JP2002296293A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JP2002296293A
JP2002296293A JP2001101928A JP2001101928A JP2002296293A JP 2002296293 A JP2002296293 A JP 2002296293A JP 2001101928 A JP2001101928 A JP 2001101928A JP 2001101928 A JP2001101928 A JP 2001101928A JP 2002296293 A JP2002296293 A JP 2002296293A
Authority
JP
Japan
Prior art keywords
weight
frame
auxiliary
main surface
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001101928A
Other languages
Japanese (ja)
Inventor
Muneo Harada
宗生 原田
Naoki Ikeuchi
直樹 池内
Hiroyuki Hashimoto
浩幸 橋本
Kazuhiro Okada
和廣 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacoh Corp
Nippon Steel Corp
Wako KK
Original Assignee
Wacoh Corp
Sumitomo Metal Industries Ltd
Wako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacoh Corp, Sumitomo Metal Industries Ltd, Wako KK filed Critical Wacoh Corp
Priority to JP2001101928A priority Critical patent/JP2002296293A/en
Publication of JP2002296293A publication Critical patent/JP2002296293A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • G01P2015/0842Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape

Abstract

PROBLEM TO BE SOLVED: To allow a weight to be increased, to lengthen a length of of a beam to enhance detection sensitivity compared with a conventional acceleration sensor, to make a frequency characteristic and impact resistance excellent, and to reduce a size. SOLUTION: A sensor part 1 comprising a macro structure has a rectangular frame part 11, and a columnar weight member 12 is provided in the central part of the frame part 11. The weight member 12 is connected to the central parts of respective sides of the frame part 11 by beams 13, 13, 13, 13. Quadrangular prism-like auxiliary weight members 14, 14, 14, 14 are provided adjacently to the weight member 12 in a condition inserted loosely in a space surrounded by the frame part 11 and an inner circumferential face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加速度センサ、特
にピエゾ抵抗効果を示す抵抗素子を用いて、二次元又は
三次元方向の加速度を検出する加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor, and more particularly to an acceleration sensor that detects a two-dimensional or three-dimensional acceleration using a resistance element exhibiting a piezoresistance effect.

【0002】[0002]

【従来の技術】図5は、従来のピエゾ抵抗検出型の加速
度センサを示す斜視図であり、図中3はマイクロ構造体
である。マイクロ構造体とは、微細加工プロセスにより
製造される半導体基板又はマイクロマシン等をいう。
2. Description of the Related Art FIG. 5 is a perspective view showing a conventional piezoresistive detection type acceleration sensor, in which 3 is a microstructure. The microstructure refers to a semiconductor substrate or a micromachine manufactured by a microfabrication process.

【0003】マイクロ構造体3は、矩形の枠部31を有
し、枠部31の中心部には円柱状の重錘体32が設けら
れている。この重錘体32は枠部31の各辺の中央部
と、ビーム33,33,33,33により接続されてい
る。一直線状をなすビーム33,33には、X軸方向の
加速度成分を検出するための抵抗素子Rx1〜Rx4
が、これと直交するビーム33,33には、Y軸方向の
加速度成分を検出するための抵抗素子Ry1〜Ry4
が、さらに、X軸と平行で、その近傍にある軸上にZ軸
方向の加速度成分を検出するための抵抗素子Rz1〜R
z4が配されている。
The microstructure 3 has a rectangular frame 31, and a column-shaped weight 32 is provided at the center of the frame 31. The weight 32 is connected to the center of each side of the frame 31 by beams 33, 33, 33, 33. The linear beams 33, 33 include resistance elements Rx1 to Rx4 for detecting acceleration components in the X-axis direction.
However, the beams 33, 33 orthogonal to this have resistance elements Ry1 to Ry4 for detecting an acceleration component in the Y-axis direction.
Are further provided with resistance elements Rz1 to Rz1 for detecting an acceleration component in the Z-axis direction on an axis parallel to and in the vicinity of the X-axis.
z4 is arranged.

【0004】図6び図7は、加速度センサ内の抵抗素子
によって形成されるブリッジ回路を示す回路図であり、
図6はRx1〜Rx4及びRy1〜Ry4についての回
路図、図7はRz1〜Rz4についての回路図である。
加速度が加わった場合、加速度に起因して重錘体32に
外力が作用し、重錘体32は定位置から変位し、この変
位によって生じた機械的歪みはビーム33,33,3
3,33の機械的変形によって吸収され、この上に形成
された抵抗素子Rの電気抵抗が変化する。その結果、図
6に示すブリッジ回路の平衡がくずれて電圧Voutが
検出される。ここで、X(Y)軸方向の加速度に対して
重錘体32はモーメントを受け、X(Y)軸方向につい
てのピエゾ抵抗変化分は加算されて出力されるが、Z軸
方向については、変化分が相殺されて出力されない。一
方、Z軸方向の加速度に対して重錘体32は垂直方向に
変位し、ピエゾ抵抗変化分は、Z軸方向については加算
されて出力され、X(Y)軸方向については相殺されて
出力されない。
FIGS. 6 and 7 are circuit diagrams showing a bridge circuit formed by a resistance element in an acceleration sensor.
FIG. 6 is a circuit diagram for Rx1 to Rx4 and Ry1 to Ry4, and FIG. 7 is a circuit diagram for Rz1 to Rz4.
When an acceleration is applied, an external force acts on the weight body 32 due to the acceleration, and the weight body 32 is displaced from a fixed position. The mechanical strain caused by this displacement is generated by the beams 33, 33, 3.
The electric resistance of the resistance element R formed thereon is changed by being absorbed by the mechanical deformation of 3, 33. As a result, the balance of the bridge circuit shown in FIG. 6 is lost, and the voltage Vout is detected. Here, the weight body 32 receives a moment with respect to the acceleration in the X (Y) axis direction, and the piezoresistance change in the X (Y) axis direction is added and output. The change is canceled out and not output. On the other hand, the weight body 32 is displaced in the vertical direction with respect to the acceleration in the Z-axis direction, and the piezoresistance change is added and output in the Z-axis direction, and is canceled and output in the X (Y) -axis direction. Not done.

【0005】[0005]

【発明が解決しようとする課題】上述した図5のピエゾ
抵抗検出型の加速度センサの場合、慣性力を増加させる
ために重錘体32を大きくすると、ビーム33が短くな
り、ビーム33の歪みが相対的に小さくなって、ピエゾ
抵抗による検出感度が相対的に小さくなるという問題が
あった。このことは、加速度センサを小型化する障害と
なっていた。
In the case of the piezoresistive detection type acceleration sensor shown in FIG. 5, if the weight 32 is increased to increase the inertial force, the beam 33 is shortened, and the distortion of the beam 33 is reduced. There is a problem in that the detection sensitivity becomes relatively small, and the detection sensitivity due to the piezoresistance becomes relatively small. This has been an obstacle to downsizing the acceleration sensor.

【0006】本発明は斯かる事情に鑑みてなされたもの
であり、補助重錘体を有することにより、重錘体と併せ
た重量を大きくすることができるとともに、ビームの長
さを長くして検出感度を従来の加速度センサより向上さ
せることができ、周波数特性及び耐衝撃性が良好であ
り、小型化が可能である加速度センサを提供することを
目的とする。
The present invention has been made in view of such circumstances, and by having an auxiliary weight, it is possible to increase the weight together with the weight and to increase the length of the beam. An object of the present invention is to provide an acceleration sensor that can improve detection sensitivity as compared with a conventional acceleration sensor, has good frequency characteristics and shock resistance, and can be downsized.

【0007】また、本発明は、補助重錘体と枠部の内周
面との間隔、及び補助重錘体とビームとの間隔を略同じ
にすることにより、X軸及びY軸方向において精度よく
加速度を検出することができるとともに、補助重錘体の
大きさを効果的に大きくすることができる加速度センサ
を提供することを目的とする。
In addition, the present invention provides accuracy in the X-axis and Y-axis directions by making the distance between the auxiliary weight and the inner peripheral surface of the frame portion and the distance between the auxiliary weight and the beam substantially the same. It is an object of the present invention to provide an acceleration sensor that can detect acceleration well and can effectively increase the size of an auxiliary weight body.

【0008】そして、本発明は、ビームを、重錘体と枠
部の各辺の略中央部とをそれぞれ接続すべく構成し、補
助重錘体を四角柱状にすることにより、さらにX軸及び
Y軸方向において精度よく加速度を検出することがで
き、重量を大きくすることができる加速度センサを提供
することを目的とする。
According to the present invention, the beam is formed so as to connect the weight body and the substantially central portion of each side of the frame portion, and the auxiliary weight body is formed in a quadrangular prism shape, so that the X-axis and the X-axis are further formed. It is an object of the present invention to provide an acceleration sensor that can accurately detect acceleration in the Y-axis direction and can increase the weight.

【0009】さらに、本発明は、枠部の角部にビーム幅
より長い斜辺と角部を挟む二辺とからなる三角部を設
け、三角部の斜辺の略中央部においてビームを接続し、
補助重錘体を三角柱状にすることにより、ビーム長を長
くとることができ、検出感度が向上し、応力集中が生じ
ず、耐久性が向上するとともに、ピエゾ抵抗のビーム幅
方向にかかる歪みが均一となり、感度特性が向上する加
速度センサを提供することを目的とする。
Further, according to the present invention, a triangular portion having a hypotenuse longer than the beam width and two sides sandwiching the triangular portion is provided at a corner of the frame, and a beam is connected at a substantially central portion of the hypotenuse of the triangular portion.
By making the auxiliary weight body triangular prism-shaped, the beam length can be increased, the detection sensitivity is improved, stress concentration does not occur, durability is improved, and distortion applied to the piezoresistor in the beam width direction is reduced. It is an object of the present invention to provide an acceleration sensor that is uniform and has improved sensitivity characteristics.

【0010】[0010]

【課題を解決するための手段】第1発明の加速度センサ
は、微細加工プロセスにより製造されるマイクロ構造体
の加速度の作用に基づく機械的変形を、前記マイクロ構
造体に形成した抵抗素子の電気抵抗の変化により検出し
て、加速度の向き及び大きさを検出すべくなしてある加
速度センサにおいて、前記マイクロ構造体は、枠部と、
前記枠部の略中心部に設けられた重錘体と、前記重錘体
と前記枠部とを接続するものであり、交叉する二直線状
をなす4本のビームと、前記ビームのうちの2本と前記
枠部の内周面とにより包囲される空間内に遊挿する状態
で前記重錘体に連設された、少なくとも1つの補助重錘
体とを有し、前記枠部表面を含む第1主面に対して前記
マイクロ構造体中心の垂直上方から見たときに、前記4
本のビームのそれぞれの長さが同じであり、前記マイク
ロ構造体の第1主面中心を軸として90度回転させたと
きの前記垂直上方から見た前記枠部、前記重錘体、及び
前記4本のビームの写像が、元の写像と同じになり、前
記マイクロ構造体の第1主面の反対側の主面を第2主面
としたとき、第1主面と第2主面とは、前記マイクロ構
造体中心の垂直上方から見たときに、前記重錘体及び前
記補助重錘体における平面視が略同じであり、さらに、
前記重錘体及び前記補助重錘体が同一の厚みを有し、か
つ前記枠部と略同じ厚みであり、各主面がパッケージと
相対する際に、前記パッケージに対して前記重錘体及び
前記補助重錘体の各主面部分が、僅かに離間して保持さ
れるように形成されており、前記抵抗素子は、前記ビー
ム上に形成してあることを特徴とする。ここで、前記4
本のビームは直交するのが好ましい。
According to a first aspect of the present invention, there is provided an acceleration sensor, wherein a mechanical deformation based on an acceleration effect of a microstructure manufactured by a micromachining process is performed by an electric resistance of a resistance element formed on the microstructure. In the acceleration sensor that is detected by detecting the change in the direction and the magnitude of the acceleration, the micro structure, a frame portion,
A weight provided substantially at the center of the frame, connecting the weight and the frame, and intersecting two linear beams; And at least one auxiliary weight body connected to the weight body in a state of being loosely inserted into a space surrounded by the two and the inner peripheral surface of the frame portion, and When viewed from above vertically the center of the microstructure with respect to the first main surface including
The length of each of the beams of the book is the same, and the frame portion, the weight body, and the weight, as viewed from above the vertical when rotated by 90 degrees around the center of the first main surface of the microstructure, When the mapping of the four beams becomes the same as the original mapping, and the main surface opposite to the first main surface of the microstructure is the second main surface, the first main surface and the second main surface are When viewed from vertically above the center of the microstructure, the weight body and the auxiliary weight body have substantially the same planar view, and further,
The weight body and the auxiliary weight body have the same thickness, and are substantially the same thickness as the frame portion, and when each main surface faces the package, the weight body and Each main surface portion of the auxiliary weight is formed so as to be held slightly apart, and the resistance element is formed on the beam. Here, the above 4
The beams are preferably orthogonal.

【0011】第1発明においては、補助重錘体を有して
おり、重錘体と併せた重量を大きくすることができるの
で、加速度の検出感度が従来の加速度センサより向上す
る。そして、補助重錘体との合計重量を大きくすること
で重錘体を小さくすることができ、その結果、ビームの
長さを長くしてピエゾ抵抗による検出感度を向上させる
ことができる。従って、加速度センサを小型化すること
が可能になる。また、補助重錘体はダンピング機能を有
するので、周波数特性を改善することもできる。さら
に、補助重錘体は変位しても枠部がストッパとして機能
するので、耐衝撃性が良好である。そして、後述するR
IEによるエッチングにより、重錘体、補助重錘体及び
枠部の内周面は略垂直な側面を得ることができるので、
効果的に重量を大きくすることができる。これによりマ
イクロ構造体の重錘体及び補助重錘体の第1主面及び第
2主面の平面視は略同じになる。加えて、重錘体、補助
重錘体は枠部と略同じ厚みであるが、パッケージとの間
に隙間を設けるべくなしてあるので、パッケージによっ
て性能が悪くなることもない。
According to the first aspect of the present invention, since the auxiliary weight is provided and the weight together with the weight can be increased, the acceleration detection sensitivity is improved as compared with the conventional acceleration sensor. By increasing the total weight with the auxiliary weight, the weight can be reduced, and as a result, the length of the beam can be increased and the detection sensitivity due to the piezoresistance can be improved. Therefore, it is possible to reduce the size of the acceleration sensor. Further, since the auxiliary weight has a damping function, the frequency characteristics can be improved. Furthermore, even if the auxiliary weight body is displaced, the frame portion functions as a stopper, so that the impact resistance is good. And R
Since the inner peripheral surfaces of the weight body, the auxiliary weight body, and the frame portion can obtain substantially vertical side surfaces by etching by the IE,
The weight can be effectively increased. Accordingly, the first main surface and the second main surface of the weight body and the auxiliary weight body of the microstructure become substantially the same in plan view. In addition, the weight body and the auxiliary weight body have substantially the same thickness as the frame part, but since a gap is provided between the weight body and the auxiliary weight body, performance is not deteriorated by the package.

【0012】第2発明の加速度センサは、第1発明にお
いて、前記補助重錘体と前記枠部の内周面との間隔、及
び前記補助重錘体と前記ビームとの間隔が略同じである
ことを特徴とする。第2発明においては、X軸及びY軸
方向において精度よく加速度を検出することができると
ともに、スペースを有効利用して補助重錘体の大きさを
効果的に大きくすることができる。
According to a second aspect of the present invention, in the acceleration sensor according to the first aspect, a distance between the auxiliary weight and the inner peripheral surface of the frame and a distance between the auxiliary weight and the beam are substantially the same. It is characterized by the following. According to the second aspect, the acceleration can be accurately detected in the X-axis and Y-axis directions, and the size of the auxiliary weight can be effectively increased by effectively utilizing the space.

【0013】第3発明の加速度センサは、第1又は第2
発明において、前記枠部は正方形状をなし、前記重錘体
と前記枠部の各辺の略中央部とを前記ビームが接続すべ
くなしてあり、前記補助重錘体は四角柱状をなすことを
特徴とする。第3発明においては、補助重錘体がX軸及
びY軸と平行に配置されており、X軸及びY軸方向にお
いてさらに精度よく加速度を検出することができ、補助
重錘体が四角柱状をなすので、重量を大きくすることが
できる。
According to a third aspect of the present invention, there is provided the acceleration sensor according to the first or second aspect.
In the present invention, the frame portion has a square shape, the beam connects the weight body and a substantially central portion of each side of the frame portion, and the auxiliary weight body has a quadrangular prism shape. It is characterized by. In the third invention, the auxiliary weight is disposed parallel to the X-axis and the Y-axis, so that the acceleration can be detected more accurately in the X-axis and the Y-axis directions. As a result, the weight can be increased.

【0014】第4発明の加速度センサは、第1又は第2
発明において、前記枠部は正方形状をなし、前記枠部の
角部にはビーム幅より長い斜辺と前記角部を挟む二辺と
からなる三角部が設けられ、前記三角部の斜辺の中央部
において前記ビームが接続され、前記補助重錘体は三角
柱状をなすことを特徴とする。第4発明においては、ビ
ーム長を長くとれるので、検出感度が向上する。加え
て、三角部において、ビームの側面と枠部の内周面との
なす角度が鋭角にならないように構成したので、応力集
中が生じず、耐久性が向上する。また、ピエゾ抵抗のビ
ーム幅方向にかかる歪みが均一となり、感度特性が向上
する。
According to a fourth aspect of the present invention, there is provided the acceleration sensor according to the first or second aspect.
In the invention, the frame portion has a square shape, and a corner portion of the frame portion is provided with a triangular portion including a hypotenuse longer than a beam width and two sides sandwiching the corner, and a central portion of the hypotenuse of the triangular portion. Wherein the beam is connected, and the auxiliary weight has a triangular prism shape. In the fourth aspect, since the beam length can be increased, the detection sensitivity is improved. In addition, since the angle formed between the side surface of the beam and the inner peripheral surface of the frame at the triangular portion does not become acute, stress concentration does not occur and durability is improved. Further, the strain applied to the piezoresistor in the beam width direction becomes uniform, and the sensitivity characteristics are improved.

【0015】[0015]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面に基づいて具体的に説明する。図1は、本発明
の実施の形態1に係るピエゾ抵抗検出型の加速度センサ
のセンサ部を表面(第1主面)側から見た斜視図であ
り、図2は裏面(第2主面)側から見た斜視図であり、
図中、1はマイクロ構造体としてのSOI(Silicon On
Insulator)基板からなるセンサ部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a perspective view of a sensor portion of a piezoresistance detection type acceleration sensor according to Embodiment 1 of the present invention as viewed from the front surface (first main surface) side, and FIG. 2 is a back surface (second main surface). It is a perspective view seen from the side,
In the figure, reference numeral 1 denotes an SOI (Silicon On Silicon) as a microstructure.
Insulator) A sensor unit composed of a substrate.

【0016】センサ部1は、矩形の枠部11を有し、枠
部11の中心部には円柱状の重錘体12が設けられてい
る。この重錘体12は枠部11の各辺の中央部と、ビー
ム13,13,13,13とにより接続されている。一
直線状をなすビーム13,13には、X軸方向の加速度
成分を検出するための抵抗素子Rx1〜Rx4が、これ
と直交するビーム13,13には、Y軸方向の加速度成
分を検出するための抵抗素子Ry1〜Ry4が、X軸と
平行で、その近傍にある軸上にZ軸方向の加速度成分を
検出するための抵抗素子Rz1〜Rz4が配されてい
る。そして、四角柱状の補助重錘体14,14,14,
14が、ビーム13,13と枠部11の内周面とにより
包囲される空間内に遊挿する状態で、重錘体12に連設
してある。
The sensor section 1 has a rectangular frame portion 11, and a column-shaped weight 12 is provided at the center of the frame portion 11. The weight body 12 is connected to the center of each side of the frame 11 by beams 13, 13, 13, 13. The linear beams 13 have resistance elements Rx1 to Rx4 for detecting an acceleration component in the X-axis direction, and the beams 13, 13 which are orthogonal thereto have a resistance element Rx1 for detecting an acceleration component in the Y-axis direction. Are parallel to the X-axis, and the resistance elements Rz1-Rz4 for detecting the acceleration component in the Z-axis direction are arranged on an axis in the vicinity of the resistance elements Ry1-Ry4. Then, the square pillar-shaped auxiliary weights 14, 14, 14,
The weight 14 is connected to the weight 12 in a state of being freely inserted into a space surrounded by the beams 13, 13 and the inner peripheral surface of the frame portion 11.

【0017】センサ部1の寸法は、縦及び横の長さがそ
れぞれ2.5mm、厚みが566μmであり、枠部11
の幅が500μmである。そして、重錘体12の直径が
400μm、ビーム13の長さが550μm、幅が70
μm、補助重錘体14の縦及び横の長さが615μm、
補助重錘体14と、ビーム13及び枠部11の内周面と
の間隔が夫々50μmである。
The dimensions of the sensor section 1 are 2.5 mm in length and width and 566 μm in thickness, respectively.
Is 500 μm. The weight 12 has a diameter of 400 μm, the beam 13 has a length of 550 μm, and a width of 70 μm.
μm, the vertical and horizontal length of the auxiliary weight body 14 is 615 μm,
The distance between the auxiliary weight 14 and the inner peripheral surfaces of the beam 13 and the frame 11 is 50 μm.

【0018】加速度センサ内の抵抗素子によって形成さ
れるブリッジ回路は上述した図5及び図6と同一であ
り、Rx1〜Rx4及びRy1〜Ry4についての回路
図は図5と同一、Rz1〜Rz4についての回路図は図
6と同一である。加速度が加わった場合、加速度に起因
して重錘体12及び補助重錘体14に外力が作用し、重
錘体12及び補助重錘体14は定位置から変位し、この
変位によって生じた機械的歪みがビーム13,13,1
3,13の機械的変形によって吸収され、この上に形成
された抵抗素子Rの電気抵抗が変化する。その結果、図
5及び図6に示すブリッジ回路の平衡がくずれて電圧V
outが検出される。ここで、X(Y)軸方向の加速度
に対して重錘体12及び補助重錘体14はモーメントを
受け、X(Y)軸のピエゾ抵抗変化分は加算されて出力
されるが、Z軸方向については、変化分が相殺されて出
力されない。一方、Z軸方向の加速度に対しては重錘体
12及び補助重錘体14は垂直方向に変化し、このため
ピエゾ抵抗変化分は、Z軸方向については加算されて出
力され、X(Y)軸方向については、相殺されて出力さ
れない。
The bridge circuit formed by the resistive elements in the acceleration sensor is the same as in FIGS. 5 and 6 described above, and the circuit diagrams for Rx1 to Rx4 and Ry1 to Ry4 are the same as those in FIG. The circuit diagram is the same as FIG. When an acceleration is applied, an external force acts on the weight body 12 and the auxiliary weight body 14 due to the acceleration, and the weight body 12 and the auxiliary weight body 14 are displaced from a fixed position. Beam 13,13,1
The electric resistance of the resistance element R formed thereon is absorbed by the mechanical deformation of the resistance elements 3 and 13 and changes. As a result, the balance of the bridge circuit shown in FIGS.
out is detected. Here, the weight body 12 and the auxiliary weight body 14 receive a moment with respect to the acceleration in the X (Y) axis direction, and the piezoresistance change in the X (Y) axis is added and output, but the Z axis is output. As for the direction, the change is canceled and is not output. On the other hand, the weight body 12 and the auxiliary weight body 14 change in the vertical direction with respect to the acceleration in the Z-axis direction. Therefore, the change in the piezoresistance is added and output in the Z-axis direction, and X (Y ) In the axial direction, the output is canceled and output.

【0019】次に、センサ部1の製造方法について説明
する。図3は、センサ部1を構成するSOI基板を示す
断面図である。このSOI基板は、厚み560μmのS
i層15、埋め込み酸化膜としての厚み1μmのSiO
2 層16、及び厚み5μmのSi層15の三層からな
る。まず、後ほど形成される一直線上のビーム13,1
3に対応する所定位置にX軸方向の加速度成分を検出す
るための抵抗素子Rx1〜Rx4を形成し、これと直交
するビーム13,13に対応する所定位置に、Y軸方向
の加速度成分を検出するための抵抗素子Ry1〜Ry4
を、X軸と平行で、その近傍にある軸上にZ軸方向の加
速度成分を検出するための抵抗素子Rz1〜Rz4を形
成する。次に、SOI基板の表面からSiO2 層16ま
でSiディープRIE(反応性イオンエッチング)によ
りエッチングを行い、重錘体12、ビーム13,13,
13,13、及び補助重錘体14,14,14,14を
形成する。そして、裏面からSiO2 層16までSiデ
ィープRIEにより深堀りエッチングを行い、重錘体1
2及び補助重錘体14,14,14,14を形成する。
最後に、SiO2 層16をエッチングすることにより重
錘体12、ビーム13,13,13,13、及び補助重
錘体14,14,14,14をリリースして、可動構造
とする。
Next, a method of manufacturing the sensor unit 1 will be described. FIG. 3 is a sectional view showing an SOI substrate constituting the sensor unit 1. This SOI substrate has a thickness of 560 μm.
i layer 15, 1 μm thick SiO as buried oxide film
It consists of three layers: two layers 16 and a 5 μm thick Si layer 15. First, a straight-line beam 13, 1 which will be formed later
Resistor elements Rx1 to Rx4 for detecting an acceleration component in the X-axis direction are formed at a predetermined position corresponding to X.3, and an acceleration component in the Y-axis direction is detected at a predetermined position corresponding to the beams 13 and 13 orthogonal to this. Resistance elements Ry1 to Ry4
Are formed on the axis parallel to the X-axis and in the vicinity thereof to form resistance elements Rz1 to Rz4 for detecting the acceleration component in the Z-axis direction. Next, etching from the surface of the SOI substrate to the SiO 2 layer 16 is performed by Si deep RIE (reactive ion etching), and the weight 12, the beams 13, 13, and
13, 13 and the auxiliary weight bodies 14, 14, 14, 14 are formed. Then, deep etching is performed by Si deep RIE from the back surface to the SiO 2 layer 16 to obtain the weight 1
2 and the auxiliary weights 14, 14, 14, 14.
Finally, the weight 12, the beams 13, 13, 13, 13 and the auxiliary weights 14, 14, 14, 14 are released by etching the SiO 2 layer 16 to form a movable structure.

【0020】以上のように構成された本発明の実施の形
態に係る加速度センサは、補助重錘体14を有してお
り、重錘体12と併せた重量を大きくすることができる
ので、加速度の検出感度が従来の加速度センサと比較し
て向上する。そして、補助重錘体14との合計重量を重
くすることで重錘体12の大きさを小さくすることがで
き、その結果、ビーム13の長さを長くしてピエゾ抵抗
による検出感度を向上させることができる。従って、加
速度センサの小型化が可能になる。従来の加速度センサ
は、センサ部としてのチップのサイズが5.0×5.0
(mm)、外形寸法が14.0×11.4×5.5(m
m)であったのに対し、本発明の加速度センサはチップ
のサイズが2.5×2.5(mm)、外形寸法が5.0
×5.0×5.0(mm)と小型化されている。
The acceleration sensor according to the embodiment of the present invention configured as described above has the auxiliary weight 14, and the weight together with the weight 12 can be increased. Is improved as compared with the conventional acceleration sensor. By increasing the total weight with the auxiliary weight 14, the size of the weight 12 can be reduced, and as a result, the length of the beam 13 is increased to improve the detection sensitivity due to the piezoresistance. be able to. Therefore, the size of the acceleration sensor can be reduced. The conventional acceleration sensor has a chip size of 5.0 × 5.0 as a sensor unit.
(Mm), and the outer dimensions are 14.0 × 11.4 × 5.5 (m
m), the acceleration sensor of the present invention has a chip size of 2.5 × 2.5 (mm) and an outer dimension of 5.0.
The size is reduced to × 5.0 × 5.0 (mm).

【0021】また、補助重錘体14はダンピング機能を
有するので、周波数特性を改善することもできる。さら
に、補助重錘体14は枠部11と接近しており、大きく
変位しても枠部11の内周面で止まるので、耐衝撃性が
良好である。そして、製造の歩留も向上し、製造原価が
大幅に低減したのが確認されている。
Since the auxiliary weight body 14 has a damping function, the frequency characteristics can be improved. Further, since the auxiliary weight body 14 is close to the frame portion 11 and stops on the inner peripheral surface of the frame portion 11 even if it is greatly displaced, the impact resistance is good. It has been confirmed that the production yield has been improved and the production cost has been significantly reduced.

【0022】なお、前記実施の形態においては、4本の
ビーム13が重錘体12と枠部11の各辺の中央部とを
接続すべくなしてあり、重錘体12が円柱状をなし、補
助重錘体14が四角柱状をなす場合につき説明している
がこれに限定されるものではない。4本のビーム13は
重錘体12と枠部11とを対角線状に接続すべく構成し
てもよく、重錘体12及び補助重錘体14の形状も円
柱、底面が楕円形である柱状体、三角柱及び四角柱等の
多角柱等、種々の形状から選択することができる。
In the above-described embodiment, the four beams 13 connect the weight 12 to the center of each side of the frame 11, and the weight 12 has a columnar shape. Although the case where the auxiliary weight body 14 has a quadrangular prism shape has been described, the present invention is not limited to this. The four beams 13 may be configured to connect the weight body 12 and the frame portion 11 diagonally, and the weight body 12 and the auxiliary weight body 14 also have a cylindrical shape and a columnar shape with an oval bottom surface. The shape can be selected from various shapes such as a body, a polygonal prism such as a triangular prism and a quadrangular prism.

【0023】図4は、その一例としての4本のビームを
対角線状に配置した本発明の加速度センサ部を示す平面
図である。図中、図1と同一部分は同一符号で示してあ
る。この加速度センサにおいては、枠部11の内周面の
各角部にビーム13の幅より長い斜辺と角部を挟む二辺
とからなる三角部17,17,17,17が設けられて
おり、この三角部17の斜辺の中央部と四角柱状の重錘
体12とがビーム13により接続されている。三角部1
7により、枠部11は八角形状をなす。この加速度セン
サにおいては、ビーム長を長くすることができ、よりX
軸及びY軸方向において精度よく加速度を検出すること
ができ、補助重錘体14の重量を大きくすることができ
る。また、前記三角部17を介しており、ビーム13の
側面と枠部11の内周面とが鋭角をなさず、応力集中が
なくなるので、耐久性が向上するとともに、抵抗素子の
ビーム13の幅方向の歪みの分布が一様となるので、感
度特性がより向上する。
FIG. 4 is a plan view showing an acceleration sensor section of the present invention in which four beams are arranged diagonally as an example. In the figure, the same parts as those in FIG. 1 are denoted by the same reference numerals. In this acceleration sensor, triangular portions 17, 17, 17, 17 each having an oblique side longer than the width of the beam 13 and two sides sandwiching the corner are provided at each corner of the inner peripheral surface of the frame portion 11, The central portion of the hypotenuse of the triangular portion 17 is connected to the quadrangular prism-shaped weight 12 by a beam 13. Triangle part 1
7, the frame 11 has an octagonal shape. In this acceleration sensor, the beam length can be increased, and X
Acceleration can be accurately detected in the axial and Y-axis directions, and the weight of the auxiliary weight 14 can be increased. Further, since the side surface of the beam 13 and the inner peripheral surface of the frame portion 11 do not form an acute angle through the triangular portion 17 and stress concentration is eliminated, the durability is improved and the width of the beam 13 of the resistance element is improved. Since the distribution of the distortion in the direction becomes uniform, the sensitivity characteristics are further improved.

【0024】また、前記実施の形態においては、補助重
錘体14と枠部11の内周面との間隔、及び補助重錘体
14とビーム13,13との間隔を略同じにした場合に
つき説明しているがこれに限定されない。但し、前記間
隔を略同じにした方がX軸及びY軸方向において精度よ
く加速度を検出することができ、スペースを有効利用し
て補助重錘体14の大きさを効果的に大きくすることが
できる。
In the above embodiment, the distance between the auxiliary weight 14 and the inner peripheral surface of the frame 11 and the distance between the auxiliary weight 14 and the beams 13 are substantially the same. Although described, it is not limited to this. However, it is possible to accurately detect the acceleration in the X-axis and Y-axis directions by making the intervals substantially the same, and to effectively use the space to effectively increase the size of the auxiliary weight 14. it can.

【0025】前記実施の形態においては、補助重錘体1
4又は24を4つ備えた場合につき説明しているがこれ
に限定されるものではなく、補助重錘体14又は24を
少なくとも1つ備えればよい。但し、補助重錘体14は
少なくとも2つを対称に配置した方がバランスが良く、
検出感度がより良好である。
In the above embodiment, the auxiliary weight 1
Although the case where four or four are provided is described, the present invention is not limited to this, and at least one auxiliary weight 14 or 24 may be provided. However, it is better to arrange at least two of the auxiliary weights 14 symmetrically,
The detection sensitivity is better.

【0026】[0026]

【発明の効果】以上、詳述したように、本発明において
は、補助重錘体を有しており、重錘体と併せた重量を大
きくすることができるので、加速度の検出感度が従来の
加速度センサより向上する。そして、補助重錘体との合
計重量を大きくすることで重錘体の大きさを小さくする
ことができ、その結果、ビームの長さを長くしてピエゾ
抵抗による検出感度を向上させることができる。従っ
て、加速度センサを小型化することが可能になる。ま
た、補助重錘体はダンピング機能を有するので、周波数
特性を改善させることもできる。さらに、補助重錘体は
変位しても枠部がストッパとして機能するので、耐衝撃
性が良好である。
As described above in detail, in the present invention, the auxiliary weight is provided, and the weight together with the weight can be increased. It is better than an acceleration sensor. By increasing the total weight with the auxiliary weight, the size of the weight can be reduced, and as a result, the length of the beam can be increased and the detection sensitivity due to piezoresistance can be improved. . Therefore, it is possible to reduce the size of the acceleration sensor. Further, since the auxiliary weight has a damping function, the frequency characteristics can be improved. Furthermore, even if the auxiliary weight body is displaced, the frame portion functions as a stopper, so that the impact resistance is good.

【0027】また、本発明においては、補助重錘体と枠
部の内周面との間隔、及び補助重錘体とビームとの間隔
を略同じに構成するので、X軸及びY軸方向において精
度よく加速度を検出することができるとともに、スペー
スを有効利用して補助重錘体の大きさを効果的に大きく
することができる。その結果、製造歩留が向上し、製造
原価を低減させることができる。
In the present invention, the distance between the auxiliary weight and the inner peripheral surface of the frame portion and the distance between the auxiliary weight and the beam are substantially the same. Acceleration can be detected with high accuracy, and the size of the auxiliary weight body can be effectively increased by effectively utilizing the space. As a result, the production yield is improved, and the production cost can be reduced.

【0028】さらに、本発明においては、補助重錘体が
X軸及びY軸と平行に配置されており、X軸及びY軸方
向においてさらに精度よく加速度を検出することがで
き、補助重錘体が四角柱状をなすので、その重量を大き
くすることができる。
Further, in the present invention, the auxiliary weight is disposed in parallel with the X-axis and the Y-axis, so that the acceleration can be detected more accurately in the X-axis and the Y-axis directions. Since it has a quadrangular prism shape, its weight can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るピエゾ抵抗検出型の
加速度センサのセンサ部を表面側から見た斜視図であ
る。
FIG. 1 is a perspective view of a sensor unit of a piezoresistive detection type acceleration sensor according to an embodiment of the present invention as viewed from the front side.

【図2】本発明の実施の形態に係るピエゾ抵抗検出型の
加速度センサのセンサ部を裏面側から見た斜視図であ
る。
FIG. 2 is a perspective view of a sensor portion of the piezoresistance detection type acceleration sensor according to the embodiment of the present invention as viewed from the back side.

【図3】センサ部を構成するSOI基板を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing an SOI substrate constituting a sensor unit.

【図4】本発明の他のピエゾ抵抗検出型の加速度センサ
のセンサ部を示す平面図である。
FIG. 4 is a plan view showing a sensor unit of another piezoresistance detection type acceleration sensor of the present invention.

【図5】従来のピエゾ抵抗検出型の加速度センサを示す
斜視図である。
FIG. 5 is a perspective view showing a conventional piezoresistance detection type acceleration sensor.

【図6】加速度センサ内の抵抗素子によって形成される
ブリッジ回路を示す回路図である。
FIG. 6 is a circuit diagram showing a bridge circuit formed by a resistance element in the acceleration sensor.

【図7】加速度センサ内の抵抗素子によって形成される
ブリッジ回路を示す回路図である。
FIG. 7 is a circuit diagram showing a bridge circuit formed by a resistance element in the acceleration sensor.

【符号の説明】[Explanation of symbols]

1 センサ部 11 枠部 12 重錘体 13 ビーム 14 補助重錘体 DESCRIPTION OF SYMBOLS 1 Sensor part 11 Frame part 12 Weight 13 Beam 14 Auxiliary weight

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池内 直樹 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 橋本 浩幸 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 岡田 和廣 埼玉県大宮市桜木町4−244−1 株式会 社ワコー内 Fターム(参考) 4M112 CA21 CA24 CA25 CA29 FA01 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Naoki Ikeuchi 1-8 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Metal Industries, Ltd. Electronics Research Laboratory (72) Inventor Hiroyuki Hashimoto 1-8 Fuso-cho, Amagasaki-shi, Hyogo No. Sumitomo Metal Industries, Ltd. Electronics Research Laboratory (72) Inventor Kazuhiro Okada 4-244-1, Sakuragicho, Omiya City, Saitama Prefecture Wako F-term (reference) 4M112 CA21 CA24 CA25 CA29 FA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 微細加工プロセスにより製造されるマイ
クロ構造体の加速度の作用に基づく機械的変形を、前記
マイクロ構造体に形成した抵抗素子の電気抵抗の変化に
より検出して、加速度の向き及び大きさを検出すべくな
してある加速度センサにおいて、 前記マイクロ構造体は、 枠部と、 前記枠部の略中心部に設けられた重錘体と、 前記重錘体と前記枠部とを接続するものであり、交叉す
る二直線状をなす4本のビームと、 前記ビームのうちの2本と前記枠部の内周面とにより包
囲される空間内に遊挿する状態で前記重錘体に連設され
た、少なくとも1つの補助重錘体とを有し、 前記枠部表面を含む第1主面に対して前記マイクロ構造
体中心の垂直上方から見たときに、前記4本のビームの
それぞれの長さが同じであり、 前記マイクロ構造体の第1主面中心を軸として90度回
転させたときの前記垂直上方から見た前記枠部、前記重
錘体、及び前記4本のビームの写像が、元の写像と同じ
になり、 前記マイクロ構造体の第1主面の反対側の主面を第2主
面としたとき、第1主面と第2主面とは、前記マイクロ
構造体中心の垂直上方から見たときに、前記重錘体及び
前記補助重錘体における平面視が略同じであり、 さらに、前記重錘体及び前記補助重錘体が同一の厚みを
有し、かつ前記枠部と略同じ厚みであり、各主面がパッ
ケージと相対する際に、前記パッケージに対して前記重
錘体及び前記補助重錘体の各主面部分が、僅かに離間し
て保持されるように形成されており、 前記抵抗素子は、前記ビーム上に形成してあることを特
徴とする加速度センサ。
1. A method for detecting a mechanical deformation of a microstructure manufactured by a microfabrication process based on the effect of acceleration based on a change in electric resistance of a resistance element formed on the microstructure. In the acceleration sensor configured to detect the weight, the microstructure includes: a frame; a weight provided substantially at a center of the frame; and a weight connected to the weight and the frame. And two beams intersecting with each other and two beams out of the beams, and the weight body in a state of being loosely inserted into a space surrounded by the inner peripheral surface of the frame portion. And at least one auxiliary weight body connected in series, wherein the four beams are formed when viewed from vertically above the center of the microstructure with respect to the first main surface including the frame surface. Each length is the same, the micro The mapping of the frame, the weight, and the four beams as viewed from above vertically when rotated by 90 degrees about the center of the first main surface of the structure becomes the same as the original mapping. When the main surface on the opposite side of the first main surface of the microstructure is a second main surface, the first main surface and the second main surface are defined as viewed from vertically above the center of the microstructure. The weights and the auxiliary weights are substantially the same in plan view, and the weights and the auxiliary weights have the same thickness, and have substantially the same thickness as the frame portion. When each main surface faces the package, each main surface portion of the weight body and the auxiliary weight body is formed so as to be held slightly apart from the package, An acceleration sensor, wherein the resistance element is formed on the beam.
【請求項2】 前記重錘体と前記枠部の内周面との間
隔、及び前記補助重錘体と前記ビームとの間隔が略同じ
である請求項1記載の加速度センサ。
2. The acceleration sensor according to claim 1, wherein a distance between the weight and the inner peripheral surface of the frame and a distance between the auxiliary weight and the beam are substantially the same.
【請求項3】 前記枠部は正方形状をなし、前記重錘体
と前記枠部の各辺の略中央部とを前記ビームが接続すべ
くなしてあり、前記補助重錘体は四角柱状をなす請求項
1又は2記載の加速度センサ。
3. The frame portion has a square shape, the beam connects the weight body and a substantially central portion of each side of the frame portion, and the auxiliary weight body has a quadrangular prism shape. The acceleration sensor according to claim 1 or 2, wherein
【請求項4】 前記枠部は正方形状をなし、前記枠部の
角部にはビーム幅より長い斜辺と前記角部を挟む二辺と
からなる三角部が設けられ、前記三角部の斜辺の略中央
部において前記ビームが接続され、 前記補助重水体は三角柱状をなす請求項1又は2記載の
加速度センサ。
4. The frame portion has a square shape, and a corner portion of the frame portion is provided with a triangular portion having an oblique side longer than a beam width and two sides sandwiching the angular portion. The acceleration sensor according to claim 1, wherein the beam is connected at a substantially central portion, and the auxiliary heavy water body has a triangular prism shape.
JP2001101928A 2001-03-30 2001-03-30 Acceleration sensor Pending JP2002296293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001101928A JP2002296293A (en) 2001-03-30 2001-03-30 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001101928A JP2002296293A (en) 2001-03-30 2001-03-30 Acceleration sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008144782A Division JP5046240B2 (en) 2008-06-02 2008-06-02 Method for manufacturing acceleration sensor

Publications (1)

Publication Number Publication Date
JP2002296293A true JP2002296293A (en) 2002-10-09

Family

ID=18955184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001101928A Pending JP2002296293A (en) 2001-03-30 2001-03-30 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP2002296293A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242692A (en) * 2005-03-02 2006-09-14 Oki Electric Ind Co Ltd Acceleration sensor chip
JP2006284441A (en) * 2005-04-01 2006-10-19 Sharp Corp Physical quantity sensor and detection method of physical quantity sensor
JP2007107934A (en) * 2005-10-11 2007-04-26 Sharp Corp Mems acceleration sensor
WO2007141944A1 (en) 2006-06-08 2007-12-13 Murata Manufacturing Co., Ltd. Acceleration sensor
US7331230B2 (en) 2003-12-24 2008-02-19 Hitachi Metals, Ltd. Semiconductor-type three-axis acceleration sensor
US7357026B2 (en) 2004-06-03 2008-04-15 Oki Electric Industry Co., Ltd. Acceleration sensor
JP2008203278A (en) * 2008-06-02 2008-09-04 Tokyo Electron Ltd Method for manufacturing acceleration sensor
KR100895037B1 (en) * 2007-02-05 2009-05-04 (주)에스엠엘전자 High Sensitivity 3-axis Accelerometer
JP2009204540A (en) * 2008-02-28 2009-09-10 Asahi Kasei Electronics Co Ltd Capacitance type sensor
US7631559B2 (en) 2005-04-06 2009-12-15 Murata Manufacturing Co., Ltd. Acceleration sensor
US7882740B2 (en) 2007-02-02 2011-02-08 Wacoh Corporation Sensor for detecting acceleration and angular velocity
US8474318B2 (en) 2007-07-27 2013-07-02 Hitachi Metals, Ltd. Acceleration sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331230B2 (en) 2003-12-24 2008-02-19 Hitachi Metals, Ltd. Semiconductor-type three-axis acceleration sensor
US7357026B2 (en) 2004-06-03 2008-04-15 Oki Electric Industry Co., Ltd. Acceleration sensor
US7243546B2 (en) * 2005-03-02 2007-07-17 Oki Electric Industry Co., Ltd. Acceleration sensor chip
JP2006242692A (en) * 2005-03-02 2006-09-14 Oki Electric Ind Co Ltd Acceleration sensor chip
JP2006284441A (en) * 2005-04-01 2006-10-19 Sharp Corp Physical quantity sensor and detection method of physical quantity sensor
US7631559B2 (en) 2005-04-06 2009-12-15 Murata Manufacturing Co., Ltd. Acceleration sensor
JP2007107934A (en) * 2005-10-11 2007-04-26 Sharp Corp Mems acceleration sensor
WO2007141944A1 (en) 2006-06-08 2007-12-13 Murata Manufacturing Co., Ltd. Acceleration sensor
US7574914B2 (en) 2006-06-08 2009-08-18 Murata Manufacturing Co., Ltd. Acceleration sensor
KR101001775B1 (en) 2006-06-08 2010-12-15 가부시키가이샤 무라타 세이사쿠쇼 Acceleration sensor
US7882740B2 (en) 2007-02-02 2011-02-08 Wacoh Corporation Sensor for detecting acceleration and angular velocity
KR100895037B1 (en) * 2007-02-05 2009-05-04 (주)에스엠엘전자 High Sensitivity 3-axis Accelerometer
US8474318B2 (en) 2007-07-27 2013-07-02 Hitachi Metals, Ltd. Acceleration sensor
JP2009204540A (en) * 2008-02-28 2009-09-10 Asahi Kasei Electronics Co Ltd Capacitance type sensor
JP2008203278A (en) * 2008-06-02 2008-09-04 Tokyo Electron Ltd Method for manufacturing acceleration sensor

Similar Documents

Publication Publication Date Title
CN102590555B (en) Resonance dynamic balance capacitance-type triaxial acceleration transducer and manufacture method
JP5536994B2 (en) Inertial sensor and inertia detection device
KR100499970B1 (en) Acceleration sensor
US8132458B2 (en) Acceleration sensor resistant to excessive force breakage
JP2002296293A (en) Acceleration sensor
EP3564682B1 (en) Inertial sensor with single proof mass and multiple sense axis capability
JP2006520897A (en) MEMS accelerometer
WO2013080424A1 (en) Acceleration sensor
US20100236328A1 (en) Apparatus having a movable body
CN105785073A (en) Piezoresistive acceleration sensor and manufacturing method thereof
CN103901227A (en) Silicon micro-resonant type accelerometer
CN110596423B (en) Comb tooth capacitance type uniaxial accelerometer with high overload resistance
JP2004245760A (en) Sensor for detecting both pressure and acceleration, and its manufacturing method
JP2006275896A (en) Semiconductor acceleration sensor
KR20150101741A (en) Micro Electro Mechanical Systems Sensor
JP2006308325A (en) Dynamic quantity detection sensor and its manufacturing method
US20170315147A1 (en) Multi-axis accelerometer with reduced stress sensitivity
JP5292600B2 (en) Acceleration sensor
JP2010169575A (en) Inertial sensor
JP5046240B2 (en) Method for manufacturing acceleration sensor
Tounsi et al. Behavior analysis of a 3-axis detection push-pull piezoresistive MEMS accelerometer
JP2005049320A (en) Acceleration sensor
CN101613074B (en) Micro electro mechanical systems element for measuring three-dimensional vectors
JP4631864B2 (en) Acceleration sensor
US9964561B2 (en) Acceleration sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080606

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080627