JP2002295931A - Automatic ice maker - Google Patents
Automatic ice makerInfo
- Publication number
- JP2002295931A JP2002295931A JP2001099054A JP2001099054A JP2002295931A JP 2002295931 A JP2002295931 A JP 2002295931A JP 2001099054 A JP2001099054 A JP 2001099054A JP 2001099054 A JP2001099054 A JP 2001099054A JP 2002295931 A JP2002295931 A JP 2002295931A
- Authority
- JP
- Japan
- Prior art keywords
- ice
- water
- infrared sensor
- ice making
- ice tray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2700/00—Sensing or detecting of parameters; Sensors therefor
- F25C2700/04—Level of water
Landscapes
- Production, Working, Storing, Or Distribution Of Ice (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、冷蔵庫に利用さ
れる自動製氷機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic ice making machine used for a refrigerator.
【0002】[0002]
【従来の技術】図7は、例えば特開平2−146481
号公報に示された従来の自動製氷機を示す正面図、図8
は断面図、図9は原理ブロック図である。図において、
21は冷凍冷蔵庫本体、22は製氷皿、23aは製氷皿
22を置き製氷させるための製氷コーナ本体、23bは
製氷皿22の位置を適切に保つストッパであり、製氷コ
ーナ本体23a、ストッパ23bは冷凍室21a内に設
けられている。24は冷気を冷凍室21a内の所定方向
に吹き出すためのファングリル、25は製氷コーナ23
の上に製氷皿22の真上になるように配設された赤外線
センサ、26は赤外線センサ25を保持する円筒ホル
ダ、27は円筒ホルダ26を固定した冷凍室天井、28
は赤外線センサ25からの電気信号を処理し判断する機
能を持つマイクロコンピュータ、29はマイクロコンピ
ュータからの判断信号によって製氷完了時に点灯する発
光ダイオード、30は発光ダイオード29を扉パネルに
固定する冷凍庫扉、31は製氷皿22に注入された水で
ある。2. Description of the Related Art FIG.
FIG. 8 is a front view showing a conventional automatic ice making machine disclosed in
Is a sectional view, and FIG. 9 is a principle block diagram. In the figure,
21 is a refrigerator-freezer body, 22 is an ice tray, 23a is an ice-making corner body for placing the ice tray 22 and making ice, 23b is a stopper for appropriately keeping the position of the ice-making tray 22, and ice-making corner body 23a and stopper 23b are for freezing. It is provided in the chamber 21a. 24 is a fan grill for blowing cold air in a predetermined direction in the freezer compartment 21a, 25 is an ice making corner 23
An infrared sensor arranged on the ice tray 22 so as to be directly above the ice tray 22; 26, a cylindrical holder for holding the infrared sensor 25; 27, a freezing compartment ceiling to which the cylindrical holder 26 is fixed;
Is a microcomputer having a function of processing and judging an electric signal from the infrared sensor 25, 29 is a light emitting diode which is turned on when ice making is completed by a judgment signal from the microcomputer, 30 is a freezer door for fixing the light emitting diode 29 to a door panel, Reference numeral 31 denotes water injected into the ice tray 22.
【0003】このような従来の自動製氷機の動作につい
て説明する。図8において、ファングリル24から吹き
出された冷気は、製氷コーナ本体23aにて区切られた
空間を通り、製氷皿22の中の水31を冷却する。そし
て、天井27は製氷コーナ本体23aとともに製氷のた
めの区画を構成し、冷凍庫扉30側の開口部付近に円筒
ホルダ26の中空部には、赤外線センサ25が鉛直下方
向に固定されている。赤外線センサ25はマイクロコン
ピュータ28に電気的に接続されている。また、マイク
ロコンピュータ28と発光ダイオード29とも電気的に
接続がされて、一連の製氷完了の判断をする製氷検知回
路が構成されている。The operation of such a conventional automatic ice maker will be described. 8, the cool air blown from the fan grill 24 passes through a space defined by the ice making corner main body 23a and cools the water 31 in the ice making tray 22. The ceiling 27 constitutes a section for ice making together with the ice making corner main body 23a, and the infrared sensor 25 is fixed vertically downward in the hollow portion of the cylindrical holder 26 near the opening on the freezer door 30 side. The infrared sensor 25 is electrically connected to the microcomputer 28. The microcomputer 28 and the light emitting diode 29 are also electrically connected to form an ice making detection circuit for judging a series of ice making completion.
【0004】次に、図9の原理ブロック図に基づいて、
製氷検知回路について説明する。まず、製氷皿22の中
の水31が持つ熱エネルギを赤外線の放射量として赤外
線センサ25が検知する。この赤外線センサ25が検知
した赤外線の放射量の検知結果は電気信号として送出さ
れ、コンピュータの検知信号制御回路28aに入力さ
れ、ここで十分に増幅されて検知信号判別比較回路28
bに送られ、この比較回路28bによって製氷が完了し
たか否かが判定され、製氷が完了した場合には、上記比
較手段28bに接続された表示装置である発光ダイオー
ド29が発光する。[0004] Next, based on the principle block diagram of FIG.
The ice making detection circuit will be described. First, the infrared energy of the water 31 in the ice tray 22 is detected by the infrared sensor 25 as the amount of infrared radiation. The detection result of the amount of infrared radiation detected by the infrared sensor 25 is sent out as an electric signal and input to a detection signal control circuit 28a of the computer, where it is sufficiently amplified and detected signal comparison circuit 28
The comparison circuit 28b determines whether or not the ice making is completed. When the ice making is completed, the light emitting diode 29, which is a display device connected to the comparing means 28b, emits light.
【0005】[0005]
【発明が解決しようとする課題】上記のような従来の自
動製氷機では、製氷皿22への給水を水タンクから給水
パイプ介して給水ポンプによって行なうようにした場
合、給水ポンプの運転時間で所定の給水量を得るように
する。しかし、水タンク内の水が不足していたり、給水
パイプが詰まってしまったり、給水ポンプの動作不良に
よる給水不足が生じた場合には、製氷皿22内の水31
が少ない状態で製氷完了を判定してしまい、完成した氷
の大きさや厚さが不揃いになったり、離氷時に細かく割
れてしまいユーザが使用する際に不便な氷となってしま
いという問題点があった。また、前回の離氷が不完全
で、製氷皿22に氷が残っていた場合には、給水ポンプ
の所定時間動作により所定水量給水が行なわれると、製
氷皿22内の水31の量が所定量よりも多くなってしま
い、氷が必要以上に大きくなって離氷が不完全となって
しまったり、製氷皿22の下方に氷受け皿などを設けて
いる場合には製氷皿22から水31が溢れて氷受け皿に
溢れた水が入ってしまい、氷受け皿内の氷が連結して固
まりとなってしまうという問題点があった。In the conventional automatic ice maker described above, when water is supplied to the ice tray 22 from a water tank by a water supply pump through a water supply pipe, a predetermined time is determined by the operation time of the water supply pump. To obtain the required amount of water. However, when the water in the water tank is insufficient, the water supply pipe is clogged, or the water supply is insufficient due to a malfunction of the water supply pump, the water 31 in the ice tray 22 is not provided.
The ice making is determined in a state where the amount of ice is small, the size and thickness of the completed ice are not uniform, or the ice is broken finely at the time of ice removal, and the ice becomes inconvenient when used by the user. there were. In addition, if the last ice separation is incomplete and ice remains in the ice tray 22, when a predetermined amount of water is supplied by operating the water supply pump for a predetermined time, the amount of water 31 in the ice tray 22 is reduced. When the ice is larger than necessary, the ice is unnecessarily large and the ice separation is incomplete, or when an ice tray is provided below the ice tray 22, the water 31 is discharged from the ice tray 22. There was a problem that water overflowed into the ice tray and overflowed, and the ice in the ice tray was connected to be solidified.
【0006】この発明は上記のような問題点を解決する
ためになされたもので、正確な給水量で製氷を行う自動
製氷機を得ることを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide an automatic ice making machine for making ice with an accurate water supply.
【0007】[0007]
【課題を解決するための手段】この発明に係る自動製氷
機は、冷凍冷蔵庫の製氷皿の上方に水が持つ熱エネルギ
ーを検知する赤外線センサーを配設し、前記赤外線セン
サからのセンサ出力から製氷皿内の水位及び製氷完了を
判定する判定手段を設けたものである。An automatic ice maker according to the present invention has an infrared sensor for detecting the thermal energy of water above an ice tray of a refrigerator, and ice is produced from a sensor output from the infrared sensor. A determination means for determining the water level in the dish and the completion of ice making is provided.
【0008】また、前記判定手段は、赤外線センサの出
力から製氷完了を判定する製氷判定手段と赤外線センサ
の出力から製氷皿の水位を判定する水位判定手段とで構
成したものである。The determining means comprises ice making determining means for determining the completion of ice making from the output of the infrared sensor and water level determining means for determining the water level of the ice tray from the output of the infrared sensor.
【0009】また、前記判定手段は、前記製氷皿内の水
量が適正水量でないと判断したとき、製氷皿内の水量が
適正水量となるように水量調整を行なってから製氷完了
の検知を行なうようにしたものである。When the determining means determines that the amount of water in the ice tray is not an appropriate amount of water, the determining means adjusts the amount of water so that the amount of water in the ice tray becomes an appropriate amount of water, and then detects the completion of ice making. It was made.
【0010】[0010]
【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1の自動製氷機を示すブロック構成図であ
る。図において、1は水を溜めておく水タンク、2はこ
の水タンク1から水を吸い上げるための給水パイプ、3
は水タンク1から水を汲み上げるためのポンプ、4は水
タンク1から給水パイプ2を通過してポンプ3によって
供給される水を溜め製氷するための製氷皿、5は製氷皿
4を回転させて離氷するための製氷皿回転手段、6は離
氷した氷を溜めておくための氷受け皿、7は製氷皿に供
給された水の温度を測定するための赤外線センサ、8は
赤外線センサの出力信号から製氷完了や水位を検知する
ための判定手段で、製氷完了を検知する製氷完了判定手
段9と製氷皿に供給された水の水位を検知する水位判定
手段10とで構成される。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a block diagram showing an automatic ice making machine according to Embodiment 1 of the present invention. In the figure, reference numeral 1 denotes a water tank for storing water, 2 denotes a water supply pipe for sucking water from the water tank 1, 3.
Is an ice tray for pumping water from the water tank 1, 4 is an ice tray for storing water supplied from the water tank 1 through the water supply pipe 2 and supplied by the pump 3 and making ice, and 5 is rotating the ice tray 4. Means for rotating an ice tray for ice removal, 6 for an ice tray for storing ice removed from the ice, 7 for an infrared sensor for measuring the temperature of water supplied to the ice tray, 8 for the output of the infrared sensor The determination means for detecting the completion of ice making and the water level from the signal is composed of an ice making completion determination means 9 for detecting the completion of ice making and a water level determination means 10 for detecting the level of water supplied to the ice tray.
【0011】このように構成された自動製氷機の動作に
ついて説明する。まず、ポンプ3により水タンク1の水
が給水パイプ2を介して吸い上げられ、製氷皿4に給水
される。ポンプ3は予め定められた時間だけ作動して給
水を行う。この作動時間は、予め定めた適正水量とポン
プ3が正常に作動した際の単位時間当たりの給水量とか
ら決定される。例えば、適正水量が200mL、ポンプ
の単位時間吸水量が20mL/秒であれば、ポンプ作動
時間は10秒に予め定められる。The operation of the automatic ice maker constructed as described above will be described. First, water in the water tank 1 is sucked up by the pump 3 through the water supply pipe 2 and supplied to the ice tray 4. The pump 3 operates for a predetermined time to supply water. The operation time is determined from a predetermined appropriate water amount and a water supply amount per unit time when the pump 3 operates normally. For example, if the appropriate water volume is 200 mL and the unit time water absorption of the pump is 20 mL / second, the pump operation time is predetermined to 10 seconds.
【0012】次に、製氷皿4の適正水量200mL、ポ
ンプ3の単位時間給水量20mL/秒の場合を例にとっ
て、給水時の製氷皿4の水位の変化の検知方法を説明す
る。図2は給水開始直後の製氷皿断面図、図3は給水開
始後5秒経過時の製氷皿断面図、図4は給水開始後10
秒経過時(給水完了時)の製氷皿断面図である。図にお
いて、11は製氷皿の底面部、12は製氷皿の側面部で
ある。まず、製氷皿4の水位は離氷が完全になされた後
の給水開始直前、つまり水が全く入っていない状態から
ポンプ3が作動して給水し始めの水位13から(図2参
照)、5秒経過時には水面は50%給水水位14に達し
(図3参照)、そしてポンプ3が作動後10秒経過時に
は水面は適正水位15すなわち100%給水水位に達す
る(図4参照)。このように、予め定めたポンプ3の作
動時間だけ給水を行なうと製氷皿4の水面が上昇して適
正水位まで給水が完了する。Next, a method of detecting a change in the water level of the ice tray 4 during water supply will be described, taking as an example a case where the appropriate amount of water in the ice tray 4 is 200 mL and the amount of water supplied to the pump 3 per unit time is 20 mL / second. 2 is a sectional view of an ice tray immediately after the start of water supply, FIG. 3 is a sectional view of an ice tray 5 seconds after the start of water supply, and FIG.
It is an ice tray sectional view at the time of lapse of seconds (at the time of completion of water supply). In the figure, 11 is the bottom of the ice tray, and 12 is the side of the ice tray. First, the water level of the ice tray 4 is changed from the water level 13 immediately before the start of water supply after the ice is completely removed, that is, the water level 13 at which the pump 3 starts to supply water from a state where no water is supplied (see FIG. 2). At the elapse of the second, the water level reaches the 50% water supply level 14 (see FIG. 3), and at the elapse of 10 seconds after the pump 3 operates, the water level reaches the proper water level 15, that is, the 100% water supply level (see FIG. 4). As described above, when water is supplied for the predetermined operation time of the pump 3, the water level of the ice tray 4 rises and the water supply is completed to an appropriate water level.
【0013】このような製氷皿4内の水位変化に対する
赤外線センサ7による製氷皿4の赤外線放射の受光領域
を説明すると、図2に示す製氷皿4内への給水が少量の
場合、赤外線センサ7は領域A、Bの各領域から給水か
らの赤外線放射を受光し、領域a、b、cから製氷皿か
らの赤外線放射を受光し、これらのこれらの合計エネル
ギーを受光している。ここで、赤外線放射エネルギー
は、物体の温度と放射率によって定まり、温度が低いも
のは赤外線放射エネルギーが小さく、温度が高いものは
赤外線放射エネルギーは大きくなり、その強度に応じて
出力信号を出力される。そして、通常、給水の水の温度
は5℃程度で、製氷皿4は冷気に冷やされて−20℃程
度となっている。つまり、給水前の製氷皿4の赤外線セ
ンサ7の全受光領域と給水が少量の状態(図2)の赤外
線センサ7の全受光領域とを比べると、給水から受光す
るエネルギー量分だけ給水が少量の状態の方が大きくな
る。図3に示す給水が50%状態になると、製氷皿4の
水面の面積が拡大し、赤外線センサー7は放射エネルギ
の大きい領域C、Dからと放射エネルギーの小さい領域
d、e、fからの合計エネルギーを受光する。水面の領
域C、Dは上記した水面の領域A、Bに比べて大きくな
っており、赤外線センサ7の出力も大きくなる。さらに
給水が進み、図4に示す適正水位の100%まで進む
と、水面の面積がさらに拡大し、赤外線センサ7は放射
エネルギーの大きい領域Eからと放射エネルギーの小さ
い領域g、hからの合計エネルギーを受光する。領域E
は上記した領域C、Dと比べ面積が大きくなっており、
赤外線センサ7の出力も大きい値となる。An area for receiving infrared radiation of the ice tray 4 by the infrared sensor 7 in response to such a change in the water level in the ice tray 4 will be described. In the case where a small amount of water is supplied to the ice tray 4 shown in FIG. Receives infrared radiation from the water supply from each of the regions A and B, receives infrared radiation from the ice tray from the regions a, b, and c, and receives the total energy of these. Here, the infrared radiant energy is determined by the temperature and emissivity of the object.The infrared radiant energy is low when the temperature is low, and the infrared radiant energy is high when the temperature is high, and an output signal is output according to the intensity. You. Usually, the temperature of the supply water is about 5 ° C., and the ice tray 4 is cooled to cool air to about −20 ° C. That is, comparing the entire light receiving area of the infrared sensor 7 of the ice tray 4 before water supply with the entire light receiving area of the infrared sensor 7 in a state where the water supply is small (FIG. 2), the water supply is small by the amount of energy received from the water supply. State becomes larger. When the water supply shown in FIG. 3 reaches a 50% state, the area of the water surface of the ice tray 4 increases, and the infrared sensor 7 calculates the sum of the areas C, D having large radiant energy and the areas d, e, f having small radiant energy. Receives energy. The areas C and D on the water surface are larger than the areas A and B on the water surface, and the output of the infrared sensor 7 is also larger. When the water supply further proceeds and reaches 100% of the proper water level shown in FIG. 4, the area of the water surface further increases, and the infrared sensor 7 outputs the total energy from the area E having large radiant energy and the areas g and h having small radiant energy. Is received. Area E
Has a larger area than the regions C and D described above,
The output of the infrared sensor 7 also has a large value.
【0014】このようにして受光された赤外線放射の変
化に対する赤外線センサ7の出力信号を、図5に基づい
て説明する。16は製氷皿4への水の供給水量を示すグ
ラフで、ポンプ3を一定給水力で作動させるのでポンプ
始動時間Xからポンプ停止時間Zにおいて時間に比例し
て増加する。そして、ポンプ停止時間Z以後は給水が止
まり、供給水量は一定になる。一方、17は赤外線セン
サ出力信号値を示すグラフで、ポンプ3が作動して製氷
皿4に水の供給が開始されるポンプ始動時間Xから製氷
皿底面11が給水で覆われた状態となる時間Yまでの
間、時間に比例して急激に増加する。そして、製氷皿4
の底面11が給水で覆われた時間Yからポンプ停止時間
Zまでは傾きが緩やかになり、時間にほぼ比例して増加
し、ポンプ停止時間Z以後は一定の出力信号値となる。The output signal of the infrared sensor 7 with respect to the change of the infrared radiation received as described above will be described with reference to FIG. Reference numeral 16 denotes a graph showing the amount of water supplied to the ice tray 4, which increases in proportion to the time from the pump start time X to the pump stop time Z because the pump 3 is operated with a constant water supply power. Then, after the pump stop time Z, the water supply stops, and the supply water amount becomes constant. On the other hand, reference numeral 17 denotes a graph showing the output signal value of the infrared sensor. The time from when the pump 3 starts to operate to start supplying water to the ice tray 4 until the bottom of the ice tray 11 is covered with water. Until Y, it increases rapidly in proportion to time. And ice tray 4
The slope becomes gentle from the time Y when the bottom surface 11 is covered with the water supply to the pump stop time Z, increases almost in proportion to the time, and becomes a constant output signal value after the pump stop time Z.
【0015】このように、赤外線センサ7の出力信号
は、製氷皿4中の水位の上昇に伴って大きくなり、図5
で示したように、ポンプ3が正常に動作して給水を行っ
た場合にはポンプ始動時間Xから底面部11が給水で覆
われた状態の時間Yまで供給水量16と赤外線センサ出
力信号値17との間には比例関係が成立する。したがっ
て、赤外線センサ出力信号値17から正常給水時の供給
水量値を求めることができる。また、製氷皿の底面部1
1が給水で覆われた状態の時間Yからポンプ停止時間Z
の間も、供給水量16と赤外線センサ出力信号値17と
の間には比例関係が成立し、赤外線センサ出力信号値1
7から正常給水時の供給水量値を求めることができる。As described above, the output signal of the infrared sensor 7 increases as the water level in the ice tray 4 rises.
When the pump 3 operates normally and supplies water, as shown in FIG. 5, the supply water amount 16 and the infrared sensor output signal value 17 from the pump start time X to the time Y in which the bottom portion 11 is covered with the supply water. And a proportional relationship holds. Therefore, the supply water amount value at the time of normal water supply can be obtained from the infrared sensor output signal value 17. Also, the bottom part 1 of the ice tray
Pump stop time Z from time Y when 1 is covered with water supply
During this period, a proportional relationship is established between the supplied water amount 16 and the infrared sensor output signal value 17, and the infrared sensor output signal value 1
From 7, it is possible to determine the supply water value during normal water supply.
【0016】このように、製氷皿4内の給水水量を正確
に検出できるので、給水水量が少ないと判定したときに
は、不足水量を予測してポンプ3を作動時間を追加させ
て適正水量にするようにし、ポンプ3の作動時間を追加
しても製氷皿4内の水量が増加しないときには、水タン
ク1の水が不足していることが考えられるので、水タン
ク1への水の追加を促す表示を行なうようにして製氷皿
4内の水量を適正水量にする。As described above, since the amount of water supply in the ice tray 4 can be accurately detected, when it is determined that the amount of water supply is small, the amount of water supply is predicted, and the operating time of the pump 3 is increased by setting the pump 3 to an appropriate amount of water. When the amount of water in the ice tray 4 does not increase even if the operation time of the pump 3 is added, it is considered that the water in the water tank 1 is insufficient. To make the amount of water in the ice tray 4 an appropriate amount of water.
【0017】また、水量が適正水量に達しないときには
離氷しないようにして、細かい氷ができないようにして
も良い。また、氷の大きさを指定するスイッチを設け、
ポンプ3の作動時間の長短調整と水位の測定情報とで氷
の大きさを大小自由に変えて製氷するようにしても良
い。When the amount of water does not reach the appropriate amount of water, ice may not be separated, and fine ice may not be formed. In addition, a switch to specify the size of ice is provided,
The size of the ice may be freely changed according to the adjustment of the operation time of the pump 3 and the measurement information of the water level to make the ice.
【0018】次に、赤外線センサ7による製氷完了の検
出について、図6に基づいて、説明する。18は製氷対
象である水・氷自体の温度変化を示すグラフで、給水開
始Aから給水完了Bまでは、水温は水タンク1の温度か
ら少しずつ下がりながら製氷皿4中に給水される。製氷
皿4に給水がされると、周囲の冷却効果を受けて、温度
が低下してゆき、0℃付近の温度Cまで低下すると、そ
れ以降温度は0℃付近にしばらくの間安定し、0℃安定
終了D以降は、再び温度低下がはじまり、製氷完了Eに
達する。なお、製氷開始Aから製氷完了Eまでの時間
は、約40〜60分程度かかる。一方、19は赤外線セ
ンサ7の出力信号相対値を示すグラフで、製氷及び給水
開始A以後、水タンク1中の5℃程度の水が製氷皿4に
給水され、図5にて示したように、センサ7の受光領域
における水面の領域の割合が増え、赤外線センサ7の出
力信号が増加し、給水完了Bでピークに達する。その後
は、水が冷却されて温度が低下し、赤外線センサ7の出
力信号相対値19も低下する。0℃付近の温度Cまで低
下すると、それ以降温度は0℃付近にしばらくの間安定
し、0℃安定終了D以降は再び温度低下が始まり、製氷
完了判定基準温度値dになり製氷完了Eに達する。Next, detection of completion of ice making by the infrared sensor 7 will be described with reference to FIG. Numeral 18 is a graph showing the temperature change of water / ice itself, which is the object of ice making, from the water supply start A to the water supply completion B, the water temperature is gradually supplied from the water tank 1 into the ice tray 4 while being gradually lowered. When water is supplied to the ice tray 4, the temperature gradually decreases due to the surrounding cooling effect. When the temperature decreases to a temperature C near 0 ° C., the temperature stabilizes around 0 ° C. for a while thereafter. After the end of the temperature stabilization D, the temperature starts decreasing again and the ice making is completed E. The time from ice making start A to ice making completion E takes about 40 to 60 minutes. On the other hand, 19 is a graph showing the relative value of the output signal of the infrared sensor 7, and after the ice making and water supply start A, water of about 5 ° C. in the water tank 1 is supplied to the ice tray 4, as shown in FIG. The ratio of the water surface area in the light receiving area of the sensor 7 increases, the output signal of the infrared sensor 7 increases, and reaches a peak when the water supply is completed B. Thereafter, the temperature of the water is reduced by cooling, and the relative value 19 of the output signal of the infrared sensor 7 is also reduced. When the temperature drops to a temperature C around 0 ° C., the temperature stabilizes around 0 ° C. for a while, and after 0 ° C. is stabilized, the temperature starts decreasing again. Reach.
【0019】このように、給水完了B以降の赤外線セン
サ7の出力信号相対値の変化19は、赤外線センサ7が
水・氷から発せられる温度に関連する赤外線放射エネル
ギーを直接測定しているために、製氷皿4中の水・氷温
度の変化18と相似した変化を示すので、氷そのものの
温度を測定して検出することができ、未凍結の状態で製
氷完了と検出することがなく、使い勝手の良い自動製氷
機を得ることができる。As described above, the change 19 in the relative value of the output signal of the infrared sensor 7 after the completion of the water supply B is caused by the fact that the infrared sensor 7 directly measures the infrared radiation energy related to the temperature emitted from water and ice. It shows a change similar to the change 18 in the temperature of water and ice in the ice tray 4, so that the temperature of the ice itself can be measured and detected. A good automatic ice machine can be obtained.
【0020】ここで、サーミスタによる出力の温度相当
値20と比較をして見る。サーミスタによる出力の温度
相当値20は、自動製氷機の給水完了Bでは製氷皿4の
熱抵抗とサーミスタの反対側が冷気により冷やされる影
響により水温まで上昇せず、0℃安定終了時間Dにおい
ては、0℃を下回る温度eとなり、製氷完了時間Eに至
る前に製氷完了判定基準温度値dまで低下してしまい、
未製氷のまま離氷動作を行ってしまうということになっ
てしまう。Here, the output of the thermistor is compared with the temperature equivalent value 20. The temperature equivalent value 20 of the output of the thermistor does not rise to the water temperature due to the thermal resistance of the ice tray 4 and the effect of the other side of the thermistor being cooled by cold air at the completion of water supply B of the automatic ice maker. The temperature e becomes lower than 0 ° C., and before reaching the ice making completion time E, the temperature e drops to the ice making completion judgment reference temperature value d.
It means that the ice removing operation is performed while the ice is not made.
【0021】以上のように、赤外線センサ7による水・
氷の温度検知により、製氷皿4内の水量を適正水量で製
氷を行ない、かつ氷そのものの温度から製氷完了を判定
するので、未製氷のまま離氷するということがなく、製
氷が完全に行われた、形のそろった氷を提供することが
でき、また、赤外線センサ7で製氷皿4内の水量及び製
氷完了の両方を判定するので、部品点数を増やすことも
ない。As described above, water from the infrared sensor 7
By detecting the temperature of the ice, the amount of water in the ice tray 4 is adjusted with an appropriate amount of ice, and the completion of ice making is determined from the temperature of the ice itself. It is possible to provide ice of uniform shape and to determine both the amount of water in the ice tray 4 and the completion of ice making by the infrared sensor 7, so that the number of parts is not increased.
【0022】なお、製氷完了判定手段9及び水位判定手
段10は、製氷皿4に接触せずに判定が可能な赤外線セ
ンサ7からの信号で判定を行なっているので、製氷皿4
に電気的な接続が必要な構造とする必要がなく、製氷皿
4を取り外せるような構造が簡単に実現でき、使用者が
簡単に取り外して製氷皿4が洗え、衛生的な自動製氷機
を得ることができる。Since the ice making completion judging means 9 and the water level judging means 10 make the judgment by the signal from the infrared sensor 7 which can make judgment without touching the ice making tray 4, the ice making tray 4 is determined.
It is not necessary to have a structure that requires an electrical connection, and a structure in which the ice tray 4 can be easily removed can be easily realized. The user can easily remove the ice tray 4, wash the ice tray 4, and obtain a sanitary automatic ice machine. be able to.
【0023】[0023]
【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0024】冷凍冷蔵庫の製氷皿の上方に水が持つ熱エ
ネルギーを検知する赤外線センサーを配設し、前記赤外
線センサからのセンサ出力から製氷皿内の水位及び製氷
完了を判定する判定手段を設けたので、適正水量で製氷
完了を正確に行なえ、形の揃った氷を確実に提供するこ
とができる。An infrared sensor for detecting the thermal energy of water is provided above the ice tray of the refrigerator, and a judging means for judging the water level in the ice tray and the completion of ice making from the sensor output from the infrared sensor is provided. Therefore, ice making can be accurately completed with an appropriate amount of water, and ice of uniform shape can be reliably provided.
【0025】また、前記判定手段は、赤外線センサの出
力から製氷完了を判定する製氷判定手段と赤外線センサ
の出力から製氷皿の水位を判定する水位判定手段とで構
成したので、赤外線センサを用いて水・氷の温度によっ
て製氷完了検出および水位検出を可能とすることがで
き、より正確な製氷完了および水位判定を行なうことが
できる。The determining means comprises ice making determining means for determining the completion of ice making from the output of the infrared sensor and water level determining means for determining the water level of the ice tray from the output of the infrared sensor. Ice making completion detection and water level detection can be made possible by the temperature of water and ice, and more accurate ice making completion and water level determination can be performed.
【0026】また、前記判定手段は、前記製氷皿内の水
量が適正水量でないと判断したとき、製氷皿内の水量が
適正水量となるように水量調整を行なってから製氷完了
の検知を行なうようにしたので、給水の不具合が減り、
製氷完了が正確になり、未製氷で離氷して貯氷が固着し
たり、長時間冷却して電力を無駄に使うことなく、同じ
大きさの氷を提供することができる。When the determining means determines that the amount of water in the ice tray is not an appropriate amount of water, the determining means adjusts the amount of water so that the amount of water in the ice tray becomes an appropriate amount of water, and then detects completion of ice making. The water supply is reduced,
The ice making can be completed accurately, and ice storage of the same size can be provided without freezing the ice storage due to ice separation with unmade ice or without wasting power by cooling for a long time.
【図1】 この発明の実施の形態1を示す自動製氷機の
ブロック構成図である。FIG. 1 is a block diagram of an automatic ice maker showing a first embodiment of the present invention.
【図2】 この発明の実施の形態1を示す自動製氷機の
要部断面図である。FIG. 2 is a cross-sectional view of a main part of the automatic ice maker showing the first embodiment of the present invention.
【図3】 この発明の実施の形態1を示す自動製氷機の
要部断面図である。FIG. 3 is a cross-sectional view of a main part of the automatic ice maker showing the first embodiment of the present invention.
【図4】 この発明の実施の形態1を示す自動製氷機の
要部断面図である。FIG. 4 is a cross-sectional view of a main part of the automatic ice maker showing the first embodiment of the present invention.
【図5】 この発明の実施の形態1を示す自動製氷機の
ポンプ動作時間と赤外線センサ出力信号値の関係を示す
図である。FIG. 5 is a diagram illustrating a relationship between a pump operation time and an infrared sensor output signal value of the automatic ice maker according to the first embodiment of the present invention.
【図6】 この発明の実施の形態1を示す自動製氷機の
製氷時における水・氷の温度変化と赤外線センサ出力信
号の変化を示す図である。FIG. 6 is a diagram showing a temperature change of water and ice and a change of an infrared sensor output signal during ice making of the automatic ice making machine according to the first embodiment of the present invention.
【図7】 従来の自動製氷機を示す正面図である。FIG. 7 is a front view showing a conventional automatic ice maker.
【図8】 従来の自動製氷機を示す断面図である。FIG. 8 is a sectional view showing a conventional automatic ice maker.
【図9】 従来の自動製氷機を示す原理ブロック図であ
る。FIG. 9 is a principle block diagram showing a conventional automatic ice maker.
1 水タンク、2 給水パイプ、3 ポンプ、4 製氷
皿、5 製氷皿回転手段、6 氷受け皿、7 赤外線セ
ンサ、8 判定手段、9 製氷完了判定手段、10 水
位判定手段、11 底面部、12 側面部、13 給水
始めの水位、14 50%給水水位、15 供給水量、
16 供給水量、17 赤外線センサ出力信号値、18
水・氷自体の温度、19 赤外線センサの出力信号相
対値、20 サーミスタによる出力温度相当値。DESCRIPTION OF SYMBOLS 1 Water tank, 2 water supply pipes, 3 pumps, 4 ice trays, 5 ice tray rotating means, 6 ice trays, 7 infrared sensors, 8 determining means, 9 ice making completion determining means, 10 water level determining means, 11 bottom part, 12 side surfaces Part, 13 Water level at the beginning of water supply, 1 50% water supply level, 15 Water supply,
16 Water supply amount, 17 Infrared sensor output signal value, 18
Temperature of water / ice itself, 19 relative value of output signal of infrared sensor, 20 equivalent value of output temperature by thermistor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 克正 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L110 AA07 AB00 AC04 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Katsumasa Sakamoto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 3L110 AA07 AB00 AC04
Claims (3)
エネルギーを検知する赤外線センサーを配設し、前記赤
外線センサからのセンサ出力から製氷皿内の水位及び製
氷完了を判定する判定手段を設けたことを特徴とする自
動製氷機。An infrared sensor for detecting thermal energy of water is provided above an ice tray of a refrigerator, and a determination means for determining a water level in the ice tray and completion of ice making from a sensor output from the infrared sensor. An automatic ice maker characterized by being provided.
ら製氷完了を判定する製氷判定手段と赤外線センサの出
力から製氷皿の水位を判定する水位判定手段とで構成し
たことを特徴とする請求項1記載の自動製氷機。2. The apparatus according to claim 1, wherein said determining means comprises ice making determining means for determining completion of ice making from the output of the infrared sensor and water level determining means for determining the water level of the ice tray from the output of the infrared sensor. 2. The automatic ice maker according to 1.
適正水量でないと判断したとき、製氷皿内の水量が適正
水量となるように水量調整を行なってから製氷完了の検
知を行なうようにしたことを特徴とする請求項1または
2いずれか記載の自動製氷機。3. When the determination means determines that the amount of water in the ice tray is not an appropriate amount of water, the determination means adjusts the amount of water so that the amount of water in the ice tray becomes an appropriate amount of water, and then detects completion of ice making. 3. The automatic ice making machine according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001099054A JP4479120B2 (en) | 2001-03-30 | 2001-03-30 | Automatic ice machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001099054A JP4479120B2 (en) | 2001-03-30 | 2001-03-30 | Automatic ice machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002295931A true JP2002295931A (en) | 2002-10-09 |
JP4479120B2 JP4479120B2 (en) | 2010-06-09 |
Family
ID=18952649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001099054A Expired - Fee Related JP4479120B2 (en) | 2001-03-30 | 2001-03-30 | Automatic ice machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4479120B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004271046A (en) * | 2003-03-07 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Automatic ice plant |
JP2004278892A (en) * | 2003-03-14 | 2004-10-07 | Matsushita Electric Ind Co Ltd | Automatic ice machine |
JP2005009824A (en) * | 2003-06-20 | 2005-01-13 | Matsushita Electric Ind Co Ltd | Automatic ice maker |
JP2005024202A (en) * | 2003-07-04 | 2005-01-27 | Matsushita Electric Ind Co Ltd | Automatic ice machine |
JP2005098537A (en) * | 2003-09-22 | 2005-04-14 | Matsushita Electric Ind Co Ltd | Automatic ice making device |
JP2006038295A (en) * | 2004-07-23 | 2006-02-09 | Sanyo Electric Co Ltd | Refrigerator with automatic ice maker |
JP2007127288A (en) * | 2005-11-01 | 2007-05-24 | Sanyo Electric Co Ltd | Cooling storage with automatic ice making machine |
WO2008077775A1 (en) * | 2006-12-22 | 2008-07-03 | BSH Bosch und Siemens Hausgeräte GmbH | Refrigerating appliance comprising an ice-making machine |
WO2009061119A3 (en) * | 2007-11-05 | 2009-07-30 | Lg Electronics Inc | Refrigerator and control method thereof |
JP2011143140A (en) * | 2010-01-18 | 2011-07-28 | Mitsubishi Electric Corp | Rice cooker |
KR101062350B1 (en) | 2008-11-14 | 2011-09-05 | 엘지전자 주식회사 | Refrigerator and its control method |
JP2014158972A (en) * | 2014-05-15 | 2014-09-04 | Mitsubishi Electric Corp | Rice cooker |
KR101559775B1 (en) | 2008-11-14 | 2015-10-13 | 엘지전자 주식회사 | Ice maker and Controlling method for the same |
JP2018146203A (en) * | 2017-03-08 | 2018-09-20 | 三菱電機株式会社 | Automatic ice-making device and refrigerator |
US10890365B2 (en) | 2018-09-28 | 2021-01-12 | Electrolux Home Products, Inc. | Software logic in a solid-production system |
-
2001
- 2001-03-30 JP JP2001099054A patent/JP4479120B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004271046A (en) * | 2003-03-07 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Automatic ice plant |
JP2004278892A (en) * | 2003-03-14 | 2004-10-07 | Matsushita Electric Ind Co Ltd | Automatic ice machine |
JP2005009824A (en) * | 2003-06-20 | 2005-01-13 | Matsushita Electric Ind Co Ltd | Automatic ice maker |
JP2005024202A (en) * | 2003-07-04 | 2005-01-27 | Matsushita Electric Ind Co Ltd | Automatic ice machine |
JP2005098537A (en) * | 2003-09-22 | 2005-04-14 | Matsushita Electric Ind Co Ltd | Automatic ice making device |
JP2006038295A (en) * | 2004-07-23 | 2006-02-09 | Sanyo Electric Co Ltd | Refrigerator with automatic ice maker |
JP2007127288A (en) * | 2005-11-01 | 2007-05-24 | Sanyo Electric Co Ltd | Cooling storage with automatic ice making machine |
WO2008077775A1 (en) * | 2006-12-22 | 2008-07-03 | BSH Bosch und Siemens Hausgeräte GmbH | Refrigerating appliance comprising an ice-making machine |
WO2009061119A3 (en) * | 2007-11-05 | 2009-07-30 | Lg Electronics Inc | Refrigerator and control method thereof |
KR101166640B1 (en) | 2007-11-05 | 2012-07-18 | 엘지전자 주식회사 | Refrigerator and control method thereof |
US8434318B2 (en) | 2007-11-05 | 2013-05-07 | Lg Electronics Inc. | Refrigerator |
US8567209B2 (en) | 2007-11-05 | 2013-10-29 | Lg Electronics Inc. | Refrigerator |
US8613203B2 (en) | 2007-11-05 | 2013-12-24 | Lg Electronics Inc. | Refrigerator and control method thereof |
KR101062350B1 (en) | 2008-11-14 | 2011-09-05 | 엘지전자 주식회사 | Refrigerator and its control method |
KR101559775B1 (en) | 2008-11-14 | 2015-10-13 | 엘지전자 주식회사 | Ice maker and Controlling method for the same |
JP2011143140A (en) * | 2010-01-18 | 2011-07-28 | Mitsubishi Electric Corp | Rice cooker |
JP2014158972A (en) * | 2014-05-15 | 2014-09-04 | Mitsubishi Electric Corp | Rice cooker |
JP2018146203A (en) * | 2017-03-08 | 2018-09-20 | 三菱電機株式会社 | Automatic ice-making device and refrigerator |
US10890365B2 (en) | 2018-09-28 | 2021-01-12 | Electrolux Home Products, Inc. | Software logic in a solid-production system |
Also Published As
Publication number | Publication date |
---|---|
JP4479120B2 (en) | 2010-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002295931A (en) | Automatic ice maker | |
JP7061590B2 (en) | Ultrasonic container control of ice machine | |
US10835072B2 (en) | Steam generator | |
EP2767786B1 (en) | Refrigerator | |
EP2578970B1 (en) | Refrigerator | |
CA2482383C (en) | Heater controller and heater control method of refrigerator | |
US7836710B2 (en) | Freezer with defrosting indicator | |
KR100756993B1 (en) | Water supplying control apparatus for a ice maker and control method thereof | |
RU2349847C2 (en) | Refrigerating apparatus and method of its operation | |
KR100756994B1 (en) | Ice maker for refrigerator | |
KR20030021529A (en) | Ice amount sensing apparatus of ice maker for refrigerator | |
JP5895117B2 (en) | refrigerator | |
KR100636553B1 (en) | Water supplying control apparutus for a ice maker and control method thereof | |
JP2010181085A (en) | Cooling storage | |
JP2000258009A (en) | Automatic ice maker | |
JP5294646B2 (en) | Refrigerator | |
JP3991938B2 (en) | Automatic ice machine | |
JP7201412B2 (en) | cold storage | |
KR100248633B1 (en) | Fast ice making device and method | |
JPH0611221A (en) | Automatic ice-making machine | |
JP4278421B2 (en) | Thermostat mounting structure for storage | |
JP3991930B2 (en) | Automatic ice machine | |
KR102383713B1 (en) | Automatical defrosting apparatus of evaporator having tongs-shaped sensing unit | |
JP4277636B2 (en) | Automatic ice machine | |
JP5890247B2 (en) | Mirror surface dew point meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040702 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090818 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100223 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100308 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |