JP2002275460A - Luminescent material and el luminescent layer - Google Patents

Luminescent material and el luminescent layer

Info

Publication number
JP2002275460A
JP2002275460A JP2001079952A JP2001079952A JP2002275460A JP 2002275460 A JP2002275460 A JP 2002275460A JP 2001079952 A JP2001079952 A JP 2001079952A JP 2001079952 A JP2001079952 A JP 2001079952A JP 2002275460 A JP2002275460 A JP 2002275460A
Authority
JP
Japan
Prior art keywords
light
emission
polysilane
spectrum
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001079952A
Other languages
Japanese (ja)
Other versions
JP4015816B2 (en
Inventor
Norihiko Kamata
憲彦 鎌田
Hiroaki Terunuma
大陽 照沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001079952A priority Critical patent/JP4015816B2/en
Publication of JP2002275460A publication Critical patent/JP2002275460A/en
Application granted granted Critical
Publication of JP4015816B2 publication Critical patent/JP4015816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a luminescent material suitable for an EL device or the like capable of being driven at a high energy efficiency with intermolecular energy transfer using polysilane as a sender. SOLUTION: The luminescent material has a recurring unit comprising one or more kinds out of polysilane compounds expressed by any of the general structural formulae (wherein, R<1> and R<2> are each a 2-9C alkyl). In an EL luminescent layer produced by mixing a luminescent molecule having an absorption excitation spectrum identical or near to the luminescent spectrum of the polysilane compound with a polysilane compound, EL luminescence having a high luminescent efficiency is realized awing to intermolecular energy transfer of the polysilane compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、EL(エレクトロルミ
ネッセンス)表示パネル,面発光照明等に使用される発
光材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting material used for an EL (electroluminescence) display panel, a surface-emitting lighting, and the like.

【0002】[0002]

【従来技術及び問題点】正孔と電子の再結合によって生
じる発光現象を利用した有機EL素子は、バックライト
を必要とする液晶を用いた表示パネルと異なり面発光に
よって画像を再生することから、液晶表示パネルに比較
して画像が鮮明で、暗所でも容易に識別できる。そのた
め、液晶に代わる次世代表示デバイスとして注目されて
いる。有機EL素子の発光層には、8-ヒドロキシキノリ
ン等の有機発光材料や希土類錯体等が使用されている。
色素分子等の発光分子自体の発光効率は高いものの、通
電によって供給される電気エネルギーを有機EL素子内
の発光分子まで届ける過程の伝達効率が低いため、全体
としてのエネルギー効率が低くなる。
2. Description of the Related Art An organic EL device utilizing a light emission phenomenon caused by recombination of holes and electrons reproduces an image by surface emission unlike a display panel using a liquid crystal which requires a backlight. The image is clearer than a liquid crystal display panel and can be easily identified even in a dark place. Therefore, it is attracting attention as a next-generation display device replacing liquid crystal. For the light emitting layer of the organic EL device, an organic light emitting material such as 8-hydroxyquinoline, a rare earth complex, or the like is used.
Although the luminous efficiency of the luminescent molecule itself such as a dye molecule is high, the energy efficiency as a whole is low because the transmission efficiency of the process of delivering electric energy supplied by energization to the luminescent molecule in the organic EL element is low.

【0003】[0003]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、ポリシランを送
り手として分子間エネルギー移動を利用することによ
り、発光分子への伝達効率を向上させ、エネルギー効率
よく駆動できるELデバイス等に適した発光材料を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem. The present invention utilizes polysilane as a sender and utilizes intermolecular energy transfer to improve the efficiency of transfer to luminescent molecules. It is an object of the present invention to provide a light emitting material suitable for an EL device or the like which can be driven with high energy efficiency.

【0004】本発明の発光材料は、その目的を達成する
ため、繰返し単位が下記一般構造式の何れかで表される
1種又は2種以上のポリシラン化合物からなることを特
徴とする。また、該ポリシラン化合物の発光スペクトル
に一致又は近似する吸収・励起スペクトルをもつ発光性
分子をポリシラン化合物と混合してEL発光層を作製す
ると、ポリシラン化合物の分子間エネルギー移動が利用
され高発光効率のEL発光が可能となる。 ただし、R1,R2は炭素数2〜9のアルキル基を示す。
なかでも、炭素数4〜9のアルキル基をもつポリシラン
化合物は可溶性のため、容易に成膜できる。しかし、蒸
着による成膜を想定するとき、炭素数2〜9のアルキル
基をもつポリシラン化合物が使用可能である。nは、2
以上の整数を示し、好ましくは8以上に設定される。
In order to achieve the object, the luminescent material of the present invention is characterized in that the repeating unit comprises one or more polysilane compounds represented by any of the following general structural formulas. When an EL light-emitting layer is prepared by mixing a light-emitting molecule having an absorption / excitation spectrum that matches or approximates the light-emission spectrum of the polysilane compound with the polysilane compound, intermolecular energy transfer of the polysilane compound is used to achieve high luminous efficiency. EL emission becomes possible. Here, R 1 and R 2 represent an alkyl group having 2 to 9 carbon atoms.
Among them, a polysilane compound having an alkyl group having 4 to 9 carbon atoms is soluble and can be easily formed into a film. However, when a film is formed by vapor deposition, a polysilane compound having an alkyl group having 2 to 9 carbon atoms can be used. n is 2
An integer greater than or equal to 8 is set, and is preferably set to 8 or more.

【0005】[0005]

【作用】ポリシランは、電気伝導性(特に正孔伝導性)
が高く、正孔輸送層として優れた材料であり、電子伝導
も可能である。また、紫外発光効率,共鳴エネルギー移
動効率の高い一次元鎖状高分子であることから、共鳴エ
ネルギー移動を利用すると紫外光よりエネルギーの低い
可視三原色R,G,B全ての発光分子を励起できる。
[Function] Polysilane has electrical conductivity (especially hole conductivity).
And is an excellent material as a hole transport layer, and can also conduct electrons. Further, since it is a one-dimensional chain polymer having high ultraviolet light emission efficiency and high resonance energy transfer efficiency, the use of resonance energy transfer can excite all light-emitting molecules of the three primary colors R, G, and B having lower energy than ultraviolet light.

【0006】ポリシランは、Si原子が鎖状に連なった
一次元高分子であり、具体的には次に掲げるポリジヘキ
シルシラン(PDHS),ポリ[ビス(p-プロポキシフェニ
ル)-シラン](PBPPS),ポリ[ビス(m-ブトキシフェニ
ル)-シラン](PBBPS),ポリ[(m-ヘキシルオキシフェニ
ル)-フェニルシラン](PmHPPS),ポリ[(m-ヘキシルオ
キシフェニル)-フェニルシラン](PpHPPS)が挙げられ
る。
[0006] Polysilane is a one-dimensional polymer in which Si atoms are connected in a chain, and specifically, polydihexylsilane (PDHS) and poly [bis (p-propoxyphenyl) -silane] (PBPPS) described below. , Poly [bis (m-butoxyphenyl) -silane] (PBBPS), poly [(m-hexyloxyphenyl) -phenylsilane] (PmHPPS), poly [(m-hexyloxyphenyl) -phenylsilane] (PpHPPS) Is mentioned.

【0007】ポリシラン化合物の主鎖を形成するSi−
Si間のσ結合電子は、非局在化し、少なくとも数十原
子程度からなる主鎖領域(セグメント)の全体に広がっ
ている。そのため、主鎖方向に正孔が容易に運ばれ、高
分子の中では非常に高い10 -4cm2/Vs程度の正孔
伝導度を呈する。また、三次元的な格子を組む結晶Si
と異なる一次元鎖状高分子であることから、直接遷移型
バンド構造の性質をもち、紫外〜可視光の領域で強い光
吸収及び励起子発光を示す。しかも、発光ピーク波長等
の光学特性は、主鎖に側鎖として結合されるアルキル
基,フェニル基等に応じて比較的容易に制御できる。こ
のようなポリシラン化合物(以下、「ポリシラン分子
A」と適宜称する)の高電気伝導度,高効率発光特性
は、特にELデバイス用の発光材料として適している。
[0007] Si- forming the main chain of the polysilane compound
The σ bond electrons between Si are delocalized, and
Over the entire main chain region (segment)
ing. Therefore, holes are easily carried in the main chain direction,
Very high in the molecule 10 -FourcmTwo/ Vs holes
It exhibits conductivity. In addition, crystal Si forming a three-dimensional lattice
Because it is a one-dimensional chain polymer different from
Intense light in the range from ultraviolet to visible light with the property of band structure
2 shows absorption and exciton emission. Moreover, the emission peak wavelength, etc.
The optical properties of an alkyl bonded to the main chain as a side chain
Can be controlled relatively easily depending on the group, phenyl group and the like. This
Polysilane compounds such as
A "), high electrical conductivity and high efficiency luminescence characteristics
Is particularly suitable as a light emitting material for EL devices.

【0008】また、ポリシラン分子Aの発光スペクトル
と一致した吸収・励起スペクトルをもつ発光性分子Bを
ポリシラン分子Aに混合した発光材料では、共鳴エネル
ギー移動が生じる。すなわち、励起状態にあるポリシラ
ン分子Aの近傍に基底状態の発光性分子Bが存在する系
では、ポリシラン分子Aの発光スペクトルと発光性分子
Bの吸収(又は励起)スペクトルのエネルギー重なりに
応じて双極子−双極子,双極子−四重極子相互作用等の
量子力学的多重極子相互作用が働き、ポリシラン分子A
の励起エネルギーが共鳴的に発光性分子Bに移動し、ポ
リシラン分子Aが基底状態に、発光性分子Bが励起状態
に遷移する。励起状態の発光性分子Bは、次いで発光性
分子B固有の発光を伴って基底状態に遷移する。
In a light-emitting material in which a light-emitting molecule B having an absorption / excitation spectrum that matches the emission spectrum of the polysilane molecule A is mixed with the polysilane molecule A, resonance energy transfer occurs. In other words, in a system in which the light-emitting molecule B in the ground state exists near the polysilane molecule A in the excited state, a dipole is generated according to the energy overlap between the emission spectrum of the polysilane molecule A and the absorption (or excitation) spectrum of the light-emitting molecule B. Quantum mechanical multipole interactions such as dipole-dipole and dipole-quadrupole interactions act to produce polysilane molecules A.
Is excited and moves to the light-emitting molecule B in a resonant manner, so that the polysilane molecule A transitions to the ground state and the light-emitting molecule B transitions to the excited state. The luminescent molecule B in the excited state then transitions to the ground state with luminescence unique to the luminescent molecule B.

【0009】共鳴エネルギー移動が生じるためには、ポ
リシラン分子A,発光性分子Bの発光性(振動子強度)
が強く、ポリシラン分子Aの発光スペクトルと発光性分
子Bの吸収(又は励起)スペクトルが重なっているこ
と、ポリシラン分子Aと発光性分子Bが1〜数nmの間
隔で近接していることが必要である。高電気伝導度,高
効率紫外発光特性をもつポリシラン化合物Aと、ポリシ
ラン化合物Aの発光スペクトルと一致した吸収(又は励
起)スペクトルをもつ発光性分子Bとを混合することに
よりポリシラン分子Aと発光性高分子Bを近接させた状
態では、電流注入によりポリシラン化合物Aを励起する
とき、共鳴エネルギー移動過程を利用して励起エネルギ
ーが発光性分子Bに伝達され、発光性分子Bから可視三
原色R,G,Bが発光する。
In order for the resonance energy transfer to occur, the luminescence (vibrator strength) of the polysilane molecule A and the luminescent molecule B
It is necessary that the emission spectrum of the polysilane molecule A and the absorption (or excitation) spectrum of the light-emitting molecule B overlap, and that the polysilane molecule A and the light-emitting molecule B be close to each other at an interval of 1 to several nm. It is. By mixing a polysilane compound A having a high electrical conductivity and a high efficiency ultraviolet emission characteristic with a light-emitting molecule B having an absorption (or excitation) spectrum consistent with the emission spectrum of the polysilane compound A, the polysilane compound A and the light-emitting property are mixed. When the polysilane compound A is excited by current injection in a state where the polymer B is close to the polymer B, the excitation energy is transmitted to the light-emitting molecule B using a resonance energy transfer process, and the visible three primary colors R and G are emitted from the light-emitting molecule B. , B emit light.

【0010】可視発光性に優れた発光性分子Bは、電気
伝導性を兼ね備えることは少ないので、電気伝導性、可
視発光性の機能分離が可能となり、材料・デバイス設計
の自由度が飛躍的に拡大する。正孔伝導物質としてエネ
ルギードナーに使用されるポリシラン化合物Aは、前掲
の構造式に示すようにアルキル側鎖基をもつポリジヘキ
シルシラン,フェニル系側鎖基をもつポリ[(m-ヘキシル
オキシフェニル)フェニルシラン]を始め、ポリ[ビス(p-
プロポキシフェニル)シラン],ポリ[ (p-ヘキシルオキ
シフェニル) フェニルシラン], ポリ[ビス(m-ブトキシ
フェニル)シラン]等が挙げられる。
Since the light-emitting molecule B, which has excellent light-emitting properties, rarely has electric conductivity, it is possible to separate the functions of electric conductivity and light-emitting property, and the degree of freedom in designing materials and devices is greatly increased. Expanding. Polysilane compound A used as an energy donor as a hole-conducting material includes polydihexylsilane having an alkyl side chain group and poly [(m-hexyloxyphenyl) having a phenyl side chain group, as shown in the above structural formula. Phenylsilane], poly [bis (p-
[Propoxyphenyl) silane], poly [(p-hexyloxyphenyl) phenylsilane], poly [bis (m-butoxyphenyl) silane], and the like.

【0011】エネルギーアクセプタである発光性分子B
には、クマリン6,ペリレン,4-ジシアノメチレン-2-
メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン(DC
M),ジンクテトラフェニルポルフィリン(ZnTPP)等の
有機色素の他に、前掲のポリ[(m-ヘキシルオキシフェニ
ル)フェニルシラン],ポリ[ビス(p-プロポキシフェニ
ル)シラン]等も使用される。同一の分子であっても、組
み合わせる相手に応じてエネルギードナーとして、或い
はエネルギーアクセプターとして使用できる。
Light-emitting molecule B as an energy acceptor
Includes coumarin 6, perylene, 4-dicyanomethylene-2-
Methyl-6- (p-dimethylaminostyryl) -4H-pyran (DC
M), zinc tetraphenylporphyrin (ZnTPP), and other organic dyes, as well as the aforementioned poly [(m-hexyloxyphenyl) phenylsilane] and poly [bis (p-propoxyphenyl) silane]. The same molecule can be used as an energy donor or an energy acceptor depending on the partner to be combined.

【0012】このようにポリシラン化合物Aと発光性分
子Bとの混合薄膜として発光層を形成するとき、紫外光
よりもエネルギーの低い可視三原色R,G,Bの全てで
発光するためフルカラー化が可能となる。実際、本発明
者等は、実験によって白色発光を確認した。また、ポリ
シラン分子は、Siを主原料とするため低コストであ
り、環境に対しても悪影響を及ぼさない。しかも、半導
体Si結晶基板等に対する整合性が高いため、応用範囲
が広く電子回路との複合化も可能である。また、可溶性
のポリシランを使用すると、他の分子との均一混合やス
ピンコート成膜が容易になり、欠陥のない機能薄膜が形
成される。
When the light-emitting layer is formed as a mixed thin film of the polysilane compound A and the light-emitting molecule B, full-color light emission is possible because all of the three primary colors R, G, and B having lower energy than ultraviolet light are emitted. Becomes In fact, the present inventors have confirmed white light emission by experiments. In addition, polysilane molecules are low-cost because they are mainly made of Si, and do not adversely affect the environment. In addition, since it has high compatibility with a semiconductor Si crystal substrate and the like, it can be applied to a wide range of applications and can be combined with an electronic circuit. In addition, when a soluble polysilane is used, uniform mixing with other molecules and spin coating film formation are facilitated, and a functional thin film having no defect is formed.

【0013】[0013]

【実施例】ジクロロ(m-ヘキシルオキシフェニル) -フェ
ニルシランの合成 内部をアルゴン雰囲気に維持した300mlの三口フラ
スコにマグネシウム粉末3.64g(150mモル)及
び乾燥エーテル78mlを入れて攪拌した。そして、シ
リンジから1-ブロモ-3-ヘキシルオキシベンゼン34.
8g(135mモル)の乾燥エーテル60ml溶液を滴
下した。滴下終了後、3時間加熱還流することにより、
ヘキシルオキシフェニルグリニャール試薬を調製した。
EXAMPLE Synthesis of dichloro (m-hexyloxyphenyl) -phenylsilane 3.64 g (150 mmol) of magnesium powder and 78 ml of dry ether were stirred in a 300 ml three-necked flask whose inside was maintained in an argon atmosphere. Then, 1-bromo-3-hexyloxybenzene was obtained from the syringe.
A solution of 8 g (135 mmol) of 60 ml of dry ether was added dropwise. After completion of the dropwise addition, the mixture is heated under reflux for 3 hours,
Hexyloxyphenyl Grignard reagent was prepared.

【0014】同様に内部をアルゴン置換した500ml
の三口フラスコにトリクロロフェニルシラン23.7g
(112mモル)と乾燥エーテル100mlを入れた。
そして、三口フラスコを水浴で冷却して攪拌しながら先
に調製したヘキシルオキシフェニルグリニャール試薬を
滴下した。滴下終了後に加熱還流を2時間継続し、次い
で溶媒を常圧留去した。更に加熱還流を4時間継続した
後、反応液を室温まで冷却し、乾燥ヘキサン70mlを
加え、冷蔵庫で塩を析出させた。アルゴン雰囲気下でガ
ラスフィルタを用いて析出物を吸引濾過し、減圧留去す
ることにより、収量18.1g,収率45.6%でジク
ロロ(m-ヘキシルオキシフェニル) -フェニルシランを得
た。
Similarly, 500 ml of which the inside is replaced with argon
23.7 g of trichlorophenylsilane in a three-necked flask
(112 mmol) and 100 ml of dry ether.
Then, the hexyloxyphenyl Grignard reagent prepared above was added dropwise while the three-necked flask was cooled in a water bath and stirred. After the dropwise addition, heating under reflux was continued for 2 hours, and then the solvent was distilled off under normal pressure. After further heating under reflux for 4 hours, the reaction solution was cooled to room temperature, 70 ml of dry hexane was added, and a salt was precipitated in a refrigerator. The precipitate was suction-filtered using a glass filter under an argon atmosphere, and distilled under reduced pressure to obtain dichloro (m-hexyloxyphenyl) -phenylsilane in a yield of 18.1 g and a yield of 45.6%.

【0015】ポリ[(m-ヘキシルオキシフェニル)-フェニ
ルシラン]の合成 フッ素樹脂シール攪拌装置,アリーン冷却管及びセラム
キャップを装備した200ml三口フラスコの内部をア
ルゴン置換し、金属ナトリウム2.47g(107mモ
ル)及び乾燥ジグリム25μlを三口フラスコに入れ、
高速攪拌しながら加熱還流することによりNaディスパ
ージョンを調製した。Naディスパージョンを室温まで
冷却した後、70℃に保持した状態でシリンジからジク
ロロ(m-ヘキシルオキシフェニル) -フェニルシラン1
8.1g(51.2mモル)の乾燥トルエン5ml溶液
をNaディスパージョンに滴下した。Naディスパージ
ョンは、滴下中に無色から濃紫色に徐々に変化した。
Synthesis of Poly [(m-hexyloxyphenyl) -phenylsilane] The inside of a 200 ml three-necked flask equipped with a fluororesin seal stirrer, an Aline condenser and a serum cap was purged with argon, and 2.47 g (107 m2) of metallic sodium was added. Mol) and 25 μl of dried diglyme in a three-necked flask,
By heating and refluxing while stirring at high speed, a Na dispersion was prepared. After cooling the Na dispersion to room temperature, dichloro (m-hexyloxyphenyl) -phenylsilane 1 was injected from a syringe while maintaining the temperature at 70 ° C.
A solution of 8.1 g (51.2 mmol) of 5 ml of dry toluene was added dropwise to the Na dispersion. The Na dispersion gradually changed from colorless to dark purple during dropping.

【0016】滴下終了後、70℃×2時間反応させ、次
いで乾燥2-プロパノール20mlをシリンジで滴下し、
20分攪拌することにより未反応のナトリウム及びポリ
マー末端を失活させた。反応後の溶液を分液漏斗に移
し、水を添加してよく振り混ぜて有機層を分取すること
によりナトリウム塩を除去した。この操作を2回繰り返
した後、飽和食塩水を添加し、同様によく振り混ぜて有
機層を分取した。そして、水層をトルエンで2回抽出
し、抽出液を有機層と混ぜ、無水硫酸ナトリウムにより
乾燥し、綿栓濾過によって無水硫酸ナトリウムを除去
し、濾液を溶媒留去した。
After completion of the dropwise addition, the mixture was reacted at 70 ° C. for 2 hours, and then 20 ml of dry 2-propanol was added dropwise using a syringe.
Unreacted sodium and polymer terminals were deactivated by stirring for 20 minutes. The solution after the reaction was transferred to a separating funnel, water was added, and the mixture was shaken well to separate the organic layer, thereby removing sodium salts. After this operation was repeated twice, a saturated saline solution was added, and the mixture was similarly shaken well to separate an organic layer. Then, the aqueous layer was extracted twice with toluene, the extract was mixed with the organic layer, dried over anhydrous sodium sulfate, anhydrous sodium sulfate was removed by cotton plug filtration, and the filtrate was evaporated.

【0017】残留物をトルエン6mlに溶解し、2-プロ
パノール400ml及びトルエン40mlの混合溶液に
中に滴下することによって再沈殿させた。その結果、糸
状の白色物質が沈殿した。沈殿物を濾過分離し、メタノ
ールで洗浄した後、デシケータ内で乾燥することによっ
て白色固体のポリ[(m-ヘキシルオキシフェニル)-フェニ
ルシラン]が得られた。合成されたポリシラン分子は、
NMRスペクトルにより構造を決定した。また、GPC
分析(ポリスチレン基準)の結果、バイモーダルのパタ
ーンを示し、重量平均分子量がそれぞれ420,000
及び6,000、分散度が2.10及び1.35であっ
た。吸収スペクトルを解析したところ396nmに吸収
があり、330nmの励起光を照射したところ固体状態
で421nmに、液体状態で415nmに鋭い発光ピー
クが観測された。
The residue was dissolved in 6 ml of toluene and reprecipitated by dropping into a mixed solution of 400 ml of 2-propanol and 40 ml of toluene. As a result, a thread-like white substance precipitated. The precipitate was separated by filtration, washed with methanol, and dried in a desiccator to obtain white solid poly [(m-hexyloxyphenyl) -phenylsilane]. The synthesized polysilane molecule is
The structure was determined by NMR spectrum. Also, GPC
As a result of analysis (based on polystyrene), a bimodal pattern was shown, and the weight average molecular weight was 420,000 each.
And 6,000, and the dispersities were 2.10 and 1.35. When the absorption spectrum was analyzed, absorption was observed at 396 nm, and a sharp emission peak was observed at 421 nm in a solid state and at 415 nm in a liquid state when excitation light of 330 nm was irradiated.

【0018】合成されたポリ[(m-ヘキシルオキシフェニ
ル)-フェニルシラン]は、クロロホルム,テトラヒドロ
フラン,トルエン等の有機溶媒に可溶であり、420n
mに強い発光ピークを有する等、ポリジフェニルシラン
の優れた性質を保存しながらポリジフェニルシランの欠
点である溶解性の問題が解消されており、成膜技術を利
用した材料として使用できることが判った。
The synthesized poly [(m-hexyloxyphenyl) -phenylsilane] is soluble in an organic solvent such as chloroform, tetrahydrofuran, and toluene.
The problem of solubility, which is a drawback of polydiphenylsilane, has been solved while preserving the excellent properties of polydiphenylsilane, such as having a strong emission peak at m, and it has been found that the polydiphenylsilane can be used as a material utilizing film forming technology. .

【0019】発光層1:前述のように合成したポリ[(m-
ヘキシルオキシフェニル)-フェニルシラン]のテトラヒ
ドロフラン(THF)溶液(15g/l)を、ITO(透
明電極)付き石英基板上に1500rpmで1分間スピ
ンコートし、24時間真空乾燥して膜厚100nmの薄
膜を作製した。ポリシラン薄膜の上に膜厚5nmのLi
F(フッ化リチウム)薄膜及び膜厚200nmのAl薄
膜(陰極)を連続蒸着によって堆積させ、ELデバイス
を作製した。真空雰囲気中、窒素温度(77K)でAl
薄膜とITO薄膜との間に電圧を印加して電流を注入す
ると、ポリ[(m-ヘキシルオキシフェニル)-フェニルシラ
ン]のELスペクトルが得られた。このELスペクトル
は、フォトルミネッセンススペクトルと同一で、室温に
おいても観測された。このときのI−V特性を図1
(a)に、ELスペクトルを図1(b)に示す。
Light-emitting layer 1: poly [(m-
[Hexyloxyphenyl) -phenylsilane] in tetrahydrofuran (THF) (15 g / l) is spin-coated on a quartz substrate with ITO (transparent electrode) at 1500 rpm for 1 minute, and vacuum-dried for 24 hours to form a thin film having a thickness of 100 nm. Was prepared. 5 nm thick Li on polysilane thin film
An F (lithium fluoride) thin film and an Al thin film (cathode) with a thickness of 200 nm were deposited by continuous vapor deposition to produce an EL device. Al at nitrogen temperature (77K) in a vacuum atmosphere
When a voltage was applied between the thin film and the ITO thin film to inject a current, an EL spectrum of poly [(m-hexyloxyphenyl) -phenylsilane] was obtained. This EL spectrum was the same as the photoluminescence spectrum and was observed at room temperature. FIG. 1 shows the IV characteristics at this time.
FIG. 1A shows the EL spectrum in FIG.

【0020】発光層2:ポリジヘキシルシラン(PDHS)
の主鎖は、室温(42℃以下)でトランスコンフォメー
ションとなり、そのトランス発光エネルギーとポリ[ビ
ス(p-プロポキシフェニル)-シラン](PBPPS)の発光励
起エネルギー(吸収エネルギーに対応)とほぼ等しい値
をとる(図2)ことから、両者間でエネルギー移動が予
想される。そこで、成膜例1と同じスピンコート法で石
英基板上にポリジヘキシルシランとの混合薄膜を作製
し、フォトルミネッセンス測定によってエネルギー移動
の様子を確認した。成膜直後の室温でのスペクトルM1
ではポリジヘキシルシランのへリックス発光も観測され
たが、77Kに冷却した後で室温に戻すとほぼ完全なト
ランス発光M2になった(図3)。逆に、42℃以上に
加熱した後で室温に戻すと、トランス発光が消失しへリ
ックス発光M3が観測された。
Light emitting layer 2: polydihexylsilane (PDHS)
Has a transconformation at room temperature (below 42 ° C), and its trans emission energy is almost equal to the emission excitation energy (corresponding to the absorption energy) of poly [bis (p-propoxyphenyl) -silane] (PBPPS) From the values (FIG. 2), energy transfer between them is expected. Therefore, a mixed thin film with polydihexylsilane was formed on a quartz substrate by the same spin coating method as in Film-forming Example 1, and the state of energy transfer was confirmed by photoluminescence measurement. Spectrum M1 at room temperature immediately after film formation
In this case, helix emission of polydihexylsilane was also observed, but when cooled to 77K and returned to room temperature, almost complete trans emission M2 was obtained (FIG. 3). Conversely, when the temperature was returned to room temperature after heating to 42 ° C. or higher, the trans emission disappeared, and helix emission M3 was observed.

【0021】PBPPSの励起スペクトルをみると、状態M
3(図4bの破線)に対して状態M2(図4bの実線)
ではPDHSのトランスピーク(図4aの実線)が重なって
いることが観測されていることから、エネルギー重なり
の大きなトランス発光の状態においてPDHSからPBPPSへ
のエネルギー移動が生じていることが判る。また、PDHS
単体薄膜及びPBPPS/PDHS混合薄膜を波長337nmの
窒素レーザ光でパルス励起し、PDHSのトランス発光の応
答波形を観測した。その結果、PDHS単体薄膜の減衰寿命
1.10nsに対して混合薄膜の減衰寿命が0.93n
mと短縮しており、PBPPSへのエネルギー移動が生じて
いることが確認された(図5)。
Looking at the excitation spectrum of PBPPS, the state M
3 (dashed line in FIG. 4b) versus state M2 (solid line in FIG. 4b)
Since the trans peak of PDHS (solid line in FIG. 4A) is observed to overlap, it can be seen that energy transfer from PDHS to PBPPS occurs in a state of transformer emission with large energy overlap. Also, PDHS
The single thin film and the PBPPS / PDHS mixed thin film were pulse-excited with a nitrogen laser beam having a wavelength of 337 nm, and the response waveform of PDHS transformer emission was observed. As a result, the decay life of the PDHS single film was 1.10 ns, while the decay life of the mixed thin film was 0.93 n
m, and it was confirmed that energy transfer to PBPPS occurred (FIG. 5).

【0022】発光層3:ポリ[(m-ヘキシルオキシフェニ
ル)-フェニルシラン](PHPPS)の発光エネルギーとペリ
レンPeryleneの吸収エネルギーが重なる(図6)ことか
ら、両者の混合薄膜を作製した。混合薄膜及びPHPPS単
体薄膜を4.13eVで光励起したところ、混合薄膜で
はPHPPSの発光強度が単体薄膜より減少し、ペリレンの
顕著な可視発光が観測された(図7)。エネルギー重な
りのないPMMAとペリレンの混合膜ではペリレン発光が観
測されなかったことから、PHPPS/Perylene混合薄膜でP
HPPSからペリレンにエネルギー移動が生じたことが判
る。この結果は、励起スペクトル,時分解フォトルミネ
ッセンスでも実証された。
Light-Emitting Layer 3: Since the emission energy of poly [(m-hexyloxyphenyl) -phenylsilane] (PHPPS) and the absorption energy of perylene Perylene overlap (FIG. 6), a mixed thin film of both was prepared. When the mixed thin film and the PHPPS simple thin film were optically excited at 4.13 eV, the emission intensity of PHPPS was reduced in the mixed thin film as compared with the single thin film, and remarkable visible light emission of perylene was observed (FIG. 7). No perylene emission was observed in the PMMA / perylene mixed film without energy overlap.
It can be seen that energy transfer from HPPS to perylene occurred. This result was also demonstrated in the excitation spectrum and time-resolved photoluminescence.

【0023】発光層4:ポリ[(m-ヘキシルオキシフェニ
ル)-フェニルシラン]の発光エネルギーとクマリン6の
吸収エネルギーが重なる(図8)ことから、両者の混合
薄膜を作成し、ポリ[(m-ヘキシルオキシフェニル)-フェ
ニルシラン]の単体薄膜と比較した。4.13eVで光
励起したところ、混合薄膜ではポリ[(m-ヘキシルオキシ
フェニル)-フェニルシラン]の発光強度が単体薄膜より
減少し、クマリン6の顕著な可視発光が観測された(図
9)。励起スペクトル,時分解フォトルミネッセンスの
結果と合わせ、ポリ[(m-ヘキシルオキシフェニル)-フェ
ニルシラン]からクマリン6にエネルギー移動が生じた
ことが実証された。
Light-emitting layer 4: Since the emission energy of poly [(m-hexyloxyphenyl) -phenylsilane] and the absorption energy of coumarin 6 overlap (FIG. 8), a mixed thin film of both is prepared and poly [(m [Hexyloxyphenyl) -phenylsilane]. Upon photoexcitation at 4.13 eV, the emission intensity of poly [(m-hexyloxyphenyl) -phenylsilane] in the mixed thin film was lower than that of the single thin film, and remarkable visible light emission of coumarin 6 was observed (FIG. 9). Combined with the results of the excitation spectrum and the time-resolved photoluminescence, it was demonstrated that energy transfer from coumarin 6 from poly [(m-hexyloxyphenyl) -phenylsilane] occurred.

【0024】発光層5:ポリ[(m-ヘキシルオキシフェニ
ル)-フェニルシラン]の発光エネルギーとDCMの吸収エネ
ルギーが重なる(図10)ことから、両者の混合薄膜を
作成し、ポリ[(m-ヘキシルオキシフェニル)-フェニルシ
ラン]の単体薄膜と比較した。4.13eVで光励起し
たところ、混合薄膜ではポリ[(m-ヘキシルオキシフェニ
ル)-フェニルシラン]の発光強度が単体薄膜より減少
し、DCMの可視発光が観測された(図11)。励起スペ
クトル,時分解フォトルミネッセンスの結果と合わせ、
ポリ[(m-ヘキシルオキシフェニル)-フェニルシラン]か
らDCMにエネルギー移動が生じたことが実証された。
Light-emitting layer 5: Since the emission energy of poly [(m-hexyloxyphenyl) -phenylsilane] and the absorption energy of DCM overlap (FIG. 10), a mixed thin film of both is prepared and poly [(m- [Hexyloxyphenyl) -phenylsilane]. Upon photoexcitation at 4.13 eV, the emission intensity of poly [(m-hexyloxyphenyl) -phenylsilane] was reduced in the mixed thin film compared to the single thin film, and visible emission of DCM was observed (FIG. 11). Combined with excitation spectrum and time-resolved photoluminescence results,
It was demonstrated that energy transfer from DCM from poly [(m-hexyloxyphenyl) -phenylsilane] to DCM occurred.

【0025】発光層6:ポリ[(m-ヘキシルオキシフェニ
ル)-フェニルシラン]の発光エネルギーとZnTPPの吸収エ
ネルギーが重なる(図12)ことから、両者の混合薄膜
を作成し、ポリ[(m-ヘキシルオキシフェニル)-フェニル
シラン]の単体薄膜と比較した。4.13eVで光励起
したところ、混合薄膜ではポリ[(m-ヘキシルオキシフェ
ニル)-フェニルシラン]の発光強度が単体薄膜より減少
し、ZnTPPの可視発光が観測された(図13)。励起ス
ペクトル,時分解フォトルミネッセンスの結果と合わ
せ、ポリ[(m-ヘキシルオキシフェニル)-フェニルシラ
ン]からZnTPPにエネルギー移動が生じたことが実証され
た。
Light emitting layer 6: Since the emission energy of poly [(m-hexyloxyphenyl) -phenylsilane] and the absorption energy of ZnTPP overlap (FIG. 12), a mixed thin film of both is prepared, and poly [(m- [Hexyloxyphenyl) -phenylsilane]. Upon photoexcitation at 4.13 eV, the emission intensity of poly [(m-hexyloxyphenyl) -phenylsilane] in the mixed thin film was lower than that of the single thin film, and visible light emission of ZnTPP was observed (FIG. 13). Combined with the excitation spectra and the results of time-resolved photoluminescence, it was demonstrated that energy transfer occurred from Zn [P] to poly [(m-hexyloxyphenyl) -phenylsilane].

【0026】発光層7:ポリ[(m-ヘキシルオキシフェニ
ル)-フェニルシラン]から各種可視発光色素へのエネル
ギー移動を利用し、ペリレン,クマリン,DCMを合計で
0.5モル%となるように添加し、複数色素の発光によ
る発光色制御を調査した。ペリレン:クマリン6:DCM=
5:1:4の混合薄膜では白色発光W1,ペリレン:ク
マリン6:DCM=4:2:4の混合薄膜では黄色発光W
2,ペリレン:クマリン6:DCM=6:2:2の混合薄膜
では青緑色発光W3が観測された(図14)。また、各
色素の発光スペクトルから、ポリ[(m-ヘキシルオキシフ
ェニル)-フェニルシラン]からのエネルギー移動が実証
された。
Emitting layer 7: Perylene, coumarin and DCM are adjusted to 0.5 mol% in total by utilizing energy transfer from poly [(m-hexyloxyphenyl) -phenylsilane] to various visible light emitting dyes. In addition, emission color control by emission of a plurality of dyes was investigated. Perylene: Coumarin 6: DCM =
White light emission W1 in a mixed thin film of 5: 1: 4, yellow light emission W in a mixed thin film of perylene: coumarin 6: DCM = 4: 2: 4
Blue-green light emission W3 was observed in the mixed thin film of 2, perylene: coumarin 6: DCM = 6: 2: 2 (FIG. 14). In addition, the emission spectrum of each dye demonstrated energy transfer from poly [(m-hexyloxyphenyl) -phenylsilane].

【0027】発光層8:ポリ[(m-ヘキシルオキシフェニ
ルメチル)-フェニルシラン]5mgをポリジヘキシルシ
ラン5mgと配合した混合粉末をヘキサン0.5ml,
テトラヒドロフランTHF0.5mlの混合溶媒に溶解
し、溶液を調製した。30mm×30mmのパターンI
TO基板に溶液を7滴滴下し、1500rpmでスピン
コートした後、24時間真空乾燥させることにより膜厚
100Åの発光層を形成した。ITO基板上に形成され
た発光層の上に、膜厚5ÅのLiF層(正孔ブロック層
及び発光層用の保護層)と膜厚1000〜1500Åの
Al層を連続蒸着した。
Emitting layer 8: A mixture of 5 mg of poly [(m-hexyloxyphenylmethyl) -phenylsilane] and 5 mg of polydihexylsilane was mixed with 0.5 ml of hexane,
It was dissolved in a mixed solvent of 0.5 ml of tetrahydrofuran THF to prepare a solution. 30 mm x 30 mm pattern I
Seven drops of the solution were dropped on the TO substrate, spin-coated at 1500 rpm, and vacuum-dried for 24 hours to form a light emitting layer having a thickness of 100 °. On the light emitting layer formed on the ITO substrate, a LiF layer (protective layer for the hole blocking layer and the light emitting layer) having a thickness of 5 ° and an Al layer having a thickness of 1000 to 1500 ° were continuously deposited.

【0028】ITO電極(陽極)とAl層(陰極)との
間に電圧を印加して発光層に電流を注入し、EL発光特
性を観測したところ、ポリジヘキシルシランのトランス
発光,ポリ[(m-ヘキシルオキシフェニル)-フェニルシラ
ン]の発光が確認された。このELデバイスのI−V特
性を図15(a)に、ELスペクトルを図15(b)に
示す。また、同じ場所のフォトルミネッセンススペクト
ル(図15c)と比較すると、ピーク位置に変化がない
ことが判る。ポリ[(m-ヘキシルオキシフェニル)-フェニ
ルシラン]の発光,吸収エネルギー領域はポリ[ビス(p-
プロポキシフェニル)-シラン]とほぼ等しい(図16)
ことから、発光層2の結果と照らし合わせポリジヘキシ
ルシラン/ポリ[(m-ヘキシルオキシフェニル)-フェニル
シラン]間でエネルギー移動が生じていることが理解さ
れる。
When a voltage was applied between the ITO electrode (anode) and the Al layer (cathode) to inject a current into the light emitting layer, and the EL light emission characteristics were observed, trans light emission of polydihexylsilane and poly [(m -Hexyloxyphenyl) -phenylsilane] was confirmed. FIG. 15A shows an IV characteristic of this EL device, and FIG. 15B shows an EL spectrum. Also, when compared with the photoluminescence spectrum at the same location (FIG. 15c), it can be seen that there is no change in the peak position. The emission and absorption energy range of poly [(m-hexyloxyphenyl) -phenylsilane] is poly [bis (p-
(Propoxyphenyl) -silane] (Fig. 16)
From this, it is understood that energy transfer occurs between polydihexylsilane / poly [(m-hexyloxyphenyl) -phenylsilane] in comparison with the result of the light emitting layer 2.

【0029】ELデバイスでは、電流によって外部エネ
ルギーが運ばれるが、エネルギードナー,エネルギーア
クセプタがフォトルミネッセンススペクトルと同位置で
EL発光していることから、以後の発光過程とエネルギ
ー移動過程はフォトルミネッセンスの状況に共通する。
従って、ELデバイスにおいても、ポリジヘキシルシラ
ンからポリ[(m-ヘキシルオキシフェニル)-フェニルシラ
ン]にエネルギー移動が生じていることが実証された。
In an EL device, external energy is carried by an electric current. However, since the energy donor and the energy acceptor emit EL light at the same position as the photoluminescence spectrum, the subsequent light emission process and energy transfer process are performed in the photoluminescence state. Common to
Therefore, also in the EL device, it was demonstrated that energy transfer from polydihexylsilane to poly [(m-hexyloxyphenyl) -phenylsilane] occurred.

【0030】発光層9:ポリ[(m-へキシルオキシフェニ
ル)-フェニルシラン]の濃度10g/lクロロホルム溶
液及びクマリン6のクロロホルム溶液を、ポリシラン1
ユニット(Si原子1個)当りクマリン6が0.5〜
2.0モル%となる割合で混合した。調製された混合溶
液をITO基板上に滴下し、1500rpmで10分間
スピンコートした後、室温で真空脱気し、膜厚100n
mの発光性薄膜を得た。この発光性薄膜上に膜厚5nm
のLiF層及び膜厚100nmのAl層を連続蒸着によ
って堆積させ、EL発光素子を作製した。
Light-emitting layer 9: A poly [(m-hexyloxyphenyl) -phenylsilane] concentration of 10 g / l chloroform solution and a coumarin 6 chloroform solution were mixed with polysilane 1
Coumarin 6 per unit (1 Si atom) 0.5 ~
They were mixed at a ratio of 2.0 mol%. The prepared mixed solution was dropped on an ITO substrate, spin-coated at 1500 rpm for 10 minutes, and then degassed in vacuo at room temperature to obtain a film thickness of 100 n.
m was obtained. On this luminescent thin film, a film thickness of 5 nm
Was deposited by continuous vapor deposition to produce an EL light-emitting device.

【0031】ITO薄膜とAl層との間に電圧を印加し
て電流を供給することにより、発光性分子であるクマリ
ン6を発光させた。発光スペクトルを図17に示す。同
様に、ペリレン,DCMもEL発光させたときの発光スペ
クトルをそれぞれ図18,19に示す。これらの色素自
体は直接電流を受けて発光することが困難であり、ポリ
シランからのエネルギー移動を介した励起エネルギーで
EL発光することは、ELデバイスの新たな展開をも可
能にする。
By applying a voltage between the ITO thin film and the Al layer to supply a current, coumarin 6, which is a luminescent molecule, was allowed to emit light. FIG. 17 shows the emission spectrum. Similarly, emission spectra of perylene and DCM when EL emission is performed are shown in FIGS. 18 and 19, respectively. It is difficult for these dyes themselves to emit light by directly receiving an electric current, and EL emission using excitation energy through energy transfer from polysilane enables new development of EL devices.

【0032】[0032]

【発明の効果】以上に説明したように、本発明のELデ
バイス用発光材料は、ポリシラン分子の共鳴エネルギー
移動を利用してEL層内の発光性分子に電気エネルギー
が効率よく伝達し、紫外光に比較してエネルギーの低い
可視三原色R,G,Bであっても十分に励起させ、発光
分子を発色させている。そのため、総合的なエネルギー
効率が向上し、フルカラー化も可能なELデバイスが得
られる。
As described above, the luminescent material for an EL device of the present invention efficiently transmits electric energy to luminescent molecules in the EL layer by utilizing the resonance energy transfer of polysilane molecules, and the ultraviolet light. Even the visible three primary colors R, G, and B, which have lower energies than those described above, are sufficiently excited to emit luminescent molecules. Therefore, an overall energy efficiency is improved, and an EL device capable of full color is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例で作製した発光層1のI−V特性
(a)及び77Kにおける発光スペクトル(b)
FIG. 1 shows IV characteristics (a) and emission spectrum (b) at 77 K of a light-emitting layer 1 produced in an example.

【図2】 PDHSの発光エネルギーにPBPPSの励起エネル
ギーが一致することを示すグラフ
FIG. 2 is a graph showing that the excitation energy of PBPPS coincides with the emission energy of PDHS.

【図3】 PDHS/PBPPS混合薄膜の発光スペクトルFig. 3 Emission spectrum of PDHS / PBPPS mixed thin film

【図4】 PDHS/PBPPS混合薄膜の励起スペクトルFig. 4 Excitation spectrum of PDHS / PBPPS mixed thin film

【図5】 PDHS/PBPPS混合薄膜の時分解フォトルミネ
ッセンス
Fig. 5 Time-resolved photoluminescence of PDHS / PBPPS mixed thin film

【図6】 PHPPSの発光エネルギーにペリレンの吸収エ
ネルギーが一致することを示すグラフ
FIG. 6 is a graph showing that the absorption energy of perylene matches the emission energy of PHPPS.

【図7】 PHPPS/ペリレン混合薄膜の発光スペクトルFig. 7 Emission spectrum of PHPPS / perylene mixed thin film

【図8】 PHPPSの発光スペクトルにクマリン6の吸収
エネルギーが一致することを示すグラフ
FIG. 8 is a graph showing that the absorption energy of coumarin 6 matches the emission spectrum of PHPPS.

【図9】 PHPPS/クマリン6混合薄膜の発光スペクト
Fig. 9: Emission spectrum of PHPPS / coumarin 6 mixed thin film

【図10】 PHPPSの発光スペクトルにDCMの吸収エネル
ギーが一致することを示すグラフ
FIG. 10 is a graph showing that the absorption energy of DCM matches the emission spectrum of PHPPS.

【図11】 PHPPS/DCM混合薄膜の発光スペクトルFig. 11 Emission spectrum of PHPPS / DCM mixed thin film

【図12】 PHPPSの発光スペクトルにZnTPPの吸収エネ
ルギーが一致することを示すグラフ
FIG. 12 is a graph showing that the absorption energy of ZnTPP matches the emission spectrum of PHPPS.

【図13】 PHPPS/ZnTPP混合薄膜の発光スペクトルFig. 13 Emission spectrum of PHPPS / ZnTPP mixed thin film

【図14】 ペリレン,クマリン,DCMの添加比率が発
光スペクトルに及ぼす影響を示したグラフ
FIG. 14 is a graph showing the effect of the addition ratio of perylene, coumarin, and DCM on the emission spectrum.

【図15】 PDHS/PmHPPS混合薄膜のI−V特性
(a),ELスペクトル(b)及び蛍光スペクトル
(c)
FIG. 15 shows IV characteristics (a), EL spectrum (b) and fluorescence spectrum (c) of a PDHS / PmHPPS mixed thin film.

【図16】 PBPPSとPHPPSの発光,吸収エネルギー領域
がほぼ等しいことを示すグラフ
FIG. 16 is a graph showing that the emission and absorption energy regions of PBPPS and PHPPS are almost equal.

【図17】 PHPPS/クマリン6混合薄膜を発光層とす
るELデバイスのELスペクトル
FIG. 17: EL spectrum of an EL device using a PHPPS / coumarin 6 mixed thin film as a light emitting layer

【図18】 PHPPS/ペリレン混合薄膜を発光層とする
ELデバイスのELスペクトル
FIG. 18: EL spectrum of an EL device using a PHPPS / perylene mixed thin film as a light emitting layer

【図19】 PHPPS/DCM混合薄膜を発光層とするELデ
バイスのELスペクトル
FIG. 19: EL spectrum of an EL device using a PHPPS / DCM mixed thin film as a light emitting layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繰返し単位が下記一般構造式の何れかで
表される1種又は2種以上のポリシラン化合物からなる
ことを特徴とするポリシランとの分子間エネルギー移動
を利用した発光材料。
1. A light emitting material utilizing intermolecular energy transfer with polysilane, wherein the repeating unit is composed of one or more polysilane compounds represented by any of the following general structural formulas.
【請求項2】 請求項1記載のポリシラン化合物の発光
スペクトルに一致又は近似する吸収・励起スペクトルを
もつ発光性分子をポリシラン化合物と混合してなるEL
発光層。
2. An EL comprising a mixture of a light-emitting molecule having an absorption / excitation spectrum that matches or approximates the light-emission spectrum of the polysilane compound according to claim 1.
Light emitting layer.
JP2001079952A 2001-03-21 2001-03-21 Light emitting material and EL light emitting layer Expired - Fee Related JP4015816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079952A JP4015816B2 (en) 2001-03-21 2001-03-21 Light emitting material and EL light emitting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079952A JP4015816B2 (en) 2001-03-21 2001-03-21 Light emitting material and EL light emitting layer

Publications (2)

Publication Number Publication Date
JP2002275460A true JP2002275460A (en) 2002-09-25
JP4015816B2 JP4015816B2 (en) 2007-11-28

Family

ID=18936317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079952A Expired - Fee Related JP4015816B2 (en) 2001-03-21 2001-03-21 Light emitting material and EL light emitting layer

Country Status (1)

Country Link
JP (1) JP4015816B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056762A (en) * 2003-08-06 2005-03-03 Nippon Hoso Kyokai <Nhk> Sol-gel conductive glass, and photoconductive element and light emitting element equipped with it
JP2005068263A (en) * 2003-08-22 2005-03-17 Dainippon Printing Co Ltd Method of forming coating film and method for producing organic device using the method
JP2006091759A (en) * 2004-09-27 2006-04-06 Internatl Business Mach Corp <Ibm> Apparatus and method for controlling optical connection and method for manufacturing optical wiring
KR20160110173A (en) * 2015-03-09 2016-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
CN112439239A (en) * 2020-10-16 2021-03-05 苏州兔妈妈环保科技有限公司 Filter element for filtering liquid and purification method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056762A (en) * 2003-08-06 2005-03-03 Nippon Hoso Kyokai <Nhk> Sol-gel conductive glass, and photoconductive element and light emitting element equipped with it
JP2005068263A (en) * 2003-08-22 2005-03-17 Dainippon Printing Co Ltd Method of forming coating film and method for producing organic device using the method
JP2006091759A (en) * 2004-09-27 2006-04-06 Internatl Business Mach Corp <Ibm> Apparatus and method for controlling optical connection and method for manufacturing optical wiring
JP2021044576A (en) * 2015-03-09 2021-03-18 株式会社半導体エネルギー研究所 Light-emitting element, display device, electronic apparatus, and illumination device
JP2016171318A (en) * 2015-03-09 2016-09-23 株式会社半導体エネルギー研究所 Light-emitting element, display device, electronic apparatus, and illumination device
KR20160110173A (en) * 2015-03-09 2016-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
US11038134B2 (en) 2015-03-09 2021-06-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
JP7066811B2 (en) 2015-03-09 2022-05-13 株式会社半導体エネルギー研究所 Light emitting elements, display devices, electronic devices and lighting devices
KR102544603B1 (en) * 2015-03-09 2023-06-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
KR20230093397A (en) * 2015-03-09 2023-06-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
US11903227B2 (en) 2015-03-09 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR102663473B1 (en) * 2015-03-09 2024-05-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
CN112439239A (en) * 2020-10-16 2021-03-05 苏州兔妈妈环保科技有限公司 Filter element for filtering liquid and purification method

Also Published As

Publication number Publication date
JP4015816B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
CN106062126B (en) Luminescent material, organic illuminating element and compound
JP4220767B2 (en) Organic compounds, organic EL devices and displays
CN103748191B (en) It is a kind of that there is double-core copper for optoelectronic device(I)The singlet state capture of complex
KR100280707B1 (en) Light-Emitting Compound and Display Device Adopting It as Coloring Material
CN1480012A (en) Deuterated semiconducting organic compounds used for opto-electronic devices
CN1260821A (en) Electroluminescent material
JP2003277444A (en) Polymer and electroluminescent element
JPH10509765A (en) Conjugated polymers containing heterospiro atoms and their use as electroluminescent materials
JP3880152B2 (en) Coloring compound for electroluminescent display element and synthesis method thereof
KR101030400B1 (en) Polymer, Polymer for Forming Organic Electroluminescence Device, Polymer Composition For Organic Electroluminescence Device And Organic Electroluminescence Device
Yu et al. Synthesis and photo-and electro-luminescent properties of Ir (III) complexes attached to polyhedral oligomeric silsesquioxane materials
KR20070004641A (en) Organic materials with tunable electric and electroluminescent properties
KR20000032065A (en) Luminescence compound and luminescence device using the same as coupler
JP5242976B2 (en) Organic electroluminescence device
JP4015816B2 (en) Light emitting material and EL light emitting layer
TWI289594B (en) Luminescent material of organic light-emitting diode (OLED)
JP4271489B2 (en) N-phenylcarbazole derivative polymer, organic light emitting device, and organic light emitting device
KR100894135B1 (en) Organometallic complex compounds for organic light emitting display and display unit using thereof
JP2012151271A (en) Organic electroluminescent element, display device and lighting system
JP5361821B2 (en) Novel compound and organic electroluminescent element, display device and lighting device using the same
JP2004197023A (en) Luminescent material and organic electroluminescent element containing the same
JP2006063036A (en) Spirofluorene compound, method for producing the same, spirofluorene polymer, method for producing the same and organic electroluminescent element
JP5178794B2 (en) Novel compound and organic electroluminescent element, display device and lighting device using the same
KR100553734B1 (en) Organic silicone compound, light-emitting compound formed therefrom and display device employing the light-emitting compound as color-developing substance
KR100563075B1 (en) Organic silicone compound, light-emitting compound formed therefrom and display device employing the light-emitting compound as color-developing substance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees