TWI289594B - Luminescent material of organic light-emitting diode (OLED) - Google Patents
Luminescent material of organic light-emitting diode (OLED) Download PDFInfo
- Publication number
- TWI289594B TWI289594B TW94121140A TW94121140A TWI289594B TW I289594 B TWI289594 B TW I289594B TW 94121140 A TW94121140 A TW 94121140A TW 94121140 A TW94121140 A TW 94121140A TW I289594 B TWI289594 B TW I289594B
- Authority
- TW
- Taiwan
- Prior art keywords
- compound
- jcf
- chemical formula
- synthesis
- nmr
- Prior art date
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
1289594 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種新穎化合物,可作為有機電 激發光二極體(OLED)之發光材料。 【先前技術】 近來有機半導體與有機導電材料的被熱烈地研 究,尤其是使用有機半導體之發光元件之有機電冷 光裝置已具有顯著地進步。有機電激發光(organic electroluminescence, OEL)是指在一定電場下,有 機物質被相應的電能激發所發生的發光現象。1963 年Pope 1等人在研究10〜20 μπι厚的惠、(anthracene) 早晶片時首先發現在晶體兩端施以400伏特電壓 後,可觀察到蔥發出藍色螢光,使得有機電激發光 的研究跨出了第一步,但由於單晶成長、大面積化 困難,且所需的驅動電壓太大,發光效率又較無機 材料差,因此不具實用價值。隨後Helfrich2和 Williams3等人繼續努力研究,將電壓降至1〇〇伏 特左右,獲得了約5°/❶光子/電子的外部量子效率, 但由於單晶厚度還是過大,因而使得驅動電壓也較 高,造成電能轉化成光能的效率太低。1982年 Vincett4等人利用真空蒸鍍法製成了僅50 nm厚的 蔥薄膜,進一步將驅動電壓降至30伏特即能觀察 到藍色螢光,不過由於電子注入效率太低及蔥的成 膜性不好,所以其外部量子效率只有0.03 %左右。 之後雖經過二十多年的零星發展,卻仍一直未有重 大突破。 1289594 直到1987年美國柯達公司(Eastman Kodak company) Tang及VanSlyke等人首先發表有機發光 二極體(organic light_emitting diodes, OLEDs),才 有突破性的發展。他們將芳香二胺(HTM-2)作為電 洞傳輸層材料,和成膜性好的8_羥基喹啉鋁Alq3 (tris(8-hydroxyquinolinato)aluminum(III))作為電子 傳輸層和發光材料利用真空蒸鍍製成60〜70 nm的 薄膜,並以低功函數的鎂銀合金為陰極,提高電子 和電洞的注入效率。在兩片電極間置入其所開發的 有機小分子發光材料,通電即可發出光來,其產生 波長為530 nm的綠光,可展現出低驅動電壓、高 量子效率(> 1 %)及元件穩定性等效果,大幅提升 有機小分子電激發光元件的特性與實用性。 其後1990年’央國劍橋大學(cambridge1289594 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a novel compound which can be used as a luminescent material for organic electroluminescent diodes (OLEDs). [Prior Art] Recently, organic semiconductors and organic conductive materials have been intensively studied, and in particular, organic electric cooling devices using light-emitting elements of organic semiconductors have made remarkable progress. Organic electroluminescence (OEL) is a phenomenon in which an organic substance is excited by a corresponding electric energy under a certain electric field. In 1963, Pope et al. first studied the 10~20 μπ thick thick, anthracene early wafers. It was first discovered that after applying 400 volts across the crystal, it was observed that the onion emits blue fluorescence, making the organic electroluminescence The research has taken the first step, but it is not practical because of the difficulty in growing and large-area single crystals, and the required driving voltage is too large, and the luminous efficiency is inferior to that of inorganic materials. Subsequently, Helfrich2 and Williams3 and others continued their efforts to reduce the voltage to about 1 volt, obtaining an external quantum efficiency of about 5 ° / ❶ photon / electron, but because the thickness of the single crystal is too large, the driving voltage is also higher. The efficiency of converting electrical energy into light energy is too low. In 1982, Vinnett4 et al. used a vacuum evaporation method to make a 50 nm thick onion film, and further reduced the driving voltage to 30 volts to observe blue fluorescence, but the electron injection efficiency was too low and the onion film formation. The sex is not good, so its external quantum efficiency is only about 0.03%. After more than 20 years of sporadic development, there have been no major breakthroughs. 1289594 Until 1987, Eastman Kodak company Tang and VanSlyke first published organic light emitting diodes (OLEDs), which was a breakthrough development. They use aromatic diamine (HTM-2) as a hole transport layer material, and a good film-forming 8-hydroxyquinoline aluminum Alq3 (tris(8-hydroxyquinolinato)aluminum(III)) as an electron transport layer and a luminescent material. Vacuum evaporation is used to make a film of 60~70 nm, and a low work function magnesium-silver alloy is used as a cathode to improve the injection efficiency of electrons and holes. The organic small molecule luminescent material developed by the two electrodes is placed and energized to emit light, which produces green light with a wavelength of 530 nm, which exhibits low driving voltage and high quantum efficiency (> 1%). And the effects of component stability, etc., greatly improve the characteristics and practicality of organic small molecule electroluminescent devices. Then in 1990, the University of Cambridge, Cambridge
University) Friend等人接著發表高分子發光二極體 (polymer light-emitting diodes,PLEDs),以旋轉塗 佈的方式,將共軛高分子PPV (p〇ly(p-phenylene vinylene))當作發光層,製作出單層結構的聚合物 電激發光元件,由於其具有製程簡單、高分子良 好的機械性貝及似半導體的特性,使得共輛高分 子發光材料方面的研究快速發展。 值得注意的是,比起目前以LCD為主流的 FPD,OLED不但能自發光,不需要背光模組,且 具有低驅動電壓、高亮度、高對比、廣視角、響 應速度快、結構簡單、超薄膜、重量輕等優點, 可有效應用於A?、明或製成顯示器、光電偶合器等 1289594 地方,若製作在如塑膠基板的柔軟襯底上,器件 便可彎曲、折疊便於攜帶,而且由於製程簡單, 預計可大幅降低成本。目前已吸引全球超過八十 家公司競相投入巨資研發有機電激發光顯示器技 術,也因而成為另一顯示技術的主流。 1997年,日本Pioneer公司首先發表一款低分 子系的單色(綠色)被動式顯示器,成功地將有機 電激發光顯示技術,實用地應用在汽車儀器面板 上。此後有機電激發光顯示器開始產品化,陸續 被應用在小尺寸的面板上,像1998年日本TDK公 司,2002年銖寶科技,三星,NTT Do Co Mo的彩 色手機,2003年柯達數位相機等。日本Pioneer公 司與柯達Kodak也合作小量量產OLED單色及多色 (monochrome and multicolor)的顯示器,目前已正 式應用在Motorola手機上,頗獲好評;而Sanyo 亦與柯達合作,製作出小尺寸的全彩(full color) OLED樣品,宣稱於2001年後量產;奇美公司更 發表了主動式的10吋以上的彩色顯示器,使得有 機電激發光技術更跨進一步。不過,至目前為 止,OLED仍有其須進一步改善之處,包括其色飽 和度、穩定度、發光效率和壽命等等,此與材料 本身的性質和製程息息相關,若能突破應能期許 成為未來顯示器的趨勢。 近幾年業界開始致力於有機電激發光材料的 研究,已經有了不錯的成果。紅、藍、綠是光的 三原色,好的三原色效率及純色是達到全彩顯示 1289594 器的基本重要需求,綠光無論是螢光或磷光材 料、元件方面的開發研究都較紅光成果顯著。一 般而言,在藍色的單色材料方面,目前曰本初光 及柯達只有高效率,耐久的淺藍有機螢光材料, 因為能階高,尚未有耐久穩定的良好銥金屬磷光 材料。在OLED中藍色材料的分子結構設計通常 必須明確地考慮能隙(band gap)及分子本身 LUMO/HOMO能階是否能與元件中搭配的材料切 合。 發光材料在有機電激發光元件中是最重要的材料,好 的發光材料必需滿足四個條件:(1)高量子效率的螢光特 性,且螢光光譜主要分佈在400〜700 nm可見光區域内;(2) 良好的半導體特性,具有高的導電率,能傳導電子或電 洞,或者兩者皆有;(3)良好的成膜性,在幾十奈米的薄膜 中不會產生針孔;(4)良好的熱穩定性。 大部份的電子傳輸層和電洞傳輸層都可作為可見光區 的發光材料,由於大多數的有機材料在超過一定濃度,尤 其疋固悲時’會存在自我驟熄(self quencjjing)或稱濃度驟媳 (concentration quenching)的問題,導致發射峰變寬或是產生 紅位移,所以一般會以低濃度的方式將它們掺雜(doping)在 具某種載流子性質的主體(host)中作為客發光體(d〇pant emitter)。應用在有機電激發光元件的客發光體的幾個設計 考慮為·(1)具有高的螢光效率,·(2)客體的吸收光譜和主體 的發射光譜要有很好的重疊,使能量可以有效地從主體傳 遞到客體;(3)有紅、藍、綠或黃色的發射峰,且發射峰盡 可能的窄以維持光色的純度;(4)穩定性好,能蒸鍍。 1289594 上述有機電激發光材料尤其是藍光發光材料的限制, * 若能進一步突破,將可在藍光發光材料發展上有所幫助。 • 因此開發可使用於藍光發光材料之化合物係一為值得研究 之課題。 【發明内容】 本發明之一目的在於提供一種可用於有機電激 發光二極體之發光物質,尤其是作為藍光發光物 • 質。 本發明係提供一種具有下列化學式(I)之化合 物··University) Friend et al. subsequently published polymer light-emitting diodes (PLEDs), which used fluoropolymer PPV (p-phenylene vinylene) as a luminescent material by spin coating. In the layer, a polymer electroluminescent device having a single-layer structure is produced, and since it has a simple process, a good polymer, and a semiconductor-like property, research on a total of polymer light-emitting materials has been rapidly developed. It is worth noting that OLED not only can self-illuminate, but also does not require a backlight module, and has low driving voltage, high brightness, high contrast, wide viewing angle, fast response, simple structure, and super. Compared with the current FPD with LCD as the mainstream. The advantages of thin film and light weight can be effectively applied to A?, Ming or 1289594 where it is made into display, photoelectric coupler, etc. If it is made on a soft substrate such as a plastic substrate, the device can be bent and folded for carrying, and The process is simple and is expected to significantly reduce costs. At present, more than 80 companies around the world have been competing to invest heavily in the development of organic electroluminescent display technology, which has become the mainstream of another display technology. In 1997, Japan's Pioneer first published a low-molecular monochromatic (green) passive display that successfully applied organic electroluminescent display technology to automotive instrument panels. Since then, the organic electroluminescent display has been commercialized and has been applied to small-sized panels such as TDK Corporation of Japan in 1998, Sic Bo Technology of 2002, Samsung, NTT Do Co Mo color mobile phone, and 2003 Kodak digital camera. Japan's Pioneer and Kodak Kodak also collaborate on a small-volume OLED monochrome and multicolor display, which has been officially applied to Motorola phones, and has been well received. Sanyo has also collaborated with Kodak to produce small sizes. The full color OLED sample is claimed to be mass-produced after 2001; Chi Mei has also released an active color display of more than 10 inches, making the organic electro-excitation technology more advanced. However, until now, OLEDs still have further improvements, including their color saturation, stability, luminous efficiency and longevity. This is closely related to the nature and process of the material itself. If it can break through, it should be expected to become the future. The trend of the display. In recent years, the industry has been working on organic electroluminescent materials, and has achieved good results. Red, blue and green are the three primary colors of light. The good three primary color efficiencies and solid colors are the basic requirements for achieving the full color display of 1289594. The development of green light, whether fluorescent or phosphorescent materials and components, is more remarkable than that of red light. In general, in terms of blue monochromatic materials, currently Sakamoto Shinko and Kodak have only high-efficiency, durable, light blue organic fluorescent materials, because of the high order, there is no good durable metal-phosphorescent material. The molecular structure design of the blue material in the OLED usually must explicitly consider whether the band gap and the molecular LUMO/HOMO energy level can be matched with the materials in the component. Luminescent materials are the most important materials in organic electroluminescent devices. Good luminescent materials must meet four conditions: (1) high quantum efficiency fluorescence characteristics, and the fluorescence spectrum is mainly distributed in the visible light region of 400~700 nm. (2) Good semiconductor characteristics, high conductivity, ability to conduct electrons or holes, or both; (3) good film formation, no pinholes in tens of nanometers of film (4) Good thermal stability. Most of the electron transport layer and the hole transport layer can be used as luminescent materials in the visible light region. Since most organic materials exceed a certain concentration, especially when they are sturdy, they will have self-quenching (self quencjjing) or concentration. The problem of concentration quenching leads to broadening of the emission peaks or red shifts, so they are generally doped in a low concentration manner in a host with some carrier properties. D〇pant emitter. Several design considerations for the guest illuminant used in the organic electroluminescent device are: (1) high fluorescence efficiency, (2) the absorption spectrum of the guest and the emission spectrum of the host should have a good overlap, so that the energy It can be effectively transmitted from the main body to the guest; (3) There are emission peaks of red, blue, green or yellow, and the emission peak is as narrow as possible to maintain the purity of the light color; (4) It has good stability and can be evaporated. 1289594 The above-mentioned limitations of organic electroluminescent materials, especially blue luminescent materials, * If further breakthroughs, will be helpful in the development of blue luminescent materials. • Therefore, the development of compounds for blue luminescent materials is a subject worthy of study. SUMMARY OF THE INVENTION An object of the present invention is to provide a light-emitting substance which can be used for an organic electroluminescent diode, particularly as a blue light-emitting substance. The present invention provides a compound having the following chemical formula (I)··
Ar1^^Yv^^Ar2 化學式(I) 其中Ar!與Ar2係為Ar1^^Yv^^Ar2 Chemical formula (I) where Ar! and Ar2 are
且其中 m=0-4,n=0-5 ; 1289594And wherein m=0-4, n=0-5; 1289594
其中γ係為Where γ is
或 本發明之又一目的係關於一種用於有機電激發光 二極體(OLED)之發光材料,其包含具有化學式(1)之 化合物,其中Ari、Ar2與Υ係與前述定義相同。 本發明之再一目的係提供一種藍光發光之有機電 激發光裝置’該裝置係包含一陽極層、一電洞傳遞 層、一發光層、一電子傳遞層以及一陰極層,其中 前述陽極層、電洞傳遞層、發光層、電子傳遞層及 陰極層依順序放置,且前述之發光層包含一具有化 學式⑴之化合物,其中Ar〗、Ar2與Y係與前述定義 相同。 【實施方式】 本發明係提供一具有化學式(I)之新穎化合 1289594 ΑΤ2 化學式(I)Or a further object of the invention relates to a luminescent material for an organic electroluminescent diode (OLED) comprising a compound of formula (1) wherein Ari, Ar2 and lanthanide are as defined above. A further object of the present invention is to provide a blue light-emitting organic electroluminescent device [the device comprising an anode layer, a hole transport layer, a light-emitting layer, an electron transport layer and a cathode layer, wherein the anode layer, The hole transport layer, the light-emitting layer, the electron transport layer, and the cathode layer are sequentially disposed, and the light-emitting layer includes a compound of the formula (1), wherein the Ar, Ar2, and Y systems are the same as defined above. [Embodiment] The present invention provides a novel compound of formula (I) 1289594 ΑΤ 2 chemical formula (I)
其中Ar!與Ar2係為Among them, Ar! and Ar2 are
且其中 m=0-4,n=0-5 ; 其中Y係為And wherein m=0-4, n=0-5; wherein Y is
或 11 1289594 興本^明之另一實施態樣係為一利用至少包含具 m(?之化合物之發射藍光之有機電激發光裝 置,如第一圖所示,此裝置1〇包含一陽極舞i、 ;=遞!2、一發光層3、一電子傳遞層:及-3雷曰二’、前述之陽極層)、電洞傳遞層2、發光層 ”傳遞層4及陰極層5依前述之順序放置,前 ,之發光層3包含一具有化學式(1)之化::置4 ΑΓΐ、ΑΓ2與Y係與前述定義相同。 下係藉由數個實施例並配合圖式說明本創作之實 =樣。下列實施例係僅用於說明本發明,非用於限 ”書所揭露之内容,任何熟習本技術領域的人 士二白可根據本說明書中揭露之内容,進一步做任何 動與潤飾以達到最大功效’所有詳列於本說 月曰之者作係以全文弓丨入作為參考資料。Or 11 1289594 Another embodiment of Xingben ^ Ming is an organic electroluminescent device comprising at least a blue-emitting compound having m (?), as shown in the first figure, the device 1 includes an anode dance i , == delivery! 2, an illuminating layer 3, an electron transport layer: and -3 Thunder two ', the aforementioned anode layer), the hole transfer layer 2, the luminescent layer "transfer layer 4 and the cathode layer 5 according to the foregoing In order to place, the front light-emitting layer 3 comprises a chemical formula (1): 4, ΑΓ 2 and Y are the same as defined above. The following examples illustrate the creation of the present invention by means of several embodiments and drawings. The following examples are for illustrative purposes only, and are not intended to limit the scope of the disclosure. Any person skilled in the art can further perform any movement and retouching according to the contents disclosed in the specification. To achieve maximum effectiveness, all those who are listed in this section of the month are referred to as full-text.
ί匕合物2a的合成: 化合物2a之之合成方式如第二A圖,取一Synthesis of ί chelate 2a: The synthesis of compound 2a is as shown in Figure A, taking one
=的雙頸瓶,加入4_溴_2_氟代甲苯 (4-brom〇.2-fluorotoluene) (7.00 g? 37.03 mmol) . NBS (6·59 g,37.03 mmol)、ΒΡΟ (0·45 g5 1·85 mmol),加 入50 ml四氣化碳當溶劑,加熱到叩。〇回流5小時。 回到至>JBL後,用乙酸乙脂萃取,硫酸鎮除水可得益 色油狀液體。層柱分析後(純己烷,Rf = 〇·7)可得^ 色油狀液體2a (8·83 g,89 %)。化合物2a之性質$ 下: 、 ln NMR (CDC13? 600 MHz): δ 7.24-7.20 (m? 3Η)5 4.41 12 1289594 (S,2H) 13C NMR (CDC13, 150 MHz): δ160·3 (d,JCF = 253·5 Hz),132.2, 127.9, 124.4 (d,JCF = 14·3 Hz),123·0 (d, JCF = 9.2 Hz)? 119.5 (d, JCF = 24.3 Hz), 24.7 HRMS (70eV) calcd for C7H5Br2F: 265.8742, found: 265.8728 化合物2b的合成: 合成方法同化合物2a的合成。層柱分析後(純己 烷,Rf=0.7)可得無色油狀液體2b (92 %)。化合物 2b之性質如下: !H NMR (CDC13, 400 MHz): δ 7.50 (t5 J = 7.6 Hz? 1H), 7.14 (d,J = 7·2 Hz,1H),7.04 (d,J = 7·2 Hz,1H),4.39 (s,2H) 13C NMR (CDC13? 100 MHz): 6161.2 (d, JCF = 251.5 Hz),138.8,134·1,133·9,125·9 (d,JCF = 13·1 Hz), 120·4 (d,JCF = 23.8 Hz),24·8。 HRMS (70eV) calcd for C7H5Br2F: 265.8742, found: 265.8733。 4匕合物 2c 的合成: 化合物2c之合成方式係根據第二B圖,取一個50 ml的雙頸瓶,加入化合物3c (1.00 g,45.25 mmol), 以20 ml甲醇當溶劑,冰浴下加入NaBH4 (0·21 g, 54.32 mmol)。擾拌半小時後,加入少許水停止反 應。用乙酸乙脂萃取,硫酸鎂除水可得無色油狀液 體(0.98 g,43.94 mmol)。將此油狀液體加入50ml雙 頸瓶中,以5ml二氣甲烷為溶劑,冰浴下加入ΡΒγ3 (1·78 g,65·92 mmol)。擾拌3小時後,冰浴下力σ入碳 酸氫鈉固體停止反應,層柱分析後(純己烷,Rf = 0.7)可得無色油狀液體2c (1.09 g,85 %)。化合物2c 之性質如下: !H NMR (CDC13, 400 ΜΗζ): δ 7.29 (t,J = 7·8 Hz,1H), 7·16 (t,J = 7·8 Ηζ,1Η),4·40 (s,2Η) 13C NMR (CDC13? 100 MHz): 5160.3 (d, JCF = 252.6 13 1289594 Ηζ),158·4 (d,JCF = 249·2 Ηζ),131·2, 125·2 (d,JCF = 13.4 Hz), 123.2 (d, JCF = 11.2 Hz), 118.8 (d? JCF = 24.3 Hz)? 24.9 HRMS (70eV) calcd for C7H4Br2F2: 283.8648, found: 283.8651 ^(匕合物 2d的合成: 合成方法同化合物2c的合成。層柱分析後(純己 烷,Rf= 0.7)可得無色油狀液體2d (82 %)。化合物 2d之性質如下: !H NMR (CDC13, 400 MHz): δ 4.48 (s? 2H) 13C NMR (CDCI3, 100 MHz): 6158.0 (dd, JCF = 250.2, 22.2 Hz), 156.2 (dd? JCF = 248.2, 21.8 Hz)? 125.1 (t? JCF = 12.4 Hz), 118.8 (t, JCF = 24.8 Hz), 24.7 HRMS (70eV) calcd for C7H2Br2F4·· 319.8459, found: 319.8455。 4匕合物 3a的合成: 根據第二C圖,取一個100 ml的雙頸瓶,加入化 合物 2a (1·23 g,4·59 mmol)、NaHC03 (3.47 g,41·34 mmol),加入35 1111〇]^8〇當溶劑,加熱到70°(:攪拌 1小時。回到室溫後,用乙酸乙脂萃取,以食鹽水洗 去DMSO,硫酸鎂除水可得無色油狀液體。層柱分 析後可得無色油狀液體,靜置後可得白色固體3a (0·68 g,73 %)。化合物3a之性質如下: !H NMR (CDCI3, 600 MHz): δ 10.16 (t, J = 1.5 Hz? 1H),7·59 (t,J = 8·3 Hz,1H),7·29 (dd,J = 8.2, 2·1 Hz, 1H),7·23 (dd,J = 8·4, 2·2 Hz,1H) 13C NMR (CDC13, 150 MHz): δ185·5 (d,JCF = 5·4 Hz), 163.7 (d? JCF = 243.1 Hz), 129.7 (d5 JCF = 9.6 Hz), 129.3, 128.1, 122.8 (d9 JCF = 8.1 Hz), 119.9 (d, JCF = 23.4¾) HRMS (70eV) calcd for C7H4BrFO: 201.9430, found: 201.9439 4匕合物 3b 的合成: 1289594 合成方法同化合物3a的合成。層柱分析後可得無 色油狀液體3b (75 %)。化合物3b之性質如下:^ !H NMR (CDC13? 400 MHz): δ 9.93 (s, 1Η)? 7.72 (t? J = 8·0 Hz,1H),7·58 (d,J = 8.2, 1H),7·52 (d,J = 8.0, ’1H) 13C NMR (CDC13, 100 MHz): δ189·3, 164.1 (d,JCF = 244.2 Hz),130.2,129.1,127.1,122.2 (d,JCF = 88= 2 flasks, add 4_bromo-2-fluorotoluene (7.00 g? 37.03 mmol). NBS (6·59 g, 37.03 mmol), ΒΡΟ (0·45) G5 1.85 mmol), add 50 ml of four gasified carbon as solvent and heat to 叩. 〇 reflux for 5 hours. After returning to >JBL, it is extracted with ethyl acetate, and the water is removed by sulfuric acid to obtain a liquid oil. After the column column analysis (pure hexane, Rf = 〇·7), the oily liquid 2a (8·83 g, 89%) was obtained. Properties of Compound 2a: Lower, ln NMR (CDC13? 600 MHz): δ 7.24-7.20 (m? 3Η)5 4.41 12 1289594 (S, 2H) 13C NMR (CDC13, 150 MHz): δ160·3 (d, JCF = 253·5 Hz), 132.2, 127.9, 124.4 (d, JCF = 14·3 Hz), 123·0 (d, JCF = 9.2 Hz)? 119.5 (d, JCF = 24.3 Hz), 24.7 HRMS (70eV) Calcd for C7H5Br2F: 265.8742, found: 265.8728 Synthesis of compound 2b: Synthetic method with the synthesis of compound 2a. After the layer column analysis (pure hexane, Rf = 0.7), a colorless oily liquid 2b (92%) was obtained. The properties of compound 2b are as follows: !H NMR (CDC13, 400 MHz): δ 7.50 (t5 J = 7.6 Hz? 1H), 7.14 (d, J = 7·2 Hz, 1H), 7.04 (d, J = 7· 2 Hz, 1H), 4.39 (s, 2H) 13C NMR (CDC13? 100 MHz): 6161.2 (d, JCF = 251.5 Hz), 138.8, 134·1, 133·9, 125·9 (d, JCF = 13 · 1 Hz), 120·4 (d, JCF = 23.8 Hz), 24.8. HRMS (70eV) calcd for C7H5Br2F: 265.8742, found: 265.8733. Synthesis of 4 chelate 2c: Compound 2c was synthesized according to the second B diagram, taking a 50 ml flask, adding compound 3c (1.00 g, 45.25 mmol), using 20 ml of methanol as solvent, under ice bath NaBH4 (0·21 g, 54.32 mmol) was added. After half an hour of disruption, add a little water to stop the reaction. Extraction with ethyl acetate and removal of water over magnesium sulfate gave a colorless oil (0.98 g, 43.94 mmol). This oily liquid was placed in a 50 ml two-necked flask, and 5 ml of di-methane was used as a solvent, and ΡΒγ3 (1·78 g, 65·92 mmol) was added under ice bath. After 3 hours of stirring, the reaction was stopped by an ice bath under the action of a sodium hydride solid. After the column chromatography (pure hexane, Rf = 0.7), a colorless oily liquid 2c (1.09 g, 85%) was obtained. The properties of the compound 2c are as follows: !H NMR (CDC13, 400 ΜΗζ): δ 7.29 (t, J = 7·8 Hz, 1H), 7·16 (t, J = 7·8 Ηζ, 1 Η), 4·40 (s, 2Η) 13C NMR (CDC13? 100 MHz): 5160.3 (d, JCF = 252.6 13 1289594 Ηζ), 158·4 (d, JCF = 249·2 Ηζ), 131·2, 125·2 (d, JCF = 13.4 Hz), 123.2 (d, JCF = 11.2 Hz), 118.8 (d? JCF = 24.3 Hz)? 24.9 HRMS (70eV) calcd for C7H4Br2F2: 283.8648, found: 283.8651 ^(synthesis of complex 2d: synthesis The method was the same as the synthesis of compound 2c. After layer column analysis (pure hexane, Rf = 0.7), a colorless oily liquid 2d (82%) was obtained. The properties of compound 2d were as follows: !H NMR (CDC13, 400 MHz): δ 4.48 (s? 2H) 13C NMR (CDCI3, 100 MHz): 6158.0 (dd, JCF = 250.2, 22.2 Hz), 156.2 (dd? JCF = 248.2, 21.8 Hz)? 125.1 (t? JCF = 12.4 Hz), 118.8 ( t, JCF = 24.8 Hz), 24.7 HRMS (70 eV) calcd for C7H2Br2F4·· 319.8459, found: 319.8455. 4 Synthesis of the chelate 3a: According to the second C diagram, take a 100 ml double-necked flask and add the compound 2a (1·23 g, 4·59 mmol), NaHC03 (3.47 g, 41·34 mmol), add 35 1111〇]^8〇 The mixture is heated to 70 ° (: stirring for 1 hour. After returning to room temperature, it is extracted with ethyl acetate, washed with DMSO, and dehydrated with magnesium sulfate to obtain a colorless oily liquid. After layer column analysis, a colorless oil can be obtained. The liquid, after standing, gave a white solid 3a (0·68 g, 73%). The properties of compound 3a were as follows: !H NMR (CDCI3, 600 MHz): δ 10.16 (t, J = 1.5 Hz? 1H), 7 · 59 (t, J = 8·3 Hz, 1H), 7·29 (dd, J = 8.2, 2·1 Hz, 1H), 7·23 (dd, J = 8·4, 2·2 Hz, 1H) 13C NMR (CDC13, 150 MHz): δ185·5 (d, JCF = 5·4 Hz), 163.7 (d? JCF = 243.1 Hz), 129.7 (d5 JCF = 9.6 Hz), 129.3, 128.1, 122.8 ( D9 JCF = 8.1 Hz), 119.9 (d, JCF = 23.43⁄4) HRMS (70eV) calcd for C7H4BrFO: 201.9430, found: 201.9439 Synthesis of 4 chelate 3b: 1289594 Synthetic method with the synthesis of compound 3a. After the layer column analysis, a colorless oily liquid 3b (75%) was obtained. The properties of compound 3b are as follows: ^ !H NMR (CDC13? 400 MHz): δ 9.93 (s, 1Η)? 7.72 (t? J = 8·0 Hz, 1H), 7·58 (d, J = 8.2, 1H ), 7·52 (d, J = 8.0, '1H) 13C NMR (CDC13, 100 MHz): δ189·3, 164.1 (d, JCF = 244.2 Hz), 130.2, 129.1, 127.1, 122.2 (d, JCF = 88
Hz),119.2 (d,JCF = 21.4 Hz) HRMS (70eV) calcd for C7H4BrFO: 201.9430, found: 201.9435 ' ^[匕合物 3c的合成: 根據第二D圖,取一個100 ml的雙頸瓶,加入化 合物lc (3.49 g,12.85 mmol),40 ml蒸餾過的無水乙 醚當溶劑,在-78°C下慢慢滴加正丁基鋰(n-butyl lithium) (5·14 ml,2·5Μ,12·85 mmol),維持此溫度攪 拌10分鐘後,加入曱酸乙酯(ethyl formate) (1.43 g, 19.29 mmol)。回到室溫後,力口入少許2N氣化銨溶液 停止反應,用乙酸乙脂萃取,硫酸鎂除水可得無色 油狀液體。層柱分析後可得無色油狀液體,靜置後 可得白色固體3c (1.68 g,59 %)。化合物3c之性質如 下: lU NMR (CDCls, 500 MHz): δ 10.10 (t, J = 2.5 Hz, 1H),7.40 (dt,J = 6·2, 2·0 Hz, 1H), 7·34 (dd,J = 9·0, 4·2 Hz,1H) 13C NMR (CDC13, 125 MHz): δ184·5 (d,JCF = 6·6 Hz), 159·4 (d,JCF = 257.3 Hz),155.6 (d,JCF = 246.1 Hz), 123.9, 121.6 (d? JCF = 25.5 Hz), 116.8 (dd, JCF = 23.3, 10.0 Hz), 114.0 (d, JCF = 23.3 Hz) HRMS (70eV) calcd for C7H3BrF20: 219.9335, found: 219.9322 4匕合物 3d的合成: 合成方法同化合物3c的合成。層柱分析後可得無 色油狀液體,靜置後可得白色固體3d (51 %)。化合 物3d之性質如下: 15 1289594 ^ NMR (CDC13, 600 MHz): δ 10·27 (s,1H) 13C NMR (CDC13, 150 MHz): 6181.8, 146.5 (dd? JCF = 249.3, 22.5 Hz)? 145.2 (dd, JCF = 247.6, 22.3 Hz)? 114.4 (t,JCF = 9.6 Hz), 107.3 (t,JCF = 21·6 Hz) HRMS (70eV) calcd for C7HBrF40: 255.9147, found: 255.9151 化合物 4a的合成: 根據第二E圖取一個100 ml的雙頸瓶,加入化合 物 3a (1.00 g,4·93 mmol)、乙二醇(1.73 g,7.39 mmol)、PTSA (0.1 g,0·058 mmol),力口入 50 ml 苯當 溶劑,使用Dean-Stark裝置加熱迴流24小時。回到 室溫後,加入碳酸氫鈉固體停止反應,減壓濃縮, 矽膠快速層柱分析後可得無色油狀液體4a (1.20 g, 99 %)。化合物4a之性質如下: NMR (CDC13, 400 ΜΗζ): δ 7·41 (t,J = 8·2 Hz,1H), 7·28 (dd,J = 8·2, 2·0 Ηζ,1Η),7·24 (dd,J = 8·2, 2·0 Ηζ, 1Η),6·03 (s,1Η),4·13-4.09 (m,2Η),4·03-4·00 (m, 2Η) 13C NMR (CDC13? 100 MHz): 6160.8 (d, JCF = 251.9 Hz)? 128.9, 127.4, 124.5 (d? JCF = 12.2 Hz), 123.3 (d, JCF = 9.1 Hz)? 119.2 (d, JCF = 22.9 Hz), 98.4, 65.4 HRMS (70eV) calcd for C9H8BrF02: 245.9692, found: 245.9688 化合物 4b的合成: 合成方法同化合物4a的合成。梦膠快速層柱分析 後可得無色油狀液體,靜置後可得白色固體4b (99 %)。化合物4b性質如下: lH NMR (CDCI3, 400 MHz): δ 7.54 (t5 J = 8.0 Hz9 1H)5 7·23 (t,J = 8·2, 1H),7.12 (d,J = 8·2, 1H),5·76 (s,1H), 4·21-4·00 (m,4H) 13C NMR (CDC13, 100 MHz): δ158·6 (d,JCF = 248·8 Hz),134.5, 131.8, 128.2, 121·7, 117·5 (d,JCF = 23.2 Hz),99.6, 65.8 HRMS (70eV) calcd for C9H8BrF02: 245.9692, found: 1289594 245.9688 化合物4c的合成: 合成方法同化合物4a的合成。矽膠快速層柱分析 後可得無色油狀液體,靜置後可得白色固體4c (99 %)。化合物4c性質如下: ]H NMR (CDC13? 400 MHz): δ 7.30-7.27 (m, 2Η)? 5.99 (s,1Η), 4·13·4·01 (m,4Η) 13C NMR (CDC13, 100 MHz): δ158·8 (dd,JCF = 243·6, 21.8 Hz)? 157.6 (dd, JCF = 242.8, 22.2 Hz), 126.2, 122.9, 118.5, 107.2, 103.6, 65.40000 HRMS (70eV) calcd for C9H8BrF202·· 263.9597, found: 263.9591 4匕合物 5狂的合成: 根據第三A圖,取一個100 ml的雙頸瓶,加入化 合物 4a (1.00 g,4.05 mmol)、二苯胺(diphenylamine) (0.68 g,4·05 mmol)、叔丁醇納(sodium tert-butoxide) (0·46 g,4·81 mmol)、Pd2(dba)3 (74·3 mg,0·081 mmol)、DPPF (89·8 mg,0·16 mmol),真空下抽 i〇 分 鐘,加入35ml曱苯為溶劑,加熱迴流12小時。反應 完成後,加入少許水停止反應,用乙酸乙脂萃取, 硫酸鎂除水,抽乾後可得深褐色黏稠液體,矽膠層 柱分析後(純己烷··乙酸乙脂=10 : 1),Rf = 0.6) 可得淡黃色黏稠液體(1· 13 g,3·48 mmol)。將此黏 稠液體加入50ml雙頸瓶中,以20 ml丙酮為溶劑, 加入lml 1N鹽酸,授拌半小時後,用乙酸乙脂萃 取,硫酸鎂除水,抽乾後可得淡黃色固體5a(1.00g, 85 %)。化合物5a之性質如下: NMR (CDC13, 600 ΜΗζ): δ 10.09 (s,1H),7.63 (t,J =8·3 Ηζ,1Η),7·34 (t,J = 8·4 Ηζ,4H;J,7.20-7 16 (m, 7Η),6·70 (dd,J = 8.8, 2.1 Ηζ,1Η),6·55 (dd,J = 13·5, 2·1 Hz,1H), 13C NMR (CDC13, 150 MHz): δ185.1 (d,JCF = 5.4 Hz), 165.9 (d, JCF = 255.2 Hz)? 154.9 (d? JCF = 11.6 Hz)/ 17 1289594 145.2, 129.8, 129·4 (d, JCF = 3·2 Ηζ),126·6, 125.8, 116·4 (d,JCF = 8·6 Hz),114·3, 104·5 (d,JCF = 24·9 Hz) HRMS (70eV) calcd for C19H14FNO: 291.1059, found: 291.1055 化合物 5b的合成: 合成方法同化合物5 a的合成。抽乾後可得淡黃色 固體5b (84 %)。化合物5b之性質如下: lU NMR (CDC13? 400 MHz): δ 9.92 (s? 1Η)? 7.58-7.54 (m,2Η), 7·42 (dd,J = 8·8, 2·1 Hz, 1Η), 7·29 (t,J = 11·4 Hz,4H),7·11 (t,J = 8·2 Hz,2H),7·05 (d,J = 8·4 Hz,4H) 13C NMR (CDC13, 100 MHz): δ189·5, 157·3 (d,JCF = 251.2 Hz), 146.5 (d, JCF = 11.6 Hz), 135.2, 132.1 (d/ JCF = 23·2 Hz),129.3,126·9,125.9,124.6,122.1, 112.3 (d, JCF = 23.9 Hz) HRMS (70eV) calcd for C19H14FNO: 291.1059, found: 291.1058 化合物 5c的合成: 合成方法同化合物5a的合成。抽乾後可得淡黃色 固體5c (79 %)。化合物5c之性質如下: 屯 NMR (CDC13, 600 ΜΗζ): δ 10·12 (d,J = 2·5 Hz, 1Η),7·49 (dd,J = 11·3, 6·2 Hz, 1Η), 7·28 (t,J = 8·0 Ηζ, 4H),7·12 (t,J = 7·4 Hz,2H), 7·05 (t, J = 7·9 Hz,4H), 6·74 (dd,J = 11·6, 6·2 Hz,1H), I3C NMR (CDC13, 150 MHz): δ184·5 (d,JCF = 4·1 Hz), 161.2 (d9 JCF = 253.4 Hz)? 151.9 (d, JCF = 248.9 Hz), 145.9, 142.4 (t,JCF = 10·9 Hz),129.3 (d, JCF = 29·8 Hz), 124.8,124.3,118.4 (dd,JCF = 10.2,5.6 Hz), 115.3 (dd, JCF = 22.2, 2.0 Hz), 111.9 (d? JCF = 25.5 Hz) HRMS (70eV) calcd for C19H13F2NO: 309.0965, found: 309.0971 化合物 6a的合成: 1289594 化合物6a之合成係參考第三B圖,取一個25 ml 的單頸瓶,加入化合物對二氣曱基聯苯 (4,4’-bis_chloromethyl_biphenyl) (1.00 g, 3.98 mmol)、亞磷酸三乙酯(triethyl phosphite) (0.99 g, 5·97 mmol)加熱至150°C迴流12小時,降到室溫後, 在真空下加熱至100°C蒸德出未反應完的P(〇Et)3, 未蒸餾出來的部分即為產物6a (1·76 g,97 %)。化合 物6a之性質如下: !H NMR (CDC139 400 MHz): δ 7.53 (d? J = 8.0 Hz, 4H)5 7.36 (d,J = 8.0 Hz,4H),4.06-4.02 (m,8H),3.18’(d,J’ =22.0 Hz, 4H),1·26 (t,J = 6·8 Hz,12H) ’ 13C NMR (CDC13? 100 MHz): 6139.0, 130.5, 130.0, 126·8, 61·8, 33.1 (d,JCP = 135·8 Hz),16·1 ’ HRMS (70eV) calcd for C2〇H28〇6P2·· 426.1361,found: 426.1365 4匕合物 7 的合成: 化合物7之合成係參考第三C圖,取一個1 〇〇 ml 的雙頸瓶,加入4-氟苯胺(4-fluorophenylamine ) (1.00 g, 8.99 mmol) 、 1-溴-4-氟苯胺 (l-bromo-4-fluorobenzene) (1·57 g,8·99 mmol)、叔丁 醇鈉(sodium tert-butoxide) (1·04 g,10·79 mmol)、 Pd2(dba)3 (0·16 g,0·18 mmol)、DPPF (0·20 g,〇·36 mmol),真空下抽10分鐘,力口入35ml甲苯為溶劑, 加熱迴流12小時。反應完成後,加入少許水停止反 應,用乙酸乙脂萃取,硫酸鎂除水,抽乾後可得深 褐色黏稠液體,矽膠層柱分析後(純己烷:乙酸乙 脂=10 : 1),Rf = 0.7)可得白色固體 7(1.31 g,71 %)。化合物7之性質如下: !H NMR (CDC13? 400 MHz): δ 6.94-6.92 (m, 8H), 5·42 (s,1H) 13C NMR (CDC13? 100 MHz): 5159.8 (d? JCF = 253.2 Hz), 142.6, 118.6, 112.3 (d? JCF = 21.2 Hz) HRMS (70eV) calcd for C12H9F2N: 205.0703, found: 205.0708 1289594 化合物 5d的合成: 合成方法同化合物5a的合成係參考第三D圖。抽 乾後可得淡黃色固體5d (88 %)。化合物5d之性質如 下: ln NMR (CDC13? 600 MHz): δ 9.78 (s? 1Η)? 7.65 (d5 J =8·2 Hz,2H),7.13-7.11 (m,4H),7.03 (t,J = 8·0 Hz, 4H)? 6.90 (d? J = 8.2 Hz? 2H) 13C NMR (CDC13? 150 MHz): δ 190.3, 160.1 (d? JCF = 244.8 Hz),153.3, 141·9, 131.4, 129·0, 128·0 (d,JCF = 8·0 Hz),118·3, 116.7 (d,JCF = 22·7 Hz) HRMS (70eV) calcd for C19H13F2NO: 309.0965, found: 309.0969 化合物 6b的合成: 化合物6b之合成係參考第三E圖,取一個100 ml 的雙頸瓶,加入 4-溴-2-氟代甲苯 (4_bromo-2-fluorotoluene) (1·00 g,37·03 mmol),在 手套箱中枰取 Ni(COD)2 (1·46 g,5.31 mmol),加入 10 ml蒸餾過的DMF當溶劑。加熱到40°C反應12小 時。回到室溫後,用乙酸乙脂萃取,硫酸鎂除水可 得褐色油狀液體。層柱分析後(純己烧,Rf = 0.5)可 得無色油狀液體(〇·53 g)。將此油狀液體加入50ml 雙頸瓶中,加入 NBS (0·43 g,2·43 mmol)、BPO (0.05 g,0·21 mmol),加入20 ml四氣化碳當溶劑,加熱到 80°C回流5小時。回到室溫後,用乙酸乙脂萃取、硫 酸鎂除水可得淡黃色油狀液體。層柱分析後(純己 烷,Rf= 0.2)可得白色固體(0.67 g)。將此固體依照 化合物6a的合成方法,純化後可得到白色固體6b (0.83 g,68%)。化合物6b之性質如下: !H NMR (CDC13? 600 MHz): δ 7.37 (dt, J = 7.9? 2.5 Hz, 2H),7·25 (d,J = 8·0 Hz,2H),7·20 (d,J = 9·2 Hz,2H), 4.04-3.99 (m5 8H),3.17 (d,J = 21·7 Hz,4H),1·22 (t,J =7·4 Hz,12H) 13C NMR (CDC13, 150 MHz): δ 160.9 (dd,JCF = 245.7, 20 1289594 7·2 Hz),140.3, 132.1 (d,JCF = 4·1 Hz), 122·4, 118.5, 113·6 (d,JCF = 23·3 Hz),62·1,25.9 (d,JCP = 139·7 Hz), 16.2 HRMS (70eV) calcd for C22H30F2〇6P2: 490.1486, found: 490.1481 4匕合物 8c 的合成: 化合物8c之合成係參考第三F圖,取一個l〇〇ml 的雙頸瓶,加入化合物9c (1·00 g,2.91 mmol),上真 空抽10分鐘,加入35ml THF為溶劑,冰浴下直接加 入叔 丁醇納(sodium tert-butoxide) (0·31 g, 3·21 mmol),擾拌30分鐘後,將化合物5 (0·88 g,3.21 mmol)溶於10ml THF中加入雙頸瓶中。反應8小時 後,加入2N氯化銨溶液停止反應,用乙酸乙脂萃 取,硫酸鎂除水可得黃色固體。層柱分析後(純己 烧,Rf = 0·5)可得黃綠色固體8c (1.02 g,76 %)。化 合物8c之性質如下: NMR (CDC13, 600 MHz): δ 7.44 (d, J = 8.8 Ήζ? 2H), 7.39-7.30 (m, 6H)? 7.20 (d, J = 8.4 Hz, 4H)? 7.16-7.12 (m,4H), 7.07 (d,J = 16·2 Hz,1H) 13C NMR (CDC13, 150 MHz): δ 155·6 (dd,JCF = 241.7, 21·2 Hz),155.5 (dd, JCF = 242.3, 21.5 Hz),148.2, 147·2, 131·9 (d, JCF = 4·1 Hz),130.1,129.3, 129.2, 127.7, 124·6 (d, JCF = 14·6 Hz), 123·4, 122·9, 120·3 (d, JCF = 27·5 Hz),116·7, 112·8 (dd,JCF = 24·9, 4·1 Hz), 106·6 (dd,JCF = 23·9, 10·2 Hz) HRMS (70eV) calcd for C26H18BrF2N: 461.0591,found: 461.0597 4匕合物 8d的合成: 合成方法同化合物8c的合成。抽乾後可得淡黃色 固體8d (69 %)。化合物8d之性質如下·· 4 NMR (CDC13, 600 ΜΗζ): δ 7·45 (d,J = 16·7 Hz,1H),7·40 (d, J = 8·5 Ηζ,2Η),7·30 (t,J = 8·0 Hz, 4Η),7·15 (d,J = 7·8 Hz, 4H),7.10-7.06 (m,4H),6·90 (d,J = 16·7 Hz, 1H) 21 1289594 13C NMR (CDC13, 150 MHz): δ 148.7 (d, JCF = 25.5 Hz),147·2 (d,JCF = 9·9 Hz),145·0 (dd,JCF = 245.0, 15·9 Hz), 144·5 (dd,JCF = 250·6, 13·4 Hz),137·3 (t, JCF = 8·3 Hz), 129.9,129.4,127·7,124.9,123.5, 122.5, 116.9 (t, JCF = 13.4 Hz)? 111.0, 96.7 (t? JCF = 22.7 Hz) HRMS (70eV) calcd for C26H16BrF4N: 497.0402, found: 497.0408 4匕合物 9a 的合成·· 根據第四A圖,合成方法同化合物6a的合成。純 化後可得淡黃色油狀液體9a (98 %)。化合物9a之性 質如下: !H NMR (CDC13? 600 MHz): δ 7.21-7.20 (m? 3H)? 4·05·4·01 (m,4H),3.11 (d,J = 21.6 Hz,2H),1.23 (t,J =7·05 Hz,6H) 13C NMR (CDC13, 150 MHz): δ 160.5 (d,JCF = 249.9 Hz),132.7, 127.4, 120.9 (d,JCF = 4·8 Hz),119.0 (d, JCF = 25.2 Hz)? 118.5 (d? JCF = 15.5 Hz), 62.3 (d, JCF =6.0 Hz), 26.0 (d5 JCP = 140.1 Hz), 16.2 HRMS (70eV) calcd for CnH15BrF03P: 323.9926, found: 323.9928 4匕合物 9b 的合成·· 合成方法同化合物6a的合成。純化後可得淡黃色 油狀液體9b (96 %)。化合物9b之性質如下: !H NMR (CDC135 400 MHz): δ 7.28 (d, J = 8.2 Hz, 1H)? 7·18-7·13 (m,1H),4·11-4·04 (m,4H),3·12 (d,J = 22.0 Hz,2H),1.26 (t,J = 7·06 Hz, 6H) 13C NMR (CDC13, 100 MHz): δ 159.8 (d? JCF = 251.3 Hz), 157.2 (d? JCF = 248.1 Hz), 123.6 (d? JCF = 13.5Hz), 119.2 (d, JCF = 21.4 Hz) HRMS (70eV) calcd for C7H4BrFO: 201.9430, found: 201.9435 ' ^[Synthesis of chelate 3c: According to the second D diagram, take a 100 ml two-necked flask, Add compound lc (3.49 g, 12.85 mmol), 40 ml of distilled anhydrous ether as solvent, and slowly add n-butyl lithium (5·14 ml, 2·5Μ) at -78 °C. , 12.85 mmol). After stirring at this temperature for 10 minutes, ethyl formate (1.43 g, 19.29 mmol) was added. After returning to room temperature, the reaction was stopped by a little 2N ammonium sulfate solution, extracted with ethyl acetate, and dehydrated with magnesium sulfate to obtain a colorless oily liquid. After the layer column analysis, a colorless oily liquid was obtained, and after standing, a white solid 3c (1.68 g, 59%) was obtained. The properties of compound 3c are as follows: lU NMR (CDCls, 500 MHz): δ 10.10 (t, J = 2.5 Hz, 1H), 7.40 (dt, J = 6·2, 2·0 Hz, 1H), 7·34 ( Dd, J = 9·0, 4·2 Hz, 1H) 13C NMR (CDC13, 125 MHz): δ184·5 (d, JCF = 6·6 Hz), 159·4 (d, JCF = 257.3 Hz), 155.6 (d, JCF = 246.1 Hz), 123.9, 121.6 (d? JCF = 25.5 Hz), 116.8 (dd, JCF = 23.3, 10.0 Hz), 114.0 (d, JCF = 23.3 Hz) HRMS (70eV) calcd for C7H3BrF20 : 219.9335, found: 219.9322 Synthesis of 4 chelate 3d: Synthesis method is the same as compound 3c. After the layer column analysis, a colorless oily liquid was obtained, and after standing, a white solid 3d (51%) was obtained. The properties of compound 3d are as follows: 15 1289594 ^ NMR (CDC13, 600 MHz): δ 10·27 (s, 1H) 13C NMR (CDC13, 150 MHz): 6181.8, 146.5 (dd? JCF = 249.3, 22.5 Hz)? (dd, JCF = 247.6, 22.3 Hz)? 114.4 (t, JCF = 9.6 Hz), 107.3 (t, JCF = 21.6 Hz) HRMS (70eV) calcd for C7HBrF40: 255.9147, found: 255.9151 Synthesis of compound 4a: According to the second E diagram, take a 100 ml two-necked flask and add compound 3a (1.00 g, 4.93 mmol), ethylene glycol (1.73 g, 7.39 mmol), PTSA (0.1 g, 0·058 mmol), force 50 ml of benzene was added as a solvent and heated to reflux for 24 hours using a Dean-Stark apparatus. After returning to room temperature, the reaction was quenched by the addition of sodium bicarbonate solids, and concentrated under reduced pressure. EtOAc EtOAc (EtOAc: EtOAc: The properties of the compound 4a are as follows: NMR (CDC13, 400 ΜΗζ): δ 7·41 (t, J = 8·2 Hz, 1H), 7·28 (dd, J = 8·2, 2·0 Ηζ, 1Η) , 7·24 (dd, J = 8·2, 2·0 Ηζ, 1Η), 6·03 (s, 1Η), 4·13-4.09 (m, 2Η), 4·03-4·00 (m , 2Η) 13C NMR (CDC13? 100 MHz): 6160.8 (d, JCF = 251.9 Hz)? 128.9, 127.4, 124.5 (d? JCF = 12.2 Hz), 123.3 (d, JCF = 9.1 Hz)? 119.2 (d, JCF = 22.9 Hz), 98.4, 65.4 HRMS (70 eV) calcd for C9H8BrF02: 245.9692, found: 245.9688 Synthesis of compound 4b: Synthesis of compound 4a. After the rapid layer analysis of the dream gel, a colorless oily liquid was obtained, and after standing, a white solid 4b (99%) was obtained. The properties of compound 4b are as follows: lH NMR (CDCI3, 400 MHz): δ 7.54 (t5 J = 8.0 Hz9 1H) 5 7·23 (t, J = 8·2, 1H), 7.12 (d, J = 8·2, 1H),5·76 (s,1H), 4·21-4·00 (m,4H) 13C NMR (CDC13, 100 MHz): δ158·6 (d, JCF = 248·8 Hz), 134.5, 131.8 , 128.2, 121·7, 117·5 (d, JCF = 23.2 Hz), 99.6, 65.8 HRMS (70 eV) calcd for C9H8BrF02: 245.9692, found: 1289594 245.9688 Synthesis of compound 4c: Synthesis of compound 4a. A colorless oily liquid was obtained after rapid layer analysis of the silicone, and a white solid 4c (99%) was obtained after standing. The properties of compound 4c are as follows: ]H NMR (CDC13? 400 MHz): δ 7.30-7.27 (m, 2Η)? 5.99 (s,1Η), 4·13·4·01 (m,4Η) 13C NMR (CDC13, 100 MHz): δ158·8 (dd, JCF = 243·6, 21.8 Hz)? 157.6 (dd, JCF = 242.8, 22.2 Hz), 126.2, 122.9, 118.5, 107.2, 103.6, 65.40000 HRMS (70eV) calcd for C9H8BrF202· · 263.9597, found: 263.9591 4 匕5 mad synthesis: According to the third A picture, take a 100 ml two-necked flask, add compound 4a (1.00 g, 4.05 mmol), diphenylamine (0.68 g, 4·05 mmol), sodium tert-butoxide (0.46 g, 4.81 mmol), Pd2 (dba) 3 (74·3 mg, 0·081 mmol), DPPF (89·8) Mg, 0·16 mmol), vacuumed for 1 min, added 35 ml of toluene as a solvent, and heated to reflux for 12 hours. After the reaction is completed, the reaction is stopped by adding a little water, extracted with ethyl acetate, and the water is removed by magnesium sulfate. After draining, a dark brown viscous liquid is obtained, and after analysis of the silica gel column (pure hexane·ethyl acetate = 10:1) , Rf = 0.6) gives a pale yellow viscous liquid (1·13 g, 3.48 mmol). The viscous liquid was added to a 50 ml double-necked flask, and 20 ml of acetone was used as a solvent. After adding 1 ml of 1N hydrochloric acid, the mixture was mixed for half an hour, extracted with ethyl acetate, and the water was removed by magnesium sulfate. After drying, a pale yellow solid 5a was obtained. 1.00g, 85 %). The properties of the compound 5a are as follows: NMR (CDC13, 600 ΜΗζ): δ 10.09 (s, 1H), 7.63 (t, J = 8·3 Ηζ, 1 Η), 7·34 (t, J = 8·4 Ηζ, 4H ;J, 7.20-7 16 (m, 7Η), 6.70 (dd, J = 8.8, 2.1 Ηζ, 1Η), 6·55 (dd, J = 13·5, 2·1 Hz, 1H), 13C NMR (CDC13, 150 MHz): δ185.1 (d, JCF = 5.4 Hz), 165.9 (d, JCF = 255.2 Hz)? 154.9 (d? JCF = 11.6 Hz) / 17 1289594 145.2, 129.8, 129·4 ( d, JCF = 3·2 Ηζ), 126·6, 125.8, 116·4 (d, JCF = 8·6 Hz), 114·3, 104·5 (d, JCF = 24·9 Hz) HRMS (70eV Calcd for C19H14FNO: 291.1059, found: 291.1055 Synthesis of compound 5b: Synthetic method with the synthesis of compound 5a. After drying, 5b (84%) of pale yellow solid was obtained. The properties of compound 5b are as follows: lU NMR (CDC13? MHz): δ 9.92 (s? 1Η)? 7.58-7.54 (m, 2Η), 7·42 (dd, J = 8·8, 2·1 Hz, 1Η), 7·29 (t, J = 11· 4 Hz, 4H), 7·11 (t, J = 8·2 Hz, 2H), 7·05 (d, J = 8·4 Hz, 4H) 13C NMR (CDC13, 100 MHz): δ189·5, 157·3 (d, JCF = 251.2 Hz), 146.5 (d, JCF = 11.6 Hz), 135.2, 132.1 (d/ JCF = 23·2 Hz ), 129.3, 126·9, 125.9, 124.6, 122.1, 112.3 (d, JCF = 23.9 Hz) HRMS (70 eV) calcd for C19H14FNO: 291.1059, found: 291.1058 Synthesis of compound 5c: Synthesis of the same compound as compound 5a. After drying, a pale yellow solid 5c (79%) was obtained. The properties of compound 5c were as follows: NMR (CDC13, 600 ΜΗζ): δ 10·12 (d, J = 2·5 Hz, 1 Η), 7·49 (dd , J = 11·3, 6·2 Hz, 1Η), 7·28 (t, J = 8·0 Ηζ, 4H), 7·12 (t, J = 7·4 Hz, 2H), 7·05 (t, J = 7·9 Hz, 4H), 6·74 (dd, J = 11·6, 6·2 Hz, 1H), I3C NMR (CDC13, 150 MHz): δ184·5 (d, JCF = 4·1 Hz), 161.2 (d9 JCF = 253.4 Hz)? 151.9 (d, JCF = 248.9 Hz), 145.9, 142.4 (t, JCF = 10·9 Hz), 129.3 (d, JCF = 29·8 Hz) , 124.8, 124.3, 118.4 (dd, JCF = 10.2, 5.6 Hz), 115.3 (dd, JCF = 22.2, 2.0 Hz), 111.9 (d? JCF = 25.5 Hz) HRMS (70eV) calcd for C19H13F2NO: 309.0965, found: 309.0971 Synthesis of Compound 6a: 1289594 The synthesis of Compound 6a is based on Figure 3B, taking a 25 ml single-necked flask and adding the compound to di-mercaptobiphenyl (4,4'-bis _chloromethyl_biphenyl) (1.00 g, 3.98 mmol), triethyl phosphite (0.99 g, 5.97 mmol) heated to 150 ° C for 12 hours, cooled to room temperature, heated to 100 ° under vacuum The unreacted P(〇Et)3 was distilled off, and the undistilled portion was the product 6a (1·76 g, 97%). The properties of compound 6a are as follows: !H NMR (CDC139 400 MHz): δ 7.53 (d? J = 8.0 Hz, 4H)5 7.36 (d, J = 8.0 Hz, 4H), 4.06-4.02 (m, 8H), 3.18 '(d, J' = 22.0 Hz, 4H), 1·26 (t, J = 6·8 Hz, 12H) ' 13C NMR (CDC13? 100 MHz): 6139.0, 130.5, 130.0, 126·8, 61· 8, 33.1 (d, JCP = 135·8 Hz), 16·1 'HRMS (70eV) calcd for C2〇H28〇6P2·· 426.1361,found: 426.1365 Synthesis of 4 conjugate 7: Synthesis of compound 7 In the third C picture, take a 1 〇〇ml flask and add 4-fluorophenylamine (1.00 g, 8.99 mmol), 1-bromo-4-fluoroaniline (l-bromo-4-fluorobenzene). (1·57 g, 8.99 mmol), sodium tert-butoxide (1·04 g, 10.79 mmol), Pd2(dba)3 (0·16 g, 0·18 mmol) DPPF (0·20 g, 〇·36 mmol) was pumped under vacuum for 10 minutes, and 35 ml of toluene was added as a solvent, and the mixture was heated under reflux for 12 hours. After the reaction is completed, the reaction is stopped by adding a little water, extracted with ethyl acetate, and the water is removed by magnesium sulfate. After draining, a dark brown viscous liquid is obtained, and after analysis of the silica gel column (pure hexane: ethyl acetate = 10:1), Rf = 0.7) gave a white solid 7 (1.31 g, 71%). The properties of compound 7 are as follows: !H NMR (CDC13? 400 MHz): δ 6.94-6.92 (m, 8H), 5·42 (s, 1H) 13C NMR (CDC13? 100 MHz): 5159.8 (d? JCF = 253.2 Hz), 142.6, 118.6, 112.3 (d? JCF = 21.2 Hz) HRMS (70 eV) calcd for C12H9F2N: 205.0703, found: 205.0708 1289594 Synthesis of compound 5d: The synthesis method is the same as that of compound 5a. After drying, a pale yellow solid was obtained 5d (88%). The properties of compound 5d are as follows: ln NMR (CDC13? 600 MHz): δ 9.78 (s? 1Η)? 7.65 (d5 J =8·2 Hz, 2H), 7.13-7.11 (m, 4H), 7.03 (t, J = 8·0 Hz, 4H)? 6.90 (d? J = 8.2 Hz? 2H) 13C NMR (CDC13? 150 MHz): δ 190.3, 160.1 (d? JCF = 244.8 Hz), 153.3, 141·9, 131.4, 129·0, 128·0 (d, JCF = 8·0 Hz), 118·3, 116.7 (d, JCF = 22·7 Hz) HRMS (70eV) calcd for C19H13F2NO: 309.0965, found: 309.0969 Synthesis of compound 6b : For the synthesis of compound 6b, refer to the third E diagram, take a 100 ml two-necked flask and add 4-bromo-2-fluorotoluene (1·00 g, 37·03 mmol). Ni(COD) 2 (1·46 g, 5.31 mmol) was taken from a glove box, and 10 ml of distilled DMF was added as a solvent. Heat to 40 ° C for 12 hours. After returning to room temperature, it was extracted with ethyl acetate, and water was removed by magnesium sulfate to obtain a brown oily liquid. After the layer column analysis (pure hexane, Rf = 0.5), a colorless oily liquid (〇·53 g) was obtained. Add this oily liquid to a 50ml two-necked flask, add NBS (0·43 g, 2.43 mmol), BPO (0.05 g, 0·21 mmol), add 20 ml of four gasified carbon as solvent, heat to 80 °C reflux for 5 hours. After returning to room temperature, extraction with ethyl acetate and removal of water by magnesium sulfate gave a pale yellow oily liquid. After layer column analysis (pure hexane, Rf = 0.2) gave a white solid (0.67 g). This solid was purified according to the method of compound 6a to give white solid 6b (0.83 g, 68%). The properties of compound 6b are as follows: !H NMR (CDC13? 600 MHz): δ 7.37 (dt, J = 7.9? 2.5 Hz, 2H), 7·25 (d, J = 8·0 Hz, 2H), 7·20 (d, J = 9·2 Hz, 2H), 4.04-3.99 (m5 8H), 3.17 (d, J = 21.7 Hz, 4H), 1·22 (t, J = 7. 4 Hz, 12H) 13C NMR (CDC13, 150 MHz): δ 160.9 (dd, JCF = 245.7, 20 1289594 7·2 Hz), 140.3, 132.1 (d, JCF = 4·1 Hz), 122·4, 118.5, 113·6 ( d, JCF = 23·3 Hz), 62·1, 25.9 (d, JCP = 139·7 Hz), 16.2 HRMS (70 eV) calcd for C22H30F2 〇6P2: 490.1486, found: 490.1481 Synthesis of 4 conjugate 8c: For the synthesis of compound 8c, refer to the third F diagram, take a 1 双 ml double flask, add compound 9c (1·00 g, 2.91 mmol), vacuum for 10 minutes, add 35 ml THF as solvent, and ice bath. Sodium tert-butoxide (0·31 g, 3.21 mmol) was added directly, and after stirring for 30 minutes, compound 5 (0·88 g, 3.21 mmol) was dissolved in 10 ml of THF and added to the neck. In the bottle. After reacting for 8 hours, the reaction was quenched by the addition of 2N ammonium chloride solution, and extracted with ethyl acetate. After layer column analysis (purely calcined, Rf = 0·5), a yellow-green solid 8c (1.02 g, 76%) was obtained. The properties of compound 8c are as follows: NMR (CDC13, 600 MHz): δ 7.44 (d, J = 8.8 Ήζ? 2H), 7.39-7.30 (m, 6H)? 7.20 (d, J = 8.4 Hz, 4H)? 7.16- 7.12 (m, 4H), 7.07 (d, J = 16·2 Hz, 1H) 13C NMR (CDC13, 150 MHz): δ 155·6 (dd, JCF = 241.7, 21.2 Hz), 155.5 (dd, JCF = 242.3, 21.5 Hz), 148.2, 147·2, 131·9 (d, JCF = 4·1 Hz), 130.1, 129.3, 129.2, 127.7, 124·6 (d, JCF = 14·6 Hz), 123·4, 122·9, 120·3 (d, JCF = 27·5 Hz), 116·7, 112·8 (dd, JCF = 24·9, 4·1 Hz), 106·6 (dd, JCF = 23·9, 10·2 Hz) HRMS (70 eV) calcd for C26H18BrF2N: 461.0591, found: 461.0597 Synthesis of 4 conjugate 8d: Synthesis of the synthesis of compound 8c. After drying, a pale yellow solid was obtained 8d (69%). The properties of the compound 8d are as follows: 4 NMR (CDC13, 600 ΜΗζ): δ 7·45 (d, J = 16·7 Hz, 1H), 7·40 (d, J = 8·5 Ηζ, 2Η), 7 · 30 (t, J = 8·0 Hz, 4Η), 7·15 (d, J = 7·8 Hz, 4H), 7.10-7.06 (m, 4H), 6·90 (d, J = 16· 7 Hz, 1H) 21 1289594 13C NMR (CDC13, 150 MHz): δ 148.7 (d, JCF = 25.5 Hz), 147·2 (d, JCF = 9·9 Hz), 145·0 (dd, JCF = 245.0 , 15·9 Hz), 144·5 (dd, JCF = 250·6, 13·4 Hz), 137·3 (t, JCF = 8·3 Hz), 129.9, 129.4, 127·7, 124.9, 123.5 , 122.5, 116.9 (t, JCF = 13.4 Hz)? 111.0, 96.7 (t? JCF = 22.7 Hz) HRMS (70eV) calcd for C26H16BrF4N: 497.0402, found: 497.0408 Synthesis of 4 conjugate 9a · According to the fourth A Figure, synthesis method with the synthesis of compound 6a. After purification, a pale yellow oily liquid 9a (98%) was obtained. The properties of compound 9a are as follows: !H NMR (CDC13? 600 MHz): δ 7.21-7.20 (m? 3H)? 4·05·4·01 (m, 4H), 3.11 (d, J = 21.6 Hz, 2H) , 1.23 (t, J = 7.05 Hz, 6H) 13C NMR (CDC13, 150 MHz): δ 160.5 (d, JCF = 249.9 Hz), 132.7, 127.4, 120.9 (d, JCF = 4·8 Hz), 119.0 (d, JCF = 25.2 Hz)? 118.5 (d? JCF = 15.5 Hz), 62.3 (d, JCF = 6.0 Hz), 26.0 (d5 JCP = 140.1 Hz), 16.2 HRMS (70eV) calcd for CnH15BrF03P: 323.9926, Found: 323.9928 Synthesis of 4 chelate 9b · Synthesis method Synthesize with compound 6a. After purification, a pale yellow oily liquid 9b (96%) was obtained. The properties of compound 9b are as follows: !H NMR (CDC135 400 MHz): δ 7.28 (d, J = 8.2 Hz, 1H)? 7·18-7·13 (m, 1H), 4·11-4·04 (m , 4H), 3·12 (d, J = 22.0 Hz, 2H), 1.26 (t, J = 7·06 Hz, 6H) 13C NMR (CDC13, 100 MHz): δ 159.8 (d? JCF = 251.3 Hz) , 157.2 (d? JCF = 248.1 Hz), 123.6 (d? JCF = 13.5
Hz),120·8 (d,JCF = 25·5 Hz),116.8 (d,JCF = 23.3Hz), 120·8 (d, JCF = 25·5 Hz), 116.8 (d, JCF = 23.3
Hz), 113.2 (d, JCF = 23.1 Hz), 62.3, 25.8 (d? JCP = 139.6 Hz), 16.5 HRMS (70eV) calcd for CuH14BrF203P: 341.9832, found: 341.9832 22 1289594 4匕合物 9c 的合成: 合成方法同化合物6a的合成。純化後可得淡黃色 油狀液體9c (97 %)。化合物9c之性質如下: !H NMR (CDC13? 400 MHz): δ 4.14-4.06 (m? 4Η)5 3.23 (d, J = 21·2 Ηζ,2Η),1·28 (t,J = 7·02 Ηζ,6Η) 13C NMR (CDC13, 100 MHz): δ 146.8 (dd, JCF = 249.3, 22·5 Hz),144-8 (dd,JCF = 247.6, 22.3 Hz),114·4 (t, JCF = 9·6 Hz),107·1 (t,JCF = 21.6 Hz),62·7, 26·2 (d, JCP = 142.2 Hz), 16.6 HRMS (70eV) calcd for CnH12BrF403P: 377.9644, found: 377.9649 化合物 10a的合成: 化合物10a合成方式如第四B圖,取一個100ml 的雙頸瓶,加入化合物9a (1·00 g,3·07 mmol),上真 空抽10分鐘,加入35ml THF為溶劑,冰浴下直接加 入叔 丁醇納(sodium tert-butoxide) (0.33 g,3.38 mmol),攪拌30分鐘後,將化合物3a (0·62 g,3·08 mmol)溶於10ml THF中加入雙頸瓶中。反應8小時 後,加入2N氯化銨溶液停止反應,用乙酸乙脂萃 取,硫酸鎂除水可得褐色固體。層柱分析後(純己 烧,Rf = 0·7)可得白色固體l〇a (1.01 g,88 %)。化合 物10a之性質如下: lU NMR (CDCI3, 600 MHz): δ 7.48 (t, J = 8.1 Hz? 2H)? 7.31-7.27 (m,4H),7.24 (s,2H) 13C NMR (CDC135 1 50 MHz): δ 160.0 (d, JCF = 253.5 Hz),128.4,128.1,124.4 (d,JCF = 11·7 Hz),122·9, 122.2 (d? JCF = 9.6 Hz)? 119.9 (d, JCF = 25.4 Hz) HRMS (70eV) calcd for C14H8Br2F2: 371.8961, found: 371.8965 化合物 10b的合成: 合成方法同化合物10a的合成。層柱分析後(純己 烧,Rf = 0.7)可得白色固體l〇b (83 %)。化合物10b 之性質如下: 23 1289594 # NMR (CDC13, 600 MHz): δ 7·33 (dd,J = 8·9, 6.4 Hz,2H),7·29 (dd,J = 9·3, 5·7 Hz, 2H),7·16 (s,2H) 13C NMR (CDC13, 150 MHz): δ 155.9 (d,JCF = 249.8 Hz),155.7 (d,JCF = 242·7 Hz),125·1 (dd,JCF = 13.7, 6·6 Hz),122·9 (d,JCF = 27.2 Hz),120.8 (d,JCF = 27.2 Hz)9 113.4 (d? JCF = 24.9 Hz)? 108.7 (dd5 JCF = 23.1, 10.1 Hz) HRMS (70eV) calcd for Ci4H6Br2F4: 407.8772, found: 407.8777 化合物10c的合成: 合成方法同化合物l〇a的合成。層柱分析後(純己 烷,Rf = 0·7)可得白色固體10c (79 〇/〇)。化合物10c 之性質如下: !H NMR (CDC13, 600 MHz): δ 7.16 (s5 2H) 13C NMR (CDC13, 150 MHz): δ 145·1 (dd,JCF = 246·3, 15·9 Hz),144·8 (dd,JCF = 251·8,11.2 Hz),122.5, 115.5 (t9 JCF = 12.8 Hz), 99.7 (t, JCF = 22.7 Hz) HRMS (70eV) calcd for C14H2Br2F8: 479.8396, found: 479.8391 化合物11的合成: 化合物11合成方式如第四C圖,取一個150ml 的雙頸瓶,加入蒸餾過的aniline (5.00 g, 53.67 mmol)、CaC03 (16·11 g,160.99 mmol)上真空抽 10 分 鐘,加入 1- 氯-3-甲基丁 -2- 稀 (l-chloro-3-methylbut-2-ene) (12.35 g, 118.06 mmol)、50ml DMF為溶劑,加熱到65°C攪拌3小 時。加入50ml水停止反應,用乙酸乙脂萃取,有機 層以食鹽水沖洗三次以除去DMF,在有機層中加入 濃鹽酸3ml會有大量白色固體析出,使用濾紙過濾後 可得白色固體(13.12 g,49.37 mmol)。將此白色固體 裝入150ml錐形瓶中,加入多聚磷酸(polyphosphoric acid ) (48.56 g),使用機械攪拌器反應24小時,加 入飽和碳酸氫納溶液中和酸性以停止反應。用乙酸 24 1289594 乙脂萃取,硫酸鎂除水可得棕色黏稠液體。層柱分 析後(純己烷,Rf= 〇·5)可得棕色黏稠液體11 (5.17 g, 42 %)。化合物11之性質如下: !H NMR (CDC13, 600 MHz): δ 6.71-6.65 (m? 3H)? 3.53 (t,J = 6·8 Hz,4H),2·00 (t,J = 6·4 Hz,4H),1·63 (s, 12H) 13C NMR (CDC13, 150 MHz): δ 147.7, 134.3, 115.7, 111.7, 46·9, 42.0, 41.9, 32·7 HRMS (70eV) calcd for C16H23N: 229.1830, found: 229.1836 "ib合物 12b的合成: 化合物12b之合成如第四D圖所示,取一個100ml 的雙頸瓶,加入化合物11 (3.00 g,13.08 mmol)、 DMF 30ml,冰浴下慢慢滴入 P0C13 (2.01 g,13.09 mmol),攪拌20分鐘後,加熱到80°C攪拌16小時。 回到室溫後,將反應混合物倒入l〇〇ml冰水中,用醋 酸鈉水溶液中和,二氯甲烷萃取,硫酸鎂除水。層 柱分析後可得棕色固體(2.59 g)。取一個100ml的雙 頸瓶,加入甲基三苯基碘化磷 (methyltriphenylphosphonium iodide) (4.13 g, 11.57 mmol)、除水過的THF 50ml,冰浴下慢慢滴入正丁 基链(n-BuLi) (4·6 ml, 11.59 mmol,2·5 Μ),冰浴下 攪拌30分鐘後,將上述棕色固體溶於5 ml THF中, 加入反應瓶中攪拌6小時。回到室溫後,加入10ml 水停止反應,用乙酸乙脂萃取,硫酸鎂除水可得褐 色黏稠液體。層柱分析後(純己烷,Rf = 0·5)可得白 色固體 12b (2·08 g,62 %)。 #化合物12b之性質如下: NMR (CDC13, 400 ΜΗζ): δ 7·20 (s,2H),6·68 (dd,J =17.4, 10.6 Ηζ,1Η),5·57 (d,J = 17·6 Ηζ,1Η),5·04 (d,J = 10·8 Ηζ,1Η),3·23 (t,J = 6·2 Hz, 4Η),1·83 (t,J =6·0 Ηζ,4Η),1·38 (s,12Η) 13C NMR (CDC13,100 ΜΗζ): δ 140·4,137·3,130.1, 25 1289594 124.8, 122.0, 108.0, 46.7, 36·8, 32·2, 31·1 HRMS (70eV) calcd for C18H25N: 255.1987, found: 255.1982 2.具有化學式(I)之化合物13a〜13g及14a〜14d之製 備: 化合物 13a的合成: 化合物13a合成方式如第五圖所示,取150ml的雙頸 瓶,加入 phosphate 6a (1·63 g,3.58 mmol)和 sodium tert_butoxide (0·76 g, 78.76 mmol),上真空抽 半小時,冰浴下加入50ml無水THF攪拌一小時,再 將醛類5a (2·19 g,7.52 mmol)溶於5ml THF加入上 述混合液中反應20小時。加入少許水停止反應,以 乙酸乙脂萃取,收集有機層,以硫酸鎂除水,抽乾 後可得淡黃色固體。利用二氯甲烷和正己烷再沈澱 可得淡黃綠色固體13a (2.14g, 82%)。 化合物13a之性質如下: !H NMR (CDC13, 600 MHz): δ 7.58 (d? J = 8.4 Hz? 4H)5 7.56 (d,J = 8·4 Hz, 4H),7.43 (t,J = 8·6 Hz,2H), 7·29-7·26 (m,8H),7.12 (d,J = 8·2 Hz,8H),7·07 (d,J =7·8 Hz,8H),6.80 (dd,J = 8·5, 2·2 Hz,2H),6·72 (dd, J = 8·9, 2·2 Hz,2H) 13C NMR (CDC13, 150 MHz): δ160·9 (d,JCF = 247.7 Hz),148.5 (d,JCF = 10.1 Hz),146.9,139.6,136.7, 129.5, 128.0, 127.2, 127.1,127.0, 125.1,123.8, 120.8, 118.5 (d, JCF = 12.5 Hz)? 117.9, 109.1 (d5 JCF = 25.2 Hz) HRMS (70eV) calcd for C52H38F2N2: 728.3003,found: 728.3003 化合物13a之結構如下:Hz), 113.2 (d, JCF = 23.1 Hz), 62.3, 25.8 (d? JCP = 139.6 Hz), 16.5 HRMS (70eV) calcd for CuH14BrF203P: 341.9832, found: 341.9832 22 1289594 4 Synthesis of the complex 9c: Synthesis The method is the same as the synthesis of compound 6a. After purification, a pale yellow oily liquid 9c (97%) was obtained. The properties of compound 9c are as follows: !H NMR (CDC13? 400 MHz): δ 4.14-4.06 (m? 4Η)5 3.23 (d, J = 21.2 Ηζ, 2 Η), 1·28 (t, J = 7· 02 Ηζ,6Η) 13C NMR (CDC13, 100 MHz): δ 146.8 (dd, JCF = 249.3, 22·5 Hz), 144-8 (dd, JCF = 247.6, 22.3 Hz), 114·4 (t, JCF = 9·6 Hz), 107·1 (t, JCF = 21.6 Hz), 62·7, 26·2 (d, JCP = 142.2 Hz), 16.6 HRMS (70eV) calcd for CnH12BrF403P: 377.9644, found: 377.9649 Synthesis of 10a: Compound 10a was synthesized in the same manner as in Figure 4B. A 100 ml two-necked flask was added, and compound 9a (1·00 g, 3.07 mmol) was added thereto, and the mixture was vacuumed for 10 minutes, and 35 ml of THF was added as a solvent. Sodium tert-butoxide (0.33 g, 3.38 mmol) was added directly to the bath. After stirring for 30 minutes, compound 3a (0·62 g, 3·08 mmol) was dissolved in 10 ml of THF and added to the flask. in. After 8 hours of reaction, the reaction was quenched by the addition of 2N ammonium chloride solution, and extracted with ethyl acetate. After the layer column analysis (pure hexane, Rf = 0.7), a white solid l 〇a (1.01 g, 88 %) was obtained. The properties of compound 10a are as follows: lU NMR (CDCI3, 600 MHz): δ 7.48 (t, J = 8.1 Hz? 2H)? 7.31-7.27 (m, 4H), 7.24 (s, 2H) 13C NMR (CDC135 1 50 MHz ): δ 160.0 (d, JCF = 253.5 Hz), 128.4, 128.1, 124.4 (d, JCF = 11·7 Hz), 122·9, 122.2 (d? JCF = 9.6 Hz)? 119.9 (d, JCF = 25.4 Hz) HRMS (70 eV) calcd for C14H8Br2F2: 371.8961, found: 371.8965 Synthesis of Compound 10b: Synthetic method with the synthesis of compound 10a. After layer column analysis (pure hexane, Rf = 0.7), a white solid l 〇b (83 %) was obtained. The properties of compound 10b are as follows: 23 1289594 # NMR (CDC13, 600 MHz): δ 7·33 (dd, J = 8·9, 6.4 Hz, 2H), 7·29 (dd, J = 9·3, 5· 7 Hz, 2H), 7·16 (s, 2H) 13C NMR (CDC13, 150 MHz): δ 155.9 (d, JCF = 249.8 Hz), 155.7 (d, JCF = 242·7 Hz), 125·1 ( Dd, JCF = 13.7, 6·6 Hz), 122·9 (d, JCF = 27.2 Hz), 120.8 (d, JCF = 27.2 Hz) 9 113.4 (d? JCF = 24.9 Hz)? 108.7 (dd5 JCF = 23.1 , 10.1 Hz) HRMS (70 eV) calcd for Ci4H6Br2F4: 407.8772, found: 407.8777 Synthesis of compound 10c: Synthetic method with the synthesis of compound l〇a. After layer column analysis (pure hexane, Rf = 0.7), a white solid 10c (79 〇/〇) was obtained. The properties of the compound 10c are as follows: !H NMR (CDC13, 600 MHz): δ 7.16 (s5 2H) 13C NMR (CDC13, 150 MHz): δ 145·1 (dd, JCF = 246·3, 15·9 Hz), 144·8 (dd, JCF = 251·8, 11.2 Hz), 122.5, 115.5 (t9 JCF = 12.8 Hz), 99.7 (t, JCF = 22.7 Hz) HRMS (70eV) calcd for C14H2Br2F8: 479.8396, found: 479.8391 Synthesis of 11: Compound 11 was synthesized in the same manner as in Figure C, taking a 150 ml two-necked flask, adding distilled aniline (5.00 g, 53.67 mmol), CaC03 (16·11 g, 160.99 mmol) and vacuuming for 10 minutes. 1-Chloro-3-methylbut-2-ene (12.35 g, 118.06 mmol) and 50 ml of DMF were added as a solvent, and the mixture was stirred at 65 ° C for 3 hours. The reaction was stopped by adding 50 ml of water, extracted with ethyl acetate, and the organic layer was washed three times with brine to remove DMF. 3 ml of concentrated hydrochloric acid was added to the organic layer to precipitate a large amount of white solid, which was filtered using a filter paper to obtain a white solid (13.12 g, 49.37 mmol). This white solid was placed in a 150 ml Erlenmeyer flask, polyphosphoric acid (48.56 g) was added, and the mixture was reacted for 24 hours using a mechanical stirrer, and neutralized with a saturated sodium hydrogencarbonate solution to stop the reaction. It is extracted with acetic acid 24 1289594 ethyl acetate, and the water is removed by magnesium sulfate to obtain a brown viscous liquid. After the column was analyzed (pure hexane, Rf = 〇·5), a brown viscous liquid 11 (5.17 g, 42%) was obtained. The properties of compound 11 are as follows: !H NMR (CDC13, 600 MHz): δ 6.71-6.65 (m? 3H)? 3.53 (t, J = 6·8 Hz, 4H), 2·00 (t, J = 6· Hz 147.7, 134.3 : 229.1830, found: 229.1836 " Synthesis of ib compound 12b: Synthesis of compound 12b As shown in Figure 4D, a 100 ml two-necked flask was added, and compound 11 (3.00 g, 13.08 mmol), DMF 30 ml, ice was added. P0C13 (2.01 g, 13.09 mmol) was slowly added dropwise under a bath, and after stirring for 20 minutes, the mixture was heated to 80 ° C and stirred for 16 hours. After returning to room temperature, the reaction mixture was poured into 1 ml of ice water, neutralized with aqueous sodium sulfate, and extracted with dichloromethane. A brown solid (2.59 g) was obtained after column chromatography. Take a 100 ml two-necked flask, add methyltriphenylphosphonium iodide (4.13 g, 11.57 mmol), dehydrated THF 50 ml, and slowly add n-butyl chain (n-BuLi) in an ice bath. (4·6 ml, 11.59 mmol, 2·5 Μ), after stirring for 30 minutes in an ice bath, the brown solid was dissolved in 5 ml of THF, and the mixture was stirred for 6 hours. After returning to room temperature, the reaction was stopped by adding 10 ml of water, extracted with ethyl acetate, and water was removed by magnesium sulfate to obtain a brown viscous liquid. After layer column analysis (pure hexane, Rf = 0.5), a white solid 12b (2·08 g, 62%) was obtained. #化合物12b The properties are as follows: NMR (CDC13, 400 ΜΗζ): δ 7·20 (s, 2H), 6.68 (dd, J = 17.4, 10.6 Ηζ, 1 Η), 5·57 (d, J = 17 ·6 Ηζ,1Η),5·04 (d,J=10·8 Ηζ,1Η),3·23 (t,J=6·2 Hz, 4Η),1·83 (t,J=6·0 Ηζ,4Η),1·38 (s,12Η) 13C NMR (CDC13,100 ΜΗζ): δ 140·4,137·3,130.1, 25 1289594 124.8, 122.0, 108.0, 46.7, 36·8, 32·2 , 31·1 HRMS (70eV) calcd for C18H25N: 255.1987, found: 255.1982 2. Preparation of compounds 13a to 13g and 14a to 14d of formula (I): Synthesis of compound 13a: Synthesis of compound 13a as shown in the fifth figure Take a 150 ml two-necked flask, add phosphate 6a (1·63 g, 3.58 mmol) and sodium tert_butoxide (0·76 g, 78.76 mmol), vacuum for half an hour, add 50 ml of anhydrous THF and stir for one hour in an ice bath. Further, aldehyde 5a (2·19 g, 7.52 mmol) was dissolved in 5 ml of THF and added to the above mixture for 20 hours. The reaction was quenched by the addition of a little water and extracted with ethyl acetate. Re-precipitation with dichloromethane and n-hexane gave a pale yellow-green solid 13a (2.14 g, 82%). The properties of compound 13a are as follows: !H NMR (CDC13, 600 MHz): δ 7.58 (d? J = 8.4 Hz? 4H)5 7.56 (d, J = 8·4 Hz, 4H), 7.43 (t, J = 8 ·6 Hz, 2H), 7·29-7·26 (m, 8H), 7.12 (d, J = 8·2 Hz, 8H), 7·07 (d, J = 7·8 Hz, 8H), 6.80 (dd, J = 8·5, 2·2 Hz, 2H), 6·72 (dd, J = 8·9, 2·2 Hz, 2H) 13C NMR (CDC13, 150 MHz): δ160·9 ( d, JCF = 247.7 Hz), 148.5 (d, JCF = 10.1 Hz), 146.9, 139.6, 136.7, 129.5, 128.0, 127.2, 127.1, 127.0, 125.1, 123.8, 120.8, 118.5 (d, JCF = 12.5 Hz)? 117.9, 109.1 (d5 JCF = 25.2 Hz) HRMS (70eV) calcd for C52H38F2N2: 728.3003, found: 728.3003 The structure of compound 13a is as follows:
N ύN ύ
26 1289594 4匕合物 13b 的合成: 合成方法同化合物13a的合成。純化後可得淡黃綠色 固體13b (77%)。化合物13b之性質如下: lU NMR (CDC13, 600 MHz): δ 7.69 (d? J = 8.0 Hz5 4H)? 7.62 (d,J = 8.1 Hz,4H),7·34_7·31 (m,10H),7.27 (d,J =8·1 Hz,2H),7.20 (t,J = 8·2 Hz,2H),7.14-7.12 (m, 12H),7.11-7.08 (m,4H) 13C NMR (CDC13? 150 MHz): 5158.0 (d? JCF = 249.8 Hz),147.1,139.8,136.1,135.3 (d,JCF = 6·3 Hz), 133.8 (d,JCF = 10·5 Hz), 129.1,128.8, 128.6, 127.1, 123.2, 122.6, 122.5, 114.3 (d,JCF = 19·9 Hz) HRMS (70eV) calcd for C52H38F2N2: 728.3003, found: 728.3005 化合物13b之結構如下:26 1289594 Synthesis of 4 chelate 13b: Synthesis method is the same as compound 13a. After purification, a pale yellow-green solid 13b (77%) was obtained. The properties of compound 13b are as follows: lU NMR (CDC13, 600 MHz): δ 7.69 (d? J = 8.0 Hz5 4H)? 7.62 (d, J = 8.1 Hz, 4H), 7·34_7·31 (m, 10H), 7.27 (d, J = 8·1 Hz, 2H), 7.20 (t, J = 8·2 Hz, 2H), 7.14-7.12 (m, 12H), 7.11-7.08 (m, 4H) 13C NMR (CDC13? 150 MHz): 5158.0 (d? JCF = 249.8 Hz), 147.1, 139.8, 136.1, 135.3 (d, JCF = 6.3 Hz), 133.8 (d, JCF = 10·5 Hz), 129.1, 128.8, 128.6, 127.1, 123.2, 122.6, 122.5, 114.3 (d, JCF = 19·9 Hz) HRMS (70eV) calcd for C52H38F2N2: 728.3003, found: 728.3005 The structure of compound 13b is as follows:
>[匕合物 13c 的合成: 合成方法同化合物13a的合成。純化後可得淡黃綠色 固體13c (77%)。化合物13c之性質如下: NMR (CDC13, 600 ΜΗζ): δ 7·62 (d,J = 8.4 Hz,4H), 7·58 (d,J = 8·4 Ηζ,4Η),7·31 (dd,J = 11·6, 6·8 Ηζ, 2Η),7.27-7.25 (m,8Η),7·19 (s,2Η),7.11(s,2Η), 7·05-7·02 (m,12Η),6·82 (dd,J = 11·2, 6·8 Ηζ,2Η) 13C NMR (CDC13? 150 MHz): 6156.5 (d5 JCF = 246.2 Hz),153.8 (d,JCF = 246.5 Hz), 146.8, 140.1,136·2, 134.6 (d,JCF = 11·1 Hz),130·1,129.3, 127.2, 123.3, 123.0, 121·8 (d,JCF = 7.2 Hz),119.7, 114.6 (d,JCF = 25.7 Hz)? 113.8 (d? JCF = 23.3 Hz) HRMS (70eV) calcd for C52H36F4N2: 764.2815, found: 764.2811 化合物13c之結構如下: 27 1289594 P F f\> [Synthesis of the chelate 13c: Synthesis method is the same as the synthesis of the compound 13a. After purification, a pale yellow-green solid 13c (77%) was obtained. The properties of the compound 13c are as follows: NMR (CDC13, 600 ΜΗζ): δ 7·62 (d, J = 8.4 Hz, 4H), 7·58 (d, J = 8·4 Ηζ, 4 Η), 7·31 (dd , J = 11·6, 6·8 Ηζ, 2Η), 7.27-7.25 (m, 8Η), 7·19 (s, 2Η), 7.11(s, 2Η), 7·05-7·02 (m, 12Η),6·82 (dd,J = 11·2, 6·8 Ηζ, 2Η) 13C NMR (CDC13? 150 MHz): 6156.5 (d5 JCF = 246.2 Hz), 153.8 (d, JCF = 246.5 Hz), 146.8, 140.1, 136·2, 134.6 (d, JCF = 11·1 Hz), 130·1, 129.3, 127.2, 123.3, 123.0, 121·8 (d, JCF = 7.2 Hz), 119.7, 114.6 (d, JCF = 25.7 Hz)? 113.8 (d? JCF = 23.3 Hz) HRMS (70eV) calcd for C52H36F4N2: 764.2815, found: 764.2811 The structure of compound 13c is as follows: 27 1289594 PF f\
化合物 13d的合成: 合成方法同化合物13a的合成。純化後可得淡黃綠色 固體13d (81%)。化合物13d之性質如下: *H NMR (CDC13? 600 MHz): δ 7.59 (d? J = 8.4 Hz? 4H)? 7·54 (d,J = 8·4 Hz,4H),7·37 (dd,J = 8.8, 2.4 Hz,4H), 7.09 (s,2H), 7.06-7.03 (m,12H), 7.02 (s,2H), 6·99_6·94 (m,8H) 13C NMR (CDC13, 150 MHz): δ158·9 (d,JCF = 241.9 Hz),147.5,139.4,136.6,131.2,128.1,127.4,127.0, 126.7, 126·5, 126·1 (d,JCF = 7.7 Hz),122.3, 116.2 (d, JCF = 22.5 Hz) HRMS (70eV) calcd for C52H36F4N2: 764.2815, found: 764.2811 化合物13d之結構如下:Synthesis of Compound 13d: Synthesis method is the same as the synthesis of Compound 13a. After purification, a pale yellow-green solid was obtained 13d (81%). The properties of compound 13d are as follows: *H NMR (CDC13? 600 MHz): δ 7.59 (d? J = 8.4 Hz? 4H)? 7·54 (d, J = 8·4 Hz, 4H), 7·37 (dd , J = 8.8, 2.4 Hz, 4H), 7.09 (s, 2H), 7.06-7.03 (m, 12H), 7.02 (s, 2H), 6·99_6·94 (m, 8H) 13C NMR (CDC13, 150 MHz): δ158·9 (d, JCF = 241.9 Hz), 147.5, 139.4, 136.6, 131.2, 128.1, 127.4, 127.0, 126.7, 126·5, 126·1 (d, JCF = 7.7 Hz), 122.3, 116.2 (d, JCF = 22.5 Hz) HRMS (70eV) calcd for C52H36F4N2: 764.2815, found: 764.2811 The structure of compound 13d is as follows:
4匕合物 13e 的合成: 合成方法同化合物13a的合成。純化後可得淡黃綠色 固體13e (79%)。化合物13e之性質如下: 4 NMR (CDC13, 600 ΜΗζ): δ 7.63 (t,J = 8·1 Hz,2H), 7·40 (d,J = 8·6 Hz,4H),7·36 (dd,J = 8.1,1·6 Hz,2H), 7.29 (dd,J = 11·8,1·5 Hz,2H),7.27-7.24 (m,8H), 7.15 (s,4H),7.12-7.10 (m,8H),7.05-7.02 (m,8H) 13C NMR (CDC13, 150 MHz): δ160·6 (d,JCF = 248·3 Hz),147·8,147.5,139.6 (d,JCF = 7.4 Hz), 131·2, 130.7, 129.3, 127.6, 127.2, 124.9 (d? JCF = 12.0 Hz)5 28 1289594 124.6, 123.2 (d,JCF = 17·9 Hz),122.3, 118·6, 113·8 (d, JCF = 23.3 Hz) HRMS (70eV) calcd for C52H38F2N2: 728.3003, found: 728.3003 化合物13e之結構如下:Synthesis of 4 chelate 13e: Synthesis method is the same as compound 13a. After purification, a pale yellow-green solid 13e (79%) was obtained. The properties of the compound 13e are as follows: 4 NMR (CDC13, 600 ΜΗζ): δ 7.63 (t, J = 8·1 Hz, 2H), 7·40 (d, J = 8·6 Hz, 4H), 7·36 ( Dd, J = 8.1, 1·6 Hz, 2H), 7.29 (dd, J = 11·8, 1·5 Hz, 2H), 7.27-7.24 (m, 8H), 7.15 (s, 4H), 7.12 7.10 (m, 8H), 7.05-7.02 (m, 8H) 13C NMR (CDC13, 150 MHz): δ160·6 (d, JCF = 248·3 Hz), 147·8, 147.5, 139.6 (d, JCF = 7.4 Hz), 131·2, 130.7, 129.3, 127.6, 127.2, 124.9 (d? JCF = 12.0 Hz) 5 28 1289594 124.6, 123.2 (d, JCF = 17·9 Hz), 122.3, 118·6, 113· 8 (d, JCF = 23.3 Hz) HRMS (70eV) calcd for C52H38F2N2: 728.3003, found: 728.3003 The structure of compound 13e is as follows:
化合物13f的合成: 化合物13f合成方法如第五圖,取一個100 ml的 雙頸瓶,加入化合物8c (1.00 g,2·16 mmol),在手套 箱中秤取 Ni(COD)2 (〇·65 g, 2·38 mmol),加入 20 ml 蒸餾過的DMF當溶劑。再結晶純化後(己烷:二氯甲 烷=10 ·· 1)可得黃綠色固體13f (0.86 g,52%)。化 合物13f之性質如下: lU NMR (CDC13? 600 MHz): δ 7.41 (d? J = 8.7 Hz? 4H)? 7·38·7·36 (m,2H),7·30-7·27 (m,8H),7.16-7.12 (m, 14H),7·09·7·05 (m,8H) 13C NMR (CDC13? 150 MHz): 6155.8 (d? JCF = 244.8 Hz),148.1,147.3, 131.9, 130.4, 129.3, 127.8, 127·1 (d, JCF = 8·7 Hz),124.7,123·3,123.1,121·4 (d,JCF = 15.0 Hz),117·8 (d,JCF = 25.5 Hz), 117.4, 112.9 (d, JCF = 21.6 Hz) HRMS (70eV) calcd for C52H36F4N2: 764.2815,found: 764.2819 化合物13f之結構如下:Synthesis of compound 13f: Compound 13f synthesis method As shown in the fifth figure, a 100 ml double-necked flask was added, and compound 8c (1.00 g, 2.16 mmol) was added, and Ni(COD)2 was weighed in a glove box. 65 g, 2·38 mmol), add 20 ml of distilled DMF as solvent. After recrystallization purification (hexane: methylene chloride = 10 ··1), a yellow-yellow solid 13f (0.86 g, 52%) was obtained. The properties of compound 13f are as follows: lU NMR (CDC13? 600 MHz): δ 7.41 (d? J = 8.7 Hz? 4H)? 7·38·7·36 (m, 2H), 7·30-7·27 (m , 8H), 7.16-7.12 (m, 14H), 7·09·7·05 (m, 8H) 13C NMR (CDC13? 150 MHz): 6155.8 (d? JCF = 244.8 Hz), 148.1, 147.3, 131.9, 130.4, 129.3, 127.8, 127·1 (d, JCF = 8·7 Hz), 124.7, 123·3, 123.1, 121·4 (d, JCF = 15.0 Hz), 117·8 (d, JCF = 25.5 Hz) ), 117.4, 112.9 (d, JCF = 21.6 Hz) HRMS (70eV) calcd for C52H36F4N2: 764.2815,found: 764.2819 The structure of compound 13f is as follows:
4匕合物 13g的合成: 合成方法同化合物13f的合成。再結晶純化後可得黃 29 1289594 色固體13g (43%)。化合物13g之性質如下: !H NMR (CDC13? 600 MHz): δ 7.51 (d5 J = 16.7 Hz, * 2H),7·42 (d,J = 7·8 Hz,4H),7.29-7.24 (m,8H), 7.13-7.12 (m,8H),7.08-7.04 (m,8H),6.98 (d, J = 16·7 Hz,2H) 13C NMR (CDC13, 150 MHz): δ148·9, 147.1,144.5 (dd, JCF = 241.2, 22.8 Hz),144.2 (dd,JCF = 240·1,22·5 Hz), 138·0 (t,JCF = 8·5 Hz), 129·9,129·3,128.1, 124.9, 123.6, 122.3, 111.3 HRMS (70eV) calcd for C52H32F8N2: 836.2438, found: 836.2442 化合物13g之結構如下:Synthesis of 4 mer compound 13g: Synthesis method is the same as compound 13f. After recrystallization and purification, yellow 29 1289594 color solid 13 g (43%) was obtained. The properties of compound 13g are as follows: !H NMR (CDC13? 600 MHz): δ 7.51 (d5 J = 16.7 Hz, * 2H), 7·42 (d, J = 7·8 Hz, 4H), 7.29-7.24 (m , 8H), 7.13-7.12 (m, 8H), 7.08-7.04 (m, 8H), 6.98 (d, J = 16·7 Hz, 2H) 13C NMR (CDC13, 150 MHz): δ148·9, 147.1, 144.5 (dd, JCF = 241.2, 22.8 Hz), 144.2 (dd, JCF = 240·1, 22·5 Hz), 138·0 (t, JCF = 8·5 Hz), 129·9, 129·3, 128.1, 124.9, 123.6, 122.3, 111.3 HRMS (70eV) calcd for C52H32F8N2: 836.2438, found: 836.2442 The structure of compound 13g is as follows:
前述化合物13a〜13g之UV、PL及Φ之測試值如下表 表一 13a 13b 13c 13d 13e 13f 13g UV 394 386 396 396 406 406 416 PL 469 471 463 472 505 509 527 Φ 0.82 0.83 0.81 0.91 0.93 0.91 0.92 4匕合物 14a 的合成: 化合物14a合成方式如第六圖,取一個150ml的 雙頸瓶,加入化合物12a (1.59 g,5.87 mmol)、化合 物 10a (1.00 g,2·67 mmol)、Pd(OAc)2 (29.9 mg,0.13 mmol)、PPh4Br (0.22 g,0·53 mmol)和 NaOAc (0.91 g, 13.4 mmol),上真空抽1小時,在氮氣下加入除過水 的DMF 15ml,加熱到100 °C攪拌16小時。加入 50ml水停止反應,此時有大量黃色固體析出,收集 固體,層柱分析後可得暗黃色固體14a (1·59 g, 1289594 79%)。化合物14a之性質如下: NMR (CDC13, 600 ΜΗζ): δ 7·58 (t,J = 8·0 Hz,2H), 7·36 (d,J = 8·5 Ηζ,4Η),7·32 (s,2Η),7.28-7.22 (m, 10Η),7.18 (d,J = 10·1 Ηζ,2Η),7·11 (d,J = 7·6 Ηζ, 8Η),7·06-7·03 (m,10 Η),6·92 (d,J = 10·5 Ηζ,2Η) 13C NMR (CDC135 150 MHz): 5160.7 (d, JCF = 248.4 Hz),147·8,147.4,139.1 (d,JCF = 7·8 Hz),130.8, 129.4, 129.3, 127·5, 126·9, 125·4, 124·7, 124.0, 123.9, 123.2 (d5 JCF = 8.7 Hz), 122.4, 122.2, 112.8 (d5 JCF = 22.1 Hz) HRMS (70eV) calcd for C54H40F2N2: 754.3160, found: 754.3156 化合物14a之結構如下:The test values of UV, PL and Φ of the above compounds 13a to 13g are shown in the following Table 13a 13b 13c 13d 13e 13f 13g UV 394 386 396 396 406 406 416 PL 469 471 463 472 505 509 527 Φ 0.82 0.83 0.81 0.91 0.93 0.91 0.92 4 Synthesis of the compound 14a: Compound 14a was synthesized in the same manner as in the sixth figure. A 150 ml double flask was charged, and compound 12a (1.59 g, 5.87 mmol), compound 10a (1.00 g, 2.67 mmol), Pd (OAc) was added. 2 (29.9 mg, 0.13 mmol), PPh4Br (0.22 g, 0·53 mmol) and NaOAc (0.91 g, 13.4 mmol), vacuumed for 1 hour, added 15 ml of DMF in water, and heated to 100 Stir at °C for 16 hours. The reaction was stopped by the addition of 50 ml of water. At this time, a large amount of a yellow solid was precipitated, and solids were collected. After the column analysis, a dark yellow solid 14a (1·59 g, 1289594 79%) was obtained. The properties of the compound 14a are as follows: NMR (CDC13, 600 ΜΗζ): δ 7·58 (t, J = 8·0 Hz, 2H), 7·36 (d, J = 8·5 Ηζ, 4 Η), 7.32 (s, 2Η), 7.28-7.22 (m, 10Η), 7.18 (d, J = 10·1 Ηζ, 2Η), 7·11 (d, J = 7·6 Ηζ, 8Η), 7·06-7 · 03 (m, 10 Η), 6.92 (d, J = 10·5 Ηζ, 2Η) 13C NMR (CDC135 150 MHz): 5160.7 (d, JCF = 248.4 Hz), 147·8, 147.4, 139.1 ( d, JCF = 7·8 Hz), 130.8, 129.4, 129.3, 127·5, 126·9, 125·4, 124·7, 124.0, 123.9, 123.2 (d5 JCF = 8.7 Hz), 122.4, 122.2, 112.8 (d5 JCF = 22.1 Hz) HRMS (70eV) calcd for C54H40F2N2: 754.3160, found: 754.3156 The structure of compound 14a is as follows:
化合物 14b 的合成·· 合成方法同化合物14a的合成。純化後可得淡橘色固 體14b (62%)。化合物14b之性質如下: !H NMR (CDC13, 600 ΜΗζ): δ 7·38 (d,J = 8·7 Hz,4H), 7.30-7·25 (m,12Η),7·21 (s,4Η),7·11-7·07 (m,10Η), 7.05-7.02 (m? 8H) • 13C NMR (CDC13, 150 MHz): δ156·6 (d,JCF = 241·8Synthesis of Compound 14b·· Synthesis method is the same as Synthesis of Compound 14a. After purification, a pale orange solid 14b (62%) was obtained. The properties of compound 14b are as follows: !H NMR (CDC13, 600 ΜΗζ): δ 7·38 (d, J = 8·7 Hz, 4H), 7.30-7·25 (m, 12Η), 7·21 (s, 4Η),7·11-7·07 (m,10Η), 7.05-7.02 (m? 8H) • 13C NMR (CDC13, 150 MHz): δ156·6 (d, JCF = 241·8
Hz), 156.3 (d, JCF = 243.5 Hz), 148.0 (d, JCF = 241.8 Hz), 147.3, 131.5, 130.5, 129.3, 129.1, 127.7, 124.7, 123.8, 123.3, 122.4, 122.3 (d, JCF = 19.4 Hz)? 117.6, 113.0 (dy JCF = 25.1 Hz), 112.7 (d, JCF = 24.0 Hz) HRMS (70eV) calcd for C54H38F4N2: 790.2971, found: 790.2975 化合物14b之結構如下:Hz), 156.3 (d, JCF = 243.5 Hz), 148.0 (d, JCF = 241.8 Hz), 147.3, 131.5, 130.5, 129.3, 129.1, 127.7, 124.7, 123.8, 123.3, 122.4, 122.3 (d, JCF = 19.4 Hz)? 117.6, 113.0 (dy JCF = 25.1 Hz), 112.7 (d, JCF = 24.0 Hz) HRMS (70eV) calcd for C54H38F4N2: 790.2971, found: 790.2975 The structure of compound 14b is as follows:
31 1289594 4匕合物 14c 的合成: 合成方法同化合物14a的合成。純化後可得淡橘色固 體14c (50%)。化合物14c之性質如下: ]H NMR (CDC139 600 MHz): δ 7.45 (d, J = 16.4 Hz, 4H),7·39 (d, J = 8·6 Hz, 4H),7·26 (t,J = 8·1 Hz,8H), 7.11 (d,J = 7.8 Hz,8H), 7.07-7.03 (m,8H),6.95 (s, 2H) 13C NMR (CDC13? 150 MHz): 5148.7, 147.2, 144.7 (dd, JCF = 242.3, 23.5 Hz), 144.3 (dd, JCF = 239.5, 22.1 Hz),137.1 (t,JCF = 8.7 Hz), 130.2,129·4,127.9, 125.0, 123.6, 122.6, 122.0, 116·7, 113.7 (t,JCF = 12·5 Hz),111.7 HRMS (70eV) calcd for C54H34F8N2: 862.2594, found: 862.2591 化合物14c之結構如下:31 1289594 Synthesis of 4 chelate 14c: Synthesis method is the same as compound 14a. After purification, a pale orange solid 14c (50%) was obtained. The properties of compound 14c are as follows: ]H NMR (CDC 139 600 MHz): δ 7.45 (d, J = 16.4 Hz, 4H), 7·39 (d, J = 8·6 Hz, 4H), 7·26 (t, J = 8·1 Hz, 8H), 7.11 (d, J = 7.8 Hz, 8H), 7.07-7.03 (m, 8H), 6.95 (s, 2H) 13C NMR (CDC13? 150 MHz): 5148.7, 147.2, 144.7 (dd, JCF = 242.3, 23.5 Hz), 144.3 (dd, JCF = 239.5, 22.1 Hz), 137.1 (t, JCF = 8.7 Hz), 130.2, 129·4, 127.9, 125.0, 123.6, 122.6, 122.0, 116·7, 113.7 (t, JCF = 12·5 Hz), 111.7 HRMS (70 eV) calcd for C54H34F8N2: 862.2594, found: 862.2591 The structure of compound 14c is as follows:
化合物 14d 的合成: 合成方法同化合物14a的合成。純化後可得橘色固體 14d (42%)。化合物14d之性質如下: !H NMR (CDC13? 600 MHz): δ 7.46-7.39 (m? 6H), 6.85 (d,J = 8.2 Hz, 2H),6.64 (d,J = 8·7 Hz,2H),3·43 (t,J =5·3 Hz,8H), 2·29 (t,J = 5·1 Hz,8H),1.75 (s,24H) 13C NMR (CDC13, 150 MHz): 5144.2, 143.1 (d? JCF = 249.1 Hz)? 142.8 (d, JCF = 243.2 Hz), 138.0 (d? JCF = 9·8 Hz),135.2,128.7,127.7,123.2,121.1,108.5, 104.8, 49.6, 35.0, 29.7, 25.7 HRMS (70eV) calcd for C5〇H5〇F8N2: 830.3846, found: 830.3849 化合物14d之結構如下: 32 1289594Synthesis of Compound 14d: Synthesis method is the same as the synthesis of Compound 14a. After purification, an orange solid was obtained 14d (42%). The properties of compound 14d are as follows: !H NMR (CDC13? 600 MHz): δ 7.46-7.39 (m? 6H), 6.85 (d, J = 8.2 Hz, 2H), 6.64 (d, J = 8·7 Hz, 2H ), 3·43 (t, J = 5·3 Hz, 8H), 2·29 (t, J = 5·1 Hz, 8H), 1.75 (s, 24H) 13C NMR (CDC13, 150 MHz): 5144.2 , 143.1 (d? JCF = 249.1 Hz)? 142.8 (d, JCF = 243.2 Hz), 138.0 (d? JCF = 9·8 Hz), 135.2, 128.7, 127.7, 123.2, 121.1, 108.5, 104.8, 49.6, 35.0 , 29.7, 25.7 HRMS (70eV) calcd for C5〇H5〇F8N2: 830.3846, found: 830.3849 The structure of compound 14d is as follows: 32 1289594
14d 前述化合物14a〜14d之UV、PL及φ之測試值如下表14d The test values of UV, PL and φ of the aforementioned compounds 14a to 14d are shown in the following table.
14a 14b 14c 14d W 424 435 443 447 FL 523 555 573 一 H|1 579 Φ 0.92 9S5 9M 實Κ列二:具有《b學式(I)化免物」生為有機發光二極 體(OLED)發光材料之性皙 本發明係可使用具有化學式(I)之化合物作為 OLED之發光材料。本實施例係分別取化合物13a和 13c作為客發光體(dopant),ADN作主體,CuPc為 電洞注入層,NPB與Alq3分別為電洞傳輸層與電子 傳輸層。該裝置元件結構如第七圖所示: ITO/CuPc(30nm)/NPB(40 nm)/3% 化合物 13a 或 13c 掺雜於 ADN (30 nm) /Alq3(30 nm)/Mg:Ag(10:l)(50 nm)/Ag所組成。將這化合物13a和13c利用摻雜 (doping)的方法製成元件後,接著進行一些性質的量 測’並且和藍光主發光體ADN作比較。 第八圖為化合物13a、13c、ADN在電流密度J == l〇mA/em2的發光光譜(EL)比較圖,由圖中可以觀 t 化合物13a、13c皆是單一波峰,且波形相似, 今^沒有其他材料如ADN或NPB等的發光,即使在 ,艺流密度時EL光譜都維持不變,可見外加電壓的 變,元f的放光光譜幾乎沒有產生影響,顯示這 兀件>能維持很好的發光特性。進一步與發光體 Ν比較’可以發現由於化合物13a、13c在結構上 33 1289594 含氟,將拉低分子結構中的HOMO能階進而使得該 分子能階間隙(energy gap)增大,因此其EL光譜具有 藍移現象,也比ADN更接近藍色,由此可知,本發 明之化合物為更藍的發光體而可以解決目前OLED 中現有藍色摻雜物的藍色過淺的問題而可以產生飽 滿度較南的監色。 申請人利用化合物13a、13c、ADN所作成的元 件數據整理在表三,在表中分別紀錄了不同電流密 度下(J = 20,100 mA/cm2)的數值,藉此觀察元件發 揮的效用。由表三可以發現化合物13a與13c之亮度 遠大於ADN,而發光波長則較ADN趨近於藍光發光 區域。 表三、ADN、化合物13a以及化合物13c之特徵數據14a 14b 14c 14d W 424 435 443 447 FL 523 555 573 One H|1 579 Φ 0.92 9S5 9M Real array II: It has the "b learning (I) free material" and the organic light emitting diode (OLED) Properties of Materials In the present invention, a compound of the formula (I) can be used as a luminescent material for an OLED. In this embodiment, compounds 13a and 13c are respectively taken as donors, ADN is used as the main body, CuPc is the hole injection layer, and NPB and Alq3 are the hole transport layer and the electron transport layer, respectively. The device structure is shown in Figure 7: ITO/CuPc (30nm) / NPB (40 nm) / 3% Compound 13a or 13c is doped with ADN (30 nm) / Alq3 (30 nm) / Mg: Ag (10 :l) (50 nm) / Ag composition. After the compounds 13a and 13c were formed into a component by a doping method, measurement of some properties was carried out and compared with the blue main emitter ADN. The eighth figure shows the comparison of the luminescence spectra (EL) of the compounds 13a, 13c and ADN at the current density J == l〇mA/em2. From the figure, the compounds 13a and 13c are single peaks, and the waveforms are similar. ^There is no other material such as ADN or NPB. Even at the art density, the EL spectrum remains unchanged. It can be seen that the applied voltage changes, and the emission spectrum of the element f has almost no effect, indicating that this element can be Maintain good luminescence properties. Further comparing with the illuminant ', it can be found that since the compounds 13a, 13c are fluorine-containing in the structure 33 1289594, the HOMO energy level in the molecular structure is pulled down and the energy gap of the molecule is increased, so the EL spectrum is It has a blue shift phenomenon and is closer to blue than ADN. It can be seen that the compound of the present invention is a bluer illuminant and can solve the problem that the blue color of the existing blue dopant in the current OLED is too shallow and can be full. The degree is better than the south. The data of the components made by the applicant using the compounds 13a, 13c and ADN are summarized in Table 3. The values of the different current densities (J = 20, 100 mA/cm2) are recorded in the table to observe the effect of the components. It can be seen from Table 3 that the luminances of the compounds 13a and 13c are much larger than those of the ADN, and the luminescence wavelength is closer to the blue luminescence region than the ADN. Table 3. Characteristic data of ADN, compound 13a and compound 13c
Compound Brigjbtness (ed/m2) EQE{%) PE(cd/A) Voliag^ (V) cm A»N 276* 1300^ L56 IA7 U8 UO 0‘78 0,S9 S56 6M X«(US Y*0,09 (448 麵” m im 5602 17992 3.51 3.45 5.60 2Λ6 L7Q 1038 X«0J2 Y«021 (4$2腿) I3t 135$ 6239 21423 3J? 3Λ9 6M 624 2,84 2.04 751 9M X*0J6 Y«0J5 <458 _) a. J=20mA/on2, b. I=l()()mA/an2, c為最大發光度,d為代表最大此發射波長 弟九圖為化合物13a、13c與ADN的電壓與亮度 的關係比較圖。一個理想的發光材料,不僅在高電流密 ,下要有好的發光效率,而且在低電壓驅動下要能夠達到 咼亮度的需求。由圖中以及表一我們可以發現,化合物 13a、13c與ADN的起始電壓約為7 5V-10V左右, AND最大亮度在電壓為10V時為5619cd/m2左右缺 ,化合物13a與13c在在電壓10V至14V其亮度有持 續升1¾的現象,其最大免度在電壓14V時分別為 34 1289594 17992與21423cd/m2左右,由此顯示本發明之化合物 作為客發光體時可以幫助主發光體大大提高OLED 之發光度。 第十圖至第十二圖為化合物13a、i3c與ADN的電 流密度與外部量子效率、電流密度與能量效率、電流密度 與發光效率的關係比較圖。根據圖與表三所示,在j = 20 mA/cm2時,ADN之外部量子效率I為156,發光效率 (luminance efficiency,L.E·)和能量效率(p0wer efflcienCy,Ρ·Ε ) 分別為0.781m/W、1.38cd/A,然而化合物13a、13c之外 部量子效率 iW為 3·51 與 3.57,L E·為 2·16 lm/W、2.84 lm/W,Ρ·Ε·為 5·69 cd/A、6.78 cd/A,顯示化合物 13a、 13c無論是外部量子效率、發光效率或能量效率都比adn 來得高,由此可推知本發明之化合物由於氟原子的加 入可以使元件的外部量子效率、發光效率、能量效率有效 地提升。 實施例三式(I)之其他化合物之缴1 具有化學式(I)之其他化合物15a-15e其製備方式 如實施例一所述,I5a-15e之化學式如下··Compound Brigjbtness (ed/m2) EQE{%) PE(cd/A) Voliag^ (V) cm A»N 276* 1300^ L56 IA7 U8 UO 0'78 0,S9 S56 6M X«(US Y*0, 09 (448面面) m im 5602 17992 3.51 3.45 5.60 2Λ6 L7Q 1038 X«0J2 Y«021 (4$2 legs) I3t 135$ 6239 21423 3J? 3Λ9 6M 624 2,84 2.04 751 9M X*0J6 Y«0J5 < 458 _) a. J=20mA/on2, b. I=l()() mA/an2, c is the maximum luminosity, and d is the maximum emission wavelength. The figure is the voltage of compound 13a, 13c and ADN. Comparison of brightness relationship. An ideal luminescent material should not only have good luminous efficiency under high current density, but also be able to achieve the brightness requirement under low voltage driving. From the figure and Table 1, we can find that The starting voltages of the compounds 13a, 13c and ADN are about 75 V-10V, the maximum brightness of AND is about 5619 cd/m2 at a voltage of 10 V, and the brightness of the compounds 13a and 13c is continuously increased by 13⁄4 at a voltage of 10V to 14V. Phenomenon, the maximum degree of exemption is about 34 1289594 17992 and 21423cd/m2 at voltage 14V, respectively, thus showing that the compound of the present invention can help the main illuminant when used as a guest illuminant. Improve the luminosity of OLEDs. The tenth to twelfth graphs show the relationship between current density and external quantum efficiency, current density and energy efficiency, current density and luminous efficiency of compounds 13a, i3c and ADN. As shown, at j = 20 mA/cm2, the external quantum efficiency I of ADN is 156, and the luminous efficiency (LE·) and energy efficiency (p0wer efflcienCy, Ρ·Ε) are 0.781 m/W and 1.38 cd, respectively. /A, however, the external quantum efficiencies iW of the compounds 13a and 13c are 3·51 and 3.57, the LE· is 2·16 lm/W, 2.84 lm/W, and the Ρ·Ε· is 5.69 cd/A, 6.78 cd/ A, it is shown that the compounds 13a, 13c have higher external quantum efficiency, luminous efficiency or energy efficiency than adn, and it can be inferred that the compound of the present invention can make the external quantum efficiency, luminous efficiency, energy efficiency of the element due to the addition of fluorine atoms. The compound of the formula (I) is the same as the other compounds 15a-15e of the formula (I). The preparation method is as described in the first embodiment, and the chemical formula of I5a-15e is as follows:
15a 35 128959415a 35 1289594
此外,15a-15e之化合物特性如表四所示: 15a 15b 15c 15d 15e EL 463nm 一 473nm 478nm PL 498nm 一 468nm — 一 其他實施態樣 36 1289594 合,露的所有特徵都可能與其他方法結 同、相箄二揭路的每一個特徵都可能選擇性的以相 门相專或相似目的特徵所取代,因此, 特徵^卜’所有的本說明書所揭露的碰僅是相等或相似 特徵中的一個例子。 飞祁似 【圖式簡單說明】 式⑴之化合物之有機 第一圖係含有本發明化學 電發光裝置示意圖。 第二圖係本發明具有化學式⑴之化合物之 物合成方式;其中A為化合物2a,2b之合 ;^ 為化合物2e,2d之合成方法,c為化合物3心之】 成方法,D為化合物3c,3d之合成方法,e為化合 4a,4b,4c之合成方法。 第二圖係本發明具有化學式(1)之化合物之前驅 物合成方式’其中A為化合物5&,51),5(:之合成方法’ B為化合物6a之合成方法,C為化合物7之合成方 法,D為化合物5d之合成方法,E為化合物补之合 成方法,F為化合物8c,8d之合成方法。 ° 第四圖係本發明具有化學式(1)之化合物之前驅 物合成方式,其中A為化合物9a,9b,9c之合成方法, B為化合物10a,10b,10c之合成方法,c為化合物u 之合成方法,D為化合物12b之合成方法,。 第五圖係本發明化合物I3a、13g之合成方式。 第六圖係本發明化合物I4a、14g之^成方^。 第七圖係本發明化合物作為藍光發光材料的有 37 1289594 機電發光裝置圖。In addition, the properties of the compounds of 15a-15e are shown in Table 4: 15a 15b 15c 15d 15e EL 463nm - 473nm 478nm PL 498nm - 468nm - a further embodiment 36 1289594, all the features of the dew may be the same as other methods, Each feature of the two roads may be selectively replaced by phase-specific or similar-purpose features. Therefore, all the features disclosed in this specification are only one example of equal or similar features. .祁 祁 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ The second figure is a synthesis method of the compound of the formula (1) of the present invention; wherein A is a compound of 2a, 2b; ^ is a synthesis method of compound 2e, 2d, c is a compound 3; a compound 3c , 3d synthesis method, e is a synthesis method of compound 4a, 4b, 4c. The second figure is a synthesis method of the precursor of the compound of the formula (1) of the present invention, wherein A is a compound 5 & 51, 5 (the synthesis method of B is a synthesis method of the compound 6a, and C is a synthesis of the compound 7) In the method, D is a synthesis method of the compound 5d, E is a compound-compound synthesis method, and F is a synthesis method of the compound 8c, 8d. The fourth diagram is a synthesis method of the precursor of the compound of the formula (1) of the present invention, wherein A For the synthesis of compounds 9a, 9b, 9c, B is a synthesis of compounds 10a, 10b, 10c, c is a synthesis of compound u, and D is a synthesis of compound 12b. Figure 5 is a compound of the invention I3a, 13g The sixth scheme is the composition of the compound I4a, 14g of the present invention. The seventh diagram is a diagram of the 37 1289594 electromechanical luminescence device of the compound of the present invention as a blue light luminescent material.
第八圖係本發明化合物13a、13c與ADN的EL 電激發光光譜比較圖。 第九圖係本發明化合物13a、13c與ADN的電壓 與亮度的關係比較圖。 第十圖係本發明化合物13a、13c與ADN的電流 密度與外部量子效率的關係比較圖。 第十一圖係本發明化合物13a、13c與ADN的電 流密度與能量效率的關係比較圖。 第十二圖係本發明化合物13a、13c與ADN的電 流密度與發光效率的關係比較圖。 【主要元件符號對照說明】 1 陽極層 2 電洞注入層 3 電洞傳遞層 4 發光層層 5 電子傳遞 6 陰極層 10有機電激發光裝置 38The eighth graph is a comparison of EL electroluminescence spectra of the compounds 13a, 13c and ADN of the present invention. The ninth graph is a graph comparing the voltage and brightness of the compounds 13a, 13c and ADN of the present invention. The tenth graph is a graph comparing the relationship between the current density of the compounds 13a, 13c and ADN of the present invention and the external quantum efficiency. The eleventh graph is a graph comparing the relationship between the current density and the energy efficiency of the compounds 13a, 13c and ADN of the present invention. Fig. 12 is a graph showing the relationship between the current density and the luminous efficiency of the compounds 13a, 13c and ADN of the present invention. [Main component symbol comparison description] 1 anode layer 2 hole injection layer 3 hole transfer layer 4 light-emitting layer 5 electron transfer 6 cathode layer 10 organic electroluminescent device 38
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94121140A TWI289594B (en) | 2005-06-24 | 2005-06-24 | Luminescent material of organic light-emitting diode (OLED) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94121140A TWI289594B (en) | 2005-06-24 | 2005-06-24 | Luminescent material of organic light-emitting diode (OLED) |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200700529A TW200700529A (en) | 2007-01-01 |
TWI289594B true TWI289594B (en) | 2007-11-11 |
Family
ID=39295692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94121140A TWI289594B (en) | 2005-06-24 | 2005-06-24 | Luminescent material of organic light-emitting diode (OLED) |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI289594B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102627570A (en) * | 2012-03-20 | 2012-08-08 | 西安近代化学研究所 | Synthetic method of 1,4-bis[4-(di-m-methylphenylamino)styryl]benzene |
CN102633655A (en) * | 2012-03-20 | 2012-08-15 | 西安近代化学研究所 | Method for synthesizing 4,4'-bis[4-(3-methylphenyl amino) styryl] biphenyl |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210319957A1 (en) * | 2018-08-16 | 2021-10-14 | Tokyo Chemical Industry Co., Ltd. | Novel compound, and composition for forming hole transporting layer for perovskite solar cells |
CN114230509A (en) * | 2021-04-19 | 2022-03-25 | 闽都创新实验室 | Stilbene derivative containing fluorine substituted biphenyl and preparation method and application thereof |
-
2005
- 2005-06-24 TW TW94121140A patent/TWI289594B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102627570A (en) * | 2012-03-20 | 2012-08-08 | 西安近代化学研究所 | Synthetic method of 1,4-bis[4-(di-m-methylphenylamino)styryl]benzene |
CN102633655A (en) * | 2012-03-20 | 2012-08-15 | 西安近代化学研究所 | Method for synthesizing 4,4'-bis[4-(3-methylphenyl amino) styryl] biphenyl |
Also Published As
Publication number | Publication date |
---|---|
TW200700529A (en) | 2007-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110872316B (en) | Novel compound, application thereof and organic electroluminescent device using compound | |
CN112174992B (en) | Luminescent material, application thereof and organic electroluminescent device comprising luminescent material | |
CN105670610B (en) | The compound of organic photoelectric device and organic photoelectric device comprising the compound | |
CN111606813B (en) | Compound, organic electronic light-emitting device comprising same and application thereof | |
KR101861263B1 (en) | Anthracene deriva tives and organic light-emitting diode including the same | |
JP2010021561A (en) | New blue illuminator used for organic electroluminescent element | |
TW200837037A (en) | Arylamine compounds and electronic devices | |
Park et al. | Synthesis and properties of blue-light-emitting anthracene derivative with diphenylamino-fluorene | |
CN108276336B (en) | Organic photoelectric functional material, light-emitting device, and preparation method and application thereof | |
CN103958486A (en) | Spirobifluorene compounds for light emitting devices | |
KR20140099082A (en) | Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same | |
JP2023554536A (en) | Fused ring compounds and their applications, and organic electroluminescent devices containing the fused ring compounds | |
CN112778253B (en) | Organic compound and organic electroluminescent device containing the same | |
Kim et al. | Orange phosphorescent organic light-emitting diodes using new spiro [benzoanthracene-fluorene]-type host materials | |
KR20130121597A (en) | Using triphenylamine as hole transporting mateial and organic electroluminescent device using the same | |
WO2023273998A1 (en) | Compound and application thereof, and organic electroluminescent device | |
CN112409276A (en) | Compound and application thereof | |
TW201000450A (en) | Compounds having electroluminescent or electron transport properties | |
KR20130121516A (en) | Using new alylamine as hole transporting mateial and organic electroluminescent device using the same | |
KR20150059680A (en) | Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same | |
CN103468245A (en) | OLED material with carrier transmittability as well as preparation method and application thereof | |
KR20160142909A (en) | Dibenzothiophene derivative compound and organic electroluminescent device using the same | |
TWI289594B (en) | Luminescent material of organic light-emitting diode (OLED) | |
CN115594596A (en) | Compound and application thereof | |
KR20130120855A (en) | Using thiophen derivative as hole transporting mateial and organic electroluminescent device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |