JP2002289266A - Air electrode and air cell using the same as positive electrode - Google Patents

Air electrode and air cell using the same as positive electrode

Info

Publication number
JP2002289266A
JP2002289266A JP2001092620A JP2001092620A JP2002289266A JP 2002289266 A JP2002289266 A JP 2002289266A JP 2001092620 A JP2001092620 A JP 2001092620A JP 2001092620 A JP2001092620 A JP 2001092620A JP 2002289266 A JP2002289266 A JP 2002289266A
Authority
JP
Japan
Prior art keywords
air
electrode
air electrode
catalyst
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001092620A
Other languages
Japanese (ja)
Inventor
Yasuo Arishima
康夫 有島
Hiroshi Kayano
博志 柏野
Shinsuke Shibata
進介 柴田
Susumu Ishi
軍 石
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001092620A priority Critical patent/JP2002289266A/en
Publication of JP2002289266A publication Critical patent/JP2002289266A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop air electrode catalyst which is less expensive and has less oxygen overvoltage than platinum catalyst and to provide an inexpensive air electrode having high charging/discharging efficiency and an air cell by using the air electrode catalyst. SOLUTION: The air electrode catalyst for an air electrode of the air cell operating in acidic atmosphere is mainly composed of carbon and metal sulphide. The metal sulphide is preferably NiS. The air call preferably comprises an air electrode using the electrode catalyst mainly composed of carbon and metal sulphide as a positive electrode, a proton exchange film as electrolyte, and a hydrogen storage alloy electrode as a negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気極およびその
空気極を正極として用いた空気電池に関する。
The present invention relates to an air electrode and an air battery using the air electrode as a positive electrode.

【0002】[0002]

【従来の技術】空気極を正極として用い、プロトン交換
膜(PEM膜)を電解質として用い、水素吸蔵合金電極
を負極として用いたMH/PEM/Air(MH=水素
吸蔵合金、PEM=プロトン交換体、Air=空気)電
池は、電解質のプロトン交換膜の内部およびその表面が
酸性雰囲気であることから、正極を構成する空気極の作
動には触媒が必要であり、その触媒として、現時点では
白金だけがほぼ唯一、使用できる状況にある。
2. Description of the Related Art MH / PEM / Air (MH = hydrogen storage alloy, PEM = proton exchanger) using an air electrode as a positive electrode, a proton exchange membrane (PEM membrane) as an electrolyte, and a hydrogen storage alloy electrode as a negative electrode , Air = air) Since the inside of the proton exchange membrane of the electrolyte and the surface thereof are in an acidic atmosphere, a catalyst is necessary for the operation of the air electrode constituting the positive electrode. Are almost exclusively available.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、白金触
媒は非常に高価であり、大量に使用することはコスト高
を招くことになる。
However, platinum catalysts are very expensive, and using them in large quantities results in high costs.

【0004】さらに、MH/PEM/Air電池の充電
時には、空気極で酸素が発生する。その際、酸素過電圧
の大きい白金触媒では、充電電圧が高くなり、充放電効
率が低下するという問題があった。
Further, when charging the MH / PEM / Air battery, oxygen is generated at the air electrode. At that time, in the case of a platinum catalyst having a large oxygen overvoltage, there is a problem that the charging voltage is increased and the charge / discharge efficiency is reduced.

【0005】本発明は、上記のような従来技術の問題点
を解決し、白金触媒より安価で、かつ酸素過電圧の小さ
い空気極触媒を開発し、その空気極触媒を用いて、安価
で、かつ充放電効率が優れた空気極および空気電池を提
供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, develops an air electrode catalyst which is less expensive than a platinum catalyst and has a small oxygen overvoltage, and is inexpensive and uses the air electrode catalyst. An object of the present invention is to provide an air electrode and an air battery having excellent charge / discharge efficiency.

【0006】[0006]

【課題を解決するための手段】本発明は、MH/PEM
/Air電池などの酸性雰囲気で作動する空気電池の空
気極における空気極触媒を、カーボンと金属硫化物とを
主材として構成し、上記課題を解決したものである。
SUMMARY OF THE INVENTION The present invention provides an MH / PEM
An air electrode catalyst for an air electrode of an air battery operated in an acidic atmosphere such as a / Air battery is constituted by using carbon and metal sulfide as main materials to solve the above problem.

【0007】すなわち、金属硫化物は、白金より安価
で、かつ酸素過電圧が小さいので、白金触媒より安価
で、かつ酸素過電圧の小さい空気極触媒の提供が可能で
あり、したがって、安価で、かつ充放電効率が高い空気
極および空気電池の提供が可能になる。
That is, metal sulfide is less expensive than platinum and has a smaller oxygen overvoltage, so that it is possible to provide an air electrode catalyst that is less expensive than a platinum catalyst and has a smaller oxygen overvoltage, and is therefore less expensive and more fully charged. An air electrode and an air battery having high discharge efficiency can be provided.

【0008】[0008]

【発明の実施の形態】本発明において、金属硫化物とし
ては、例えば、NiS、NiS2 、Ni3 4 、Ni
0.3 Co0.7 2 、CoS、FeS、MoS2 、Ag2
S、Sb2 3、Sb2 5 、SnS、MnS、W
2 、PbSおよびZnSよりなる群から選ばれた少な
くとも1種が挙げられ、特にNi、Co、Feなどを含
む硫化物が、それらの構成金属がPtと同じ遷移金属で
あり、かつ比較的安価であることから好ましい。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, metal sulfide
For example, NiS, NiSTwo, NiThreeS Four, Ni
0.3Co0.7STwo, CoS, FeS, MoSTwo, AgTwo
S, SbTwoSThree, SbTwoSFive, SnS, MnS, W
STwo, PbS and ZnS
At least one kind, particularly containing Ni, Co, Fe, etc.
Sulfide is a transition metal whose constituent metal is the same as Pt
It is preferable because it is relatively inexpensive.

【0009】カーボンとしては、特に特定のものに限定
されることはないが、例えば、黒鉛、カーボンブラッ
ク、木炭、活性炭などを用いることができる。空気極触
媒の調製にあたり、上記カーボンと金属硫化物との比率
としては、重量比で70:30〜30:70が好まし
く、特に60:40〜40:60が好ましい。すなわ
ち、カーボンと金属硫化物との比率を前記範囲とするこ
とによって、反応面積に結びつく空気極触媒の比表面積
と空気極触媒中の金属硫化物量とのバランスを最適化さ
せ、安価で、かつ充放電効率が優れた空気極の提供を可
能にするとともに、カーボンの有する撥水性により空気
極の過度の濡れを抑制して、反応点である三相界面を良
好に保ち得る。
The carbon is not particularly limited. For example, graphite, carbon black, charcoal, activated carbon and the like can be used. In preparing the air electrode catalyst, the ratio between the carbon and the metal sulfide is preferably 70:30 to 30:70 by weight, and particularly preferably 60:40 to 40:60. That is, by setting the ratio of carbon to metal sulfide within the above range, the balance between the specific surface area of the cathode catalyst, which is associated with the reaction area, and the amount of metal sulfide in the cathode catalyst is optimized, and the cost and the charge are reduced. It is possible to provide an air electrode having excellent discharge efficiency, and it is possible to suppress excessive wetting of the air electrode by the water repellency of carbon and to maintain a favorable three-phase interface as a reaction point.

【0010】そして、空気極の作製にあたり、空気極触
媒は成形した状態にしておくことが好ましいことから、
空気極触媒の調製にあたって、上記カーボンと金属硫化
物以外に、撥水性を補助する目的とバインダーとしての
作用を発揮させるため、ポリテトラフルオロエチレンを
用いることが好ましい。そして、このポリテトラフルオ
ロエチレンとしては、空気極触媒の調製にあたって、水
性分散液の状態にしたものを用いてもよい。また、ポリ
テトラフルオロエチレンと同様の目的で、ポリビニリデ
ンフルオライド、テトラフルオロエチレン−パーフルオ
ロアルキルビニルエーテル共重合体、テトラフルオロエ
チレン−ヘキサフルオロプロピレン共重合体なども用い
ることができる。
In preparing the cathode, it is preferable to keep the cathode catalyst in a molded state.
In preparing the air electrode catalyst, it is preferable to use polytetrafluoroethylene, in addition to the carbon and metal sulfide, for the purpose of assisting water repellency and exhibiting the effect as a binder. As the polytetrafluoroethylene, an aqueous dispersion may be used in preparing the air electrode catalyst. Further, for the same purpose as polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, and the like can also be used.

【0011】本発明において、上記空気極触媒の構成材
料の混合攪拌は、水の存在下で行うが、その際に有機溶
媒を添加することが好ましい。その有機溶媒としては、
例えば、アルコール、アセトン、ヘキサンなどを用いる
ことができるが、特にブタノール、エタノール、2−プ
ロパノールなどの低級アルコールが好ましい。これは、
それらの低級アルコールが触媒構成材料の表面電位を変
化させ、より強く凝集を引き起こさせるという理由によ
るものである。
In the present invention, the mixing and stirring of the constituent materials of the air electrode catalyst are carried out in the presence of water. At that time, it is preferable to add an organic solvent. As the organic solvent,
For example, alcohol, acetone, hexane and the like can be used, but lower alcohols such as butanol, ethanol and 2-propanol are particularly preferable. this is,
This is because these lower alcohols change the surface potential of the catalyst constituent material and cause agglomeration more strongly.

【0012】上記有機溶媒の添加にあたっては、水に空
気極触媒の構成材料を添加して混合攪拌した後、有機溶
媒を添加し、加熱混合攪拌することが好ましい。そし
て、その有機溶媒の添加後の混合攪拌時の温度は150
〜200℃が好ましく、この条件で空気極触媒の微粒
化、沈降が好適に進行する。
In the addition of the organic solvent, it is preferable to add the constituent material of the air electrode catalyst to water, mix and stir, add the organic solvent, and heat and mix. The temperature during mixing and stirring after the addition of the organic solvent is 150
To 200 ° C. is preferable, and under these conditions, atomization and sedimentation of the air electrode catalyst suitably proceeds.

【0013】また、上記カーボンと金属硫化物とは、上
記のように単に混合するだけでなく、あらかじめ複合体
化しておいてもよい。例えば、上記金属硫化物をあらか
じめコロイド液にしておき、その金属硫化物を含有する
コロイド液とカーボンとを混合すると、カーボンの粒子
表面に金属硫化物の微粒子が被覆したような状態にする
ことができる。そして、それを用いて、前記のようにポ
リテトラフルオロエチレンなどと混合して空気極触媒を
調製してもよい。
The above-mentioned carbon and metal sulfide may not only be mixed as described above, but may also be formed into a complex in advance. For example, if the above-mentioned metal sulfide is made into a colloid liquid in advance, and the colloid liquid containing the metal sulfide is mixed with carbon, it is possible to make a state in which the surface of the carbon particles is coated with fine particles of metal sulfide. it can. Then, it may be mixed with polytetrafluoroethylene or the like as described above to prepare an air electrode catalyst.

【0014】なお、上記では、空気極触媒を上記カーボ
ンと金属硫化物以外にポリテトラフルオロエチレンを含
んだ状態で調製することを例示したが、本発明において
は、空気極触媒をカーボンと金属硫化物とで構成しても
よいし、また、ポリテトラフルオロエチレンに代えて、
前記に例示したポリビニリデンフルオライド、テトラフ
ルオロエチレン−パーフルオロアルキルビニルエーテル
共重合体、テトラフルオロエチレン−ヘキサフルオロプ
ロピレン共重合体などを用いて空気極触媒を構成しても
よい。すなわち、本発明において、空気極触媒をカーボ
ンと金属硫化物とを主材として構成するとは、空気極触
媒をカーボンと金属硫化物のみで構成してもよいし、ま
た、カーボンと金属硫化物以外にポリテトラフルオロエ
チレンなどの他のものを含んで構成してもよいという意
味である。
In the above description, the air electrode catalyst is prepared in a state containing polytetrafluoroethylene in addition to the above-mentioned carbon and metal sulfide. However, in the present invention, the air electrode catalyst is prepared by using carbon and metal sulfide. It may be composed of a material and, in place of polytetrafluoroethylene,
The air electrode catalyst may be formed using polyvinylidene fluoride, tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, or the like exemplified above. That is, in the present invention, the configuration in which the air electrode catalyst is mainly composed of carbon and metal sulfide means that the air electrode catalyst may be composed only of carbon and metal sulfide, or that other than carbon and metal sulfide. May include other materials such as polytetrafluoroethylene.

【0015】上記空気極触媒を用いての空気極の製造
は、従来の空気極触媒を用いる場合とほぼ同様に行うこ
とができる。それを示すと、例えば、上記空気極触媒を
ニッケル、チタン、ステンレス鋼、モリブデン、タンタ
ルなどの導電性の優れた金属または炭素製の網、箔、エ
キスパンドメタル、パンチングメタルなどからなる集電
体に塗布し、加圧成形した後、必要に応じて加熱処理す
ることによって行われる。ただし、上記の方法は、単な
る例示にすぎず、他の方法によって空気極を作製しても
よい。
The production of an air electrode using the above-mentioned air electrode catalyst can be performed in substantially the same manner as in the case of using a conventional air electrode catalyst. To illustrate, for example, the above-mentioned air electrode catalyst is formed into a current collector made of nickel, titanium, stainless steel, molybdenum, a net made of carbon having excellent conductivity such as tantalum or carbon, foil, expanded metal, punching metal, or the like. After application and pressure molding, heat treatment is performed as necessary. However, the above method is merely an example, and the air electrode may be manufactured by another method.

【0016】上記空気極を用いて空気電池を構成するに
は、上記空気極を正極として用い、負極の作用物質とし
て水素吸蔵合金、カーボンナノチューブ、アルミニウ
ム、亜鉛などの金属などを用いることができ、電解質と
してはプロトン交換膜、アルカリ水溶液などを用いるこ
とができるが、本発明は、正極として上記空気極を用
い、負極として水素吸蔵合金電極を用い、電解質として
プロトン交換膜を用いたMH/PEM/Air電池にお
いて、その効果を最も顕著に発現する。
In order to form an air battery using the air electrode, the air electrode can be used as a positive electrode, and a hydrogen storage alloy, a carbon nanotube, a metal such as aluminum or zinc can be used as a negative electrode active material. As the electrolyte, a proton exchange membrane, an alkaline aqueous solution, or the like can be used. In the present invention, MH / PEM / using the above air electrode as a positive electrode, using a hydrogen storage alloy electrode as a negative electrode, and using a proton exchange membrane as an electrolyte is used. The effect is most remarkably exhibited in the Air battery.

【0017】上記負極を構成する水素吸蔵合金電極の作
用物質として用いる水素吸蔵合金としては、例えば、L
aNi5 で代表されるAB5 型水素吸蔵合金、ZnMn
2 もしくはその置換体で代表されるAB2 型水素吸蔵合
金、Mg2 Niもしくはその置換体で代表されるマグネ
シウム系のA2 B型水素吸蔵合金、固溶体型V基水素吸
蔵合金などが用いられる。また、プロトン交換膜として
は、例えば、Nafion(商品名、デュポン社製)、
フレミオン(商品名、旭硝子社製)、アシプレックス
(商品名、旭化成社製)などのフッ素系樹脂を骨格とし
てプロトン交換能を有するプロトン交換樹脂を成膜した
ものなどが好ましい。
The hydrogen storage alloy used as the active substance of the hydrogen storage alloy electrode constituting the negative electrode is, for example, L
AB 5 -type hydrogen absorbing alloy represented by ANI 5, ZnMn
2 or AB 2 type hydrogen storage alloy represented by the substituents thereof, Mg 2 Ni or A 2 B type hydrogen storage alloys of magnesium-based typified by derivatives thereof, such as a solid solution-type V based hydrogen storage alloy is used. Further, as the proton exchange membrane, for example, Nafion (trade name, manufactured by DuPont),
It is preferable to use a fluorine-based resin such as Flemion (trade name, manufactured by Asahi Glass Co., Ltd.) or Aciplex (trade name, manufactured by Asahi Kasei Co., Ltd.), and to form a proton-exchange resin film having a proton exchange ability with a skeleton.

【0018】[0018]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下の実施例などにおい
て濃度などを示す際の%は、特にその基準を付記しない
限り、重量%である。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following examples, the percentages when indicating concentrations and the like are weight percentages unless otherwise specified.

【0019】実施例1 空気極触媒の材料として、カーボン0.25g、NiS
0.33gをあらかじめ秤量したものを30mlの蒸留
水に投入し攪拌した。10分後、60%ポリテトラフル
オロエチレン水性分散液0.42g(固形分として0.
252g)を添加して、20分間攪拌した。最後にn−
ブタノール8mlを添加し20分間攪拌した後、200
℃に加熱し、さらに20分間攪拌して、空気極触媒を沈
降させ、上澄みを除いて、空気極触媒を得た。
Example 1 As a material for an air electrode catalyst, 0.25 g of carbon, NiS
A sample weighed in advance of 0.33 g was put into 30 ml of distilled water and stirred. After 10 minutes, 0.42 g of a 60% aqueous polytetrafluoroethylene dispersion (0.1% as solids).
252 g) and stirred for 20 minutes. Finally n-
After adding 8 ml of butanol and stirring for 20 minutes, 200 ml
C. and further stirred for 20 minutes to settle the air electrode catalyst and remove the supernatant to obtain an air electrode catalyst.

【0020】上記のようにして製造した空気極触媒をチ
タン網からなる集電体に塗布し、乾燥した後、プレスし
てポリテトラフルオロエチレンシートと一体化すること
により、図1に示す空気極を作製し、さらにその空気極
を用いて図2に示すモデルセルを組み立てた。
The air electrode catalyst produced as described above is applied to a current collector made of a titanium net, dried, pressed and integrated with a polytetrafluoroethylene sheet to form the air electrode catalyst shown in FIG. Was fabricated, and a model cell shown in FIG. 2 was assembled using the air electrode.

【0021】ここで、図1に示す空気極について説明す
ると、空気極1は、前記の空気極触媒2をチタン網から
なる集電体3に圧着し、その周囲をエポキシ樹脂4で固
め、その状態でポリテトラフルオロエチレンシート5と
一体化することによって、構成されている。なお、この
図1に示す空気極1では、空気極触媒2の周囲をエポキ
シ樹脂4で固めているが、このように空気極触媒2の周
囲をエポキシ樹脂4で固めることは必ずしも必要ではな
いし、ポリテトラフルオロエチレンシート5も同様の作
用(水ははじくが、空気は通過させる)をするものであ
れば、他の材料で構成されるものと置換することができ
る。
Here, the air electrode shown in FIG. 1 will be described. In the air electrode 1, the above-mentioned air electrode catalyst 2 is press-bonded to a current collector 3 made of a titanium net, and the periphery thereof is solidified with an epoxy resin 4, and the air electrode 1 is solidified with an epoxy resin 4. It is configured by being integrated with the polytetrafluoroethylene sheet 5 in a state. In the air electrode 1 shown in FIG. 1, the periphery of the air electrode catalyst 2 is solidified with the epoxy resin 4, but it is not always necessary to solidify the periphery of the air electrode catalyst 2 with the epoxy resin 4, The polytetrafluoroethylene sheet 5 can be replaced with a sheet made of another material as long as it performs the same function (repels water but allows air to pass).

【0022】つぎに、図2に示すモデルセルについて説
明すると、この図2では、モデルセルのセル容器6の内
壁部8と空気極1とが分離した状態で図示されていて、
上記空気極1の外側(図2では右側)には空気孔7aを
設けた外壁部7が配置し、内壁部8はフランジ状になっ
ていて、この図2では、上記のように空気極1と分離し
た状態に図示されているが、実際のモデルセルでは、空
気極1が内壁部8の空間部に嵌入し、その外側に外壁部
7が配置し、その空気極1の内側(図2では左側)にセ
パレータ11、Ag−AgClからなる参照極12、セ
パレータ11および白金からなる対極13が配置し、セ
パレータ11、参照極12、対極13などは1mol/
l硫酸水溶液からなる電解液14中に浸っており、内壁
部8と外壁部7との間にはO−リング15が配置し、電
解液14は上記外壁部7および内壁部8と、側壁部9
と、底壁部10とで形成されるセル容器6の内部空間に
収容され、それによって、モデルセルが構成されてい
る。
Next, the model cell shown in FIG. 2 will be described. In FIG. 2, the inner wall 8 of the cell container 6 of the model cell and the air electrode 1 are shown in a separated state.
An outer wall portion 7 provided with an air hole 7a is disposed outside the air electrode 1 (right side in FIG. 2), and an inner wall portion 8 has a flange shape. In FIG. In the actual model cell, the air electrode 1 fits into the space of the inner wall portion 8, and the outer wall portion 7 is disposed outside the air electrode 1. On the left side), a separator 11, a reference electrode 12 made of Ag-AgCl, a separator 11 and a counter electrode 13 made of platinum are arranged, and the separator 11, the reference electrode 12, the counter electrode 13 and the like are 1 mol / mol.
1 is immersed in an electrolytic solution 14 composed of an aqueous sulfuric acid solution, an O-ring 15 is disposed between the inner wall portion 8 and the outer wall portion 7, and the electrolytic solution 14 is provided on the outer wall portion 7, the inner wall portion 8, and the side wall portion. 9
And the bottom wall 10 are accommodated in the internal space of the cell container 6, thereby forming a model cell.

【0023】この実施例1で作製した空気極を組み込ん
だ図2に示すモデルセルにより、空気極の空気中の酸素
の還元機能の確認を行った。具体的には、35mA/c
2の電流を印加後、空気極電位の安定を待ってモデル
セル本体の空気孔を遮断し、再び空気極電位が安定した
後、空気孔を開放し、空気極電位の挙動を調べた。その
結果を図3に示す。
The model cell shown in FIG. 2 incorporating the air electrode manufactured in Example 1 was used to confirm the function of the air electrode to reduce oxygen in the air. Specifically, 35 mA / c
After applying a current of m 2 , the air hole of the model cell body was shut off after the air electrode potential was stabilized. After the air electrode potential was stabilized again, the air hole was opened and the behavior of the air electrode potential was examined. The result is shown in FIG.

【0024】図3に示す結果から明らかなように、空気
孔遮断による空気極電位の水素発生電位への移行、その
後の空気孔開放による空気極電位の回復が観測され、こ
の実施例1の空気極が空気中の酸素を還元する機能を有
していることを確認することができた。これを詳しく説
明すると、電流の印加により分極が生じて空気極電位が
低下し、空気孔が開放されている間はほぼその電位を保
ち、空気孔を遮断すると空気極電位は水素発生電位まで
低下し、その後、空気孔を開放すると、空気極電位が空
気孔を遮断する前までの電位に回復している。したがっ
て、この実施例1の空気極は、空気中の酸素を還元する
機能を有していると判断できる。
As is apparent from the results shown in FIG. 3, the transition of the air electrode potential to the hydrogen generation potential due to the air hole cutoff and the recovery of the air electrode potential due to the subsequent opening of the air hole were observed. It was confirmed that the electrode had a function of reducing oxygen in the air. To explain this in detail, the application of electric current causes polarization, which lowers the air electrode potential. While the air hole is open, the air electrode potential is kept almost at that level, and when the air hole is shut off, the air electrode potential drops to the hydrogen generation potential. Then, when the air hole is opened, the air electrode potential is restored to the potential before the air hole was shut off. Therefore, it can be determined that the air electrode of the first embodiment has a function of reducing oxygen in the air.

【0025】比較例1 空気極触媒の材料として、5%白金担持カーボン0.2
5gを30mlの蒸留水に投入し攪拌した。10分後、
60%ポリテトラフルオロエチレン水性分散液0.18
g(固形分として0.108g)を添加し、20分間攪
拌した後、n−ブタノール8mlを添加し20分間攪拌
後、200℃に加熱してさらに20分間攪拌して、空気
極触媒を沈降させた後、上澄みを除き、空気極触媒を得
た。それを実施例1と同様に、チタン網からなる集電体
に塗布、乾燥、プレスして、空気極とし、さらにその空
気極を用いた以外は実施例1と同様にモデルセルを組み
立てた。
COMPARATIVE EXAMPLE 1 5% platinum-supported carbon 0.2
5 g was put into 30 ml of distilled water and stirred. Ten minutes later,
60% polytetrafluoroethylene aqueous dispersion 0.18
g (0.108 g as a solid content) and stirring for 20 minutes, then add 8 ml of n-butanol and stir for 20 minutes, then heat to 200 ° C. and stir for another 20 minutes to precipitate the air electrode catalyst. After removing the supernatant, an air electrode catalyst was obtained. In the same manner as in Example 1, a model cell was assembled in the same manner as in Example 1 except that an air electrode was formed by coating, drying, and pressing a current collector made of a titanium net, and the air electrode was used.

【0026】上記実施例1および比較例1の空気極をそ
れぞれ組み込んだモデルセルにおいて、25℃で測定し
た分極特性を図4に示す。図4に示すように、実施例1
は、白金担持カーボンを空気極触媒として用いた比較例
1に比べると分極特性がわずかに劣るものの、比較例1
とほとんど変わらない分極特性を示し、白金触媒に代わ
る空気極触媒として充分な触媒機能を有していることが
明らかであった。
FIG. 4 shows the polarization characteristics measured at 25 ° C. in the model cells incorporating the air electrodes of Example 1 and Comparative Example 1, respectively. As shown in FIG.
In Comparative Example 1, although the polarization characteristics were slightly inferior to Comparative Example 1 using platinum-supported carbon as the air electrode catalyst, Comparative Example 1
It showed a polarization characteristic almost the same as that of the above, and it was clear that it had a sufficient catalytic function as an air electrode catalyst instead of a platinum catalyst.

【0027】実施例2 上記実施例1の空気極を用いてMH/PEM/Air系
モデルセルを組み立て、そのサイクル特性について調べ
た。
Example 2 An MH / PEM / Air model cell was assembled using the air electrode of Example 1 described above, and its cycle characteristics were examined.

【0028】使用した水素吸蔵合金は組成がMmNi
3.48Co0.74Mn0.4 Al0.3 (ここで、MmはLa:
33%、Ce:47%、Pr:5%、Nd:15%含有
するミッシュメタル)で表されるものであり、水素吸蔵
合金電極は、この水素吸蔵合金20gに2%カルボキシ
メチルセルロース2.55gと60%ポリテトラフルオ
ロエチレン水性分散液0.56gを添加し、さらに純水
2mlを加え、充分に混合して、水素吸蔵合金含有ぺー
ストを調製し、得られた水素吸蔵合金含有ぺーストを空
孔率95容量%のニッケル発泡体からなる多孔質基体に
塗布、充填し、乾燥することによって作製した。
The used hydrogen storage alloy has a composition of MmNi
3.48 Co 0.74 Mn 0.4 Al 0.3 (where Mm is La:
(A misch metal containing 33%, Ce: 47%, Pr: 5%, and Nd: 15%). The hydrogen storage alloy electrode is composed of 20 g of the hydrogen storage alloy and 2.55 g of carboxymethyl cellulose 2%. 0.56 g of a 60% aqueous polytetrafluoroethylene dispersion was added, and 2 ml of pure water was further added and mixed well to prepare a paste containing the hydrogen storage alloy. The obtained paste containing the hydrogen storage alloy was emptied. It was prepared by coating, filling and drying a porous substrate made of a nickel foam having a porosity of 95% by volume.

【0029】プロトン交換膜としては、Nafion
(ナフィオン)117(商品名、デュポン社製、テトラ
フルオロエチレンとパーフルオロ・スルホニル・エトキ
シビニルエーテルとの共重合体の加水分解物を製膜した
プロトン交換膜)を用いた。
As the proton exchange membrane, Nafion
(Nafion) 117 (trade name, manufactured by DuPont, a proton exchange membrane formed from a hydrolyzate of a copolymer of tetrafluoroethylene and perfluorosulfonylethoxyvinyl ether) was used.

【0030】そして、MH/PEM/Air系モデルセ
ルは、前記空気極を正極とし、水素吸蔵合金電極を負極
とし、プロトン交換膜を電解質として組み立てた。その
組み立てにあたっては、まず、前記空気極と水素吸蔵合
金電極との間に電解質としてのプロトン交換膜を介在さ
せて、圧力125kg/cm2 で、140℃で3分間加
圧し、それらを一体化して、図5に示すように、積層電
極体を作製した。
The MH / PEM / Air model cell was assembled using the air electrode as a positive electrode, a hydrogen storage alloy electrode as a negative electrode, and a proton exchange membrane as an electrolyte. In assembling, first, a proton exchange membrane as an electrolyte is interposed between the air electrode and the hydrogen storage alloy electrode, and pressurized at 140 ° C. for 3 minutes at a pressure of 125 kg / cm 2 to integrate them. As shown in FIG. 5, a laminated electrode body was manufactured.

【0031】図5に示す積層電極体について説明する
と、21は前記実施例1の空気極からなる正極であり、
22はプロトン交換膜からなる電解質であり、23は上
記の水素吸蔵合金電極からなる負極であり、23aはそ
のリード体である。そして、24は白金参照極であり、
この白金参照極24は、プロトン交換膜からなる電解質
22に接触させることにより、その電位をモニターする
ために設けたものであって、電解質22の端部に設けら
れ、積層電極体25は、上記のように、空気極からなる
正極21、プロトン交換膜からなる電解質22および水
素吸蔵合金電極からなる負極23を主材とする積層体で
構成されている。
Referring to the laminated electrode body shown in FIG. 5, reference numeral 21 denotes a positive electrode comprising the air electrode of the first embodiment,
Reference numeral 22 denotes an electrolyte made of a proton exchange membrane, 23 denotes a negative electrode made of the above-mentioned hydrogen storage alloy electrode, and 23a denotes a lead body thereof. 24 is a platinum reference electrode;
The platinum reference electrode 24 is provided for monitoring the potential of the platinum reference electrode 24 by being brought into contact with the electrolyte 22 made of a proton exchange membrane. The platinum reference electrode 24 is provided at an end of the electrolyte 22. As shown in the figure, the laminate is mainly composed of a cathode 21 composed of an air electrode, an electrolyte 22 composed of a proton exchange membrane, and a negative electrode 23 composed of a hydrogen storage alloy electrode.

【0032】図6は、上記の空気極からなる正極21と
プロトン交換膜からなる電解質22と水素吸蔵合金電極
からなる負極23を主材とする積層電極体25を用いた
モデルセルを模式的に示す図であり、上記積層電極体2
5は斜視図で示され、他の部分は断面図で示され、モデ
ルセルは、積層電極体25のところで分離した状態で示
されている。図6において、上記積層電極体25の外側
(図6では右側)にはポリテトラフルオロエチレンシー
ト26が圧着され(ただし、図6では分離した状態で示
されている)、さらに、その外側(図6では右側)には
空気孔28aを設けた外壁部28が配置し、内壁部29
はフランジ状になっていて、この図6では、上記のよう
に積層電極体25と分離した状態に図示されているが、
実際のモデルセルでは、積層電極体25が内壁部29の
空間部に嵌入し、その外側に外壁部28が配置してい
る。そして、セル容器27は上記外壁部28、内壁部2
9、側壁部30および底壁部31などで構成され、それ
らによって形成される空間には水32が入れられ、外壁
部28と内壁部29との間にはO−リング33が配設さ
れ、それによって、モデルセルが構成されている。
FIG. 6 schematically shows a model cell using a laminated electrode body 25 mainly composed of a cathode 21 composed of the air electrode, an electrolyte 22 composed of a proton exchange membrane, and a negative electrode 23 composed of a hydrogen storage alloy electrode. FIG.
5 is shown in a perspective view, the other part is shown in a cross-sectional view, and the model cell is shown separated at the laminated electrode body 25. In FIG. 6, a polytetrafluoroethylene sheet 26 is crimped on the outside (the right side in FIG. 6) of the laminated electrode body 25 (however, it is shown in a separated state in FIG. 6). 6, an outer wall portion 28 having an air hole 28a is disposed on the inner wall portion 29.
Has a flange shape, and is shown in FIG. 6 in a state separated from the laminated electrode body 25 as described above.
In an actual model cell, the laminated electrode body 25 fits into the space of the inner wall 29, and the outer wall 28 is arranged outside the space. Then, the cell container 27 includes the outer wall portion 28 and the inner wall portion 2.
9, a side wall 30, a bottom wall 31, etc., a space formed by them is filled with water 32, and an O-ring 33 is disposed between the outer wall 28 and the inner wall 29. Thereby, a model cell is configured.

【0033】比較例2 空気極として比較例1の空気極を用いた以外は、実施例
2と同様にMH/PEM/Air系モデルセルを組み立
てた。
Comparative Example 2 An MH / PEM / Air model cell was assembled in the same manner as in Example 2 except that the air electrode of Comparative Example 1 was used as the air electrode.

【0034】上記実施例2および比較例2のモデルセル
に対して、25℃において、0.1mA/cm2 で10
時間充電し、1時間休止後、10時間で0.1Vまで放
電する充放電を繰り返し、そのサイクル特性を調べた。
その結果を図7に示す。
With respect to the model cells of Example 2 and Comparative Example 2, at 25 ° C., 10 mA at 0.1 mA / cm 2 .
After charging for 1 hour and stopping for 1 hour, charging and discharging were repeated to discharge to 0.1 V in 10 hours, and the cycle characteristics were examined.
FIG. 7 shows the result.

【0035】図7に示すように、実施例1は、放電電圧
が0.5V程度で安定しており、充電電圧も1.6V付
近と、白金触媒を用いた比較例1に比べて低く抑えられ
ており、酸素過電圧の小さい金属硫化物を用いた効果が
現れていた。
As shown in FIG. 7, in Example 1, the discharge voltage was stable at about 0.5 V, and the charge voltage was around 1.6 V, which was lower than that of Comparative Example 1 using a platinum catalyst. Thus, the effect of using a metal sulfide having a small oxygen overpotential has been exhibited.

【0036】[0036]

【発明の効果】以上説明したように、本発明では、白金
触媒を用いた空気極より安価で、かつ酸素過電圧が小さ
く、充放電効率が高い空気極を提供することができ、そ
の空気極を用いることによって、従来より安価で、かつ
充放電効率が高い空気電池を提供することができた。
As described above, according to the present invention, it is possible to provide an air electrode which is less expensive than an air electrode using a platinum catalyst, has a small oxygen overvoltage, and has a high charge / discharge efficiency. By using such an air battery, an air battery that is less expensive and has higher charge and discharge efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の空気極を模式的に示す断面図であ
る。
FIG. 1 is a cross-sectional view schematically illustrating an air electrode according to a first embodiment.

【図2】図1に示す空気極を用いて組み立てたモデルセ
ルを一部分離した状態で模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a model cell assembled using the air electrode shown in FIG. 1 in a partially separated state.

【図3】実施例1の空気極を用いて組み立てたモデルセ
ルでの、25℃における空気極の放電曲線を示す図であ
る。
FIG. 3 is a diagram showing a discharge curve of the air electrode at 25 ° C. in a model cell assembled using the air electrode of Example 1.

【図4】実施例1の空気極および比較例1の空気極をそ
れぞれ用いて組み立てたモデルセルの25℃における空
気極の放電分極特性を示す図である。
FIG. 4 is a diagram showing discharge polarization characteristics of an air electrode at 25 ° C. of a model cell assembled using the air electrode of Example 1 and the air electrode of Comparative Example 1, respectively.

【図5】実施例1の空気極からなる正極とプロトン交換
膜からなる電解質と水素吸蔵合金電極からなる負極とを
主材とする積層電極体を分離した状態で模式的に示す斜
視図である。
FIG. 5 is a perspective view schematically showing a state in which a laminated electrode body mainly composed of a cathode composed of an air electrode, an electrolyte composed of a proton exchange membrane, and a negative electrode composed of a hydrogen storage alloy electrode of Example 1 is separated. .

【図6】図5に示す積層電極体を用いたモデルセルを模
式的に示す図であり、積層電極体は他の部材と分離した
状態での斜視図で示され、その他の部分は断面図で示さ
れている。
6 is a diagram schematically showing a model cell using the laminated electrode body shown in FIG. 5, wherein the laminated electrode body is shown in a perspective view in a state where it is separated from other members, and other parts are sectional views Indicated by

【図7】実施例1の空気極および比較例1の空気極をそ
れぞれ用いて組み立てたMH/PEM/Air系モデル
セルでの、25℃におけるサイクル特性を示す図であ
る。
FIG. 7 is a diagram showing cycle characteristics at 25 ° C. in an MH / PEM / Air-based model cell assembled using the air electrode of Example 1 and the air electrode of Comparative Example 1, respectively.

【符号の説明】[Explanation of symbols]

1 空気極 2 空気極触媒 3 集電体 4 エポキシ樹脂 5 ポリテトラフルオロエチレンシート 6 セル容器 7 外壁部 7a 空気孔 8 内壁部 9 側壁部 10 底壁部 11 セパレータ 12 参照極 13 対極 14 電解液 15 O−リング 21 正極 22 電解質 23 負極 23a リード体 24 白金参照極 25 積層電極体 26 ポリテトラフルオロエチレンシート 27 セル容器 28 外壁部 28a 空気孔 29 内壁部 30 側壁部 31 底壁部 32 水 33 O−リング DESCRIPTION OF SYMBOLS 1 Air electrode 2 Air electrode catalyst 3 Current collector 4 Epoxy resin 5 Polytetrafluoroethylene sheet 6 Cell container 7 Outer wall 7a Air hole 8 Inner wall 9 Side wall 10 Bottom wall 11 Separator 12 Reference electrode 13 Counter electrode 14 Electrolyte 15 O-ring 21 Positive electrode 22 Electrolyte 23 Negative electrode 23a Lead 24 Platinum reference electrode 25 Stacked electrode 26 Polytetrafluoroethylene sheet 27 Cell container 28 Outer wall 28a Air hole 29 Inner wall 30 Side wall 31 Bottom wall 32 Water 33 O- ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 進介 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 石 軍 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H018 AA10 AS03 BB08 DD08 EE05 EE11 5H032 AA01 AS05 BB05 CC11 CC17 EE08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinsuke Shibata 1-1-88 Ushitora, Ibaraki City, Osaka Prefecture Inside Hitachi Maxell Co., Ltd. (72) Inventor Stone Army 1-188 Ushitora, Ibaraki City, Osaka Hitachi Within Maxell Co., Ltd. (72) Inventor Ryu Nagai 1-88 Ushitora, Ibaraki-shi, Osaka Prefecture F-term within Hitachi Maxell Co., Ltd. 5H018 AA10 AS03 BB08 DD08 EE05 EE11 5H032 AA01 AS05 BB05 CC11 CC17 EE08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気中の酸素の電気化学的還元および酸
素の発生を行う空気極において、カーボンと金属硫化物
とを主材として構成した空気極触媒を用いたことを特徴
とする空気極。
1. An air electrode for electrochemically reducing oxygen in air and generating oxygen, wherein an air electrode catalyst mainly composed of carbon and metal sulfide is used.
【請求項2】 上記金属硫化物が、NiS、NiS2
Ni3 4 、Ni0. 3 Co0.7 2 、CoS、FeS、
MoS2 、Ag2 S、Sb2 3 、Sb2 5 、Sn
S、MnS、WS2 、PbSおよびZnSよりなる群か
ら選ばれる少なくとも1種であることを特徴とする請求
項1記載の空気極。
2. The method according to claim 1, wherein the metal sulfide is NiS, NiSTwo,
NiThreeSFour, Ni0. ThreeCo0.7STwo, CoS, FeS,
MoSTwo, AgTwoS, SbTwoSThree, SbTwoS Five, Sn
S, MnS, WSTwoThe group consisting of PbS and ZnS
At least one member selected from the group consisting of:
Item 7. The air electrode according to Item 1.
【請求項3】 請求項1または2記載の空気極を正極と
して用い、プロトン交換膜を電解質として用い、水素吸
蔵合金電極を負極として用いたことを特徴とする空気電
池。
3. An air battery using the air electrode according to claim 1 or 2 as a positive electrode, using a proton exchange membrane as an electrolyte, and using a hydrogen storage alloy electrode as a negative electrode.
JP2001092620A 2001-03-28 2001-03-28 Air electrode and air cell using the same as positive electrode Withdrawn JP2002289266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092620A JP2002289266A (en) 2001-03-28 2001-03-28 Air electrode and air cell using the same as positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092620A JP2002289266A (en) 2001-03-28 2001-03-28 Air electrode and air cell using the same as positive electrode

Publications (1)

Publication Number Publication Date
JP2002289266A true JP2002289266A (en) 2002-10-04

Family

ID=18947052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092620A Withdrawn JP2002289266A (en) 2001-03-28 2001-03-28 Air electrode and air cell using the same as positive electrode

Country Status (1)

Country Link
JP (1) JP2002289266A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087827A (en) * 2005-09-22 2007-04-05 Kyushu Institute Of Technology Electrode catalyst and its manufacturing method
JP2007524204A (en) * 2004-02-06 2007-08-23 ポリプラス バッテリー カンパニー Protected active metal electrode and battery cell with non-aqueous interlayer structure
WO2014057483A1 (en) 2012-10-09 2014-04-17 Oxynergy Ltd. Electrode assembly and method for its preparation
US8709679B2 (en) 2003-11-10 2014-04-29 Polyplus Battery Company Active metal fuel cells
US8778522B2 (en) 2002-10-15 2014-07-15 Polyplus Battery Company Protected lithium electrodes based on sintered ceramic or glass ceramic membranes
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
US9136568B2 (en) 2003-10-14 2015-09-15 Polyplus Battery Company Protected lithium electrodes having tape cast ceramic and glass-ceramic membranes
JP2015222650A (en) * 2014-05-22 2015-12-10 日本電信電話株式会社 Lithium air secondary battery, and method for manufacturing positive electrode for lithium air secondary batteries
US9287573B2 (en) 2007-06-29 2016-03-15 Polyplus Battery Company Lithium battery cell with protective membrane having a garnet like structure
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
CN111097450A (en) * 2019-12-12 2020-05-05 电子科技大学 Preparation method of sulfur-indium-zinc-based composite electrode
KR20200137517A (en) * 2019-05-30 2020-12-09 고려대학교 산학협력단 Catalyst for oxygen reduction reaction and oxygen evolution reaction and method for manufacturing of the same
CN113426468A (en) * 2021-06-23 2021-09-24 山东华素制药有限公司 Wastewater treatment material and preparation method thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778522B2 (en) 2002-10-15 2014-07-15 Polyplus Battery Company Protected lithium electrodes based on sintered ceramic or glass ceramic membranes
US9362538B2 (en) 2002-10-15 2016-06-07 Polyplus Battery Company Advanced lithium ion batteries based on solid state protected lithium electrodes
US9136568B2 (en) 2003-10-14 2015-09-15 Polyplus Battery Company Protected lithium electrodes having tape cast ceramic and glass-ceramic membranes
US9601779B2 (en) 2003-10-14 2017-03-21 Polyplus Battery Company Battery cells with lithium ion conducting tape-cast ceramic, glass and glass-ceramic membranes
US9419299B2 (en) 2003-10-14 2016-08-16 Polyplus Battery Company Battery cells with lithium ion conducting tape-cast ceramic, glass and glass-ceramic membranes
US8709679B2 (en) 2003-11-10 2014-04-29 Polyplus Battery Company Active metal fuel cells
US9123941B2 (en) 2004-02-06 2015-09-01 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US9666850B2 (en) 2004-02-06 2017-05-30 Polyplus Battery Company Safety enhanced Li-ion and lithium metal battery cells having protected lithium electrodes with enhanced separator safety against dendrite shorting
US11646472B2 (en) 2004-02-06 2023-05-09 Polyplus Battery Company Making lithium metal—seawater battery cells having protected lithium electrodes
US10916753B2 (en) 2004-02-06 2021-02-09 Polyplus Battery Company Lithium metal—seawater battery cells having protected lithium electrodes
US10529971B2 (en) 2004-02-06 2020-01-07 Polyplus Battery Company Safety enhanced li-ion and lithium metal battery cells having protected lithium electrodes with enhanced separator safety against dendrite shorting
JP2007524204A (en) * 2004-02-06 2007-08-23 ポリプラス バッテリー カンパニー Protected active metal electrode and battery cell with non-aqueous interlayer structure
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
US8828580B2 (en) 2004-02-06 2014-09-09 Polyplus Battery Company Lithium battery having a protected lithium electrode and an ionic liquid catholyte
JP2007087827A (en) * 2005-09-22 2007-04-05 Kyushu Institute Of Technology Electrode catalyst and its manufacturing method
US9287573B2 (en) 2007-06-29 2016-03-15 Polyplus Battery Company Lithium battery cell with protective membrane having a garnet like structure
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
JP2015537336A (en) * 2012-10-09 2015-12-24 オキシナジー・リミテッド Electrode assembly and method for its preparation
EP2907184B1 (en) * 2012-10-09 2018-05-02 Oxynergy Ltd. Electrode assembly and method for its preparation
US10014530B2 (en) 2012-10-09 2018-07-03 Oxynergy Ltd. Electrode assembly and method for its preparation
CN110085874A (en) * 2012-10-09 2019-08-02 氧动能有限责任公司 Electrode assembly and preparation method thereof
WO2014057483A1 (en) 2012-10-09 2014-04-17 Oxynergy Ltd. Electrode assembly and method for its preparation
CN104704665A (en) * 2012-10-09 2015-06-10 氧动能有限责任公司 Electrode assembly and method for its preparation
JP2015222650A (en) * 2014-05-22 2015-12-10 日本電信電話株式会社 Lithium air secondary battery, and method for manufacturing positive electrode for lithium air secondary batteries
KR20200137517A (en) * 2019-05-30 2020-12-09 고려대학교 산학협력단 Catalyst for oxygen reduction reaction and oxygen evolution reaction and method for manufacturing of the same
KR102298551B1 (en) 2019-05-30 2021-09-03 고려대학교 산학협력단 Catalyst for oxygen reduction reaction and oxygen evolution reaction and method for manufacturing of the same
US11123717B2 (en) 2019-05-30 2021-09-21 Korea University Research And Business Foundation Catalyst for oxygen reduction reaction and oxygen evolution reaction and method for manufacturing of the same
CN111097450A (en) * 2019-12-12 2020-05-05 电子科技大学 Preparation method of sulfur-indium-zinc-based composite electrode
CN113426468A (en) * 2021-06-23 2021-09-24 山东华素制药有限公司 Wastewater treatment material and preparation method thereof
CN113426468B (en) * 2021-06-23 2022-09-16 山东华素制药有限公司 Wastewater treatment material and preparation method thereof

Similar Documents

Publication Publication Date Title
Wang et al. Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries
Li et al. Advanced hybrid Li–air batteries with high-performance mesoporous nanocatalysts
JP2002289266A (en) Air electrode and air cell using the same as positive electrode
CN109309261B (en) Aqueous dual-ion secondary battery
JP2007509480A (en) Electrode, its manufacturing method, metal / air fuel cell and metal hydride cell
JP4568124B2 (en) Air electrode and air secondary battery using the air electrode
CN113206265B (en) Lithium-carbon dioxide battery anode catalyst and preparation method thereof
Li et al. Electrochemical Performance of MnO2‐based Air Cathodes for Zinc‐air Batteries
JP2653415B2 (en) Battery provided with gas diffusion electrode and method for charging and discharging the same
JP3196605B2 (en) Non-sintered nickel positive electrode and alkaline storage battery using the positive electrode
Yan et al. Achieving High Energy Efficiency: Recent Advances in Zn‐Air‐Based Hybrid Battery Systems
CN115228474B (en) Metal colloid catalyst for oxygen evolution reaction under alkaline condition and preparation method and application thereof
JP2003115299A (en) Solid polymer fuel cell
CN100375327C (en) Nano lead-acid accumulator battery
Bretthauer et al. A precious-metal free micro fuel cell accumulator
US5496665A (en) Hydrogen-occlusion-alloy electrode
US20120070739A1 (en) Galvanic element having a mercury-free negative electrode
JP2004311131A (en) Air cell
Abdel-Karim Nanoporous Metallic Foams for Energy Applications: Electrochemical Approaches for Synthesizing and Characterization
JPS5971259A (en) Alkaline storage battery and its manufacturing method
JP2003242989A (en) Fuel cell
JP3461923B2 (en) Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same
Costa et al. New Approaches for Renewable Energy Using Metal Electrocatalysts for Lithium-O 2 and Zinc-Air Batteries
JP2002151064A (en) Hydrogen storage metal alloy and hydrogen storage metal alloy electrode
JP3501382B2 (en) Hydrogen storage alloy negative electrode and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603