JP2002282223A - Bathtub hemodynamometer - Google Patents

Bathtub hemodynamometer

Info

Publication number
JP2002282223A
JP2002282223A JP2001091746A JP2001091746A JP2002282223A JP 2002282223 A JP2002282223 A JP 2002282223A JP 2001091746 A JP2001091746 A JP 2001091746A JP 2001091746 A JP2001091746 A JP 2001091746A JP 2002282223 A JP2002282223 A JP 2002282223A
Authority
JP
Japan
Prior art keywords
blood pressure
pulse wave
pressure value
bathtub
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001091746A
Other languages
Japanese (ja)
Other versions
JP4502537B2 (en
Inventor
Hajime Fujii
元 藤井
Hiroaki Izuma
弘昭 出馬
Tomoaki Ueda
智章 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001091746A priority Critical patent/JP4502537B2/en
Publication of JP2002282223A publication Critical patent/JP2002282223A/en
Application granted granted Critical
Publication of JP4502537B2 publication Critical patent/JP4502537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bathtub hemodynamometer for measuring the blood pressure of a bathing person in real time. SOLUTION: The bathtub hemodynamometer 1 comprises a heartbeat measuring means 2 for measuring the heartbeat timing of a bathing person, a pulse wave measuring means 3 for measuring the pulse wave at a measured part on the body surface of the bathing person, a propagation time deducing means 4 for deducing the propagation time of the pulse wave from the heart to the measured part, an average blood pressure deducing means 5, and a blood pressure deducing means 6. The average blood pressure deducing means 5 deduces the propagation speed of the pulse wave based on the pulse wave propagation distance and propagation time from the heart to the measured part and deduces the average blood pressure at the measured part based on a prescribed first relation between the pulse wave propagation speed and the blood pressure. The blood pressure deducing means 6 deduces the blood pressure at the measured part based on a prescribed second relation between the pulse wave and the blood pressure, and the average blood pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は入浴者の血圧をリア
ルタイムで測定する浴槽血圧計に関する。
The present invention relates to a bathtub sphygmomanometer for measuring the blood pressure of a bather in real time.

【0002】[0002]

【従来の技術】人の血圧を測定する方法としては、一般
的なカフ式の血圧計を用いる方法が広く知られている。
カフ式は、腕の高さ、カフの取り付け位置等に注意すれ
ば、誰にでも血圧を測定することができる方法である。
2. Description of the Related Art As a method of measuring human blood pressure, a method using a general cuff-type blood pressure monitor is widely known.
The cuff method is a method by which anyone can measure the blood pressure by paying attention to the height of the arm, the attachment position of the cuff, and the like.

【0003】他には、オメダ社(Ohmeda)の商品
名「フィナプレス」で販売されているパルスオキシメト
リと空気圧式カフとを組み合わせ、指の動脈近傍におけ
る赤外線吸光度を一定に保つようにカフ圧をネガティブ
フィードバックするゼロ位法により血圧を測定する方法
がある。この測定法の測定原理は、血圧の時間変化を人
体に流れる血液量の時間変化で見ることである。具体的
には、その血液量の時間変化を見るために、人体外部に
設けられた発光部から赤外光を人体に向けて照射し、そ
の透過光、または骨等によって散乱され人体外部に出て
きた散乱光を受光部で受光することで、人体内部を流れ
る血液中のヘモグロビンによって吸収された赤外光強度
の時間変化が測定される。従って、赤外光の光路上に存
在する血液が多い場合には、吸収される赤外光が多くな
り、血液が少ない場合には、吸収される赤外光も少なく
なる。ここで、脈拍毎の血圧値の変動により血管径が変
化するため、赤外線の光路上に存在する血液量も変化す
るため、この受光した赤外光強度の変化を測定すること
で、血圧値を求めることができる。
[0003] In addition, a pulse oximetry sold under the trade name "Finapress" of Ohmeda Co., Ltd. is combined with a pneumatic cuff, and the cuff pressure is maintained so as to keep the infrared absorbance near the finger artery constant. There is a method of measuring the blood pressure by the zero-position method in which the feedback is negative. The measurement principle of this measurement method is to look at the time change of blood pressure by the time change of the amount of blood flowing through the human body. Specifically, in order to observe the time change of the blood volume, infrared light is emitted toward the human body from a light emitting unit provided outside the human body, and the infrared light is scattered by the transmitted light or bones and exits the human body. The received scattered light is received by the light receiving section, whereby the time change of the intensity of the infrared light absorbed by hemoglobin in the blood flowing inside the human body is measured. Therefore, when there is much blood on the optical path of the infrared light, more infrared light is absorbed, and when there is less blood, less infrared light is absorbed. Here, since the blood vessel diameter changes due to the fluctuation of the blood pressure value for each pulse, the blood volume present on the optical path of the infrared light also changes, and thus the blood pressure value is measured by measuring the change in the intensity of the received infrared light. You can ask.

【0004】或いは、動脈内に血圧トランデューサを挿
入することで血圧を直接測定する方法がある。
[0004] Alternatively, there is a method of directly measuring blood pressure by inserting a blood pressure transducer into an artery.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、動脈内
に血圧トランデューサを直接挿入する方法は、最も正確
に血圧を測定することができるが、人体を侵襲する方式
であるために、痛みや出血を伴い、特に入浴中に測定す
る場合には感染症などの危険性があるために不適当であ
った。また、血圧トランデューサを体内に直接挿入する
ことを一般の入浴者に対して求めること自体に無理があ
る。
However, the method of directly inserting a blood pressure transducer into an artery can measure blood pressure most accurately. However, since it is an invasive method to the human body, it causes pain and bleeding. Accordingly, it is not suitable especially when measuring during bathing because of the risk of infection. Further, it is impossible to require a general bather to directly insert the blood pressure transducer into the body.

【0006】カフ式の血圧計は、素人でも容易に装着で
きるという利点があるが、入浴者の被測定部位に対して
ポンプなどにより圧力を印加するために入浴者を拘束し
て負担をかける必要があり、更にカフの着脱や測定中の
カフの取り回しが面倒であるという問題点がある。
The cuff-type blood pressure monitor has the advantage that even a layman can easily wear it. However, it is necessary to restrain the bather and apply a load to apply pressure to the part to be measured by the bather using a pump or the like. In addition, there is a problem that the attachment and detachment of the cuff and the handling of the cuff during the measurement are troublesome.

【0007】また、パルスオキシメトリとカフとを組み
合わせた方式は、測定開始から終了まで、被測定部の毛
細血管が著しく拡張したり収縮したりすることが無いと
いう前提で計測しているため、入浴中の入浴者の血圧を
測定するための方式としては正確さに欠けるという問題
がある。
[0007] In addition, the method of combining pulse oximetry and cuff measures on the premise that the capillaries of the measured portion do not significantly expand or contract from the start to the end of the measurement. As a method for measuring the blood pressure of a bather during bathing, there is a problem of lack of accuracy.

【0008】本発明は上記の問題点に鑑みてなされたも
のであり、その目的は、入浴者の正確な血圧をリアルタ
イムで非侵襲的に測定する浴槽血圧計を提供する点にあ
る。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a bathtub sphygmomanometer which non-invasively measures an accurate blood pressure of a bather in real time.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明に係る浴槽血圧計の第一の特徴構成は、特許請
求の範囲の欄の請求項1に記載の如く、入浴者の血圧を
測定する浴槽血圧計であって、前記入浴者の心拍タイミ
ングを測定する心拍測定手段と、前記入浴者の体表面上
の被測定部位における脈波を測定する脈波測定手段と、
前記脈波と前記心拍タイミングとを比較し、心臓から前
記被測定部位に至る前記脈波の伝搬時間を導出する伝搬
時間導出手段と、心臓から前記被測定部位に至る前記脈
波の伝搬距離と前記伝搬時間とから前記脈波の伝搬速度
を導出し、脈波伝搬速度と血圧値との間の所定の第1関
係に基づいて、前記被測定部位における平均血圧値を導
出する平均血圧導出手段と、前記脈波と血圧値との間の
所定の第2関係、および前記平均血圧値に基づいて前記
被測定部位における血圧値を導出する血圧値導出手段と
を備えてなる点にある。
A first characteristic configuration of a bathtub sphygmomanometer according to the present invention for solving the above-mentioned problems is as described in claim 1 of the claims. A bathtub sphygmomanometer for measuring the heartbeat timing of the bather, a pulse wave measurement unit for measuring a pulse wave at a site to be measured on the body surface of the bather,
Propagation time deriving means for comparing the pulse wave and the heartbeat timing to derive the propagation time of the pulse wave from the heart to the measurement site, and the propagation distance of the pulse wave from the heart to the measurement site Mean blood pressure deriving means for deriving a propagation speed of the pulse wave from the propagation time, and deriving an average blood pressure value at the measurement site based on a first predetermined relationship between the pulse wave propagation speed and the blood pressure value. And a second predetermined relationship between the pulse wave and the blood pressure value, and blood pressure value deriving means for deriving a blood pressure value at the measurement site based on the average blood pressure value.

【0010】上記課題を解決するための本発明に係る浴
槽血圧計の第二の特徴構成は、特許請求の範囲の欄の請
求項2に記載の如く、上記第一の特徴構成に加えて、前
記血圧値導出手段が、大気圧下で測定された前記被測定
部位における第1脈波と前記大気圧とは異なる第2圧力
下で測定された前記被測定部位における第2脈波の差
分、および前記大気圧と前記第2圧力との圧力差から、
脈波と圧力との間の関係を導出して、前記平均血圧値に
基づいて前記被測定部位における血圧値を導出する点に
ある。
[0010] A second characteristic configuration of the bathtub sphygmomanometer according to the present invention for solving the above-mentioned problems is, in addition to the first characteristic configuration, described in claim 2 of the claims. The blood pressure value deriving means, the difference between the first pulse wave at the measurement site measured under atmospheric pressure and the second pulse wave at the measurement site measured under a second pressure different from the atmospheric pressure; And from the pressure difference between the atmospheric pressure and the second pressure,
A point between the pulse wave and the pressure is derived to derive a blood pressure value at the measurement site based on the average blood pressure value.

【0011】上記課題を解決するための本発明に係る浴
槽血圧計の第三の特徴構成は、特許請求の範囲の欄の請
求項3に記載の如く、上記第一または第二の特徴構成に
加えて、前記脈波測定手段が、前記被測定部位に対して
光を照射する発光部と、前記入浴者によって散乱された
前記光を受光する受光部と、前記受光部における受光強
度の時間的変化に基づいて前記脈波を導出する第1演算
手段とを備えてなる点にある。
[0011] A third feature of the bathtub sphygmomanometer according to the present invention for solving the above-mentioned problems is the same as the first or second feature, as described in claim 3 of the claims. In addition, the pulse wave measurement means may be configured to irradiate the measurement site with light, a light-emitting unit that receives the light scattered by the bather, and a time-dependent light-receiving intensity of the light-receiving unit. A first calculating means for deriving the pulse wave based on the change.

【0012】上記課題を解決するための本発明に係る浴
槽血圧計の第四の特徴構成は、特許請求の範囲の欄の請
求項4に記載の如く、上記第一から第三の何れかの特徴
構成に加えて、前記心拍測定手段が、浴槽内壁に設けら
れた複数の電極と、前記電極に誘導されたそれぞれの電
気信号を外部に伝達する伝達手段と、前記電気信号を増
幅する増幅手段と、増幅された前記電気信号を処理し
て、前記心拍タイミングを導出する第2演算手段とを備
えてなる点にある。
[0012] A fourth characteristic configuration of the bathtub sphygmomanometer according to the present invention for solving the above-mentioned problems is as described in claim 4 of the claims. In addition to the characteristic configuration, the heart rate measuring means includes a plurality of electrodes provided on an inner wall of the bathtub, a transmitting means for transmitting respective electric signals guided to the electrodes to the outside, and an amplifying means for amplifying the electric signals. And a second calculating means for processing the amplified electric signal to derive the heartbeat timing.

【0013】以下に作用並びに効果を説明する。本発明
に係る浴槽血圧計の第一の特徴構成によれば、心拍測定
手段が、上記入浴者の心拍タイミングを測定し、脈波測
定手段が、上記入浴者の体表面上の被測定部位における
脈波を測定し、伝搬時間導出手段が、上記脈波と上記心
拍タイミングとを比較し、心臓から上記被測定部位に至
る脈波の伝搬時間を導出し、平均血圧導出手段が、心臓
から上記被測定部位に至る上記脈波の伝搬距離と上記伝
搬時間とから上記脈波の伝搬速度を導出し、所定の脈波
伝搬速度と血圧値との関係に基づいて、上記被測定部位
における平均血圧値を導出することができ、血圧値導出
手段が、上記脈波の振幅と血圧値の振幅との間の所定の
第2関係、および前記平均血圧値に基づいて前記被測定
部位における血圧値を導出することができる。ここで、
上記第2関係は、測定された脈波のスケールを血圧値の
スケールに変換することができるような関係式である。
従って、入浴者の血圧値を非侵襲的に、入浴者に負担を
かけること無しに、且つ簡単な方法で測定することがで
きる。また、脈波測定手段を装着したとしてもポンプを
備えたカフのように取り回しが問題になることはなく、
簡単に血圧値測定を実施することができる。尚、心臓か
ら被測定部位までの距離は被測定者の身長、体重などか
ら導出することができる。又は、浴槽内壁に心臓の位置
と被測定部位の位置とを所定の間隔を置いてマーキング
し、そのマーキングした位置に入浴者が寄りかかるよう
指示することで、心臓から被測定部位までの距離を知る
ことができるように構成してもよい。
The operation and effect will be described below. According to the first characteristic configuration of the bathtub sphygmomanometer according to the present invention, the heart rate measuring means measures the heartbeat timing of the bather, and the pulse wave measuring means is at a site to be measured on the body surface of the bather. The pulse wave is measured, the propagation time deriving means compares the pulse wave with the heartbeat timing, derives the propagation time of the pulse wave from the heart to the measurement site, and the average blood pressure deriving means calculates the Deriving the propagation speed of the pulse wave from the propagation distance and the propagation time of the pulse wave reaching the measurement site, the average blood pressure at the measurement site based on the relationship between the predetermined pulse wave propagation speed and the blood pressure value The blood pressure value deriving means can calculate a blood pressure value at the measurement site based on the predetermined second relationship between the amplitude of the pulse wave and the amplitude of the blood pressure value, and the average blood pressure value. Can be derived. here,
The second relation is a relational expression that can convert a measured pulse wave scale into a blood pressure value scale.
Accordingly, the blood pressure value of the bather can be measured non-invasively, without burdening the bather, and by a simple method. Also, even if the pulse wave measuring means is attached, there is no problem in handling like a cuff equipped with a pump,
Blood pressure measurement can be easily performed. Note that the distance from the heart to the measurement site can be derived from the height, weight, and the like of the measurement subject. Alternatively, the distance from the heart to the measurement site is known by marking the position of the heart and the position of the measurement site on the inner wall of the bathtub at predetermined intervals, and instructing the bather to lean on the marked position. It may be configured so that

【0014】ここで、被測定部位における脈波の波形は
心臓における心拍タイミングに依存するのであるが、心
臓から被測定部位までの距離に比例して、脈波のピーク
が心拍タイミングから遅れて現れる。従って、脈波の波
形ピークの心拍タイミングからの遅れ時間と、心臓から
被測定部位までの距離とから、脈波の伝搬速度を導出す
ることができる。脈波の伝搬速度と血圧値との間には比
例関係が成立することが知られており、導出された脈波
の伝搬速度から被測定部位における平均血圧を導出する
ことができる。従って、脈波の最大値と最小値は血圧の
最大値と最小値に対応付けることができることから、そ
の平均値を上記平均血圧値で換算することで、被測定部
位における血圧値波形を導出することができる。
Here, the waveform of the pulse wave at the site to be measured depends on the heartbeat timing in the heart, and the peak of the pulse wave appears later than the heartbeat timing in proportion to the distance from the heart to the site to be measured. . Therefore, the propagation speed of the pulse wave can be derived from the delay time of the pulse wave waveform peak from the heartbeat timing and the distance from the heart to the measurement site. It is known that a proportional relationship is established between the propagation speed of the pulse wave and the blood pressure value, and the average blood pressure at the measurement site can be derived from the derived propagation speed of the pulse wave. Therefore, since the maximum value and the minimum value of the pulse wave can be associated with the maximum value and the minimum value of the blood pressure, the average value is converted into the average blood pressure value to derive a blood pressure value waveform at the measurement site. Can be.

【0015】本発明に係る浴槽血圧計の第二の特徴構成
によれば、被測定部位に対する大気圧下(加圧前)の第
1脈波と第2圧力下(加圧後)の第2脈波との差分と、
大気圧と第2圧力との圧力差とから、脈波と圧力との関
係を導出することができ、脈波の振幅の最大値と最小値
とが最大血圧値と最小血圧値とに対応し、並びに脈波の
振幅の中間値が中間血圧値に対応することを考慮する
と、脈波の振幅のスケールを圧力(血圧値)のスケール
に変換することができ、その結果、先に求めた平均血圧
値だけでなく、最大血圧値および最小血圧値についても
正確に導出することができる。
According to a second characteristic configuration of the bathtub sphygmomanometer according to the present invention, the first pulse wave under the atmospheric pressure (before pressurization) and the second pulse wave under the second pressure (after pressurization) with respect to the measurement site. The difference from the pulse wave,
From the pressure difference between the atmospheric pressure and the second pressure, the relationship between the pulse wave and the pressure can be derived, and the maximum value and the minimum value of the pulse wave amplitude correspond to the maximum blood pressure value and the minimum blood pressure value. Considering that the intermediate value of the amplitude of the pulse wave corresponds to the intermediate blood pressure value, the scale of the amplitude of the pulse wave can be converted to the scale of the pressure (blood pressure value). Not only blood pressure values but also maximum blood pressure values and minimum blood pressure values can be accurately derived.

【0016】本発明に係る浴槽血圧計の第三の特徴構成
によれば、脈波測定手段が、発光部と受光部とを備えて
なり、その発光部から照射された赤外線が人体に侵入し
た場合、血液中のヘモグロビンによって赤外線が吸収さ
れ、その吸収量は赤外線の光路上に存在するヘモグロビ
ンの量に比例する。従って、受光強度が小さい場合は、
赤外線の吸収に寄与したヘモグロビンの量が多い、即ち
血液量が多いことを意味し、受光強度が大きい場合は、
赤外線の吸収に寄与したヘモグロビンの量が少ない、即
ち血液量が少ないことを意味する。従って、受光強度の
時間的変動を測定することで、被測定部位における血液
量の時間的変動、即ち脈波を測定することができる。
According to a third feature of the bath sphygmomanometer according to the present invention, the pulse wave measuring means includes a light emitting section and a light receiving section, and the infrared rays emitted from the light emitting section have entered the human body. In this case, infrared light is absorbed by hemoglobin in blood, and the amount of absorption is proportional to the amount of hemoglobin existing on the optical path of the infrared light. Therefore, if the received light intensity is low,
If the amount of hemoglobin that contributed to the absorption of infrared rays is large, that is, it means that the blood volume is large, and if the received light intensity is large,
It means that the amount of hemoglobin that has contributed to the absorption of infrared rays is small, that is, the blood volume is small. Therefore, by measuring the temporal variation of the received light intensity, it is possible to measure the temporal variation of the blood volume at the measurement site, that is, the pulse wave.

【0017】本発明に係る浴槽血圧計の第四の特徴構成
によれば、心拍測定手段が、入浴者の、例えば心電波形
のR波のピークから求められる心拍タイミングを入浴中
に非侵襲的に測定することができることで、入浴者に対
して肉体的および精神的に負担がかかることを避けるこ
とができ、平常時における正確な心拍タイミングの測定
を実施すること、即ち、正確な血圧値の測定を実施する
ことができる。
According to the fourth characteristic configuration of the bathtub sphygmomanometer according to the present invention, the heartbeat measuring means determines the heartbeat timing of the bather, for example, from the peak of the R wave of the electrocardiographic waveform during bathing. Measurement can prevent the bather from being physically and mentally burdened, and perform accurate measurement of the heartbeat timing in normal times, that is, accurate blood pressure value measurement. A measurement can be performed.

【0018】[0018]

【発明の実施の形態】本発明に係る浴槽血圧計1は、心
拍測定手段2と、脈波測定手段3と、伝搬時間導出手段
4と、平均血圧導出手段5と、血圧値導出手段6とを備
えてなる。ここで、脈波測定手段3は、入浴者の体表面
上の被測定部位に対して光を照射する発光手段7と、入
浴者を透過した透過光または入浴者によって散乱された
照射光を受光する受光手段8と、上記受光手段8におけ
る受光強度、或いは入浴者による吸収光強度の時間的変
化に基づいて脈波の波形を導出する第1演算手段とを備
えてなる。また、心拍測定手段2は、浴槽内壁に設けら
れた複数の電極10a、10bと、電極10a、10b
に誘導されたそれぞれの電気信号を外部に伝達する伝達
手段11a、11bと、上記電気信号を増幅する増幅手
段12と、増幅された上記電気信号を信号処理して、入
浴者の心拍タイミング(具体的には心電波形のR波のピ
ークから得られた心拍タイミングの時系列データ)を導
出する第2演算手段13とを備えてなる。伝搬時間導出
手段4、平均血圧導出手段5、血圧値導出手段6、第1
演算手段9、および第2演算手段13は、CPU等を用
いて実現される単一の信号処理手段14によって構成す
ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A bath sphygmomanometer 1 according to the present invention comprises a heart rate measuring means 2, a pulse wave measuring means 3, a propagation time deriving means 4, an average blood pressure deriving means 5, and a blood pressure value deriving means 6. Is provided. Here, the pulse wave measuring means 3 receives the light emitted from the light emitting means 7 for irradiating the measured part on the body surface of the bather with the transmitted light transmitted through the bather or the light scattered by the bather. And a first calculating means for deriving a pulse wave waveform based on a temporal change in the intensity of light received by the light receiving means 8 or the intensity of light absorbed by a bather. The heart rate measuring means 2 includes a plurality of electrodes 10a, 10b provided on the inner wall of the bathtub, and electrodes 10a, 10b.
Transmission means 11a and 11b for transmitting the respective electric signals guided to the outside, amplifying means 12 for amplifying the electric signals, signal processing of the amplified electric signals, and the heartbeat timing of the bather (specifically, More specifically, a second arithmetic means 13 for deriving heartbeat timing time series data obtained from the peak of the R wave of the electrocardiographic waveform is provided. Propagation time deriving means 4, mean blood pressure deriving means 5, blood pressure value deriving means 6, first
The calculating means 9 and the second calculating means 13 can be constituted by a single signal processing means 14 realized using a CPU or the like.

【0019】以下に図2を参照して、脈波の測定方法に
ついて説明する。図2に示すように、脈波測定手段3に
よる脈波の測定は、発光手段7と受光手段8とを備えた
リストバンド17を人体(ここでは入浴者の手首)に装
着し、第1演算手段9による制御によってパルスオキシ
メトリ法(赤外線吸光度計測法)を行うことで実施され
る。尚、リストバンド17の装着部位(被測定部位)は
大気圧下にあるものとする。更に、リストバンド17と
第1演算手段9は可能な限り入浴者の動きを拘束しない
ような導線を用いて接続され、その結果、脈波を測定さ
れているということを入浴者が意識しないように構成す
ることができる。
A method of measuring a pulse wave will be described below with reference to FIG. As shown in FIG. 2, the measurement of the pulse wave by the pulse wave measuring means 3 is performed by attaching a wristband 17 provided with a light emitting means 7 and a light receiving means 8 to a human body (here, a wrist of a bather) and performing a first calculation. The pulse oximetry method (infrared absorbance measurement method) is performed by the control of the means 9. It is assumed that the mounting part (measurement part) of the wristband 17 is under atmospheric pressure. Further, the wristband 17 and the first calculation means 9 are connected using a conducting wire that does not restrict the movement of the bather as much as possible, so that the bather does not recognize that the pulse wave is being measured. Can be configured.

【0020】発光手段7から放射された光(ここでは赤
外光)は人体内部の赤外光の吸収因子(血液中のヘモグ
ロビンなど)によって吸収され、或いは、骨などによっ
て更に散乱されて人体外部に放出される。受光手段8
は、その反射光を受光するように配置される場合や、透
過光を受光するように配置される場合がある。従って、
体外に放出された光は受光手段8によって受光され、そ
の結果、図3(a)に示すような人体による吸収光強度
の時間的変化が導出される。
The light (in this case, infrared light) emitted from the light emitting means 7 is absorbed by an infrared light absorbing factor (such as hemoglobin in blood) inside the human body, or is further scattered by bones and the like to the outside of the human body. Will be released. Light receiving means 8
May be arranged to receive the reflected light or may be arranged to receive the transmitted light. Therefore,
The light emitted outside the body is received by the light receiving means 8, and as a result, a temporal change in the intensity of light absorbed by the human body as shown in FIG. 3A is derived.

【0021】図3(a)に示した吸収光強度の時間変化
は、発光手段7から放射され、受光手段8によって受光
された光の光路上に存在する血液量の時間変化に対応し
ており、その結果、吸収光強度の波形に比例した入浴者
の脈波の波形を得ることができる。特に、発光手段7か
ら受光手段8への光路上に動脈があるようにリストバン
ド17を装着することで、その動脈に流れる血液量の時
間的変化、即ち脈波の波形が得られる。得られた脈波の
波形は第1演算手段9から出力される。脈波信号波形の
振幅は血圧値の振幅(最大血圧値と最小振幅値との差)
に比例し、そして脈波信号波形の振幅の中間値は平均血
圧値に対応するが、このグラフ(吸収光強度のスケー
ル)からそれぞれの絶対血圧値を知ることはできない。
The temporal change in the intensity of the absorbed light shown in FIG. 3A corresponds to the temporal change in the amount of blood existing on the optical path of the light emitted from the light emitting means 7 and received by the light receiving means 8. As a result, it is possible to obtain a pulse wave waveform of the bather proportional to the waveform of the absorbed light intensity. In particular, by attaching the wristband 17 so that the artery is on the optical path from the light emitting means 7 to the light receiving means 8, a temporal change in the amount of blood flowing through the artery, that is, a pulse wave waveform can be obtained. The obtained waveform of the pulse wave is output from the first calculating means 9. The amplitude of the pulse wave signal waveform is the amplitude of the blood pressure value (the difference between the maximum blood pressure value and the minimum amplitude value)
And the median value of the amplitude of the pulse wave signal waveform corresponds to the average blood pressure value, but the absolute blood pressure value cannot be known from this graph (scale of the absorbed light intensity).

【0022】次に、心拍の測定方法について説明する。
図1に示すように、ここで用いる心拍測定手段2によっ
て、水を介して少なくとも2つの電極10a、10bに
誘導された入浴者の体表面電位を示す電気信号を伝達手
段11a、11bを使用して増幅手段12に伝達し、増
幅手段12によって電極10a、10bに誘導された電
気信号の差動増幅し、増幅された電気信号を第2演算手
段13によって処理することで図3(b)に示すような
入浴者の心電信号(心電波形)が得られる。得られた心
電波形は第2演算手段13から出力される。この電極1
0a、10bは浴槽の内壁面に埋め込まれた電極や、通
常、浴槽内部に装着されている金属製の手すりなどを利
用することもできる。
Next, a method of measuring a heart rate will be described.
As shown in FIG. 1, the heart rate measuring means 2 used here transmits electric signals indicating the body surface potential of the bather induced to at least two electrodes 10a, 10b via water using the transmitting means 11a, 11b. 3 (b) by differentially amplifying the electric signal guided to the electrodes 10a and 10b by the amplifying means 12 and processing the amplified electric signal by the second arithmetic means 13. An electrocardiographic signal (electrocardiographic waveform) of the bather as shown is obtained. The obtained electrocardiographic waveform is output from the second calculating means 13. This electrode 1
For the electrodes 0a and 10b, an electrode embedded in the inner wall surface of the bathtub, or a metal handrail usually mounted inside the bathtub can be used.

【0023】次に、図3(a)に示した入浴者の被測定
部位(ここでは手首)における脈波および図3(b)の
心拍タイミングを比較することで、入浴者の心臓から被
測定部位までの脈波の伝搬時間Δtを求めることができ
る。更に、心臓から被測定部位までの距離は入浴者の身
長、体重などを参照して導出することができる。或い
は、浴槽内壁に心臓の位置(背中がもたれかかる位置)
と、そこから所定距離だけ離れた被測定部位の位置とを
マーキングしておき、入浴者に対してそれらの位置にも
たれかかるように指示しておくことで、心臓から被測定
部位までの距離を常に一定に保つようにすることもでき
る。
Next, the pulse wave at the part to be measured (here, the wrist) of the bather shown in FIG. 3A and the heartbeat timing of FIG. 3B are compared to measure from the heart of the bather. The propagation time Δt of the pulse wave to the site can be obtained. Furthermore, the distance from the heart to the measurement site can be derived with reference to the height, weight, and the like of the bather. Or the position of the heart on the inner wall of the bathtub (where the back leans)
And the position of the part to be measured separated by a predetermined distance from it, and by instructing the bather to lean on those positions, the distance from the heart to the part to be measured is marked. It can also be kept constant.

【0024】従って、心臓から被測定部位までの脈波の
伝搬時間Δtと伝搬距離とを用いて、平均血圧導出手段
5は心臓から被測定部位までの脈波の伝搬速度を導出す
ることができる。また、精度の高い伝搬速度を導出する
場合には、所定期間に測定された複数の伝搬時間Δtの
平均値を取ればよい。
Therefore, the average blood pressure deriving means 5 can derive the propagation speed of the pulse wave from the heart to the measurement site using the propagation time Δt and the propagation distance of the pulse wave from the heart to the measurement site. . To derive a highly accurate propagation speed, an average value of a plurality of propagation times Δt measured in a predetermined period may be obtained.

【0025】更に、脈波の伝搬速度と平均血圧との間に
は図4に示すような関係が成立することが知られてお
り、平均血圧導出手段5は被測定部位における平均血圧
値を導出することができる。従って、血圧値導出手段6
を使用して導出された平均血圧値から、図3(a)に示
した脈波信号波形の振幅の中間値を平均血圧値で特定す
ることができ、図3(a)に示したグラフの縦軸(吸収
光強度)のスケールを、吸収光強度(脈波信号波形)の
振幅と血圧値の振幅(最大血圧値と最小振幅値との差)
との間の所定の比例関係、または実際に測定することに
よって導出された比例関係、および吸収光強度のグラフ
上で特定された上記の平均血圧値を用いて血圧値のスケ
ールに変換することで最大血圧値および最小血圧値につ
いても導出することができる。尚、この脈波伝搬速度と
平均血圧との関係は、人により、更に時間の経過によっ
て変化することがあるため、定期的に2点間(心臓と被
測定部位)の脈波伝搬速度と、被測定部位の平均血圧と
を測定し、図4に示すような両者の関係を更新しておく
ことが必要になることもある。
Further, it is known that a relationship as shown in FIG. 4 is established between the propagation speed of the pulse wave and the average blood pressure, and the average blood pressure deriving means 5 derives the average blood pressure value at the measurement site. can do. Therefore, the blood pressure value deriving means 6
The average value of the amplitude of the pulse wave signal waveform shown in FIG. 3A can be specified by the average blood pressure value from the average blood pressure value derived using The scale of the vertical axis (absorbed light intensity) is represented by the amplitude of the absorbed light intensity (pulse wave signal waveform) and the amplitude of the blood pressure value (the difference between the maximum blood pressure value and the minimum amplitude value).
By converting a predetermined proportional relationship between the above and the proportional relationship derived by actual measurement, and the above average blood pressure value specified on the graph of the absorbed light intensity into a scale of the blood pressure value. The maximum blood pressure value and the minimum blood pressure value can also be derived. Note that the relationship between the pulse wave propagation velocity and the average blood pressure may change depending on the human over time, so that the pulse wave propagation velocity between two points (heart and the measurement site) is periodically determined. It may be necessary to measure the average blood pressure at the site to be measured and update the relationship between them as shown in FIG.

【0026】以上のように、本発明に係る浴槽血圧計1
を用いて入浴者の入浴中の血圧を非侵襲的に、且つ入浴
者自身にとって簡単な方法で測定することができる。
As described above, the bathtub sphygmomanometer 1 according to the present invention is provided.
Can be used to measure the blood pressure of a bather during bathing non-invasively and in a simple manner for the bather himself.

【0027】上述の実施形態では、図3(a)に示した
グラフの吸収光強度のスケールを、脈波信号波形の振幅
が血圧値の振幅(最大血圧値と最小振幅値との差)に所
定の関係、および平均血圧値を用いて血圧値のスケール
に変換することで最大血圧値および最小血圧値について
も導出していた。しかしながら、脈波信号波形の振幅
(吸収光強度のスケール)を血圧値のスケールに変換す
る際に使用した、脈波信号波形の振幅と血圧値の振幅
(最大血圧値と最小振幅値との差)との関係に誤差が生
じる可能性がある。つまり、被測定部位に印加される圧
力の変化量に対する吸収光強度の変化量を求めること
で、より正確に脈波信号波形の振幅(吸収光強度のスケ
ール)を血圧値のスケールに変換することができる。そ
の方法について以下に説明する。
In the above-described embodiment, the scale of the absorption light intensity in the graph shown in FIG. 3A is changed so that the amplitude of the pulse wave signal waveform is changed to the amplitude of the blood pressure value (the difference between the maximum blood pressure value and the minimum amplitude value). The maximum blood pressure value and the minimum blood pressure value are also derived by converting into a blood pressure value scale using a predetermined relationship and an average blood pressure value. However, the amplitude of the pulse wave signal waveform and the amplitude of the blood pressure value (the difference between the maximum blood pressure value and the minimum amplitude value) used to convert the amplitude of the pulse wave signal waveform (scale of the absorbed light intensity) to the blood pressure value scale are used. ) May cause an error. That is, the amplitude of the pulse wave signal waveform (scale of the absorbed light intensity) is more accurately converted into a blood pressure value scale by determining the amount of change in the absorbed light intensity with respect to the change in the pressure applied to the measurement site. Can be. The method will be described below.

【0028】以下に説明する方法は、被測定部位に対し
て既知の圧力を印加して2つの吸収光強度のグラフ(脈
波の波形)を測定することで、脈波信号波形の振幅(吸
収光強度のスケール)を正確に血圧値のスケールに変換
する方法である。その圧力の印加方法には、カフを用い
て既知の圧力を印加する場合と、既知の水深(既知の水
圧)に被測定部位を沈めることで圧力を印加する場合と
を取り得る。
The method described below measures the amplitude (absorption) of a pulse wave signal waveform by measuring a graph (pulse wave waveform) of two absorption light intensities by applying a known pressure to a measurement site. This is a method of accurately converting the light intensity scale) into a blood pressure value scale. As a method of applying the pressure, a case in which a known pressure is applied using a cuff and a case in which the pressure is applied by submerging a portion to be measured at a known water depth (known water pressure) can be adopted.

【0029】被測定部位を既知の水深に沈める場合、浴
槽内壁に予め測定点を示すマーキングを施しておき、浴
槽の自動湯はり機能に使用されるような水位センサを用
いて湯面から上記測定点までの水深を自動的に導出する
ことで、被測定部位に印加される圧力も自動的に導出さ
れる。
When the part to be measured is immersed in a known water depth, a marking indicating the measuring point is provided in advance on the inner wall of the bathtub, and the above measurement is performed from the surface of the bath using a water level sensor used for an automatic hot-water filling function of the bathtub. By automatically deriving the water depth to the point, the pressure applied to the measurement site is also automatically derived.

【0030】まず、上述したのと同様にして大気圧下に
おいて図3(a)に示した脈波の波形を測定することが
できる。次に、リストバンド17を装着したままで入浴
者の被測定部位を既知の水深にまで沈めるか、或いはカ
フを用いて、被測定部位に既知の圧力を印加した状態
で、同様の脈波の波形を測定する。図5には、圧力を印
加後の脈波の波形と、印加前の脈波の波形とを同じスケ
ールで示す。
First, the waveform of the pulse wave shown in FIG. 3A can be measured under the atmospheric pressure in the same manner as described above. Next, while the wristband 17 is being worn, the part to be measured of the bather is submerged to a known water depth, or a similar pressure wave is applied to the to-be-measured part using a cuff. Measure the waveform. FIG. 5 shows, on the same scale, the waveform of the pulse wave after pressure application and the waveform of the pulse wave before application of pressure.

【0031】図5に示すように、吸収光強度(脈波信号
波形)の振幅は血圧値の振幅(最大血圧値と最小振幅値
との差)に比例し、吸収光強度の振幅の中間値は血圧値
の振幅の平均血圧値に相当する。図5から被測定部位に
対する加圧前の吸収光強度(B)と加圧後の吸収光強度
(A)とを比較することができ、2つの脈波の波形を比
較した場合のピーク値(最大血圧値のピークおよび最小
血圧値のピーク)、並びに振幅の中間値の変化分(吸収
光強度のスケール)が、印加した既知の加圧値(圧力の
スケール)に相当する。従って、被測定部位に印加され
る圧力(血圧による圧力または外圧による圧力)の変化
量に対する吸収光強度の変化量を求めることで、より正
確に脈波信号波形の振幅(吸収光強度のスケール)を血
圧値のスケールに変換することができ、その結果、先に
求めた平均血圧値だけでなく、最大血圧値および最小血
圧値についても正確に導出することができる。
As shown in FIG. 5, the amplitude of the absorption light intensity (pulse wave signal waveform) is proportional to the amplitude of the blood pressure value (difference between the maximum blood pressure value and the minimum amplitude value), and is an intermediate value of the amplitude of the absorption light intensity. Corresponds to the average blood pressure value of the amplitude of the blood pressure value. From FIG. 5, it is possible to compare the absorption light intensity (B) before pressurization and the absorption light intensity (A) after pressurization with respect to the measured part, and the peak value when comparing the waveforms of two pulse waves ( The peak of the maximum blood pressure value and the peak of the minimum blood pressure value) and the change in the intermediate value of the amplitude (scale of the absorbed light intensity) correspond to the applied known pressurized value (scale of pressure). Therefore, the amplitude of the pulse wave signal waveform (the scale of the intensity of the absorbed light) can be more accurately obtained by calculating the amount of change in the intensity of the absorbed light with respect to the amount of change in the pressure (pressure due to the blood pressure or pressure due to the external pressure) applied to the measurement site. Can be converted to a blood pressure value scale. As a result, the maximum blood pressure value and the minimum blood pressure value can be accurately derived as well as the previously obtained average blood pressure value.

【0032】また、被測定部位に対してカフにより既知
の圧力を印加すること、または被測定部位を既知の深さ
に沈める(既知の圧力を印加する)ことで、図6に示す
ように、吸収光強度のグラフには変化率(傾き)の差が
現れる。図6は図5に示した加圧前の吸収光強度B(傾
き:αB)および加圧後の吸収光強度A(傾き:αA)の
グラフを部分的に取り出して並べて表示したものであ
る。
As shown in FIG. 6, by applying a known pressure with a cuff to a measured portion or sinking the measured portion to a known depth (by applying a known pressure), as shown in FIG. A difference in the rate of change (slope) appears in the graph of the intensity of the absorbed light. FIG. 6 shows the graphs of the absorbed light intensity B (slope: α B ) before pressurization and the absorbed light intensity A (slope: α A ) after pressurization shown in FIG. is there.

【0033】ここで、加圧したことによる吸収光強度の
傾きの変化量:Δαが、印加された既知の加圧値に対応
することから、吸収光強度の傾きと圧力値との関係を導
出することができ、その結果、図6に示した吸収光強度
の傾き:αAおよびαBを圧力値に換算することができ、
それぞれの場合の吸収光強度の最小値に対応する瞬時絶
対血圧値を求めることができる。従って、吸収光強度の
グラフにおける縦軸の吸収光強度を圧力値に換算するこ
とができ、その結果、先に求めた平均血圧値だけでな
く、最大血圧値および最小血圧値についても正確に導出
することができる。
Here, the relationship between the slope of the absorption light intensity and the pressure value is derived from the fact that the change in the slope of the absorption light intensity due to the pressurization: Δα corresponds to the applied known pressure value. As a result, the inclinations of the absorption light intensity: α A and α B shown in FIG. 6 can be converted into pressure values,
The instantaneous absolute blood pressure value corresponding to the minimum value of the absorbed light intensity in each case can be obtained. Therefore, the absorption light intensity on the vertical axis in the graph of the absorption light intensity can be converted into a pressure value. As a result, not only the average blood pressure value obtained above but also the maximum blood pressure value and the minimum blood pressure value are accurately derived. can do.

【0034】また、上述の実施形態では脈波測定手段3
の発光手段7と受光手段8とをリストバンド17を用い
て入浴者に装着する場合について説明したが、図1に例
示したように、浴槽の内壁面の所定の位置に予め備え付
けられた場合や、それが取り外し可能に浴槽の内壁面に
備え付けられた場合などの構成を取り得る。従って、取
り外し可能な発光手段7と受光手段8とを用いるか、ま
たは発光手段7と受光手段8とを浴槽内壁に複数個埋め
込んでおけば、被測定部位を既知の水深に沈めて複数圧
力下での脈波の測定を行うこともできる。
In the above embodiment, the pulse wave measuring means 3
The case where the light emitting means 7 and the light receiving means 8 are mounted on the bather using the wristband 17 has been described. However, as shown in FIG. 1, when the light emitting means 7 and the light receiving means 8 are previously provided at predetermined positions on the inner wall surface of the bathtub, , It can be configured to be detachably mounted on the inner wall surface of the bathtub. Therefore, if a removable light emitting means 7 and light receiving means 8 are used, or a plurality of light emitting means 7 and light receiving means 8 are embedded in the inner wall of the bathtub, the part to be measured is submerged at a known water depth and a plurality of pressures are applied. The pulse wave can be measured at the same time.

【0035】また、導出された心電波形(または心拍
数)、脈波の波形、血圧値等を、浴室リモコンなどで実
現される表示手段15に表示させ、入浴者がリアルタイ
ムで確認できるようにすることもできる。また更に、測
定された心電波形(または心拍数)や血圧値に異常が見
られると信号処理手段14が判定した場合には、警報手
段16を用いて入浴者に対して音声メッセージなどを流
して注意を促すように構成することもできる。
Further, the derived electrocardiographic waveform (or heart rate), pulse waveform, blood pressure value, etc. are displayed on display means 15 realized by a bathroom remote controller or the like, so that a bather can check in real time. You can also. Further, when the signal processing means 14 determines that the measured electrocardiographic waveform (or heart rate) or blood pressure value is abnormal, the warning means 16 is used to play a voice message or the like to the bather. May be configured to call attention.

【0036】尚、上述の実施形態ではリストバンド17
を入浴者の手首に装着して、パルスオキシメトリ法によ
り血圧値を測定する方法について説明したが、リストバ
ンド17の装着部位、即ち血圧値の装着部位は手首に限
定されない。例えば、リストバンドを小型化して指先に
装着し、指先の血圧を測定するような改変を行うことも
できる。
In the above embodiment, the wristband 17 is used.
Was worn on the wrist of the bather to measure the blood pressure value by the pulse oximetry method. However, the mounting part of the wristband 17, that is, the mounting part of the blood pressure value is not limited to the wrist. For example, the wristband can be miniaturized and attached to a fingertip, and a modification can be made to measure the blood pressure at the fingertip.

【図面の簡単な説明】[Brief description of the drawings]

【図1】浴槽血圧計の構成図である。FIG. 1 is a configuration diagram of a bathtub sphygmomanometer.

【図2】脈波測定手段の例を示す構成図である。FIG. 2 is a configuration diagram illustrating an example of a pulse wave measuring unit.

【図3】(a)は吸収光強度の時間変化を示すグラフで
あり、(b)は心電波形を示すグラフである。
FIG. 3A is a graph showing a temporal change in the intensity of absorbed light, and FIG. 3B is a graph showing an electrocardiographic waveform.

【図4】脈波伝搬速度と平均血圧との関係を示すグラフ
である。
FIG. 4 is a graph showing a relationship between a pulse wave propagation velocity and an average blood pressure.

【図5】圧力を印加した後の脈波の波形と、印加する前
の脈波の波形を示すグラフである。
FIG. 5 is a graph showing a waveform of a pulse wave after applying pressure and a waveform of a pulse wave before applying pressure.

【図6】圧力を印加した後の脈波の波形と、印加する前
の脈波の波形を示すグラフである。
FIG. 6 is a graph showing a waveform of a pulse wave after applying pressure and a waveform of a pulse wave before applying pressure.

【符号の説明】[Explanation of symbols]

1 浴槽血圧計 2 心拍測定手段 3 脈波測定手段 4 伝搬時間導出手段 5 平均血圧導出手段 6 血圧導出手段 7 発光手段 8 受光手段 9 第1演算手段 10 電極 11 伝達手段 12 増幅手段 13 第2演算手段 14 信号処理手段 15 表示手段 16 警報手段 17 リストバンド REFERENCE SIGNS LIST 1 bath sphygmomanometer 2 heart rate measuring means 3 pulse wave measuring means 4 transit time deriving means 5 mean blood pressure deriving means 6 blood pressure deriving means 7 light emitting means 8 light receiving means 9 first calculating means 10 electrode 11 transmitting means 12 amplifying means 13 second calculating Means 14 Signal processing means 15 Display means 16 Alarm means 17 Wristband

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 智章 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 Fターム(参考) 4C017 AA08 AA09 AA10 AB03 AC16 AC28 BC11 BD01 BD05 BD06 CC01 FF08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tomoaki Ueda 17 Kantoji Minamicho, Shimogyo-ku, Kyoto City, Kyoto Prefecture F-term in Kansai Research Institute of New Technology (reference) 4C017 AA08 AA09 AA10 AB03 AC16 AC28 BC11 BD01 BD05 BD06 CC01 FF08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入浴者の血圧を測定する浴槽血圧計であ
って、 前記入浴者の心拍タイミングを測定する心拍測定手段
と、 前記入浴者の体表面上の被測定部位における脈波を測定
する脈波測定手段と、 前記脈波と前記心拍タイミングとを比較し、心臓から前
記被測定部位に至る前記脈波の伝搬時間を導出する伝搬
時間導出手段と、 心臓から前記被測定部位に至る前記脈波の伝搬距離と前
記伝搬時間とから前記脈波の伝搬速度を導出し、脈波伝
搬速度と血圧値との間の所定の第1関係に基づいて、前
記被測定部位における平均血圧値を導出する平均血圧導
出手段と、 前記脈波と血圧値との間の所定の第2関係、および前記
平均血圧値に基づいて前記被測定部位における血圧値を
導出する血圧値導出手段とを備えてなる浴槽血圧計。
1. A bathtub sphygmomanometer for measuring a bather's blood pressure, comprising: a heartbeat measuring means for measuring a heartbeat timing of the bather; and a pulse wave at a site to be measured on the body surface of the bather. A pulse wave measuring unit, a propagation time deriving unit that compares the pulse wave with the heartbeat timing, and derives a propagation time of the pulse wave from the heart to the measurement site; and Deriving the pulse wave propagation velocity from the pulse wave propagation distance and the propagation time, based on a first predetermined relationship between the pulse wave propagation velocity and the blood pressure value, the average blood pressure value at the measurement site, Average blood pressure deriving means for deriving, and a predetermined second relationship between the pulse wave and the blood pressure value, and blood pressure value deriving means for deriving a blood pressure value at the measurement site based on the average blood pressure value. Become a bathtub sphygmomanometer.
【請求項2】 前記血圧値導出手段が、大気圧下で測定
された前記被測定部位における第1脈波と前記大気圧と
は異なる第2圧力下で測定された前記被測定部位におけ
る第2脈波の差分、および前記大気圧と前記第2圧力と
の圧力差から、脈波と圧力との間の関係を導出して、前
記平均血圧値に基づいて前記被測定部位における血圧値
を導出することを特徴とする請求項1に記載の浴槽血圧
計。
2. The blood pressure value deriving means according to claim 1, wherein said first pulse wave at said measurement site measured at atmospheric pressure and a second pulse wave at said measurement site measured under a second pressure different from said atmospheric pressure. From the difference between the pulse waves and the pressure difference between the atmospheric pressure and the second pressure, the relationship between the pulse wave and the pressure is derived, and the blood pressure value at the measurement site is derived based on the average blood pressure value. The bathtub sphygmomanometer according to claim 1, wherein
【請求項3】 前記脈波測定手段が、前記被測定部位に
対して光を照射する発光部と、前記入浴者によって散乱
された前記光を受光する受光部と、前記受光部における
受光強度の時間的変化に基づいて前記脈波を導出する第
1演算手段とを備えてなることを特徴とする請求項1ま
たは請求項2に記載の浴槽血圧計。
3. A light-emitting unit that irradiates light to the measurement site, a light-receiving unit that receives the light scattered by the bather, and a light-receiving intensity of the light-receiving unit. The bathtub sphygmomanometer according to claim 1 or 2, further comprising: a first calculating unit that derives the pulse wave based on a temporal change.
【請求項4】 前記心拍測定手段が、浴槽内壁に設けら
れた複数の電極と、前記電極に誘導されたそれぞれの電
気信号を外部に伝達する伝達手段と、前記電気信号を増
幅する増幅手段と、増幅された前記電気信号を処理し
て、前記心拍タイミングを導出する第2演算手段とを備
えてなることを特徴とする請求項1から請求項3の何れ
かに記載の浴槽血圧計。
4. A heart rate measuring means, comprising: a plurality of electrodes provided on an inner wall of a bathtub; a transmitting means for transmitting respective electric signals guided to the electrodes to the outside; and an amplifying means for amplifying the electric signals. 4. The bathtub sphygmomanometer according to claim 1, further comprising: a second calculating unit that processes the amplified electric signal to derive the heartbeat timing. 5.
JP2001091746A 2001-03-28 2001-03-28 Bath sphygmomanometer Expired - Fee Related JP4502537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091746A JP4502537B2 (en) 2001-03-28 2001-03-28 Bath sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091746A JP4502537B2 (en) 2001-03-28 2001-03-28 Bath sphygmomanometer

Publications (2)

Publication Number Publication Date
JP2002282223A true JP2002282223A (en) 2002-10-02
JP4502537B2 JP4502537B2 (en) 2010-07-14

Family

ID=18946314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091746A Expired - Fee Related JP4502537B2 (en) 2001-03-28 2001-03-28 Bath sphygmomanometer

Country Status (1)

Country Link
JP (1) JP4502537B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503223A (en) * 2003-08-22 2007-02-22 エプコール,インク. Non-invasive blood pressure monitoring apparatus and method
KR101777738B1 (en) * 2015-07-07 2017-09-12 성균관대학교산학협력단 Estimating method for blood pressure using video

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133933A (en) * 1985-12-05 1987-06-17 コーリン電子株式会社 Blood pressure measuring apparatus
JPH026004U (en) * 1988-06-23 1990-01-16
JPH053858A (en) * 1991-06-28 1993-01-14 Colleen Denshi Kk Blood pressure monitor device
JPH06319706A (en) * 1993-05-13 1994-11-22 Fukuda Denshi Co Ltd Continuous noninvasive blood pressure computing method and device
JPH10174678A (en) * 1996-10-18 1998-06-30 Sekisui Chem Co Ltd How water temperature control method and apparatus for bathtub
JPH10211175A (en) * 1997-01-30 1998-08-11 Sekisui Chem Co Ltd Electrocardiogram/pulse wave measurement bathtub
JPH11216180A (en) * 1997-10-21 1999-08-10 Fresenius Medical Care Deutsche Gmbh Method for continuously monitoring external blood treatment, and apparatus for external blood treatment equiped with apparatus for continuously monitering external blood treatment
JP2000107141A (en) * 1998-10-05 2000-04-18 Denso Corp Hemomanometer
JP2000245702A (en) * 1999-02-26 2000-09-12 Nippon Colin Co Ltd Ressure pulse wave detecting device
JP2001506167A (en) * 1997-06-06 2001-05-15 サウスウエスト・リサーチ・インスティテュート System and method for accurately monitoring a cardiovascular condition of a living body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133933A (en) * 1985-12-05 1987-06-17 コーリン電子株式会社 Blood pressure measuring apparatus
JPH026004U (en) * 1988-06-23 1990-01-16
JPH053858A (en) * 1991-06-28 1993-01-14 Colleen Denshi Kk Blood pressure monitor device
JPH06319706A (en) * 1993-05-13 1994-11-22 Fukuda Denshi Co Ltd Continuous noninvasive blood pressure computing method and device
JPH10174678A (en) * 1996-10-18 1998-06-30 Sekisui Chem Co Ltd How water temperature control method and apparatus for bathtub
JPH10211175A (en) * 1997-01-30 1998-08-11 Sekisui Chem Co Ltd Electrocardiogram/pulse wave measurement bathtub
JP2001506167A (en) * 1997-06-06 2001-05-15 サウスウエスト・リサーチ・インスティテュート System and method for accurately monitoring a cardiovascular condition of a living body
JPH11216180A (en) * 1997-10-21 1999-08-10 Fresenius Medical Care Deutsche Gmbh Method for continuously monitoring external blood treatment, and apparatus for external blood treatment equiped with apparatus for continuously monitering external blood treatment
JP2000107141A (en) * 1998-10-05 2000-04-18 Denso Corp Hemomanometer
JP2000245702A (en) * 1999-02-26 2000-09-12 Nippon Colin Co Ltd Ressure pulse wave detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503223A (en) * 2003-08-22 2007-02-22 エプコール,インク. Non-invasive blood pressure monitoring apparatus and method
JP4850705B2 (en) * 2003-08-22 2012-01-11 エプコール,インク. Noninvasive blood pressure monitoring method
KR101777738B1 (en) * 2015-07-07 2017-09-12 성균관대학교산학협력단 Estimating method for blood pressure using video

Also Published As

Publication number Publication date
JP4502537B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US10285599B2 (en) Wearable hemodynamic sensor
EP2291111B1 (en) Contactless respiration monitoring of a patient and optical sensor for a photoplethysmography measurement
Nabeel et al. Arterial blood pressure estimation from local pulse wave velocity using dual-element photoplethysmograph probe
US8679025B2 (en) Method for determination of cardiac output
US8055330B2 (en) Sensing gas bubbles in a living body
US5237997A (en) Method of continuous measurement of blood pressure in humans
US7544168B2 (en) Measuring systolic blood pressure by photoplethysmography
WO2002085203A1 (en) Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device
JP2011239972A (en) Blood pressure measuring device and method
WO2015165785A1 (en) Low power device for monitoring a vital sign
ES2662198T3 (en) Signal processing for pulse oximetry
JP2017510411A (en) Method for determining blood pressure in a blood vessel and apparatus for performing the method
JP2004201868A (en) Blood pressure measuring device, and blood pressure measuring method
JPH01214335A (en) Peripheral resistance examination and detection apparatus
JP4433756B2 (en) Biological information measuring device, control method therefor, control program, and recording medium
US20220218217A1 (en) Blood pressure measurement system and blood pressure measurement method using the same
JP4502537B2 (en) Bath sphygmomanometer
JP5552984B2 (en) Pulse pressure measuring device and pulse pressure measuring method
JP2002320593A (en) Method and apparatus for measuring arterial blood pressure
JP2003260032A (en) Pulse wave measuring apparatus and bathtub hemomanometer having the same
KR20200069545A (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
KR20200043900A (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
JP3495319B2 (en) Cardiac function monitoring device
JP2000225097A (en) Portable blood pressure gauge
KR102622935B1 (en) Medical apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Ref document number: 4502537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees