed oxide film charge ΔV es ... equivalent substrate bias

フロントページの続き Fターム(参考) 5F058 BA20 BD03 BD04 BH15 BJ04 BJ10 5F110 AA08 CC01 CC02 DD05 DD13 DD24 DD25 DD30 GG02 GG12Continued on front page F term (reference) 5F058 BA20 BD03 BD04 BH15 BJ04 BJ10 5F110 AA08 CC01 CC02 DD05 DD13 DD24 DD25 DD30 GG02 GG12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に埋込酸化膜層とシリコ
ン層が順次形成されてなるSOI構造を有するSOI
MOSFETにおいて、前記埋込み酸化膜の中に固定酸
化膜電荷層が設けられていることを特徴とする半導体装
置。
1. An SOI having an SOI structure in which a buried oxide film layer and a silicon layer are sequentially formed on a silicon substrate.
In a MOSFET, a fixed oxide film charge layer is provided in the buried oxide film.
【請求項2】 前記SOI MOSFETが、完全空乏
型SOI MOSFETであることを特徴とする請求項
1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein said SOI MOSFET is a fully depleted SOI MOSFET.
【請求項3】 前記固定酸化膜電荷層の前記シリコン層
と埋込酸化膜層の境界からの位置は、前記シリコン層膜
厚の厚い素子においては浅い位置に、シリコン層膜厚の
薄い素子においては深い位置となっていることを特徴と
する請求項1または2に記載の半導体装置。
3. A position of the fixed oxide film charge layer from a boundary between the silicon layer and the buried oxide film layer is a shallow position in an element having a large thickness of the silicon layer, and a position is small in an element having a small thickness of the silicon layer. 3. The semiconductor device according to claim 1, wherein は is a deep position.
【請求項4】 請求項1,2,3記載の半導体装置の製
造方法であって、 シリコン基板上に埋込酸化膜層とシリコン層とを順次形
成してSOI構造を作成し、このシリコン層を通して埋
込み酸化膜の中にシリコンイオンを注入して前記固定酸
化膜電荷層を作製することを特徴とする半導体装置の製
造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein a buried oxide film layer and a silicon layer are sequentially formed on a silicon substrate to form an SOI structure. And implanting silicon ions into the buried oxide film through the through hole to form the fixed oxide film charge layer.
【請求項5】 前記シリコンイオンの注入は、シリコン
層膜厚に関わりなくシリコン層の上面から所定のシリコ
ンイオン到達距離となるように注入することを特徴とす
る請求項4に記載の半導体装置の製造方法。
5. The semiconductor device according to claim 4, wherein the silicon ions are implanted so as to have a predetermined silicon ion arrival distance from the upper surface of the silicon layer regardless of the thickness of the silicon layer. Production method.
JP2001105487A 2001-04-04 2001-04-04 Semiconductor device and its manufacturing method Pending JP2002299634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105487A JP2002299634A (en) 2001-04-04 2001-04-04 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001105487A JP2002299634A (en) 2001-04-04 2001-04-04 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002299634A true JP2002299634A (en) 2002-10-11

Family

ID=18958178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105487A Pending JP2002299634A (en) 2001-04-04 2001-04-04 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002299634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2464741A (en) * 2008-10-27 2010-04-28 Nano Eprint Ltd Field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121681A (en) * 1991-10-25 1993-05-18 Nec Corp Manufacture of cmos circuit element and soi mos fet
JPH08293610A (en) * 1995-04-24 1996-11-05 Asahi Chem Ind Co Ltd Semiconductor device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121681A (en) * 1991-10-25 1993-05-18 Nec Corp Manufacture of cmos circuit element and soi mos fet
JPH08293610A (en) * 1995-04-24 1996-11-05 Asahi Chem Ind Co Ltd Semiconductor device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2464741A (en) * 2008-10-27 2010-04-28 Nano Eprint Ltd Field effect transistor
GB2464741B (en) * 2008-10-27 2013-07-31 Pragmatic Printing Ltd FETs, semiconductor devices and their methods of manufacture

Similar Documents

Publication Publication Date Title
KR101229186B1 (en) Finfets with multiple fin heights
US7906381B2 (en) Method for integrating silicon-on-nothing devices with standard CMOS devices
EP0550015B1 (en) Lateral double diffused insulated gate field effect transistor and fabrication process
US20020003256A1 (en) MOS semiconductor device and method of manufacturing the same
US6515333B1 (en) Removal of heat from SOI device
EP1487023A2 (en) Semiconductor device comprising a MIS transistor and method for manufacturing the same
US20060131657A1 (en) Semiconductor integrated circuit device and method for the same
US6599782B1 (en) Semiconductor device and method of fabricating thereof
TWI260731B (en) A method of forming differential spacers for individual optimization of n-channel and p-channel transistors
US6724049B2 (en) SOI semiconductor device with insulating film having different properties relative to the buried insulating film
US6501135B1 (en) Germanium-on-insulator (GOI) device
US6555482B2 (en) Process for fabricating a MOS transistor having two gates, one of which is buried and corresponding transistor
JPH06268215A (en) Mis type semiconductor device
JPH098321A (en) Transistor structure of semiconductor element and its manufacture
JP3114654B2 (en) Method for manufacturing semiconductor device
US20030096479A1 (en) Method of forming narrow trenches in semiconductor substrates
JP2002299634A (en) Semiconductor device and its manufacturing method
US6407428B1 (en) Field effect transistor with a buried and confined metal plate to control short channel effects
US20060068542A1 (en) Isolation trench perimeter implant for threshold voltage control
JP4619140B2 (en) MOS field effect transistor and manufacturing method thereof
US20080200017A1 (en) Method of producing semiconductor device
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JP4532857B2 (en) Manufacturing method of semiconductor device having shallow trench isolation structure
JP4265890B2 (en) Method for manufacturing insulated gate field effect transistor
KR100319449B1 (en) Method for fabricating the sub-50 nm-channel MOSFET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405