JP4502537B2 - Bath sphygmomanometer - Google Patents

Bath sphygmomanometer Download PDF

Info

Publication number
JP4502537B2
JP4502537B2 JP2001091746A JP2001091746A JP4502537B2 JP 4502537 B2 JP4502537 B2 JP 4502537B2 JP 2001091746 A JP2001091746 A JP 2001091746A JP 2001091746 A JP2001091746 A JP 2001091746A JP 4502537 B2 JP4502537 B2 JP 4502537B2
Authority
JP
Japan
Prior art keywords
blood pressure
pulse wave
pressure value
deriving
measurement site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001091746A
Other languages
Japanese (ja)
Other versions
JP2002282223A (en
Inventor
元 藤井
弘昭 出馬
智章 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001091746A priority Critical patent/JP4502537B2/en
Publication of JP2002282223A publication Critical patent/JP2002282223A/en
Application granted granted Critical
Publication of JP4502537B2 publication Critical patent/JP4502537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は入浴者の血圧をリアルタイムで測定する浴槽血圧計に関する。
【0002】
【従来の技術】
人の血圧を測定する方法としては、一般的なカフ式の血圧計を用いる方法が広く知られている。カフ式は、腕の高さ、カフの取り付け位置等に注意すれば、誰にでも血圧を測定することができる方法である。
【0003】
他には、オメダ社(Ohmeda)の商品名「フィナプレス」で販売されているパルスオキシメトリと空気圧式カフとを組み合わせ、指の動脈近傍における赤外線吸光度を一定に保つようにカフ圧をネガティブフィードバックするゼロ位法により血圧を測定する方法がある。この測定法の測定原理は、血圧の時間変化を人体に流れる血液量の時間変化で見ることである。具体的には、その血液量の時間変化を見るために、人体外部に設けられた発光部から赤外光を人体に向けて照射し、その透過光、または骨等によって散乱され人体外部に出てきた散乱光を受光部で受光することで、人体内部を流れる血液中のヘモグロビンによって吸収された赤外光強度の時間変化が測定される。従って、赤外光の光路上に存在する血液が多い場合には、吸収される赤外光が多くなり、血液が少ない場合には、吸収される赤外光も少なくなる。ここで、脈拍毎の血圧値の変動により血管径が変化するため、赤外線の光路上に存在する血液量も変化するため、この受光した赤外光強度の変化を測定することで、血圧値を求めることができる。
【0004】
或いは、動脈内に血圧トランデューサを挿入することで血圧を直接測定する方法がある。
【0005】
【発明が解決しようとする課題】
しかしながら、動脈内に血圧トランデューサを直接挿入する方法は、最も正確に血圧を測定することができるが、人体を侵襲する方式であるために、痛みや出血を伴い、特に入浴中に測定する場合には感染症などの危険性があるために不適当であった。また、血圧トランデューサを体内に直接挿入することを一般の入浴者に対して求めること自体に無理がある。
【0006】
カフ式の血圧計は、素人でも容易に装着できるという利点があるが、入浴者の被測定部位に対してポンプなどにより圧力を印加するために入浴者を拘束して負担をかける必要があり、更にカフの着脱や測定中のカフの取り回しが面倒であるという問題点がある。
【0007】
また、パルスオキシメトリとカフとを組み合わせた方式は、測定開始から終了まで、被測定部の毛細血管が著しく拡張したり収縮したりすることが無いという前提で計測しているため、入浴中の入浴者の血圧を測定するための方式としては正確さに欠けるという問題がある。
【0008】
本発明は上記の問題点に鑑みてなされたものであり、その目的は、入浴者の正確な血圧をリアルタイムで非侵襲的に測定する浴槽血圧計を提供する点にある。
【0009】
上記課題を解決するための本発明に係る浴槽血圧計の第一の特徴構成は、特許請求の範囲の欄の請求項1に記載の如く、入浴者の血圧を測定する浴槽血圧計であって、前記入浴者の血圧を測定する浴槽血圧計であって、前記入浴者の心拍タイミングを測定する心拍測定手段と、前記入浴者の体表面上の被測定部位における脈波を測定する脈波測定手段と、前記脈波と前記心拍タイミングとを比較し、心臓から前記被測定部位に至る前記脈波の伝搬時間を導出する伝搬時間導出手段と、心臓から前記被測定部位に至る前記脈波の伝搬距離と前記伝搬時間とから前記脈波の伝搬速度を導出し、脈波伝搬速度と血圧値との間の所定の第1関係に基づいて、前記被測定部位における平均血圧値を導出する平均血圧導出手段と、前記脈波測定手段により測定される脈波の中間値を、前記平均血圧導出手段により導出される前記平均血圧値として特定するとともに、前記脈波と血圧値との間の関係である第2関係、および前記特定された平均血圧値に基づいて、前記脈波測定手段により測定される脈波から、前記被測定部位における最高血圧値及び最低血圧値を導出する血圧値導出手段とを備えてなり、前記血圧値導出手段が、大気圧下で測定された前記被測定部位における第1脈波と前記大気圧とは異なる第2圧力下で測定された前記被測定部位における第2脈波の差分、および前記大気圧と前記第2圧力との圧力差から、脈波と圧力との間の関係である前記第2関係を導出して、前記脈波を前記血圧値に変換することで、前記被測定部位における、前記平均血圧値、前記最高血圧値及び前記最低血圧値を導出する点にある。
【0011】
上記課題を解決するための本発明に係る浴槽血圧計の第の特徴構成は、特許請求の範囲の欄の請求項に記載の如く、上記第の特徴構成に加えて、前記脈波測定手段が、前記被測定部位に対して光を照射する発光部と、前記入浴者によって散乱された前記光を受光する受光部と、前記受光部における受光強度の時間的変化に基づいて前記脈波を導出する第1演算手段とを備えてなる点にある。
【0012】
上記課題を解決するための本発明に係る浴槽血圧計の第の特徴構成は、特許請求の範囲の欄の請求項に記載の如く、上記第一または第二の特徴構成に加えて、前記心拍測定手段が、浴槽内壁に設けられた複数の電極と、前記電極に誘導されたそれぞれの電気信号を外部に伝達する伝達手段と、前記電気信号を増幅する増幅手段と、増幅された前記電気信号を処理して、前記心拍タイミングを導出する第2演算手段とを備えてなる点にある。
【0013】
以下に作用並びに効果を説明する。
本発明に係る浴槽血圧計の第一の特徴構成によれば、心拍測定手段が、上記入浴者の心拍タイミングを測定し、脈波測定手段が、上記入浴者の体表面上の被測定部位における脈波を測定し、伝搬時間導出手段が、上記脈波と上記心拍タイミングとを比較し、心臓から上記被測定部位に至る脈波の伝搬時間を導出し、平均血圧導出手段が、心臓から上記被測定部位に至る上記脈波の伝搬距離と上記伝搬時間とから上記脈波の伝搬速度を導出し、所定の脈波伝搬速度と血圧値との関係に基づいて、上記被測定部位における平均血圧値を導出することができ、血圧値導出手段が、上記脈波の振幅と血圧値の振幅との間の所定の第2関係、および前記平均血圧値に基づいて前記被測定部位における血圧値を導出することができる。ここで、上記第2関係は、測定された脈波のスケールを血圧値のスケールに変換することができるような関係式である。従って、入浴者の血圧値を非侵襲的に、入浴者に負担をかけること無しに、且つ簡単な方法で測定することができる。また、脈波測定手段を装着したとしてもポンプを備えたカフのように取り回しが問題になることはなく、簡単に血圧値測定を実施することができる。尚、心臓から被測定部位までの距離は被測定者の身長、体重などから導出することができる。又は、浴槽内壁に心臓の位置と被測定部位の位置とを所定の間隔を置いてマーキングし、そのマーキングした位置に入浴者が寄りかかるよう指示することで、心臓から被測定部位までの距離を知ることができるように構成してもよい。
【0014】
ここで、被測定部位における脈波の波形は心臓における心拍タイミングに依存するのであるが、心臓から被測定部位までの距離に比例して、脈波のピークが心拍タイミングから遅れて現れる。従って、脈波の波形ピークの心拍タイミングからの遅れ時間と、心臓から被測定部位までの距離とから、脈波の伝搬速度を導出することができる。脈波の伝搬速度と血圧値との間には比例関係が成立することが知られており、導出された脈波の伝搬速度から被測定部位における平均血圧を導出することができる。従って、脈波の最大値と最小値は血圧の最大値と最小値に対応付けることができることから、その平均値を上記平均血圧値で換算することで、被測定部位における血圧値波形を導出することができる。
【0015】
さらに、被測定部位に対する大気圧下(加圧前)の第1脈波と第2圧力下(加圧後)の第2脈波との差分と、大気圧と第2圧力との圧力差とから、脈波と圧力との関係を導出することができ、脈波の振幅の最大値と最小値とが最大血圧値と最小血圧値とに対応し、並びに脈波の振幅の中間値が中間血圧値に対応することを考慮すると、脈波の振幅のスケールを圧力(血圧値)のスケールに変換することができ、その結果、先に求めた平均血圧値だけでなく、最大血圧値および最小血圧値についても正確に導出することができる。
【0016】
本発明に係る浴槽血圧計の第の特徴構成によれば、脈波測定手段が、発光部と受光部とを備えてなり、その発光部から照射された赤外線が人体に侵入した場合、血液中のヘモグロビンによって赤外線が吸収され、その吸収量は赤外線の光路上に存在するヘモグロビンの量に比例する。従って、受光強度が小さい場合は、赤外線の吸収に寄与したヘモグロビンの量が多い、即ち血液量が多いことを意味し、受光強度が大きい場合は、赤外線の吸収に寄与したヘモグロビンの量が少ない、即ち血液量が少ないことを意味する。従って、受光強度の時間的変動を測定することで、被測定部位における血液量の時間的変動、即ち脈波を測定することができる。
【0017】
本発明に係る浴槽血圧計の第の特徴構成によれば、心拍測定手段が、入浴者の、例えば心電波形のR波のピークから求められる心拍タイミングを入浴中に非侵襲的に測定することができることで、入浴者に対して肉体的および精神的に負担がかかることを避けることができ、平常時における正確な心拍タイミングの測定を実施すること、即ち、正確な血圧値の測定を実施することができる。
【0018】
【発明の実施の形態】
本発明に係る浴槽血圧計1は、心拍測定手段2と、脈波測定手段3と、伝搬時間導出手段4と、平均血圧導出手段5と、血圧値導出手段6とを備えてなる。ここで、脈波測定手段3は、入浴者の体表面上の被測定部位に対して光を照射する発光手段7と、入浴者を透過した透過光または入浴者によって散乱された照射光を受光する受光手段8と、上記受光手段8における受光強度、或いは入浴者による吸収光強度の時間的変化に基づいて脈波の波形を導出する第1演算手段とを備えてなる。また、心拍測定手段2は、浴槽内壁に設けられた複数の電極10a、10bと、電極10a、10bに誘導されたそれぞれの電気信号を外部に伝達する伝達手段11a、11bと、上記電気信号を増幅する増幅手段12と、増幅された上記電気信号を信号処理して、入浴者の心拍タイミング(具体的には心電波形のR波のピークから得られた心拍タイミングの時系列データ)を導出する第2演算手段13とを備えてなる。伝搬時間導出手段4、平均血圧導出手段5、血圧値導出手段6、第1演算手段9、および第2演算手段13は、CPU等を用いて実現される単一の信号処理手段14によって構成することができる。
【0019】
以下に図2を参照して、脈波の測定方法について説明する。
図2に示すように、脈波測定手段3による脈波の測定は、発光手段7と受光手段8とを備えたリストバンド17を人体(ここでは入浴者の手首)に装着し、第1演算手段9による制御によってパルスオキシメトリ法(赤外線吸光度計測法)を行うことで実施される。尚、リストバンド17の装着部位(被測定部位)は大気圧下にあるものとする。更に、リストバンド17と第1演算手段9は可能な限り入浴者の動きを拘束しないような導線を用いて接続され、その結果、脈波を測定されているということを入浴者が意識しないように構成することができる。
【0020】
発光手段7から放射された光(ここでは赤外光)は人体内部の赤外光の吸収因子(血液中のヘモグロビンなど)によって吸収され、或いは、骨などによって更に散乱されて人体外部に放出される。受光手段8は、その反射光を受光するように配置される場合や、透過光を受光するように配置される場合がある。従って、体外に放出された光は受光手段8によって受光され、その結果、図3(a)に示すような人体による吸収光強度の時間的変化が導出される。
【0021】
図3(a)に示した吸収光強度の時間変化は、発光手段7から放射され、受光手段8によって受光された光の光路上に存在する血液量の時間変化に対応しており、その結果、吸収光強度の波形に比例した入浴者の脈波の波形を得ることができる。特に、発光手段7から受光手段8への光路上に動脈があるようにリストバンド17を装着することで、その動脈に流れる血液量の時間的変化、即ち脈波の波形が得られる。得られた脈波の波形は第1演算手段9から出力される。脈波信号波形の振幅は血圧値の振幅(最大血圧値と最小振幅値との差)に比例し、そして脈波信号波形の振幅の中間値は平均血圧値に対応するが、このグラフ(吸収光強度のスケール)からそれぞれの絶対血圧値を知ることはできない。
【0022】
次に、心拍の測定方法について説明する。
図1に示すように、ここで用いる心拍測定手段2によって、水を介して少なくとも2つの電極10a、10bに誘導された入浴者の体表面電位を示す電気信号を伝達手段11a、11bを使用して増幅手段12に伝達し、増幅手段12によって電極10a、10bに誘導された電気信号の差動増幅し、増幅された電気信号を第2演算手段13によって処理することで図3(b)に示すような入浴者の心電信号(心電波形)が得られる。得られた心電波形は第2演算手段13から出力される。この電極10a、10bは浴槽の内壁面に埋め込まれた電極や、通常、浴槽内部に装着されている金属製の手すりなどを利用することもできる。
【0023】
次に、図3(a)に示した入浴者の被測定部位(ここでは手首)における脈波および図3(b)の心拍タイミングを比較することで、入浴者の心臓から被測定部位までの脈波の伝搬時間Δtを求めることができる。更に、心臓から被測定部位までの距離は入浴者の身長、体重などを参照して導出することができる。或いは、浴槽内壁に心臓の位置(背中がもたれかかる位置)と、そこから所定距離だけ離れた被測定部位の位置とをマーキングしておき、入浴者に対してそれらの位置にもたれかかるように指示しておくことで、心臓から被測定部位までの距離を常に一定に保つようにすることもできる。
【0024】
従って、心臓から被測定部位までの脈波の伝搬時間Δtと伝搬距離とを用いて、平均血圧導出手段5は心臓から被測定部位までの脈波の伝搬速度を導出することができる。また、精度の高い伝搬速度を導出する場合には、所定期間に測定された複数の伝搬時間Δtの平均値を取ればよい。
【0025】
更に、脈波の伝搬速度と平均血圧との間には図4に示すような関係が成立することが知られており、平均血圧導出手段5は被測定部位における平均血圧値を導出することができる。従って、血圧値導出手段6を使用して導出された平均血圧値から、図3(a)に示した脈波信号波形の振幅の中間値を平均血圧値で特定することができ、図3(a)に示したグラフの縦軸(吸収光強度)のスケールを、吸収光強度(脈波信号波形)の振幅と血圧値の振幅(最大血圧値と最小振幅値との差)との間の所定の比例関係、または実際に測定することによって導出された比例関係、および吸収光強度のグラフ上で特定された上記の平均血圧値を用いて血圧値のスケールに変換することで最大血圧値および最小血圧値についても導出することができる。尚、この脈波伝搬速度と平均血圧との関係は、人により、更に時間の経過によって変化することがあるため、定期的に2点間(心臓と被測定部位)の脈波伝搬速度と、被測定部位の平均血圧とを測定し、図4に示すような両者の関係を更新しておくことが必要になることもある。
【0026】
以上のように、基本的には、浴槽血圧計1を用いて入浴者の入浴中の血圧を非侵襲的に、且つ入浴者自身にとって簡単な方法で測定する。
【0027】
そして、図3(a)に示したグラフの吸収光強度のスケールを、脈波信号波形の振幅が血圧値の振幅(最大血圧値と最小振幅値との差)に所定の関係、および平均血圧値を用いて血圧値のスケールに変換することで最大血圧値および最小血圧値についても導出していた。しかしながら、脈波信号波形の振幅(吸収光強度のスケール)を血圧値のスケールに変換する際に使用した、脈波信号波形の振幅と血圧値の振幅(最大血圧値と最小振幅値との差)との関係に誤差が生じる可能性がある。つまり、被測定部位に印加される圧力の変化量に対する吸収光強度の変化量を求めることで、より正確に脈波信号波形の振幅(吸収光強度のスケール)を血圧値のスケールに変換することができる。その方法について以下に説明する。
【0028】
以下に説明する方法は、被測定部位に対して既知の圧力を印加して2つの吸収光強度のグラフ(脈波の波形)を測定することで、脈波信号波形の振幅(吸収光強度のスケール)を正確に血圧値のスケールに変換する方法である。その圧力の印加方法には、カフを用いて既知の圧力を印加する場合と、既知の水深(既知の水圧)に被測定部位を沈めることで圧力を印加する場合とを取り得る。
【0029】
被測定部位を既知の水深に沈める場合、浴槽内壁に予め測定点を示すマーキングを施しておき、浴槽の自動湯はり機能に使用されるような水位センサを用いて湯面から上記測定点までの水深を自動的に導出することで、被測定部位に印加される圧力も自動的に導出される。
【0030】
まず、上述したのと同様にして大気圧下において図3(a)に示した脈波の波形を測定することができる。次に、リストバンド17を装着したままで入浴者の被測定部位を既知の水深にまで沈めるか、或いはカフを用いて、被測定部位に既知の圧力を印加した状態で、同様の脈波の波形を測定する。図5には、圧力を印加後の脈波の波形と、印加前の脈波の波形とを同じスケールで示す。
【0031】
図5に示すように、吸収光強度(脈波信号波形)の振幅は血圧値の振幅(最大血圧値と最小振幅値との差)に比例し、吸収光強度の振幅の中間値は血圧値の振幅の平均血圧値に相当する。図5から被測定部位に対する加圧前の吸収光強度(B)と加圧後の吸収光強度(A)とを比較することができ、2つの脈波の波形を比較した場合のピーク値(最大血圧値のピークおよび最小血圧値のピーク)、並びに振幅の中間値の変化分(吸収光強度のスケール)が、印加した既知の加圧値(圧力のスケール)に相当する。従って、被測定部位に印加される圧力(血圧による圧力または外圧による圧力)の変化量に対する吸収光強度の変化量を求めることで、より正確に脈波信号波形の振幅(吸収光強度のスケール)を血圧値のスケールに変換することができ、その結果、先に求めた平均血圧値だけでなく、最大血圧値および最小血圧値についても正確に導出することができる。
【0032】
また、被測定部位に対してカフにより既知の圧力を印加すること、または被測定部位を既知の深さに沈める(既知の圧力を印加する)ことで、図6に示すように、吸収光強度のグラフには変化率(傾き)の差が現れる。図6は図5に示した加圧前の吸収光強度B(傾き:αB)および加圧後の吸収光強度A(傾き:αA)のグラフを部分的に取り出して並べて表示したものである。
【0033】
ここで、加圧したことによる吸収光強度の傾きの変化量:Δαが、印加された既知の加圧値に対応することから、吸収光強度の傾きと圧力値との関係を導出することができ、その結果、図6に示した吸収光強度の傾き:αAおよびαBを圧力値に換算することができ、それぞれの場合の吸収光強度の最小値に対応する瞬時絶対血圧値を求めることができる。従って、吸収光強度のグラフにおける縦軸の吸収光強度を圧力値に換算することができ、その結果、先に求めた平均血圧値だけでなく、最大血圧値および最小血圧値についても正確に導出することができる。
【0034】
また、上述の実施形態では脈波測定手段3の発光手段7と受光手段8とをリストバンド17を用いて入浴者に装着する場合について説明したが、図1に例示したように、浴槽の内壁面の所定の位置に予め備え付けられた場合や、それが取り外し可能に浴槽の内壁面に備え付けられた場合などの構成を取り得る。従って、取り外し可能な発光手段7と受光手段8とを用いるか、または発光手段7と受光手段8とを浴槽内壁に複数個埋め込んでおけば、被測定部位を既知の水深に沈めて複数圧力下での脈波の測定を行うこともできる。
【0035】
また、導出された心電波形(または心拍数)、脈波の波形、血圧値等を、浴室リモコンなどで実現される表示手段15に表示させ、入浴者がリアルタイムで確認できるようにすることもできる。また更に、測定された心電波形(または心拍数)や血圧値に異常が見られると信号処理手段14が判定した場合には、警報手段16を用いて入浴者に対して音声メッセージなどを流して注意を促すように構成することもできる。
【0036】
尚、上述の実施形態ではリストバンド17を入浴者の手首に装着して、パルスオキシメトリ法により血圧値を測定する方法について説明したが、リストバンド17の装着部位、即ち血圧値の装着部位は手首に限定されない。例えば、リストバンドを小型化して指先に装着し、指先の血圧を測定するような改変を行うこともできる。
【図面の簡単な説明】
【図1】浴槽血圧計の構成図である。
【図2】脈波測定手段の例を示す構成図である。
【図3】(a)は吸収光強度の時間変化を示すグラフであり、(b)は心電波形を示すグラフである。
【図4】脈波伝搬速度と平均血圧との関係を示すグラフである。
【図5】圧力を印加した後の脈波の波形と、印加する前の脈波の波形を示すグラフである。
【図6】圧力を印加した後の脈波の波形と、印加する前の脈波の波形を示すグラフである。
【符号の説明】
1 浴槽血圧計
2 心拍測定手段
3 脈波測定手段
4 伝搬時間導出手段
5 平均血圧導出手段
6 血圧導出手段
7 発光手段
8 受光手段
9 第1演算手段
10 電極
11 伝達手段
12 増幅手段
13 第2演算手段
14 信号処理手段
15 表示手段
16 警報手段
17 リストバンド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bathtub sphygmomanometer that measures a blood pressure of a bather in real time.
[0002]
[Prior art]
As a method for measuring a person's blood pressure, a method using a general cuff type sphygmomanometer is widely known. The cuff method is a method by which anyone can measure blood pressure if attention is paid to the height of the arm, the attachment position of the cuff, and the like.
[0003]
In addition, by combining pulse oximetry sold under the trade name “Finapress” of Ohmeda with a pneumatic cuff, the cuff pressure is negatively fed back so as to maintain a constant infrared absorbance near the artery of the finger. There is a method of measuring blood pressure by the zero method. The measurement principle of this measurement method is to see the time change of blood pressure as the time change of the amount of blood flowing in the human body. Specifically, in order to see the change in blood volume over time, infrared light is emitted toward the human body from a light emitting unit provided outside the human body, and the light is scattered by the transmitted light or bones and emitted outside the human body. By receiving the scattered light received by the light receiving unit, the time change of the intensity of infrared light absorbed by hemoglobin in the blood flowing inside the human body is measured. Therefore, when there is a lot of blood present on the optical path of infrared light, the amount of absorbed infrared light increases, and when there is little blood, the amount of absorbed infrared light also decreases. Here, since the blood vessel diameter changes due to the fluctuation of the blood pressure value for each pulse, the amount of blood existing on the infrared optical path also changes, so the blood pressure value is determined by measuring the change in the received infrared light intensity. Can be sought.
[0004]
Alternatively, there is a method of directly measuring blood pressure by inserting a blood pressure transducer into the artery.
[0005]
[Problems to be solved by the invention]
However, the method of directly inserting the blood pressure transducer into the artery can measure blood pressure most accurately, but it is a method that invades the human body, so it involves pain and bleeding, especially during bathing Was inappropriate due to the risk of infection. In addition, it is impossible to require a general bather to insert a blood pressure transducer directly into the body.
[0006]
The cuff type sphygmomanometer has the advantage that even an amateur can easily wear it, but it is necessary to restrain the bather and apply a burden to apply pressure to the measurement site of the bather with a pump, etc. In addition, there is a problem that the cuff attachment / detachment and the cuff handling during measurement are troublesome.
[0007]
In addition, the method combining pulse oximetry and cuff is measured on the premise that the capillaries of the measured part do not significantly expand or contract from the start to the end of measurement, so during bathing As a method for measuring the blood pressure of a bather, there is a problem of lack of accuracy.
[0008]
This invention is made | formed in view of said problem, The objective is to provide the bathtub blood pressure meter which measures the exact blood pressure of a bather non-invasively in real time.
[0009]
The first characteristic configuration of the bathtub sphygmomanometer according to the present invention for solving the above-described problem is a bathtub sphygmomanometer that measures the blood pressure of a bather as described in claim 1 of the claims. A bath sphygmomanometer for measuring a blood pressure of the bather, wherein the heartbeat measuring means measures the heartbeat timing of the bather, and the pulse wave measurement measures the pulse wave at the measurement site on the body surface of the bather Means, a propagation time deriving means for comparing the pulse wave and the heartbeat timing, and deriving a propagation time of the pulse wave from the heart to the measurement site, and the pulse wave from the heart to the measurement site An average for deriving the propagation velocity of the pulse wave from the propagation distance and the propagation time, and deriving an average blood pressure value at the measurement site based on a predetermined first relationship between the pulse wave propagation velocity and the blood pressure value and blood pressure deriving means, by said pulse wave measuring means An intermediate value of the determined pulse wave is specified as the average blood pressure value derived by the average blood pressure deriving means, and a second relationship that is a relationship between the pulse wave and the blood pressure value, and the specified Blood pressure value deriving means for deriving the highest blood pressure value and the lowest blood pressure value at the measurement site from the pulse wave measured by the pulse wave measuring means based on the average blood pressure value, the blood pressure value deriving means The difference between the first pulse wave at the measurement site measured under atmospheric pressure and the second pulse wave at the measurement site measured under a second pressure different from the atmospheric pressure, and the atmospheric pressure By deriving the second relationship that is a relationship between a pulse wave and a pressure from a pressure difference with the second pressure, and converting the pulse wave into the blood pressure value, Mean blood pressure value, the highest blood pressure value and the above There is a point to derive the low blood pressure values.
[0011]
In order to solve the above problems, a second characteristic configuration of the bathtub sphygmomanometer according to the present invention is the pulse wave in addition to the first characteristic configuration as described in claim 2 of the column of the claims. The measurement means includes a light emitting unit that irradiates light to the measurement site, a light receiving unit that receives the light scattered by the bather, and the pulse based on a temporal change in received light intensity in the light receiving unit. And a first calculation means for deriving a wave.
[0012]
The third characteristic configuration of the bathtub sphygmomanometer according to the present invention for solving the above-mentioned problem is as described in claim 3 in the column of the claims, in addition to the first or second characteristic configuration, The heart rate measuring means includes a plurality of electrodes provided on the inner wall of the bathtub, a transmission means for transmitting each electric signal induced to the electrodes to the outside, an amplifying means for amplifying the electric signal, and the amplified And a second calculation means for processing the electrical signal to derive the heartbeat timing.
[0013]
The operation and effect will be described below.
According to the first characteristic configuration of the bathtub sphygmomanometer according to the present invention, the heartbeat measuring means measures the heartbeat timing of the bather, and the pulse wave measuring means is at a measurement site on the body surface of the bather. The pulse wave is measured, the propagation time deriving means compares the pulse wave and the heartbeat timing, derives the propagation time of the pulse wave from the heart to the measurement site, and the average blood pressure deriving means is the heart blood pressure deriving means from the heart. The propagation speed of the pulse wave is derived from the propagation distance of the pulse wave to the measurement site and the propagation time, and the average blood pressure at the measurement site is determined based on the relationship between the predetermined pulse wave propagation velocity and the blood pressure value. A blood pressure value deriving unit that calculates a blood pressure value at the measurement site based on the predetermined second relationship between the amplitude of the pulse wave and the amplitude of the blood pressure value, and the average blood pressure value. Can be derived. Here, the second relation is a relational expression that can convert the measured pulse wave scale into a blood pressure value scale. Therefore, the blood pressure value of the bather can be measured non-invasively and without burdening the bather, and by a simple method. Further, even if the pulse wave measuring means is attached, the blood pressure value measurement can be easily performed without causing a problem of handling like a cuff provided with a pump. The distance from the heart to the measurement site can be derived from the height, weight, etc. of the measurement subject. Or, mark the position of the heart and the position of the measurement site on the inner wall of the bathtub with a predetermined interval, and instruct the bather to lean on the marked position, know the distance from the heart to the measurement site You may comprise so that it can do.
[0014]
Here, the waveform of the pulse wave at the measurement site depends on the heartbeat timing in the heart, but the peak of the pulse wave appears with a delay from the heartbeat timing in proportion to the distance from the heart to the measurement site. Accordingly, the propagation speed of the pulse wave can be derived from the delay time from the heartbeat timing of the waveform peak of the pulse wave and the distance from the heart to the measurement site. It is known that a proportional relationship is established between the propagation speed of the pulse wave and the blood pressure value, and the average blood pressure at the measurement site can be derived from the derived propagation speed of the pulse wave. Therefore, since the maximum value and the minimum value of the pulse wave can be associated with the maximum value and the minimum value of the blood pressure, the blood pressure value waveform at the measurement site is derived by converting the average value into the average blood pressure value. Can do.
[0015]
Furthermore, the difference between the first pulse wave under atmospheric pressure (before pressurization) and the second pulse wave under second pressure (after pressurization) with respect to the measurement site, and the pressure difference between the atmospheric pressure and the second pressure, From this, the relationship between the pulse wave and the pressure can be derived, the maximum and minimum values of the amplitude of the pulse wave correspond to the maximum and minimum blood pressure values, and the intermediate value of the amplitude of the pulse wave is intermediate Considering the correspondence with blood pressure values, the scale of the amplitude of the pulse wave can be converted to the scale of pressure (blood pressure value). As a result, not only the average blood pressure value obtained earlier, but also the maximum blood pressure value and the minimum The blood pressure value can also be accurately derived.
[0016]
According to the second characteristic configuration of the bathtub sphygmomanometer according to the present invention, the pulse wave measuring means includes a light emitting part and a light receiving part, and when the infrared rays irradiated from the light emitting part enter the human body, blood Infrared light is absorbed by the hemoglobin therein, and the amount of absorption is proportional to the amount of hemoglobin present on the optical path of the infrared light. Therefore, when the received light intensity is small, it means that there is a large amount of hemoglobin that contributes to absorption of infrared rays, that is, the amount of blood is large, and when the received light intensity is large, the amount of hemoglobin that contributes to absorption of infrared rays is small, That is, it means that the blood volume is small. Accordingly, by measuring the temporal variation of the received light intensity, it is possible to measure the temporal variation of the blood volume at the measurement site, that is, the pulse wave.
[0017]
According to the third characteristic configuration of the bathtub sphygmomanometer according to the present invention, the heartbeat measuring means noninvasively measures the heartbeat timing obtained from the bather's, for example, the peak of the R wave of the electrocardiogram waveform during bathing. The ability to avoid physical and mental burdens on bathers, and accurate heart rate measurement in normal times, that is, accurate blood pressure measurement can do.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The bathtub sphygmomanometer 1 according to the present invention includes a heart rate measuring means 2, a pulse wave measuring means 3, a propagation time deriving means 4, an average blood pressure deriving means 5, and a blood pressure value deriving means 6. Here, the pulse wave measuring means 3 receives the light emitting means 7 for irradiating light to the measurement site on the body surface of the bather, and the transmitted light transmitted through the bather or the irradiated light scattered by the bather. Light receiving means 8 and a first calculation means for deriving a pulse wave waveform based on a temporal change in the received light intensity in the light receiving means 8 or the absorbed light intensity by the bather. The heartbeat measuring means 2 includes a plurality of electrodes 10a and 10b provided on the inner wall of the bathtub, transmission means 11a and 11b for transmitting the respective electric signals induced to the electrodes 10a and 10b to the outside, and the electric signals. Amplifying means 12 for amplification and signal processing of the amplified electric signal to derive a bather's heartbeat timing (specifically, heartbeat timing time-series data obtained from the peak of the R wave of the electrocardiographic waveform) 2nd calculating means 13 to be provided. The propagation time deriving means 4, the average blood pressure deriving means 5, the blood pressure value deriving means 6, the first calculating means 9, and the second calculating means 13 are configured by a single signal processing means 14 realized using a CPU or the like. be able to.
[0019]
Hereinafter, a method for measuring a pulse wave will be described with reference to FIG.
As shown in FIG. 2, the pulse wave is measured by the pulse wave measuring means 3 by attaching a wristband 17 having a light emitting means 7 and a light receiving means 8 to a human body (here, a wrist of a bather) and performing a first calculation. This is performed by performing a pulse oximetry method (infrared absorbance measurement method) under the control of the means 9. It should be noted that the wearing part (measurement part) of the wristband 17 is under atmospheric pressure. Further, the wristband 17 and the first calculation means 9 are connected using a conductor that does not restrain the movement of the bather as much as possible, and as a result, the bather is not aware that the pulse wave is being measured. Can be configured.
[0020]
The light emitted from the light emitting means 7 (here, infrared light) is absorbed by an infrared light absorption factor (such as hemoglobin in the blood) inside the human body, or is further scattered by a bone or the like and released outside the human body. The The light receiving means 8 may be arranged to receive the reflected light or may be arranged to receive the transmitted light. Therefore, the light emitted outside the body is received by the light receiving means 8, and as a result, the temporal change in the intensity of absorbed light by the human body as shown in FIG. 3A is derived.
[0021]
The time change of the absorbed light intensity shown in FIG. 3 (a) corresponds to the time change of the blood volume existing on the optical path of the light emitted from the light emitting means 7 and received by the light receiving means 8, and as a result. The waveform of the bather's pulse wave proportional to the waveform of the absorbed light intensity can be obtained. In particular, by attaching the wristband 17 so that there is an artery on the optical path from the light emitting means 7 to the light receiving means 8, a temporal change in the amount of blood flowing through the artery, that is, a waveform of a pulse wave is obtained. The obtained pulse wave waveform is output from the first calculation means 9. The amplitude of the pulse wave signal waveform is proportional to the amplitude of the blood pressure value (difference between the maximum blood pressure value and the minimum amplitude value), and the intermediate value of the amplitude of the pulse wave signal waveform corresponds to the average blood pressure value. The absolute blood pressure value cannot be determined from the light intensity scale).
[0022]
Next, a heartbeat measuring method will be described.
As shown in FIG. 1, the means 11a and 11b for transmitting an electrical signal indicating the body surface potential of the bather induced to at least two electrodes 10a and 10b through water by the heartbeat measuring means 2 used here are used. FIG. 3B shows a result of differential amplification of the electrical signals induced to the electrodes 10a and 10b by the amplification means 12 and processing of the amplified electrical signals by the second calculation means 13. An electrocardiographic signal (electrocardiographic waveform) of the bather as shown is obtained. The obtained electrocardiographic waveform is output from the second calculation means 13. As the electrodes 10a and 10b, an electrode embedded in the inner wall surface of the bathtub or a metal handrail usually mounted in the bathtub can be used.
[0023]
Next, by comparing the pulse wave at the measurement site (here, the wrist) of the bather shown in FIG. 3A and the heartbeat timing of FIG. 3B, from the bather's heart to the measurement site. The pulse wave propagation time Δt can be obtained. Furthermore, the distance from the heart to the measurement site can be derived with reference to the height, weight, etc. of the bather. Alternatively, mark the position of the heart on the inner wall of the bathtub (the position where the back rests) and the position of the measurement site that is a predetermined distance away from it, and instruct the bather to lean on those positions. By maintaining the distance from the heart to the site to be measured, the distance can always be kept constant.
[0024]
Therefore, the mean blood pressure deriving means 5 can derive the propagation speed of the pulse wave from the heart to the measurement site using the propagation time Δt and the propagation distance of the pulse wave from the heart to the measurement site. In order to derive a highly accurate propagation speed, an average value of a plurality of propagation times Δt measured during a predetermined period may be taken.
[0025]
Further, it is known that the relationship shown in FIG. 4 is established between the propagation speed of the pulse wave and the average blood pressure, and the average blood pressure deriving means 5 can derive the average blood pressure value at the measurement site. it can. Therefore, from the average blood pressure value derived using the blood pressure value deriving means 6, the intermediate value of the amplitude of the pulse wave signal waveform shown in FIG. 3A can be specified by the average blood pressure value. The scale of the vertical axis (absorbed light intensity) of the graph shown in a) is determined between the amplitude of the absorbed light intensity (pulse wave signal waveform) and the amplitude of the blood pressure value (difference between the maximum blood pressure value and the minimum amplitude value). The maximum blood pressure value by converting to a blood pressure value scale using the predetermined proportional relationship, or the proportional relationship derived by actually measuring, and the above average blood pressure value specified on the graph of absorbed light intensity A minimum blood pressure value can also be derived. In addition, since the relationship between the pulse wave propagation speed and the average blood pressure may change with the passage of time depending on the person, the pulse wave propagation speed between the two points (the heart and the measured site) is periodically It may be necessary to measure the average blood pressure of the measurement site and update the relationship between them as shown in FIG.
[0026]
As described above, basically, bathtub sphygmomanometer 1 blood pressure during bathing bather noninvasive using, it measured in a simple way for and bathing himself.
[0027]
Then, the scale of the absorbed light intensity in the graph shown in FIG. 3A is used to determine the relationship between the amplitude of the pulse wave signal waveform and the amplitude of the blood pressure value (difference between the maximum blood pressure value and the minimum amplitude value) and the average blood pressure. The maximum blood pressure value and the minimum blood pressure value were also derived by converting the values into a blood pressure value scale. However, the amplitude of the pulse wave signal waveform and the amplitude of the blood pressure value (the difference between the maximum blood pressure value and the minimum amplitude value) used when converting the amplitude of the pulse wave signal waveform (scale of absorbed light intensity) to the scale of blood pressure value. ) May cause an error. In other words, by calculating the amount of change in the intensity of absorbed light relative to the amount of change in pressure applied to the measurement site, the amplitude of the pulse wave signal waveform (scale of absorbed light intensity) can be more accurately converted to a blood pressure value scale. Can do. The method will be described below.
[0028]
In the method described below, a known pressure is applied to the measurement site and two absorption light intensity graphs (pulse wave waveforms) are measured, whereby the amplitude of the pulse wave signal waveform (absorption light intensity) is measured. This is a method for accurately converting a scale) into a blood pressure value scale. As a method for applying the pressure, a case where a known pressure is applied using a cuff and a case where the pressure is applied by submerging the measurement site at a known water depth (known water pressure) can be taken.
[0029]
When submerging the part to be measured to a known depth, mark the measurement point on the inner wall of the bathtub in advance, and use the water level sensor that is used for the automatic hot water function of the bathtub. By automatically deriving the water depth, the pressure applied to the measurement site is also automatically derived.
[0030]
First, the waveform of the pulse wave shown in FIG. 3A can be measured under atmospheric pressure in the same manner as described above. Next, sink the bather's measurement site to a known water depth while wearing the wristband 17, or apply a similar pulse wave with a known pressure applied to the measurement site using a cuff. Measure the waveform. In FIG. 5, the waveform of the pulse wave after application of pressure and the waveform of the pulse wave before application are shown on the same scale.
[0031]
As shown in FIG. 5, the amplitude of the absorbed light intensity (pulse wave signal waveform) is proportional to the amplitude of the blood pressure value (difference between the maximum blood pressure value and the minimum amplitude value), and the intermediate value of the amplitude of the absorbed light intensity is the blood pressure value. It corresponds to the mean blood pressure value of the amplitude. From FIG. 5, it is possible to compare the absorption light intensity (B) before pressurization and the absorption light intensity (A) after pressurization with respect to the measurement site, and the peak value when two pulse wave waveforms are compared ( The peak of the maximum blood pressure value and the peak of the minimum blood pressure value), and the amount of change in the intermediate value of the amplitude (scale of absorbed light intensity) correspond to the applied known pressurization value (pressure scale). Therefore, the amplitude of the pulse wave signal waveform (scale of absorbed light intensity) can be calculated more accurately by determining the amount of change in absorbed light intensity with respect to the change in pressure applied to the measurement site (pressure due to blood pressure or pressure due to external pressure). Can be converted into a blood pressure value scale, and as a result, not only the previously determined average blood pressure value but also the maximum blood pressure value and the minimum blood pressure value can be accurately derived.
[0032]
In addition, by applying a known pressure to the measurement site with a cuff, or by sinking the measurement site to a known depth (applying a known pressure), as shown in FIG. In the graph, a difference in change rate (slope) appears. FIG. 6 is a partial graph of the absorbed light intensity B (inclination: α B ) and the absorbed light intensity A (inclination: α A ) shown in FIG. is there.
[0033]
Here, since the amount of change in the slope of the absorbed light intensity due to the pressurization: Δα corresponds to the applied known pressurization value, the relationship between the slope of the absorbed light intensity and the pressure value can be derived. As a result, the slopes of absorbed light intensity: α A and α B shown in FIG. 6 can be converted into pressure values, and the instantaneous absolute blood pressure value corresponding to the minimum value of the absorbed light intensity in each case is obtained. be able to. Therefore, the absorbed light intensity on the vertical axis in the graph of absorbed light intensity can be converted into a pressure value, and as a result, not only the average blood pressure value obtained previously but also the maximum blood pressure value and the minimum blood pressure value are accurately derived. can do.
[0034]
Moreover, although the above-mentioned embodiment demonstrated the case where the light emission means 7 and the light-receiving means 8 of the pulse wave measurement means 3 were mounted | worn with a bather using the wristband 17, as illustrated in FIG. A configuration may be employed such as when it is provided in advance at a predetermined position on the wall surface, or when it is detachably provided on the inner wall surface of the bathtub. Accordingly, if the detachable light emitting means 7 and the light receiving means 8 are used, or if a plurality of the light emitting means 7 and the light receiving means 8 are embedded in the inner wall of the bathtub, the portion to be measured is submerged to a known depth and subjected to a plurality of pressures. It is also possible to measure the pulse wave at.
[0035]
In addition, the derived electrocardiogram waveform (or heart rate), pulse wave waveform, blood pressure value, etc. may be displayed on the display means 15 realized by a bathroom remote controller or the like so that the bather can check in real time. it can. Furthermore, if the signal processing means 14 determines that an abnormality is found in the measured electrocardiogram waveform (or heart rate) or blood pressure value, the alarm means 16 is used to send a voice message or the like to the bather. Can also be configured to call attention.
[0036]
In the above embodiment, the method of measuring the blood pressure value by the pulse oximetry method by wearing the wristband 17 on the wrist of the bather has been described. It is not limited to the wrist. For example, the wristband can be miniaturized and attached to the fingertip, and modification such as measuring the blood pressure of the fingertip can be performed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a bath sphygmomanometer.
FIG. 2 is a configuration diagram showing an example of pulse wave measuring means.
FIGS. 3A and 3B are graphs showing temporal changes in absorbed light intensity, and FIG. 3B is a graph showing an electrocardiogram waveform;
FIG. 4 is a graph showing the relationship between pulse wave propagation speed and mean blood pressure.
FIG. 5 is a graph showing a waveform of a pulse wave after application of pressure and a waveform of the pulse wave before application of pressure.
FIG. 6 is a graph showing the waveform of a pulse wave after applying pressure and the waveform of the pulse wave before applying pressure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bath sphygmomanometer 2 Heart rate measuring means 3 Pulse wave measuring means 4 Propagation time deriving means 5 Average blood pressure deriving means 6 Blood pressure deriving means 7 Light emitting means 8 Light receiving means 9 First calculating means 10 Electrode 11 Transmitting means 12 Amplifying means 13 Second calculation Means 14 Signal processing means 15 Display means 16 Alarm means 17 Wristband

Claims (3)

入浴者の血圧を測定する浴槽血圧計であって、
前記入浴者の心拍タイミングを測定する心拍測定手段と、
前記入浴者の体表面上の被測定部位における脈波を測定する脈波測定手段と、
前記脈波と前記心拍タイミングとを比較し、心臓から前記被測定部位に至る前記脈波の伝搬時間を導出する伝搬時間導出手段と、
心臓から前記被測定部位に至る前記脈波の伝搬距離と前記伝搬時間とから前記脈波の伝搬速度を導出し、脈波伝搬速度と血圧値との間の所定の第1関係に基づいて、前記被測定部位における平均血圧値を導出する平均血圧導出手段と、
前記脈波測定手段により測定される脈波の中間値を、前記平均血圧導出手段により導出される前記平均血圧値として特定するとともに、前記脈波と血圧値との間の関係である第2関係、および前記特定された平均血圧値に基づいて、前記脈波測定手段により測定される脈波から、前記被測定部位における最高血圧値及び最低血圧値を導出する血圧値導出手段とを備えてなり、
前記血圧値導出手段が、大気圧下で測定された前記被測定部位における第1脈波と前記大気圧とは異なる第2圧力下で測定された前記被測定部位における第2脈波の差分、および前記大気圧と前記第2圧力との圧力差から、脈波と圧力との間の関係である前記第2関係を導出して、前記脈波を前記血圧値に変換することで、前記被測定部位における、前記平均血圧値、前記最高血圧値及び前記最低血圧値を導出することを特徴とする浴槽血圧計。
A bath sphygmomanometer that measures the blood pressure of a bather,
A heartbeat measuring means for measuring a heartbeat timing of the bather;
Pulse wave measuring means for measuring a pulse wave at a measurement site on the body surface of the bather;
A propagation time deriving means for comparing the pulse wave with the heartbeat timing and deriving the propagation time of the pulse wave from the heart to the measurement site;
Deriving the propagation velocity of the pulse wave from the propagation distance and the propagation time of the pulse wave from the heart to the measurement site, based on a predetermined first relationship between the pulse wave propagation velocity and the blood pressure value, Mean blood pressure deriving means for deriving an average blood pressure value at the measurement site;
The intermediate value of the pulse wave measured by the pulse wave measuring unit is specified as the average blood pressure value derived by the average blood pressure deriving unit, and the second relationship is a relationship between the pulse wave and the blood pressure value And blood pressure value deriving means for deriving the highest blood pressure value and the lowest blood pressure value at the measurement site from the pulse wave measured by the pulse wave measuring means based on the specified average blood pressure value. ,
A difference between the first pulse wave at the measurement site measured under atmospheric pressure and the second pulse wave at the measurement site measured under a second pressure different from the atmospheric pressure, the blood pressure value deriving means; And deriving the second relationship, which is a relationship between the pulse wave and the pressure, from the pressure difference between the atmospheric pressure and the second pressure, and converting the pulse wave into the blood pressure value. A bath sphygmomanometer, wherein the average blood pressure value, the maximum blood pressure value, and the minimum blood pressure value at a measurement site are derived.
前記脈波測定手段が、前記被測定部位に対して光を照射する発光部と、前記入浴者によって散乱された前記光を受光する受光部と、前記受光部における受光強度の時間的変化に基づいて前記脈波を導出する第1演算手段とを備えてなることを特徴とする請求項1に記載の浴槽血圧計。The pulse wave measuring means is based on a temporal change in received light intensity in the light receiving unit that irradiates light to the measurement site, a light receiving unit that receives the light scattered by the bather, and the light receiving unit. The bath sphygmomanometer according to claim 1, further comprising first calculation means for deriving the pulse wave. 前記心拍測定手段が、浴槽内壁に設けられた複数の電極と、前記電極に誘導されたそれぞれの電気信号を外部に伝達する伝達手段と、前記電気信号を増幅する増幅手段と、増幅された前記電気信号を処理して、前記心拍タイミングを導出する第2演算手段とを備えてなることを特徴とする請求項1または請求項2に記載の浴槽血圧計。The heart rate measuring means includes a plurality of electrodes provided on the inner wall of the bathtub, a transmission means for transmitting each electric signal induced to the electrodes to the outside, an amplifying means for amplifying the electric signal, and the amplified The bath sphygmomanometer according to claim 1, further comprising: a second calculation unit that processes an electrical signal to derive the heartbeat timing.
JP2001091746A 2001-03-28 2001-03-28 Bath sphygmomanometer Expired - Fee Related JP4502537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091746A JP4502537B2 (en) 2001-03-28 2001-03-28 Bath sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091746A JP4502537B2 (en) 2001-03-28 2001-03-28 Bath sphygmomanometer

Publications (2)

Publication Number Publication Date
JP2002282223A JP2002282223A (en) 2002-10-02
JP4502537B2 true JP4502537B2 (en) 2010-07-14

Family

ID=18946314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091746A Expired - Fee Related JP4502537B2 (en) 2001-03-28 2001-03-28 Bath sphygmomanometer

Country Status (1)

Country Link
JP (1) JP4502537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494028B2 (en) 2019-07-08 2024-06-03 ザ・ボーイング・カンパニー Self-optimizing circuits for mitigating total dose effects, temperature drift, and aging phenomena in fully depleted SOI technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662984A1 (en) * 2003-08-22 2006-06-07 Eppcor, Inc. Non-invasive blood pressure monitoring device and methods
KR101777738B1 (en) * 2015-07-07 2017-09-12 성균관대학교산학협력단 Estimating method for blood pressure using video

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133933A (en) * 1985-12-05 1987-06-17 コーリン電子株式会社 Blood pressure measuring apparatus
JPH026004U (en) * 1988-06-23 1990-01-16
JPH053858A (en) * 1991-06-28 1993-01-14 Colleen Denshi Kk Blood pressure monitor device
JPH06319706A (en) * 1993-05-13 1994-11-22 Fukuda Denshi Co Ltd Continuous noninvasive blood pressure computing method and device
JPH10174678A (en) * 1996-10-18 1998-06-30 Sekisui Chem Co Ltd How water temperature control method and apparatus for bathtub
JPH10211175A (en) * 1997-01-30 1998-08-11 Sekisui Chem Co Ltd Electrocardiogram/pulse wave measurement bathtub
JPH11216180A (en) * 1997-10-21 1999-08-10 Fresenius Medical Care Deutsche Gmbh Method for continuously monitoring external blood treatment, and apparatus for external blood treatment equiped with apparatus for continuously monitering external blood treatment
JP2000107141A (en) * 1998-10-05 2000-04-18 Denso Corp Hemomanometer
JP2000245702A (en) * 1999-02-26 2000-09-12 Nippon Colin Co Ltd Ressure pulse wave detecting device
JP2001506167A (en) * 1997-06-06 2001-05-15 サウスウエスト・リサーチ・インスティテュート System and method for accurately monitoring a cardiovascular condition of a living body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133933A (en) * 1985-12-05 1987-06-17 コーリン電子株式会社 Blood pressure measuring apparatus
JPH026004U (en) * 1988-06-23 1990-01-16
JPH053858A (en) * 1991-06-28 1993-01-14 Colleen Denshi Kk Blood pressure monitor device
JPH06319706A (en) * 1993-05-13 1994-11-22 Fukuda Denshi Co Ltd Continuous noninvasive blood pressure computing method and device
JPH10174678A (en) * 1996-10-18 1998-06-30 Sekisui Chem Co Ltd How water temperature control method and apparatus for bathtub
JPH10211175A (en) * 1997-01-30 1998-08-11 Sekisui Chem Co Ltd Electrocardiogram/pulse wave measurement bathtub
JP2001506167A (en) * 1997-06-06 2001-05-15 サウスウエスト・リサーチ・インスティテュート System and method for accurately monitoring a cardiovascular condition of a living body
JPH11216180A (en) * 1997-10-21 1999-08-10 Fresenius Medical Care Deutsche Gmbh Method for continuously monitoring external blood treatment, and apparatus for external blood treatment equiped with apparatus for continuously monitering external blood treatment
JP2000107141A (en) * 1998-10-05 2000-04-18 Denso Corp Hemomanometer
JP2000245702A (en) * 1999-02-26 2000-09-12 Nippon Colin Co Ltd Ressure pulse wave detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494028B2 (en) 2019-07-08 2024-06-03 ザ・ボーイング・カンパニー Self-optimizing circuits for mitigating total dose effects, temperature drift, and aging phenomena in fully depleted SOI technology

Also Published As

Publication number Publication date
JP2002282223A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
EP2291111B1 (en) Contactless respiration monitoring of a patient and optical sensor for a photoplethysmography measurement
US10285599B2 (en) Wearable hemodynamic sensor
US7544168B2 (en) Measuring systolic blood pressure by photoplethysmography
US8679025B2 (en) Method for determination of cardiac output
US8016761B2 (en) Method and apparatus for automated flow mediated dilation
WO2002085203A1 (en) Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device
CA2187638A1 (en) Apparatus and method for measuring an induced perturbation to determine physiological parameter
JP2006239114A (en) Cuff-less electronic blood pressure monitor
US20210161503A1 (en) Multi-modal ultrasound probe for calibration-free cuff-less evaluation of blood pressure
JP2004201868A (en) Blood pressure measuring device, and blood pressure measuring method
JP2017510411A (en) Method for determining blood pressure in a blood vessel and apparatus for performing the method
US11432792B2 (en) Multi-modal ultrasound probe for calibration-free cuff-less evaluation of blood pressure
JP4502537B2 (en) Bath sphygmomanometer
US20220218217A1 (en) Blood pressure measurement system and blood pressure measurement method using the same
EP1366709A1 (en) Fetal-pulse-wave-velocity-related-information obtaining apparatus
JP4759860B2 (en) Anoxic work threshold detection device
JP2002320593A (en) Method and apparatus for measuring arterial blood pressure
JP2003260032A (en) Pulse wave measuring apparatus and bathtub hemomanometer having the same
EP1057449A2 (en) Apparatus for evaluating cardiac function of living subject
JP2007252767A (en) Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph
KR20200069545A (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
JPH10211175A (en) Electrocardiogram/pulse wave measurement bathtub
JP2000225097A (en) Portable blood pressure gauge
JP4792657B2 (en) Exercise intensity detector
KR102214774B1 (en) Cardiovascular and Cerebrovascular Disease Risk Assessment System Using Adsorption Cup Type Blood Flow Measurement Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Ref document number: 4502537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees