JP2002277333A - 劣化判定方法及び劣化判定装置 - Google Patents

劣化判定方法及び劣化判定装置

Info

Publication number
JP2002277333A
JP2002277333A JP2001078968A JP2001078968A JP2002277333A JP 2002277333 A JP2002277333 A JP 2002277333A JP 2001078968 A JP2001078968 A JP 2001078968A JP 2001078968 A JP2001078968 A JP 2001078968A JP 2002277333 A JP2002277333 A JP 2002277333A
Authority
JP
Japan
Prior art keywords
thermocouple
temperature
current
deterioration
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001078968A
Other languages
English (en)
Inventor
Tatsuro Honda
達朗 本田
Chihiro Uematsu
千尋 植松
Yoichi Tamura
洋一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001078968A priority Critical patent/JP2002277333A/ja
Publication of JP2002277333A publication Critical patent/JP2002277333A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】 【課題】 熱電対が有する抵抗値の数分の1から数倍の
値の変動を検出でき、熱電対に生じる比較的小さい劣化
の有無を判定することができる劣化判定装置の提供。 【解決手段】 K熱電対10の出力側の端子n1,n2
には夫々銅コンスタンタン線からなる補償導線11,1
1の一方端が接続され、補償導線11,11の他方端n
3,n4には電圧測定装置12が接続され、電圧測定装
置12からの出力は演算装置13へ入力される。更に、
端子n3,n4には導線15,15の開閉を制御する制
御装置16を介して電流源17が接続されており、前記
演算装置13は、電流源17からK熱電対10へ電流が
供給された場合の、K熱電対10に生じる電位差と比較
するための閾値参照テーブル13aを備えている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、温度を測定するた
めに用いる熱電対の劣化状況を判定する劣化判定方法及
び劣化判定装置に関するものである。
【0002】
【従来の技術】鉄工業において、コークス炉、高炉、ス
ラブの加熱炉等、多種多様の炉が有り、その炉内の温度
をより正確に管理し、制御することにより、これらの設
備を用いて製造される製品に対する信頼性を向上させ、
設備の安定駆動を図ることができる。高炉等の内部温度
を測定するため、一般的に熱電対を使用した温度測定装
置が用いられている。しかしながら、数百度の環境下に
て使用されるため、熱電対が断線するなどの劣化が生じ
た場合は正確な温度を測定することができない。
【0003】図3は、従来提案された熱電対の劣化を検
知する手段を備える多点温度測定装置を示す回路図であ
り、特開平6−137956号に開示されているもので
ある。図中1,1,…は熱電対であり、熱電対1におけ
る温接点とは逆に位置する2つの端子には夫々2本の補
償導線が接続され、一方の補償導線はリレー3を介して
温度測定回路4と熱電対1とを接続し、他方の補償導線
はリレー5を介して電圧測定回路6と熱電対1とを接続
している。
【0004】温度測定回路4は、熱電対を備えた温度測
定装置において従来用いられていたものと同様の機能を
有するものであり、熱電対1,1,…の温接点における
起電力を計測することにより、温接点周辺の温度を測定
する。また、電圧測定回路6は、リレー5,5,…が閉
じられる都度、熱電対1,1,…の電圧を逐次計測し、
測定した電圧から算出した抵抗値の変化分を温度に変換
して出力するものである。
【0005】リレー3,3,…が閉じられている間に温
度測定回路4にて測定された温度に関するデータと、リ
レー5,5,…が閉じられている間に電圧測定回路6が
測定した温度に関するデータとは、比較回路7へ入力さ
れて夫々の熱電対1毎に比較演算され、両者が測定した
温度の差分に関するデータが算出される。温度の差分に
関するデータは判定回路8へ入力され、予め設定された
閾値を超過した場合、該当する熱電対1は劣化している
と判定し、外部へ警報信号を出力する。
【0006】ところで、上述した多点温度測定装置にお
ける熱電対の劣化を検知する手段の場合、温度測定回路
4及び電圧測定回路6は、共に熱電対1の電圧に基づい
て温度を測定することから実質的に略同一の回路構成を
なしており、測定温度に生じる差異は、熱電対から各回
路までの補償導線の長さ、補償導線に使用される材料等
によるものである。従って、前記手段により劣化を検知
することができるのは、熱電対1が断線することにより
抵抗値が大幅に増加した場合、又は、断線に類する程度
に抵抗値が増加(数100MΩ)した場合などに限られ
る。
【0007】即ち、熱電対1が断線した場合、温度測定
回路4及び電圧測定回路6の入力側に接続された、熱電
対1、補償導線等からなる回路は、比較的高いインピー
ダンスを有することになり、補償導線及び周辺環境等に
より決定される浮遊静電容量に起因して生じる静電気の
電圧、浮遊静電容量を通じて飛来する周辺の交流ノイズ
等を検出することになる。前述した手段の場合、温度測
定回路4及び電圧測定回路6における補償導線が異なる
ため、前記静電気の電圧及び交流ノイズが異なり、測定
温度に差異が生じて熱電対1の劣化が検知される。
【0008】しかしながら、温度測定回路4及び電圧測
定回路6は、前述したように略同一の回路構成をなして
いるため、熱電対の比較的小さな抵抗値の変化は、両回
路においては同程度の電圧変化として測定され、熱電対
1の抵抗値の数分の1倍〜数倍程度の比較的小さい変化
に基づいて熱電対1の劣化を検知することができない。
【0009】一方、高炉等の内部に設けた熱電対1は、
熱電対1の長手方向の途中点においてシースが腐食し、
腐食箇所に金属成分が付着するなどして短絡することに
より熱電対1の接点位置が腐食箇所に移動することが生
じる。この場合、熱電対1の抵抗値は、腐食箇所から先
端までの熱電対1の抵抗値だけ減じるため、抵抗値の変
化は高々数分の1倍程度である。この他にも、高炉等に
て用いられる熱電対1では、比較的小さい抵抗値の変化
でしか表すことができない様々の劣化が生じており、従
来提案された熱電対の劣化を検知する手段では、前記劣
化を有効に検知できるものはなかった。
【0010】
【発明が解決しようとする課題】本発明は、上述したよ
うな事情に鑑みてなされたものであり、熱電対へ電流を
供給した場合に熱電対の抵抗値に依存して両端子間に生
じる電位差等を、予め設定した許容精度を示す閾値と比
較することにより、熱電対の抵抗値の変動を検出するこ
とができ、熱電対の劣化状況が、熱電対の精度の許容範
囲内であるか否かを判定することができる劣化判定方法
及び劣化判定装置を提供することを目的とする。
【0011】また、熱電対が設置される温度環境に基づ
いて上下限温度を設定し、上下限温度での熱電対の抵抗
値によって前記閾値を設定することにより、熱電対が設
置される環境に適した閾値を設定することができる劣化
判定方法及び劣化判定装置を提供することを目的とす
る。
【0012】また、更に温度検出装置を備えることによ
り、熱電対の劣化状況を判定すると共に、被測温部の温
度を検出することができる劣化判定装置を提供すること
を目的とする。
【0013】また、熱電対補償導線として、温度による
抵抗変化が比較的小さい銅コンスタンタン線を用いるこ
とにより、熱電対補償導線が設置された環境の温度変化
が、熱電対の出力信号に基づいて検出される電位差に及
ぼす影響を低減することができる劣化判定装置を提供す
ることを目的とする。
【0014】更に、供給する電流に起因して熱電対に発
生する熱量が0.01W/m以下となる電流値を熱電対
へ供給することにより、供給する電流により熱電対の温
度が上昇するのを許容できる範囲内に抑えることができ
る劣化判定装置を提供することを目的とする。
【0015】
【課題を解決するための手段】第1発明に係る劣化判定
方法は、温度を測定するために用いる熱電対の劣化状況
を判定する劣化判定方法において、前記熱電対へ電流を
供給し、供給した電流に起因して前記熱電対の両端子間
に生じる電位差に関する信号を検出し、検出した前記信
号を予め設定した閾値と比較することにより、前記熱電
対の劣化状況を判定することを特徴とする。
【0016】第2発明に係る劣化判定方法は、第1発明
に係る劣化判定方法において、前記熱電対が設置される
温度環境に基づいて上下限温度を設定し、該上下限温度
における前記熱電対の抵抗値である上下限抵抗値によっ
て前記閾値を設定することを特徴とする。
【0017】第3発明に係る劣化判定装置は、被測温部
の温度を測定するために用いる熱電対の劣化状況を判定
する劣化判定装置において、前記熱電対へ供給する電流
の供給量を制御する制御装置と、前記熱電対の出力側の
両端子間、又は、該両端子に夫々接続された熱電対補償
導線における出力側の両端子間の電位差を測定する電圧
測定装置と、前記熱電対へ電流が供給されている場合及
び前記熱電対へ電流が供給されていない場合における前
記電位差の差分値、該差分値及び前記熱電対へ供給した
電流の電流値に基づいて算出される前記熱電対の抵抗
値、又は、該抵抗値の時間変化を算出する演算装置と、
該演算装置が算出した算出値と予め設定した閾値とを比
較することにより前記熱電対に劣化が生じたか否かを判
定する判定装置とを備えることを特徴とする。
【0018】第4発明に係る劣化判定装置は、第3発明
に係る劣化判定装置において、前記熱電対へ電流が供給
されていない場合の前記電位差に基づき、前記被測温部
の温度を検出する温度検出装置を更に備えることを特徴
とする。
【0019】第5発明に係る劣化判定装置は、第3又は
第4発明に係る劣化判定装置において、前記熱電対補償
導線は、銅コンスタンタン線を用いてなることを特徴と
する。
【0020】第6発明に係る劣化判定装置は、第3乃至
第5発明の何れかに係る劣化判定装置において、前記熱
電対へ供給する電流は、該電流に起因して前記熱電対に
発生する熱量が0.01W/m以下となる電流値を有す
ることを特徴とする。
【0021】第7発明に係る劣化判定装置は、第3乃至
第6発明の何れかに係る劣化判定装置において、前記閾
値は、前記熱電対が設置される温度環境に基づいて設定
した上下限温度における前記熱電対の抵抗値である上下
限抵抗値によって設定された値であることを特徴とす
る。
【0022】第1発明に係る劣化判定方法及び第3発明
に係る劣化判定装置による場合は、熱電対へ電流を供給
した場合に前記熱電対の出力側の両端子間に生じる電位
差、又は、該電位差及び前記電流から求まる抵抗値等
を、予め設定した閾値と比較することにより、熱電対の
劣化状況が、前記閾値により決定される熱電対の精度の
許容範囲内であるか否かを判定することができる。
【0023】第2発明に係る劣化判定方法及び第7発明
に係る劣化判定装置による場合は、熱電対が設置される
温度環境に基づいて上下限温度を設定し、該上下限温度
での熱電対の抵抗値によって前記閾値を設定することに
より、熱電対の使用環境に適した閾値を設定することが
でき、劣化状況の判定をより的確に行うことができる。
【0024】第4発明に係る劣化判定装置による場合
は、更に温度検出装置を備えることにより、熱電対の劣
化状況を判定すると共に、被測温部の温度を検出するこ
とができる。
【0025】第5発明に係る劣化判定装置による場合
は、熱電対補償導線が、温度による抵抗変化が比較的小
さい銅コンスタンタン線を用いてなることにより、熱電
対と電圧測定装置との間の環境の温度変化が、電圧測定
装置で測定する電位差に及ぼす影響を低減することがで
き、熱電対の劣化状況の判定をより的確に行うことがで
きる。
【0026】第6発明に係る劣化判定装置による場合
は、熱電対へ供給する電流を、該電流に起因して熱電対
に発生する熱量が0.01W/m以下となる電流値とす
ることにより、供給する電流による熱電対の温度上昇
を、熱電対の温度測定に関する精度の許容範囲内に抑制
することができ、熱電対の劣化状況の判定のために電流
を供給する場合であっても、被測温部の温度を測定する
際の精度を損なうことがない。
【0027】
【発明の実施の形態】以下、本発明をその実施の形態を
示す図面に基づいて詳述する。図1は、本発明に係る劣
化判定装置を温度測定装置に適用した場合の構成を示す
ブロック図である。図中10はK熱電対(クロメル・ア
ルメル熱電対)であり、K熱電対10の測温部は、コー
クス炉、高炉、又は、加熱炉等の内部における被測温箇
所近傍の適宜位置に設置又は埋設されている。
【0028】K熱電対10の出力側の端子n1,n2に
は、夫々銅コンスタンタン線からなる補償導線11,1
1の一方端が接続されており、夫々の補償導線11,1
1の他方端n3,n4には電圧測定装置12が接続され
ている。
【0029】電圧測定装置12は、被測温箇所の温度を
測定する際はK熱電対10に生じる起電力を測定し、測
定した起電力を、予め測温部の温度及び起電力の関係を
求めて作成した温度参照テーブル12aと比較すること
により、従来の温度測定装置による場合と同様に被測温
箇所の温度を検出する。なお、K熱電対10の設置環境
が600度を超えない場合は、K熱電対10にて生じる
起電力V1の最大値は凡そ0.024Vである。
【0030】前記端子n3,n4にはまた、導線15,
15を介して電流源17が接続されており、電流源17
と端子n3,n4との間には、スイッチング素子等を備
え導線15,15の短絡,開放を制御する制御装置16
が設けられている。制御装置16により導線15,15
が閉じられている場合、電流源17からは、K熱電対1
0の劣化を検出するため、所定値の電流が補償導線11
を介してK熱電対10へ供給される。
【0031】電圧測定装置12は、電流源17からK熱
電対10へ供給された電流に基づき、K熱電対10の端
子n1,n2間に生じる電圧を測定し、測定した電圧値
を演算装置13へ出力する。演算装置13は入力された
電圧値に基づき、予め作成した閾値参照テーブル13a
を参照することにより、K熱電対10における劣化の有
無を判定する。また、演算装置13は制御装置16に接
続され、導線15,15の開閉のタイミングを示すタイ
ミング信号が入力される。演算装置13は、タイミング
信号に基づき、電流源17からK熱電対10へ電流が供
給された場合にのみ、K熱電対10の劣化有無の判定を
行う。K熱電対10に劣化が有ると判定した場合は、演
算装置13に接続された出力装置14にて、画面出力、
音声出力、警告灯の点灯などにより外部へ報知する。
【0032】次に、上述した構成をなす温度測定装置に
おける、K熱電対10の劣化の判定方法について説明す
る。制御装置16により導線15,15が閉じられた場
合、電流源17からは所定値の電流がK熱電対10へ供
給される。K熱電対10へ電流が供給された場合、K熱
電対10の温度は上昇するが、比較的大きな電流を供給
した場合は温度が過度に上昇してK熱電対10の仕様精
度の許容範囲を超えてしまう。一般に使用されるものと
して、直径が6.4mmであり、熱電対素線直径が約
1.2mmのものからなるK熱電対10の場合、長さ1
m当たりの供給熱量が0.01Wを超えるとK熱電対1
0の温度上昇は1.5度を超え、0.4級のK熱電対1
0の仕様精度の許容範囲外となる。
【0033】本実施の形態では、供給電流として40m
Aの電流を供給する。前述したK熱電対10では、常温
での抵抗は1m当たり約0.9Ωであり、供給電流が4
0mAの場合のK熱電対10への供給熱量は1m当たり
約0.0014W/mである。また、40mAの電流を
約200秒間供給した場合のK熱電対10の温度上昇は
0.2度以下であることが実験で確認されており、K熱
電対10における前記仕様精度には何ら影響を及ぼすも
のではない。なお、本実施の形態ではK熱電対10への
供給電流を40mAとしたが、使用する熱電対の仕様精
度における許容範囲内にて、交流、符号化されたパルス
状の電流等、任意の電流を供給することも可能である。
【0034】電流源17から導線15及び補償導線11
を介して供給された電流により、K熱電対10の端子n
1,n2間には電位差V2が生じる。該電位差V2は、 電位差V2=供給電流値×抵抗値 ・・・(1) により算出される。従って、本実施の形態におけるK熱
電対10の長さを10mとした場合、供給電流に起因し
て端子n1,n2間に生じる電位差V2は0.36Vと
なる。
【0035】供給電流に起因する電位差V2と、K熱電
対10に生じる起電力V1(=最大で凡そ0.024
V)とは、電圧測定装置12にて測定され、両者を合わ
せた電圧V0(=約0.38V)の電圧に関する信号が
演算装置13へ入力される。演算装置13では、電流が
供給されていない場合に測定された電圧Vb(=V1)
と、K熱電対10へ電流が供給されている場合に測定さ
れた電圧Va(=V0=V2+V1)との差分をとるこ
とにより、供給した電流に起因する電位差V2を算出す
る。更に、算出した電位差V2と、閾値参照テーブル1
3aにて設定された閾値とを比較する。
【0036】なお、本実施の形態において演算装置13
は電位差V2を閾値と比較する場合を説明したが、電位
差V2及び供給電流から求められるK熱電対10の抵抗
値、又は、制御装置16が間欠的に導線15,15を閉
じた場合に逐次算出されるK熱電対10の抵抗値の時間
変化を用い、夫々に対応した閾値と比較してもよい。
【0037】前記電位差V2の閾値は、K熱電対10が
設置された温度環境での上下限温度において、K熱電対
10が正常である場合に有する上下限抵抗値に基づいて
設定する。図2は、K熱電対10の抵抗の温度特性の一
例を示すグラフであり、常温での抵抗値を基準として温
度が変動した場合の相対的な抵抗値を示している。K熱
電対10の温度が常温から600度の間で変動する場
合、相対的な抵抗値は1.2±0.2の範囲で変動す
る。即ち、K熱電対10が劣化せず正常である場合、前
述した温度の変動範囲における抵抗値の変動は最大でも
±17%程度である。
【0038】従って、演算装置13へ入力された信号が
示す電圧において、供給電流に起因する電位差V2の1
7%に当たる、約0.06V以上の電圧変動が生じた場
合は、K熱電対10に劣化が生じたと判定することがで
きる。即ち、K熱電対10の劣化の判定を行う際、供給
電流に起因して正常なK熱電対10に生じる電位差V2
に対し、100±17%に当たる電圧を閾値とすること
ができる。
【0039】電圧測定装置12において、暗電流及びノ
イズが0.0003V以下のアンプと、12ビットのA
/D変換器とを用いることにより、0.1%程度の比較
的良好な精度で電圧を測定することが可能である。ま
た、(1)式に示すように抵抗値と電位差とは一次線形
の関係にある。従って、供給電流に起因する電位差V2
に対し、100±17%の電圧を閾値とした場合、抵抗
値の変化が17%を超えるK熱電対10の劣化、又は、
K熱電対10の長さに対して17%以上の測温点の移動
による劣化を検出することができる。
【0040】なお、測温点が設置された温度環境、又
は、温度測定において必要とする測定精度等に応じ、閾
値を適宜設定することができ、例えば、測温点が設置さ
れた温度環境を常温から400度の範囲とした場合は、
供給電流に起因する電位差V2に対して100±10%
に当たる電圧を閾値とすることも可能である。
【0041】また、本実施の形態では、通常の温度測定
とK熱電対10の劣化判定のための電圧測定とを電圧測
定装置12にて行うものを説明したが、夫々異なる回路
を用いて構成してもよく、また、K熱電対10に生じる
電位差V2の算出と該電位差V2に基づく劣化の判定と
を演算装置13にて行うものを説明したが、夫々異なる
回路を用いて構成してもよい。
【0042】更に、本実施の形態では、補償導線11,
11として銅コンスタンタン線を用いたが、他の導線、
例えば鉄コンスタンタン線を用いてもよく、この場合、
銅コンスタンタン線に比して温度に対する抵抗値の変動
が大きいため、電流源17からK熱電対10へ電流を供
給するための導線15,15は、端子n3,n4ではな
く端子n1,n2に接続し、補償導線11,11を介さ
ずK熱電対10へ電流を直接供給できるようにするのが
望ましい。
【0043】上述した、本発明に係る熱電対劣化判定装
置を適用した温度測定装置による場合は、K熱電対10
へ、温度上昇が許容精度に影響を及ぼさない程度の熱量
(約0.01W/m)となる電流を供給し、供給電流に
起因しK熱電対10の抵抗値に依存して生じる電位差V
2を、温度環境として設定された上下限温度でのK熱電
対10の上下限抵抗値に基づく電圧の閾値と比較し、閾
値を超えた場合にK熱電対10に劣化が生じたと判定す
るため、K熱電対10の劣化が、数分の1から数倍程度
の抵抗値の変動として表される比較的小さいものの場合
であっても、K熱電対10の設置された温度環境に応じ
て的確に判定することができる。
【0044】また、補償導線11として銅コンスタンタ
ン線を用いることにより、K熱電対10と電圧測定装置
12との間の環境の温度変化が、電圧測定装置12で測
定する電位差に及ぼす影響を低減することができる。
【0045】
【発明の効果】第1発明に係る劣化判定方法及び第3発
明に係る劣化判定装置によれば、熱電対の劣化状況が、
前記閾値により決定される熱電対の精度の許容範囲内で
あるか否かを判定することができる。
【0046】第2発明に係る劣化判定方法及び第7発明
に係る劣化判定装置によれば、熱電対の使用環境に適し
た閾値を設定することができ、劣化状況の判定をより的
確に行うことができる。
【0047】第4発明に係る劣化判定装置によれば、熱
電対の劣化状況を判定すると共に、被測温部の温度を検
出することができる。
【0048】第5発明に係る劣化判定装置によれば、熱
電対と電圧測定装置との間の環境の温度変化が、電圧測
定装置で測定する電位差に及ぼす影響を低減することが
でき、熱電対の劣化状況の判定をより的確に行うことが
できる。
【0049】第6発明に係る劣化判定装置によれば、供
給する電流による熱電対の温度上昇を、熱電対の温度測
定に関する精度の許容範囲内に抑制することができ、熱
電対の劣化状況の判定のために電流を供給する場合であ
っても、被測温部の温度を測定する際の精度を損なうこ
とがない。
【図面の簡単な説明】
【図1】本発明に係る劣化判定装置を温度測定装置に適
用した場合の構成を示すブロック図である。
【図2】K熱電対の抵抗の温度特性の一例を示すグラフ
である。
【図3】従来提案された熱電対の劣化を検知する手段を
備える多点温度測定装置を示す回路図である。
【符号の説明】
10 K熱電対 11 補償導線 12 電圧測定装置 13 演算装置 14 出力装置 15 導線 16 制御装置 17 電流源

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 温度を測定するために用いる熱電対の劣
    化状況を判定する劣化判定方法において、 前記熱電対へ電流を供給し、供給した電流に起因して前
    記熱電対の出力側の両端子間に生じる電位差に関する信
    号を検出し、検出した前記信号を予め設定した閾値と比
    較することにより、前記熱電対の劣化状況を判定するこ
    とを特徴とする劣化判定方法。
  2. 【請求項2】 前記熱電対が設置される温度環境に基づ
    いて上下限温度を設定し、該上下限温度における前記熱
    電対の抵抗値である上下限抵抗値によって前記閾値を設
    定することを特徴とする請求項1に記載の劣化判定方
    法。
  3. 【請求項3】 被測温部の温度を測定するために用いる
    熱電対の劣化状況を判定する劣化判定装置において、 前記熱電対へ供給する電流の供給量を制御する制御装置
    と、前記熱電対の出力側の両端子間、又は、該両端子に
    夫々接続された熱電対補償導線における出力側の両端子
    間の電位差を測定する電圧測定装置と、前記熱電対へ電
    流が供給されている場合及び前記熱電対へ電流が供給さ
    れていない場合における前記電位差の差分値、該差分値
    及び前記熱電対へ供給した電流の電流値に基づいて算出
    される前記熱電対の抵抗値、又は、該抵抗値の時間変化
    を算出する演算装置と、該演算装置が算出した算出値と
    予め設定した閾値とを比較することにより前記熱電対に
    劣化が生じたか否かを判定する判定装置とを備えること
    を特徴とする劣化判定装置。
  4. 【請求項4】 前記熱電対へ電流が供給されていない場
    合の前記電位差に基づき、前記被測温部の温度を検出す
    る温度検出装置を更に備えることを特徴とする請求項3
    に記載の劣化判定装置。
  5. 【請求項5】 前記熱電対補償導線は、銅コンスタンタ
    ン線を用いてなることを特徴とする請求項3又は4に記
    載の劣化判定装置。
  6. 【請求項6】 前記熱電対へ供給する電流は、該電流に
    起因して前記熱電対に発生する熱量が0.01W/m以
    下となる電流値を有することを特徴とする請求項3乃至
    5の何れかに記載の劣化判定装置。
  7. 【請求項7】 前記閾値は、前記熱電対が設置される温
    度環境に基づいて設定した上下限温度における前記熱電
    対の抵抗値である上下限抵抗値によって設定された値で
    あることを特徴とする請求項3乃至6の何れかに記載の
    劣化判定装置。
JP2001078968A 2001-03-19 2001-03-19 劣化判定方法及び劣化判定装置 Pending JP2002277333A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078968A JP2002277333A (ja) 2001-03-19 2001-03-19 劣化判定方法及び劣化判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078968A JP2002277333A (ja) 2001-03-19 2001-03-19 劣化判定方法及び劣化判定装置

Publications (1)

Publication Number Publication Date
JP2002277333A true JP2002277333A (ja) 2002-09-25

Family

ID=18935496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078968A Pending JP2002277333A (ja) 2001-03-19 2001-03-19 劣化判定方法及び劣化判定装置

Country Status (1)

Country Link
JP (1) JP2002277333A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220652A (ja) * 2005-02-10 2006-08-24 General Electric Co <Ge> 電気回路の接合部及び接触部を品質認定するための方法
CN102784747A (zh) * 2012-07-16 2012-11-21 京东方科技集团股份有限公司 一种高温固化炉
CN103091530A (zh) * 2013-01-28 2013-05-08 河北省电力公司电力科学研究院 快速判断电能表检定装置端钮电位差是否合格的方法
GB2507093A (en) * 2012-10-18 2014-04-23 Melexis Technologies Nv Method and circuit for measuring the electrical resistance of a thermocouple
WO2014076871A1 (ja) * 2012-11-15 2014-05-22 株式会社神戸製鋼所 保護管劣化検知装置及び該方法
JP2018004137A (ja) * 2016-06-30 2018-01-11 株式会社ハーマン 温度検出装置を備えたガスコンロ
CN110806271A (zh) * 2018-08-06 2020-02-18 英业达科技有限公司 炉温监控系统及其方法
JP6756935B1 (ja) * 2019-07-31 2020-09-16 三菱電機ビルテクノサービス株式会社 測温システム、測温センサユニット及び測温システムの構成変更方法
CN113355639A (zh) * 2021-06-08 2021-09-07 京东方科技集团股份有限公司 温度检测装置及蒸镀设备

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220652A (ja) * 2005-02-10 2006-08-24 General Electric Co <Ge> 電気回路の接合部及び接触部を品質認定するための方法
CN102784747A (zh) * 2012-07-16 2012-11-21 京东方科技集团股份有限公司 一种高温固化炉
CN102784747B (zh) * 2012-07-16 2014-12-10 京东方科技集团股份有限公司 一种高温固化炉
GB2507093A (en) * 2012-10-18 2014-04-23 Melexis Technologies Nv Method and circuit for measuring the electrical resistance of a thermocouple
WO2014076871A1 (ja) * 2012-11-15 2014-05-22 株式会社神戸製鋼所 保護管劣化検知装置及び該方法
JP2014098646A (ja) * 2012-11-15 2014-05-29 Kobe Steel Ltd 保護管劣化検知装置及び該方法
US9897491B2 (en) 2012-11-15 2018-02-20 Kobe Steel, Ltd. Protecting tube deterioration detecting apparatus and method therefor
CN103091530A (zh) * 2013-01-28 2013-05-08 河北省电力公司电力科学研究院 快速判断电能表检定装置端钮电位差是否合格的方法
JP2018004137A (ja) * 2016-06-30 2018-01-11 株式会社ハーマン 温度検出装置を備えたガスコンロ
CN110806271A (zh) * 2018-08-06 2020-02-18 英业达科技有限公司 炉温监控系统及其方法
JP6756935B1 (ja) * 2019-07-31 2020-09-16 三菱電機ビルテクノサービス株式会社 測温システム、測温センサユニット及び測温システムの構成変更方法
CN114144645A (zh) * 2019-07-31 2022-03-04 三菱电机大楼技术服务株式会社 测温系统、测温传感器单元以及测温系统的结构变更方法
CN113355639A (zh) * 2021-06-08 2021-09-07 京东方科技集团股份有限公司 温度检测装置及蒸镀设备
CN113355639B (zh) * 2021-06-08 2023-09-12 京东方科技集团股份有限公司 温度检测装置及蒸镀设备

Similar Documents

Publication Publication Date Title
US8767367B2 (en) Wire protection method and wire protection device
EP3070446B1 (en) Thermo wire testing circuit and method
KR101904578B1 (ko) 부하를 보호하기 위한 장치 및 방법
US10962421B2 (en) Mineral insulated sheathed assembly with grounded and ungrounded temperature sensors
JP2002277333A (ja) 劣化判定方法及び劣化判定装置
US11187592B2 (en) Thermocouple arrangement and method for measuring temperatures
WO2014117994A1 (en) Power switch fault detection system
US10459024B2 (en) Shorted thermocouple diagnostic
US10295491B2 (en) Mineral insulated sheathed assembly with insulation resistance indicator
US11143560B2 (en) Electronic circuit for driving a thermocouple element, temperature sensing device, and method for observing a leakage resistance of the thermocouple element
KR20100101990A (ko) 열전대 온도측정장치
JPH07193986A (ja) 電力ケーブル接続部の監視方法
TWI695558B (zh) 纜線斷線預兆偵測裝置
US20240142315A1 (en) Modified Thermocouple Assembly
JP7330069B2 (ja) 電力量計および電気機器
JP2021025862A (ja) 腐食モニタリング方法及び腐食モニタリング装置
KR20010000923U (ko) 다점 온도 측정장치
KR920007552B1 (ko) 저항 용접기에 있어서의 저항 측정장치
JP2021032582A (ja) 腐食センサ
JPH04145603A (ja) 超電導コイルのクエンチ検出方式
Fariña et al. Thermo-electrical characterization of electrodes in arc furnaces for silicon metal production
JPH0824087B2 (ja) 電気機器の内部測温装置
JPS62288485A (ja) ケ−ブル劣化検出装置
KR20110012117A (ko) 온도 보상이 가능한 아크 검출기
JPH02263580A (ja) 抵抗溶接機における抵抗測定装置