JP2002275591A - Stainless steel for presser bar spring of electronic parts having high strength and excellent fatigue characteristic - Google Patents

Stainless steel for presser bar spring of electronic parts having high strength and excellent fatigue characteristic

Info

Publication number
JP2002275591A
JP2002275591A JP2001072734A JP2001072734A JP2002275591A JP 2002275591 A JP2002275591 A JP 2002275591A JP 2001072734 A JP2001072734 A JP 2001072734A JP 2001072734 A JP2001072734 A JP 2001072734A JP 2002275591 A JP2002275591 A JP 2002275591A
Authority
JP
Japan
Prior art keywords
mass
stainless steel
less
content
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001072734A
Other languages
Japanese (ja)
Inventor
Naoto Hiramatsu
直人 平松
Hiroki Tomimura
宏紀 冨村
Kenichi Morimoto
憲一 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2001072734A priority Critical patent/JP2002275591A/en
Publication of JP2002275591A publication Critical patent/JP2002275591A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide stainless steel for a pressure bar spring of electronic parts which has high strength and excellent fatigue characteristics, and requires thinning. SOLUTION: The stainless steel has a composition containing <=0.15% C, 1.0 to 4.0% Si, <=5.0% Mn, <=0.040% P, <=0.010% S, 4.0 to 10.0% Ni, 12.0 to 18.0% Cr, 0 to 3.5% Cu, 1.0 to 5.0% Mo, <=0.15% N, <=0.02% Nb, <=0.015% Ti, <=0.015% O, >=0.10% C+N and >=3.5% Si+Mo, and the balance substantially Fe, and in which the value of Md(N) defined as Md(N)=580-(520C+2Si+16Mn+16Cr+23Ni+300N+10Mo) lies in the range of 0 to 100. The maximum area of nonmetallic inclusions precipitated into the matrix is preferably controlled to <=40 μm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子部品用押えバネ等
に適し、高強度で疲労特性に優れたステンレス鋼に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel which is suitable for a holding spring for electronic parts and has high strength and excellent fatigue characteristics.

【0002】[0002]

【従来の技術】電子部品用押えバネの素材には、マルテ
ンサイト系ステンレス鋼,加工硬化型ステンレス鋼,析
出硬化型ステンレス鋼等が従来から使用されている。マ
ルテンサイト系ステンレス鋼は、高温のオーステナイト
状態から急冷してマルテンサイト変態させることによっ
て硬化させた鋼種であり、SUS410,SUS402J2等が相当す
る。焼き入れ・焼戻しの調質処理によって高い強度及び
靭性が得られるが、極薄製品では焼入れ処理の際に熱歪
によって変形し、目標形状をもつ製品を作製することが
困難である。
2. Description of the Related Art Martensitic stainless steel, work hardening stainless steel, precipitation hardening stainless steel and the like have been conventionally used as a material of a holding spring for electronic parts. Martensitic stainless steel is a steel type hardened by rapidly cooling from a high-temperature austenite state and transforming it to martensite, and corresponds to SUS410, SUS402J2, and the like. Although high strength and toughness can be obtained by quenching and tempering, ultra-thin products are deformed by thermal strain during quenching, making it difficult to produce products having a target shape.

【0003】熱歪による変形が問題視される用途では、
SUS301,SUS304に代表される加工硬化型オーステナイト
系ステンレス鋼が使用される。加工硬化型オーステナイ
ト系ステンレス鋼は、溶体化処理状態でオーステナイト
相を呈し、後続の冷間圧延工程で加工誘起マルテンサイ
トを生成させることにより硬質化する。加工硬化型オー
ステナイト系ステンレス鋼の強度は、冷間加工量やマル
テンサイト量に依存するが、冷間加工のみによる強度の
調節は非常に困難である。また、冷間加工率を著しく大
きくすると材料の異方性が大きくなり、靭性も低下す
る。
In applications where deformation due to thermal strain is regarded as a problem,
A work hardening type austenitic stainless steel represented by SUS301 and SUS304 is used. The work-hardening austenitic stainless steel exhibits an austenitic phase in a solution-treated state, and is hardened by forming work-induced martensite in a subsequent cold rolling step. The strength of the work hardening type austenitic stainless steel depends on the amount of cold work and the amount of martensite, but it is very difficult to adjust the strength only by cold work. Further, when the cold working ratio is significantly increased, the anisotropy of the material increases, and the toughness also decreases.

【0004】析出硬化型ステンレス鋼は、析出硬化能の
大きな元素を添加し、時効処理で硬質化する鋼種であ
り、Cuを添加したSUS630,Alを添加したSUS631等が
知られている。Cu添加の析出硬化型ステンレス鋼は、
溶体化処理後にマルテンサイト単相を呈し、その後の時
効処理によって硬質化するが、引張強さは高くても14
00N/mm2程度に留まる。
[0004] Precipitation hardening stainless steel is a type of steel that hardens by aging treatment by adding an element having high precipitation hardening ability, and SUS630 added with Cu and SUS631 added with Al are known. Cu-added precipitation hardening stainless steel is
It exhibits a martensitic single phase after solution treatment, and hardens by subsequent aging treatment.
It stays at about 00 N / mm 2 .

【0005】Al添加の析出硬化型ステンレス鋼は、溶
体化処理で生じた準安定オーステナイト相を冷間加工等
によってマルテンサイトに一部変態させた後、時効処理
によってNi3Al等の金属間化合物を析出させてい
る。金属間化合物の析出によって硬質化し、かなりの高
強度鋼材が得られる。因みに、マルテンサイト層を積極
的に析出させることにより、引張強さを1800N/m
2まで上昇させることができる。
[0005] The precipitation hardening stainless steel to which Al is added is obtained by partially transforming a metastable austenite phase formed by solution treatment into martensite by cold working or the like, and then aging treatment to form an intermetallic compound such as Ni 3 Al. Is precipitated. Hardening due to precipitation of intermetallic compounds results in considerably high strength steel. Incidentally, by positively depositing the martensite layer, the tensile strength is set to 1800 N / m.
Until m 2 can be increased.

【0006】[0006]

【発明が解決しようとする課題】ところで、IT関連分
野の著しい発展に伴って電子部品用コネクタ類の小型化
・薄肉化が進められており、携帯電話,移動体通信等で
は押えバネの小型化・薄肉化が強く要求されている。ま
た、一層の高強度化により押えバネの薄肉化が可能にな
ると、素材の軽量化が図られる。
By the way, with the remarkable development of the IT-related field, connectors for electronic components have been reduced in size and thickness, and in mobile phones, mobile communication and the like, downsizing of a holding spring has been required.・ Thinning is strongly required. Further, if the holding spring can be made thinner by further increasing the strength, the weight of the material can be reduced.

【0007】薄肉化を可能にするためには強度上昇や疲
労特性の向上が必要であるが、強度上昇,疲労特性の向
上に対する要求は、従来のマルテンサイト系ステンレス
鋼,加工硬化型ステンレス鋼,析出硬化型ステンレス鋼
等では十分に答えられなくなってきている。時効硬化や
加工硬化を利用してオーステナイト系ステンレス鋼の強
度を上昇させようとすると冷間圧延率を高く設定する必
要があり、結果として靭性が著しく低下し、薄物製品に
あっては形状も劣化する。また、所定の時効温度からの
ズレに起因して強度低下が顕在化する。
[0007] In order to make it possible to reduce the thickness, it is necessary to increase the strength and improve the fatigue characteristics. However, the demand for the increase in the strength and the improvement in the fatigue characteristics is based on conventional martensitic stainless steel, work hardening stainless steel, and the like. Precipitation hardening type stainless steels and the like have not been able to respond sufficiently. In order to increase the strength of austenitic stainless steel using age hardening and work hardening, it is necessary to set a high cold rolling rate, resulting in a significant decrease in toughness and a deterioration in the shape of thin products. I do. Further, a decrease in strength becomes apparent due to a deviation from a predetermined aging temperature.

【0008】電子部品用押えバネに要求される強度及び
靭性を両立させるためには、冷間圧延で加工硬化を大き
くし、時効処理温度を高く設定して強加工冷延で低下し
た靭性を回復させ、且つ高温時効による硬度の低下が少
ないことが要求される。本発明者等は、焼戻し抵抗の高
い材料であれば高温時効による硬度低下が少ないことを
前提とし、材料面から電子部品用押えバネの素材を探求
した。
In order to achieve both the strength and toughness required for the holding spring for electronic parts, the work hardening is increased by cold rolling, the aging treatment temperature is set high, and the toughness reduced by strong cold rolling is recovered. And a decrease in hardness due to high-temperature aging is required. The present inventors have sought to use a material having a high tempering resistance on the premise that a decrease in hardness due to high-temperature aging is small, and to find a material for a pressing spring for an electronic component from the material side.

【0009】[0009]

【課題を解決するための手段】本発明は、このような検
討結果から案出されたものであり、加工誘起マルテンサ
イト相+オーステナイト相の二相組織をもつ準安定オー
ステナイト系ステンレス鋼が優れた強度及び靭性を呈す
るとの知見をベースにし、電子部品用押えバネの要求特
性を満足する高強度で疲労特性に優れたステンレス鋼を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been devised based on the above-described investigation results, and a metastable austenitic stainless steel having a two-phase structure of a work-induced martensite phase and an austenite phase is excellent. It is an object of the present invention to provide a high-strength stainless steel excellent in fatigue characteristics that satisfies the required characteristics of a holding spring for an electronic component based on the knowledge that it exhibits strength and toughness.

【0010】本発明の電子部品押えバネ用ステンレス鋼
は、その目的を達成するため、C:0.15質量%以
下,Si:1.0〜4.0質量%,Mn:5.0質量%
以下,P:0.040質量%以下,S:0.010質量
%以下,Ni:4.0〜10.0質量%,Cr:12.
0〜18.0質量%,Cu:0〜3.5質量%,Mo:
1.0〜5.0質量%,N:0.15質量%以下,N
b:0.02質量%以下,Ti:0.015質量%以
下,O:0.015質量%以下,C+N:0.10質量
%以上,Si+Mo:3.5質量%以上,残部が実質的
にFeの組成をもち、Md(N)=580−(520C
+2Si+16Mn+16Cr+23Ni+300N+
10Mo)と定義されるMd(N)値が0〜100の範
囲にあることを特徴とする。また、マトリックスに析出
している非金属介在物の最大面積が40μm2以下に規
制されていることが好ましい。
[0010] In order to achieve the object, the stainless steel for electronic part press springs of the present invention has a C content of 0.15 mass% or less, a Si content of 1.0 to 4.0 mass%, and a Mn content of 5.0 mass%.
Hereinafter, P: 0.040% by mass or less, S: 0.010% by mass or less, Ni: 4.0 to 10.0% by mass, Cr: 12.12.
0 to 18.0% by mass, Cu: 0 to 3.5% by mass, Mo:
1.0 to 5.0% by mass, N: 0.15% by mass or less, N
b: 0.02% by mass or less; Ti: 0.015% by mass or less; O: 0.015% by mass or less; C + N: 0.10% by mass or more; Si + Mo: 3.5% by mass or more; Fe composition, Md (N) = 580- (520C
+ 2Si + 16Mn + 16Cr + 23Ni + 300N +
The Md (N) value defined as 10 Mo) is in the range of 0 to 100. Further, it is preferable that the maximum area of the nonmetallic inclusions deposited on the matrix is regulated to 40 μm 2 or less.

【0011】[0011]

【実施の形態】本発明者等は、過酷な使用環境に耐える
電子部品用押えバネの要求特性を満足するステンレス鋼
板を種々調査検討した。その結果、従来の単相マルテン
サイト系ステンレス鋼に代えて加工誘起マルテンサイト
相+オーステナイト相の二相組織をもつ準安定オーステ
ナイト系ステンレス鋼を使用すると、強度及び疲労特性
を高位にバランスさせた電子部品用押えバネが得られる
ことを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have investigated and studied various stainless steel sheets which satisfy the required characteristics of a holding spring for electronic parts which can withstand a severe use environment. As a result, when a metastable austenitic stainless steel having a two-phase structure of a work-induced martensitic phase and an austenite phase is used instead of the conventional single-phase martensitic stainless steel, an electron with a high balance of strength and fatigue properties is obtained. It has been found that a holding spring for parts can be obtained.

【0012】前掲のように成分・組成が特定されたステ
ンレス鋼は、加工硬化及び加工誘起マルテンサイト変態
による変態強化によって硬質化し、更に冷間加工後の熱
処理で時効硬化する。また、時効硬化が促進しやすい成
分設計のため、比較的低温・短時間の時効処理で靭性を
回復させることができる。比較的低温・短時間の時効処
理は、疲労破壊の起点となる粗大析出物の生成防止に有
効であり、疲労特性及び耐食性をも向上させる。高強度
で疲労特性に優れたステンレス鋼は、薄肉化の要求が強
い電子部品用押えバネは勿論、他の板バネやコイルバ
ネ、インナーブレード,メタルガスケット等の素材とし
ても使用される。
As described above, stainless steel whose components and compositions are specified hardens by work hardening and transformation strengthening by work-induced martensitic transformation, and age hardens by heat treatment after cold working. In addition, due to the component design that facilitates age hardening, toughness can be recovered by aging at a relatively low temperature for a short time. The aging treatment at a relatively low temperature and for a short time is effective for preventing the formation of coarse precipitates which are the starting points of fatigue fracture, and also improves the fatigue characteristics and corrosion resistance. Stainless steel, which has high strength and excellent fatigue properties, is used as a material for other leaf springs, coil springs, inner blades, metal gaskets, and the like, as well as holding springs for electronic components, which are required to be thinner.

【0013】次いで、本発明のステンレス鋼に含まれる
成分,含有量等を説明する。C:0.15質量%以下 オーステナイト形成元素であり、高温域でのδフェライ
トの生成を抑え、冷間加工で生じる加工誘起マルテンサ
イトを強化する合金成分である。しかし、Si含有量の
多い本発明の成分系では、Cの固溶限が低下している。
そのため、C含有量を多くすると、時効処理で粗大なC
r系炭化物が析出し、耐粒界腐食や疲労特性を低下させ
る原因となる。そこで、C含有量の上限を0.15質量
%に設定した。好ましいC含有量の範囲は、0.05〜
0.1質量%である。
Next, the components, contents and the like contained in the stainless steel of the present invention will be described. C: 0.15% by mass or less Austenite-forming element, which is an alloy component that suppresses the formation of δ ferrite in a high temperature range and strengthens work-induced martensite generated in cold working. However, in the component system of the present invention having a high Si content, the solid solubility limit of C is low.
Therefore, if the C content is increased, coarse C
The r-based carbides precipitate and cause intergranular corrosion resistance and deterioration of fatigue properties. Therefore, the upper limit of the C content is set to 0.15% by mass. The preferred range of the C content is 0.05 to
0.1% by mass.

【0014】Si:1.0〜4.0質量% 製鋼段階で脱酸剤として添加される合金成分でもある
が、脱酸剤として添加されるSi含有量は、SUS301,SU
S304等の加工硬化型ステンレス鋼にみられるように1.
0質量%以下である。これに対し、本発明では、Si含
有量を高く設定し、冷間加工時に加工誘起マルテンサイ
ト相の生成を著しく促進させる効果を利用している。S
iは、加工誘起マルテンサイト相を硬質化すると共に、
オーステナイト相にも固溶して硬化させ、冷間加工後の
強度を上昇させる。更に、時効処理にあっては、Cuと
の相互作用によって時効硬化を促進させる。このような
硬化は、Si含有量1.0質量%以上で顕著になる。し
かし、4.0質量%を超える過剰量のSiが含まれる
と、高温割れが生じやすくなり、製造上でもトラブルが
発生しやすくなる。好ましいSi含有量の範囲は、1.
0〜3.5質量%である。
Si: 1.0 to 4.0 mass% Although it is also an alloy component added as a deoxidizing agent at the steelmaking stage, the content of Si added as a deoxidizing agent is SUS301, SU
As seen in work hardening stainless steel such as S304.
0 mass% or less. On the other hand, in the present invention, the Si content is set high, and the effect of significantly promoting the formation of a work-induced martensite phase during cold working is utilized. S
i hardens the work-induced martensite phase,
It also forms a solid solution in the austenite phase and hardens, increasing the strength after cold working. Further, in the aging treatment, age hardening is promoted by interaction with Cu. Such curing becomes remarkable when the Si content is 1.0% by mass or more. However, when an excessive amount of Si exceeding 4.0% by mass is included, high-temperature cracking is likely to occur, and troubles are likely to occur in manufacturing. The preferred range of the Si content is as follows.
0 to 3.5% by mass.

【0015】Mn:5.0質量%以下 オーステナイト相を安定化させる合金成分であり、他の
合金成分とのバランスによってMn含有量が定められ
る。しかし、5.0質量%を超える過剰量のMnが含ま
れると、冷間圧延時に加工誘起マルテンサイト変態しに
くく、変態硬化能が期待できない。Mn含有量は、好ま
しくは4.5質量%以下に設定する。P:0.040質量%以下 固溶強化能の大きな合金成分であるが、靭性に及ぼす悪
影響を抑える上でP含有量の上限を0.040質量%に
設定した。
Mn: 5.0 mass% or less Mn is an alloy component for stabilizing an austenite phase, and the Mn content is determined according to the balance with other alloy components. However, when an excessive amount of Mn exceeding 5.0% by mass is contained, work-induced martensite transformation hardly occurs during cold rolling, and no transformation hardening ability can be expected. The Mn content is preferably set to 4.5% by mass or less. P: 0.040% by mass or less An alloy component having a large solid solution strengthening ability, but the upper limit of the P content is set to 0.040% by mass in order to suppress the adverse effect on toughness.

【0016】S:0.010質量%以下 疲労特性低下の原因となる非金属介在物となる成分であ
り、電子部品用押えバネのように極薄板で使用される場
合、S含有量を低減して非金属介在物を少なくすること
が必要である。そこで、S含有量の上限を0.010質
量%に設定した。Ni:4.0〜10.0質量% 高温及び室温でオーステナイト相を安定化させる合金成
分であるが、室温で準安定オーステナイト相にし、冷間
加工で加工誘起マルテンサイト相が生成するようにNi
含有量が定められる。4.0質量%未満のNi含有量で
は、高温域で多量のδフェライトが生成し、室温までの
冷却過程でマルテンサイト相が生成するため、オーステ
ナイト単相として存在できなくなる。逆に10.0質量
%を超える過剰量のNiが含まれると、冷間加工時に加
工誘起マルテンサイト変態しがたく、変態硬化が期待で
きない。好ましくは、5.0〜9.5質量%の範囲にN
i含有量を設定する。
S: 0.010% by mass or less S is a component that becomes a nonmetallic inclusion that causes deterioration of fatigue characteristics. When used as an ultra-thin plate such as a pressing spring for an electronic component, the S content is reduced. It is necessary to reduce nonmetallic inclusions. Therefore, the upper limit of the S content is set to 0.010% by mass. Ni: 4.0 to 10.0 mass% Ni is an alloy component for stabilizing the austenite phase at high temperature and room temperature, but is converted to a metastable austenite phase at room temperature and is formed such that a work-induced martensite phase is formed by cold working.
The content is determined. When the Ni content is less than 4.0% by mass, a large amount of δ ferrite is generated in a high temperature range, and a martensite phase is generated in a cooling process to room temperature, so that it cannot exist as an austenite single phase. Conversely, if an excessive amount of Ni exceeding 10.0% by mass is contained, work-induced martensitic transformation hardly occurs during cold working, and transformation hardening cannot be expected. Preferably, the N content is in the range of 5.0 to 9.5% by mass.
Set the i content.

【0017】Cr:12.0〜18.0質量% 耐食性の向上に必須の合金成分であり、12.0質量%
以上で耐食性向上に及ぼすCrの添加効果が顕著にな
る。しかし、フェライト形成元素であるCrを18.0
質量%を超える過剰量添加すると、高温域で多量のδフ
ェライトが生成する。δフェライトの生成はC,N,N
i,Mn,Cu等のオーステナイト形成元素を添加する
ことによってδフェライトの生成は抑えられるが、オー
ステナイト形成元素を過度に添加すると室温でのオース
テナイト相が安定化する。その結果、冷間加工時に加工
誘起マルテンサイト変態しなくなり、時効処理後に高強
度が得られない。好ましいCr含有量は、12.0〜1
6.5質量%である。
Cr: 12.0 to 18.0 mass% An alloy component essential for improving corrosion resistance, and 12.0 mass%
As described above, the effect of adding Cr on the improvement of corrosion resistance becomes remarkable. However, Cr, which is a ferrite forming element, is changed to 18.0.
When added in excess of mass%, a large amount of δ ferrite is formed in a high temperature range. The formation of δ ferrite is C, N, N
Addition of an austenite-forming element such as i, Mn, or Cu suppresses the formation of δ ferrite, but excessive addition of an austenite-forming element stabilizes the austenite phase at room temperature. As a result, no work-induced martensite transformation occurs during cold working, and high strength cannot be obtained after aging treatment. The preferred Cr content is 12.0 to 1
6.5% by mass.

【0018】Cu:0〜3.5質量% 必要に応じて添加される合金成分であり、Siとの相互
作用によって時効処理時に時効硬化を促進させる。時効
硬化に及ぼす影響は、Cu含有量の増加に応じて大きく
なる。しかし、3.5質量%を超えるCuの過剰添加
は、熱間加工性を低下させ、割れ発生の原因となる。C
u含有量は、好ましくは1.0〜3.0質量%の範囲に
設定される。
Cu: 0 to 3.5 mass% is an alloy component added as necessary, and promotes age hardening during aging treatment by interaction with Si. The effect on age hardening increases with increasing Cu content. However, excessive addition of Cu exceeding 3.5% by mass lowers hot workability and causes cracking. C
The u content is preferably set in the range of 1.0 to 3.0% by mass.

【0019】Mo:1.0〜5.0質量% 耐食性を向上させると共に、時効処理時に炭窒化物を微
細分布させる作用を呈する合金成分である。疲労特性に
悪影響を及ぼす過度の圧延歪は時効処理温度を高く設定
することによって低減できるが、高い時効処理温度では
歪が急激に解放されることがある。この点、本発明の成
分系では、急激な歪の解放をMo添加によって規制して
いる。また、強度に寄与する析出物を時効処理時に形成
するため、かなりの高温域で時効処理する場合でも強度
の低下が防止される。このような効果は、1.0質量%
以上のMo添加で顕著になる。しかし、5.0質量%を
超える過剰量のMoを添加すると、高温域でδフェライ
トが生成しやすくなる。また、Mo含有量が多くなる
と、高温での変形抵抗が高くなり、熱間加工性が低下す
ることもある。好ましくは、1.0〜4.5質量%の範
囲にMo含有量を設定する。
Mo: 1.0 to 5.0 mass% Mo is an alloy component that has an effect of improving corrosion resistance and having a function of finely distributing carbonitrides during aging treatment. Excessive rolling strain, which adversely affects fatigue properties, can be reduced by setting the aging temperature high, but at high aging temperatures, the strain may be rapidly released. In this regard, in the component system of the present invention, rapid release of strain is regulated by the addition of Mo. Further, since precipitates that contribute to strength are formed during the aging treatment, a decrease in strength is prevented even when the aging treatment is performed in a considerably high temperature range. Such an effect is 1.0% by mass.
It becomes remarkable by the above Mo addition. However, when an excessive amount of Mo exceeding 5.0% by mass is added, δ ferrite is easily formed in a high temperature region. Also, when the Mo content increases, the deformation resistance at high temperatures increases, and the hot workability may decrease. Preferably, the Mo content is set in the range of 1.0 to 4.5% by mass.

【0020】N:0.15質量%以下 オーステナイト形成元素であると共に、オーステナイト
相及びマルテンサイト相の硬質化に極めて有効な合金成
分である。しかし、過剰量のN添加は鋳造時にブローホ
ールを発生させることになるので、N含有量の上限を
0.15質量%に設定した。Nb:0.02質量%以下,Ti:0.015質量%以
疲労特性に有害な非金属介在物を生成させる成分である
ことから、Nb,Tiに関してはそれぞれの上限を0.
02質量%,0.015質量%に規制した。
N: 0.15% by mass or less N is an austenite-forming element and is an alloy component extremely effective in hardening the austenite phase and the martensite phase. However, since excessive addition of N causes blowholes during casting, the upper limit of the N content was set to 0.15% by mass. Nb: 0.02% by mass or less, Ti: 0.015% by mass or less
Since it is a component that generates non-metallic inclusions harmful to lower fatigue properties, the upper limits of Nb and Ti are set to 0.
It was regulated to 02% by mass and 0.015% by mass.

【0021】O:0.015質量%以下 酸化物系の非金属介在物を形成して鋼の清浄度を低下さ
せ,疲労特性,ブレス成形性,曲げ加工性に悪影響を及
ぼす。このような悪影響は、O含有量を0.015質量
%以下に規制することによって抑制できる。C+N:0.10質量%以上 C及びNは同様な効果作用を呈する成分であるが、その
効果を十分に発揮させるためにはC,Nの合計含有量を
0.10質量%以上にすることが必要である。
O: 0.015% by mass or less Oxide-based nonmetallic inclusions are formed to lower the cleanliness of the steel and adversely affect fatigue properties, breathability and bending workability. Such adverse effects can be suppressed by regulating the O content to 0.015% by mass or less. C + N: 0.10% by mass or more C and N are components exhibiting the same effect. However, in order to sufficiently exert the effect, the total content of C and N must be 0.10% by mass or more. is necessary.

【0022】Si+Mo:3.5質量%以上 本発明の成分系では、時効処理時にMo系析出物を析出
させることによって高強度化を図っている。しかし、M
o系析出物が粗大に成長すると、疲労破壊の起点となっ
て疲労特性を劣化させる。しかし、Siを増量している
ので、Mo系析出物が粗大に成長せず微細な分散形態を
とり、疲労特性に及ぼす悪影響が抑えられる。Si,M
oの合計含有量を3.5質量%以上とすることにより、
Mo系析出物の微細分散が保証される。
Si + Mo: 3.5% by mass or more In the component system of the present invention, high strength is achieved by precipitating Mo-based precipitates during aging treatment. But M
When the o-based precipitate grows coarsely, it becomes a starting point of fatigue fracture and deteriorates fatigue characteristics. However, since the amount of Si is increased, the Mo-based precipitate does not grow coarsely and takes a fine dispersion form, thereby suppressing the adverse effect on the fatigue characteristics. Si, M
By setting the total content of o to 3.5% by mass or more,
Fine dispersion of the Mo-based precipitate is guaranteed.

【0023】Md(N)値:0〜100 本発明では、冷間圧延時の加工誘起マルテンサイト変態
を高強度化手段の一つに利用している。そのため、溶体
化処理後の冷間圧延で付与される歪に応じて加工誘起マ
ルテンサイト相が形成されやすいように、加工に対する
オーステナイト相の安定度が調整された合金設計が採用
されている。オーステナイト相の安定度を表す指標とし
て、次式で定義されるMd(N)値を使用する。 Md(N)=580−(520C+2Si+16Mn+16Cr+23N
i+300N+10Mo) Md(N)値を0〜100に調整することによって、冷
間加工時に適正量の加工誘起マルテンサイト相が生成
し、加工硬化及び変態効果による高強度化が可能とな
る。他方、Md(N)値が0未満の鋼種では、冷間圧延
に対するオーステナイト相の安定度が高く、高強度化に
寄与する加工誘起マルテンサイト相が十分に生成されな
い。逆に100を超えるMd(N)値では、比較的低い
冷間圧延率で多量の加工誘起マルテンサイト相が生成
し、却って製品の疲労特性が低下する。
Md (N) value: 0 to 100 In the present invention, the work-induced martensitic transformation at the time of cold rolling is used as one of the means for increasing the strength. Therefore, an alloy design in which the stability of the austenite phase with respect to working is adjusted so that the work-induced martensite phase is easily formed in accordance with the strain imparted by the cold rolling after the solution treatment. An Md (N) value defined by the following equation is used as an index representing the stability of the austenite phase. Md (N) = 580- (520C + 2Si + 16Mn + 16Cr + 23N
(i + 300N + 10Mo) By adjusting the Md (N) value to 0 to 100, an appropriate amount of a work-induced martensite phase is generated at the time of cold working, and high strength can be achieved by work hardening and transformation effects. On the other hand, in a steel type having an Md (N) value of less than 0, the austenite phase has high stability against cold rolling, and a work-induced martensite phase contributing to high strength is not sufficiently generated. Conversely, if the Md (N) value exceeds 100, a large amount of work-induced martensite phase is formed at a relatively low cold rolling reduction, and the fatigue properties of the product are rather deteriorated.

【0024】マトリックスに析出している非金属介在物
の最大面積:40μm2以下 マトリックスに析出している非金属介在物は、疲労破壊
の起点となって材料の疲労特性を低下させる。疲労特性
の低下に及ぼす影響は、非金属介在物が大きなサイズに
なるほど顕著になる。非金属介在物の最大面積を40μ
2以下に規制するとき、非金属介在物に起因する疲労
破壊が減少し、極薄板でできた押えバネの耐久性が向上
する。
Non-metallic inclusions deposited in the matrix
Non-metallic inclusions precipitated in the matrix of 40 μm 2 or less serve as starting points of fatigue fracture and lower the fatigue properties of the material. The effect on the deterioration of the fatigue characteristics becomes more remarkable as the size of the nonmetallic inclusion increases. Maximum area of non-metallic inclusions is 40μ
When the pressure is regulated to m 2 or less, fatigue fracture due to non-metallic inclusions is reduced, and the durability of the holding spring made of an extremely thin plate is improved.

【0025】[0025]

【実施例】表1の組成をもつステンレス鋼を真空溶解炉
で溶製し、鍛造,熱延,中間焼鈍を経て板厚0.2mm
まで冷間圧延した。冷延鋼帯に1050℃×1分保持の
溶体化処理を施した後、水冷し、更に板厚0.07mm
まで冷間圧延した。得られた冷延鋼帯を500℃×1分
で時効処理した。
EXAMPLE Stainless steel having the composition shown in Table 1 was melted in a vacuum melting furnace, and subjected to forging, hot rolling, and intermediate annealing to obtain a sheet thickness of 0.2 mm.
Until cold-rolled. After subjecting the cold-rolled steel strip to a solution treatment of holding at 1050 ° C. × 1 minute, water-cooled, and further, a plate thickness of 0.07 mm
Until cold-rolled. The obtained cold-rolled steel strip was aged at 500 ° C. for 1 minute.

【0026】 [0026]

【0027】各ステンレス鋼から試験片を切り出し、非
金属介在物を測定すると共に、機械試験,疲労試験に供
した。非金属介在物の面積測定では、圧延方向に2cm
の長さで各ステンレス鋼板から切り出した試験片10個
を使用し、圧延方向の全断面積から得られる画像処理情
報の中で最大の面積率を求めた。機械試験では、JIS Z2
201に規定されている13B号試験片を用い、JIS Z2241に
規定されている引張試験法で引張強さを測定した。
Specimens were cut out from each stainless steel, and nonmetallic inclusions were measured and subjected to mechanical tests and fatigue tests. In the area measurement of non-metallic inclusions, 2 cm in the rolling direction
Using 10 test pieces cut from each stainless steel plate with a length of, the maximum area ratio was obtained from image processing information obtained from the total cross-sectional area in the rolling direction. In mechanical tests, JIS Z2
Using a No. 13B test piece specified in 201, tensile strength was measured by a tensile test method specified in JIS Z2241.

【0028】疲労試験では、平行部の長さ100mm,
幅3mmの試験片を直径10mm,11mm,12m
m,13mm,14mm,15mm,17.5mm,2
0mmのプーリに掛け、両端を駆動プーリに掛けたベル
トで引っ張る曲げ−引張り疲労試験を行った。試験片を
500rpmの速さ(プーリによる上下反復回数が50
0回/分)で往復動させ、最小応力が50N/mm2
なる条件下で試験片平行部の最表層に加えられる表面最
大応力を1392〜715N/mm2の範囲で変動させ
た。曲げ−引張り疲労試験を107サイクル繰り返し、
破断しない疲労限を求めた。
In the fatigue test, the length of the parallel portion was 100 mm,
10mm, 11mm, 12m diameter specimens of 3mm width
m, 13mm, 14mm, 15mm, 17.5mm, 2
A bending-tensile fatigue test was performed in which the belt was hung on a 0 mm pulley and both ends were pulled by a belt hung on a driving pulley. The test piece was moved at a speed of 500 rpm (the number of up-and-down
0 times / min) is reciprocated, the minimum stress is the maximum surface stress applied to the outermost layer of the test KATAHIRA Gyobu under conditions to be 50 N / mm 2 was varied in the range of 1392~715N / mm 2. Bending - tensile fatigue test was repeated 10 7 cycles,
The fatigue limit that does not break was determined.

【0029】表2の調査結果にみられるように、鋼種N
o.1〜7のステンレス鋼(本発明例)は、引張強さが1
800N/mm2以上であり、曲げ−引張り疲労試験に
よる疲労限は何れも1100N/mm2以上と高く、極
薄板で電子部品用押えバネに要求される強度及び疲労特
性を十分に備えていた。これに対し、鋼種No.8〜13
のステンレス鋼(比較例)は、何れも曲げ−引張り疲労
試験による疲労限が1000N/mm2以下の低い値を
示していた。また、鋼種No.8は、Md(N)値が低す
ぎ加工誘起マルテンサイト相が十分に生成しないため、
強度が不足していた。逆にMd(N)値が高すぎる鋼種
No.9では、延性・靭性に寄与するオーステナイト量が
不充分なため、疲労限が低い値を示した。Mo量が少な
い鋼種No.11は、時効硬化不充分なため強度が不足
し、疲労限も低い値を示した。S量が過剰な鋼種No.1
0,Ti量が過剰な鋼種No.12,O量が過剰な鋼種No.
13は,何れも最大面積が40μm2を超える非金属介
在物が分散した組織になっていることから、疲労特性に
劣っていた。
As can be seen from the survey results in Table 2, the steel type N
o. 1 to 7 stainless steel (Example of the present invention) has a tensile strength of 1
And at 800 N / mm 2 or more, the bending - Both fatigue limit by the tensile fatigue test 1100 N / mm 2 or more, which is high, and was replete with strength and fatigue properties required for electronic components presser spring in an extremely thin. In contrast, steel grades Nos. 8 to 13
All of the stainless steels (comparative examples) exhibited a low fatigue limit of 1000 N / mm 2 or less in a bending-tensile fatigue test. In addition, since steel type No. 8 has a too low Md (N) value and does not sufficiently form a work-induced martensite phase,
The strength was insufficient. Conversely, steel type with too high Md (N) value
In No. 9, since the amount of austenite contributing to ductility and toughness was insufficient, the fatigue limit was low. Steel type No. 11 having a small Mo content had insufficient strength due to insufficient age hardening, and exhibited a low fatigue limit. Steel type No.1 with excessive S content
0, steel type No. 12 with excessive Ti content, steel type No. 2 with excessive O content
Sample No. 13 was inferior in fatigue characteristics because it had a structure in which non-metallic inclusions having a maximum area exceeding 40 μm 2 were dispersed.

【0030】 [0030]

【0031】[0031]

【発明の効果】以上に説明したように、本発明のステン
レス鋼は、オーステナイト安定度を適度に調節したオー
ステナイト系ステンレス鋼を素材とし、冷間圧延時の加
工硬化,変態効果及び時効硬化によって強度を付与する
と共に疲労特性を改善している。そのため、極薄板であ
っても強度,疲労特性に優れ、薄肉化が要求される電子
部品用押えバネを初めとする板バネやコイルバネ,メタ
ルガスケット等、広範な分野で使用される。
As described above, the stainless steel of the present invention is made of an austenitic stainless steel whose austenite stability is appropriately adjusted and has a strength by work hardening, transformation effect and age hardening during cold rolling. And the fatigue characteristics are improved. Therefore, even an extremely thin plate is used in a wide range of fields, such as a leaf spring, a coil spring, and a metal gasket, such as a holding spring for an electronic component, which is required to be thin and excellent in strength and fatigue characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 憲一 山口県新南陽市野村南町4976番地 日新製 鋼株式会社ステンレス事業本部内 Fターム(参考) 3J059 AB11 BC02 BC19 GA30  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Morimoto 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Prefecture F-term in the Nisshin Steel Co., Ltd. Stainless Steel Business Division (reference) 3J059 AB11 BC02 BC19 GA30

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.15質量%以下,Si:1.0
〜4.0質量%,Mn:5.0質量%以下,P:0.0
40質量%以下,S:0.010質量%以下,Ni:
4.0〜10.0質量%,Cr:12.0〜18.0質
量%,Cu:0〜3.5質量%,Mo:1.0〜5.0
質量%,N:0.15質量%以下,Nb:0.02質量
%以下,Ti:0.015質量%以下,O:0.015
質量%以下,C+N:0.10質量%以上,Si+M
o:3.5質量%以上,残部が実質的にFeの組成をも
ち、Md(N)=580−(520C+2Si+16M
n+16Cr+23Ni+300N+10Mo)と定義
されるMd(N)値が0〜100の範囲にあることを特
徴とする高強度で疲労特性に優れた電子部品押えバネ用
ステンレス鋼。
C: 0.15% by mass or less, Si: 1.0
To 4.0% by mass, Mn: 5.0% by mass or less, P: 0.0
40 mass% or less, S: 0.010 mass% or less, Ni:
4.0 to 10.0 mass%, Cr: 12.0 to 18.0 mass%, Cu: 0 to 3.5 mass%, Mo: 1.0 to 5.0.
% By mass, N: 0.15% by mass or less, Nb: 0.02% by mass or less, Ti: 0.015% by mass or less, O: 0.015%
Mass% or less, C + N: 0.10 mass% or more, Si + M
o: 3.5 mass% or more, the balance substantially has a composition of Fe, and Md (N) = 580− (520C + 2Si + 16M)
A stainless steel for a pressing spring for electronic parts, which has high strength and excellent fatigue properties, wherein the Md (N) value defined as (n + 16Cr + 23Ni + 300N + 10Mo) is in the range of 0-100.
【請求項2】 マトリックスに析出している非金属介在
物の最大面積が40μm2以下である請求項1記載の電
子部品押えバネ用ステンレス鋼。
2. The stainless steel for electronic component presser springs according to claim 1, wherein the maximum area of the nonmetallic inclusions precipitated in the matrix is 40 μm 2 or less.
JP2001072734A 2001-03-14 2001-03-14 Stainless steel for presser bar spring of electronic parts having high strength and excellent fatigue characteristic Withdrawn JP2002275591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001072734A JP2002275591A (en) 2001-03-14 2001-03-14 Stainless steel for presser bar spring of electronic parts having high strength and excellent fatigue characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001072734A JP2002275591A (en) 2001-03-14 2001-03-14 Stainless steel for presser bar spring of electronic parts having high strength and excellent fatigue characteristic

Publications (1)

Publication Number Publication Date
JP2002275591A true JP2002275591A (en) 2002-09-25

Family

ID=18930276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001072734A Withdrawn JP2002275591A (en) 2001-03-14 2001-03-14 Stainless steel for presser bar spring of electronic parts having high strength and excellent fatigue characteristic

Country Status (1)

Country Link
JP (1) JP2002275591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005234B1 (en) * 2015-09-29 2016-10-12 日新製鋼株式会社 High-strength stainless steel sheet with excellent fatigue characteristics and method for producing the same
JP2017172038A (en) * 2016-03-17 2017-09-28 新日鐵住金ステンレス株式会社 Martensitic stainless steel for brake disc, and blake disc

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005234B1 (en) * 2015-09-29 2016-10-12 日新製鋼株式会社 High-strength stainless steel sheet with excellent fatigue characteristics and method for producing the same
WO2017056618A1 (en) * 2015-09-29 2017-04-06 日新製鋼株式会社 High-strength stainless steel sheet having excellent fatigue characteristics, and method for manufacturing same
CN108368573A (en) * 2015-09-29 2018-08-03 日新制钢株式会社 The high-strength stainless steel sheet and its manufacturing method of excellent in fatigue characteristics
RU2723307C1 (en) * 2015-09-29 2020-06-09 Ниппон Стил Стэйнлесс Стил Корпорейшн High-strength stainless steel sheet, having excellent fatigue characteristics, as well as production method thereof
JP2017172038A (en) * 2016-03-17 2017-09-28 新日鐵住金ステンレス株式会社 Martensitic stainless steel for brake disc, and blake disc

Similar Documents

Publication Publication Date Title
KR100682802B1 (en) Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
JP3691341B2 (en) Austenitic stainless steel sheet with excellent precision punchability
KR101606946B1 (en) High-strength stainless steel material and process for production of the same
JPWO2002101108A1 (en) Duplex stainless steel strip for steel belt
KR101401625B1 (en) Precipitation hardening metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP5100144B2 (en) Steel plate for spring, spring material using the same, and manufacturing method thereof
JP5421611B2 (en) Stainless steel plate for age-hardening springs
JP4207137B2 (en) High hardness and high corrosion resistance stainless steel
TW202233863A (en) Austenitic stainless steel material, method for producing same, and leaf spring
JP2000256802A (en) Stainless steel material for metal gasket excellent in setting resistance and its manufacture
JP3932020B2 (en) Ferritic stainless steel with excellent deep drawability and small in-plane anisotropy and method for producing the same
JP2010163648A (en) Cold work die steel and die
JP4471486B2 (en) Medium and high carbon steel plates with excellent deep drawability
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP2002105601A (en) High strength dual phase stainless steel and its production method
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JP2002275591A (en) Stainless steel for presser bar spring of electronic parts having high strength and excellent fatigue characteristic
JPH0741906A (en) Superplastic two-phase stainless steel
JP2000129401A (en) High toughness skin pass-rolled martensitic stainless steel plate having high spring characteristic and its production
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JPH11140598A (en) High strength stainless steel strip with high spring limit value, and its production
JP4640628B2 (en) Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603