JP2002265274A - Method for producing powder - Google Patents

Method for producing powder

Info

Publication number
JP2002265274A
JP2002265274A JP2001061569A JP2001061569A JP2002265274A JP 2002265274 A JP2002265274 A JP 2002265274A JP 2001061569 A JP2001061569 A JP 2001061569A JP 2001061569 A JP2001061569 A JP 2001061569A JP 2002265274 A JP2002265274 A JP 2002265274A
Authority
JP
Japan
Prior art keywords
powder
producing
mixture
solid solution
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001061569A
Other languages
Japanese (ja)
Inventor
Takeo Hattori
豪夫 服部
Shin Nishiyama
伸 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001061569A priority Critical patent/JP2002265274A/en
Publication of JP2002265274A publication Critical patent/JP2002265274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily produce ZrW2 O3 being a compound which has no generation of reaction by-products and has a clean, negative thermal expansion coefficient. SOLUTION: The average particle size of a powdery mixture obtained by blending ZrO2 and WO3 so as to produce ZrW2 O8 by dry blending or wet blending is controlled to 0.05 to 50 μm. Pressure of 0.001 to 500 ton/cm<2> is applied to the powdery mixture to be made into a mixture compact having the minimum dimensions of 0.2 to 100 mm. The compact is burnt at a burning temperature of 1,120 to 1,250 deg.C for >=1.5 hr, is rapidly cooled, and is thereafter pulverized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負の熱膨張係数を
有し、物質の温度膨張制御等のために様々な用途を有す
る粉体の製造方法に関する。本発明は、更に詳しくは、
組成式(A1-ZZ)(W1-XX 28 (AはZr又
はHf又はそれらの混合物、DはZrO2又はHfO2
固溶し得る元素、Zは各元素で限定される最大固溶原子
割合以下の値、RはWO3に固溶し得る元素、Xは各元
素で限定される最大固溶原子割合以下の値)で表される
粉体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder having a negative coefficient of thermal expansion and having various uses for controlling thermal expansion of a substance. The present invention, more particularly,
Compositional formula (A 1 -Z D Z ) (W 1 -X R x ) 2 O 8 (A is Zr or Hf or a mixture thereof, D is an element capable of forming a solid solution in ZrO 2 or HfO 2 , Z is each element R is an element capable of forming a solid solution in WO 3 , and X is a value not more than the maximum solid solution atomic ratio defined by each element). About.

【0002】[0002]

【従来の技術】AW28は、1105〜1257℃にお
いて安定な物質であり、又、準安定物質として777℃
以下の温度領域において等方的に負の熱膨張を示すこと
が知られている。その製造方法としては、USP551
4360の明細書の中で三種類の方法が検討され記載さ
れている。
2. Description of the Related Art AW 2 O 8 is a stable substance at 1105 to 1257 ° C. and 777 ° C. as a metastable substance.
It is known to exhibit isotropic negative thermal expansion in the following temperature range. As a manufacturing method thereof, USP551
In the specification of 4360, three methods are discussed and described.

【0003】第1の方法としては、ZrO2とWO3粉体
とを混合し、ZrW28を前記安定温度領域において焼
成し、急冷する方法が記載されているが、目的とする物
質が合成できていない。
As a first method, a method is described in which ZrO 2 and WO 3 powder are mixed, ZrW 2 O 8 is calcined in the stable temperature range, and quenched. Not synthesized.

【0004】第2の方法としては、酸化ジルコニウムに
タングステン酸を反応させ、焼成させる方法が記載され
ているが、生成した物質が目的とするものであったかど
うかが確認されていない。
As a second method, there is described a method in which tungstic acid is reacted with zirconium oxide and calcined, but it is not confirmed whether or not the produced substance is an intended substance.

【0005】第3の方法としては、前記安定温度領域に
ある1200℃程度の温度でWO3がガス化して離散し
てしまうことのないよう密閉白金チューブ内に前記混合
粉末を封入し、WO3のガス化・離散を防止して製造す
る方法が記載されている。その結果をもとに、前記US
P5514360では、タングステン酸塩水溶液とオキ
シハロゲン化ジルコニウム(又は同ハフニウム)又は硝
酸ジルコニウム(又は同ハフニウム)水溶液を反応さ
せ、その後乾燥・焼成する方法が記載されている。
[0005] As the third method, the stable WO 3 at a temperature of about 1200 ° C. in a temperature region enclosing the mixed powder in a sealed platinum tube so as not to result in discrete gasified, WO 3 A method is described in which gasification and separation are prevented. Based on the result, the US
P5514360 describes a method of reacting an aqueous solution of tungstate with an aqueous solution of zirconium oxyhalide (or the same hafnium) or zirconium nitrate (or the same hafnium), followed by drying and firing.

【0006】しかし、前記の密閉白金チューブを利用し
た方法においては、白金チューブ内への原材料の封入
や、焼成後の物質の取り出しに多くの工程を必要とし、
又、白金チューブ材料の粉体へのコンタミネーションが
発生して純度が低下するという問題点があった。又、前
記USP5514360の方法は、焼成中に塩素ガスま
たは窒素酸化物が発生するため製造方法としては問題が
あり、更には生成物の精製等に問題があった。
However, the above-mentioned method using a sealed platinum tube requires many steps for enclosing a raw material in the platinum tube and taking out a substance after firing,
In addition, there has been a problem that contamination of the platinum tube material to the powder occurs to lower the purity. Further, the method of US Pat. No. 5,514,360 has a problem as a production method since chlorine gas or nitrogen oxide is generated during firing, and further has a problem in purification of a product and the like.

【0007】[0007]

【発明が解決しようとする課題】本発明は、負の熱膨張
率をもつ組成式(A1-ZZ)(W1-XX 28で表さ
れる粉末を少ない工程数で、有害ガスの発生を伴うこと
なくかつ不純物による汚染を少なくして効率的に製造す
る方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION According to the present invention, a powder represented by a composition formula (A 1 -Z D Z ) (W 1 -X R X ) 2 O 8 having a negative coefficient of thermal expansion is reduced in a small number of steps. Accordingly, it is an object of the present invention to provide a method for efficiently producing without causing harmful gas and reducing contamination by impurities.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため鋭意検討を行った結果、原料の混合粉末
を加圧成形し、得られた混合物加圧成形体の状態で焼成
を行う製造方法において、(1)混合粉末の成形圧力、
(2)混合粉末の粒径、(3)混合物加圧成形体の最小
の寸法及び又は(4)焼成温度等の条件を適当な値に設
定することにより前記目的が達成されることを見出し
て、本発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, pressed the mixed powder of the raw materials and fired in the state of the obtained pressed compact of the mixture. (1) the molding pressure of the mixed powder,
It has been found that the object can be achieved by setting conditions such as (2) the particle size of the mixed powder, (3) the minimum size of the pressed compact of the mixture, and / or (4) the firing temperature to appropriate values. The present invention has been accomplished.

【0009】すなわち、本発明は次の態様から成るもの
である。 (1)焼成したときの組成が(A1-ZZ)(W
1-XX 28 (AはZr又はHf又はそれらの混合
物、DはZrO2又はHfO2に固溶し得る元素から選ば
れた少なくとも一つの元素、Zは各元素によって限定さ
れる最大固溶原子割合以下の値(0を含む)、RはWO
3に固溶し得る元素から選ばれた少なくとも一つの元
素、Xは各元素によって限定される最大固溶原子割合以
下の値(0を含む))になるようにAO2とWO3にD及
び又はRの単体又は化合物を添加し、乾式又は湿式混合
して得られた混合粉末を加圧成形体とした後焼成し、急
速冷却して後に粉砕する粉体の製造方法において、前記
混合粉末に成形圧力0.001〜500ton/cm2
を加え、混合物加圧成形体として行うことを特徴とする
前記粉体の製造方法。 (2)焼成したときの組成が(A1-ZZ)(W
1-X X 28(AはZr又はHf又はそれらの混合
物、DはZrO2又はHfO2に固溶し得る元素から選ば
れた少なくとも一つの元素、Zは各元素によって限定さ
れる最大固溶原子割合以下の値(0を含む)、RはWO
3に固溶し得る元素から選ばれた少なくとも一つの元
素、Xは各元素によって限定される最大固溶原子割合以
下の値(0を含む))になるようにAO2とWO3にD及
び又はRの単体又は化合物を添加し、乾式又は湿式混合
して得られた混合粉末の加圧成形体を焼成し、急速冷却
して後に粉砕する粉体の製造方法において、前記混合粉
末の平均粒径を0.05〜50μmとすることを特徴と
する前記粉体の製造方法。 (3)焼成したときの組成が(A1-ZZ)(W1-XX
28(AはZr又はHf又はそれらの混合物、DはZr
2又はHfO2に固溶し得る元素から選ばれた少なくと
も一つの元素、Zは各元素によって限定される最大固溶
原子割合以下の値(0を含む)、RはWO3に固溶し得
る元素から選ばれた少なくとも一つの元素、Xは各元素
によって限定される最大固溶原子割合以下の値(0を含
む))になるようにAO2とWO3にD及び又はRの単体
又は化合物を添加し、乾式又は湿式混合して得られた混
合粉末を混合物加圧成形体とした後焼成し、急速冷却し
て後に粉砕する粉体の製造方法において、前記混合物加
圧成形体の最小の寸法を0.2〜100mmとすること
を特徴とする前記粉体の製造方法。 (4)粉末の平均粒径を0.05〜50μmとすること
を特徴とする上記(1)記載の粉体の製造方法。 (5)混合物加圧成形体の最小の寸法を0.2〜100
mmとすることを特徴とする上記(1)記載の粉体の製
造方法。 (6)混合物加圧成形体の最小の寸法を0.2〜100
mmとすることを特徴とする上記(2)記載の粉体の製
造方法。 (7)粉末の平均粒径を0.05〜50μmとし、成形
体の最小の寸法を0.2〜100mmとすることを特徴
とする上記(1)記載の粉体の製造方法。 (8)焼成温度を1120〜1250℃の範囲でかつD
又はRの酸化物の融点以下とすることを特徴とする上記
(1)〜(7)のいずれかに記載の粉体の製造方法。 (9)焼成時間が1.5時間以上であることを特徴とす
る上記(8)記載の粉体の製造方法。 (10)焼成炉又はルツボ材と前記混合粉末の加圧成形
体との間にZrO2又はSnO2を介在させて焼成するこ
とを特徴とする上記(1)〜(9)のいずれかに記載の
粉体の製造方法。 (11)急速冷却は、強制冷却により行うことを特徴と
する上記(1)〜(10)のいずれかに記載の粉体の製
造方法。 (12)AO2/WO3のモル比が、3/1から1/6ま
でであることを特徴とする上記(1)〜(11)のいず
れかに記載の粉体の製造方法。 (13)AO2/WO3のモル比が、1/2から1/5ま
でであることを特徴とする上記(12)に記載の粉体の
製造方法。 (14)AがZrであることを特徴とする上記(1)〜
(13)のいずれかに記載の粉体の製造方法。
That is, the present invention comprises the following aspects. (1) The composition when fired is (A 1 -Z D Z ) (W
1-X R x ) 2 O 8 (A is Zr or Hf or a mixture thereof, D is at least one element selected from elements capable of forming a solid solution in ZrO 2 or HfO 2 , and Z is limited by each element Values below the maximum solid solution atom ratio (including 0), R is WO
At least one element selected from the elements capable of forming a solid solution in 3 , X represents D and A in the AO 2 and WO 3 so as to have a value (including 0) or less of the maximum solid solution atomic ratio defined by each element. Or a simple substance or a compound of R is added, and a mixed powder obtained by dry or wet mixing is formed into a press-molded body, and then calcined, rapidly cooled, and then pulverized. Molding pressure 0.001 to 500 ton / cm 2
And pressurizing the mixture to form a mixture. (2) the composition when calcined (A 1-Z D Z) (W
1-X R x ) 2 O 8 (A is Zr or Hf or a mixture thereof, D is at least one element selected from elements capable of forming a solid solution in ZrO 2 or HfO 2 , and Z is limited by each element Values below the maximum solid solution atom ratio (including 0), R is WO
At least one element selected from the elements capable of forming a solid solution in 3 , X represents D and A in the AO 2 and WO 3 so as to have a value (including 0) or less of the maximum solid solution atomic ratio defined by each element. Or a simple substance or compound of R is added, and a pressed body of a mixed powder obtained by dry or wet mixing is calcined, rapidly cooled, and then pulverized. The method for producing the powder, wherein the diameter is 0.05 to 50 μm. (3) The composition when fired is (A 1 -Z D Z ) (W 1 -X R X )
2 O 8 (A is Zr or Hf or a mixture thereof, D is Zr
Z is at least one element selected from elements capable of forming a solid solution in O 2 or HfO 2 , Z is a value (including 0) or less of a maximum solid solution atomic ratio defined by each element, and R is a solid solution in WO 3 At least one element selected from the elements to be obtained, X is a single element of D and / or R in AO 2 and WO 3 so as to have a value (including 0) or less of the maximum solid solution atomic ratio limited by each element. A compound is added, and the mixed powder obtained by dry or wet mixing is formed into a pressed compact of a mixture, and then calcined, rapidly cooled, and then pulverized. Characterized in that the size of the powder is 0.2 to 100 mm. (4) The method for producing a powder according to the above (1), wherein the average particle diameter of the powder is 0.05 to 50 μm. (5) The minimum size of the pressed compact of the mixture is 0.2 to 100.
mm, the method for producing powder according to the above (1). (6) The minimum size of the pressed compact of the mixture is 0.2 to 100.
mm, wherein the powder is produced. (7) The method for producing a powder according to the above (1), wherein the average particle size of the powder is 0.05 to 50 μm, and the minimum size of the compact is 0.2 to 100 mm. (8) The firing temperature is in the range of 1120 to 1250 ° C. and D
Alternatively, the method for producing a powder according to any one of the above (1) to (7), wherein the melting point is not higher than the melting point of the oxide of R. (9) The method for producing a powder according to the above (8), wherein the firing time is 1.5 hours or more. (10) The method as described in any one of (1) to (9) above, wherein firing is performed by interposing ZrO 2 or SnO 2 between a firing furnace or a crucible material and a pressed compact of the mixed powder. Method for producing powder. (11) The method for producing a powder according to any one of (1) to (10), wherein the rapid cooling is performed by forced cooling. (12) The method for producing a powder according to any of (1) to (11) above, wherein the molar ratio of AO 2 / WO 3 is from 3/1 to 1/6. (13) The method for producing a powder according to the above (12), wherein the molar ratio of AO 2 / WO 3 is from か ら to 5. (14) The above (1) to (1), wherein A is Zr.
(13) The method for producing a powder according to any of (13).

【0010】以下、上記本発明のそれぞれの態様につい
て説明する。本発明の製造方法においては、まず原料粉
末の混合物が、焼成したときの組成(A1-ZZ)(W
1-XX 28を満たすように、AO2粉末及びWO3
末にD及び又はRの単体又は化合物粉末を添加し、乾式
又は湿式混合して混合粉末を調製する。ここで、AはZ
r又はHfかZr及びHfである。また、上記のD及び
Rの化合物とは、酸化物、水酸化物、塩化物、窒化物、
炭化物、硝酸塩や炭酸塩などの酸素酸塩等を挙げること
ができる。また、混合は、湿式混合の方がしばしば粉砕
のより大きな効果が加わるので好ましい。
Hereinafter, each embodiment of the present invention will be described. In the production method of the present invention, first, the mixture of the raw material powders has a composition (A 1 -Z D Z ) (W
A single powder or a compound powder of D and / or R is added to the AO 2 powder and the WO 3 powder so as to satisfy 1-X R x ) 2 O 8 , and the mixture is prepared by dry or wet mixing. Where A is Z
r or Hf or Zr and Hf. In addition, the above compounds of D and R include oxides, hydroxides, chlorides, nitrides,
Examples thereof include carbides, oxyacid salts such as nitrates and carbonates, and the like. Also, mixing is preferred because wet mixing often adds a greater effect of grinding.

【0011】DはZrO2又はHfO2に固溶し得る元素
であり、Ca等のアルカリ土類金属及びY等の希土類金
属等を挙げることができる。Zは前記各固溶元素で定ま
る最大固溶原子割合以下の値であり、具体的には0.2
以下であり、典型的には0〜0.1である。
D is an element capable of forming a solid solution in ZrO 2 or HfO 2, and examples thereof include alkaline earth metals such as Ca and rare earth metals such as Y. Z is a value equal to or less than the maximum solid solution atom ratio determined by each solid solution element, specifically 0.2
And typically between 0 and 0.1.

【0012】RはWO3に固溶し得る元素であり、IIIA
族又はVA族又はVIA族等の元素を挙げることができる。
Xの値は、固溶する各元素によって定まる最大固溶原子
割合以下の値であり具体的には0.25以下であり、典
型的には0〜0.2である。また、Z=0かつX=0で
ある場合には、顕著な負の熱膨張特性を有する粉体を製
造する上で好ましい。
R is an element which can be dissolved in WO 3 ,
And elements from group VA or group VA or VIA.
The value of X is a value equal to or less than a maximum solid solution atom ratio determined by each element to be dissolved, specifically 0.25 or less, and typically 0 to 0.2. When Z = 0 and X = 0, it is preferable to produce a powder having a remarkable negative thermal expansion characteristic.

【0013】次にこの混合粉末を0.001〜500t
on/cm2の成形圧力を加えて加圧成形し、混合物加
圧成形体を得る。次いでこの混合物加圧成形体を焼成し
た後、急速冷却し、粉砕する。(上記(1)の態様)
Next, this mixed powder is added in an amount of 0.001 to 500 t.
A molding pressure is applied by applying a molding pressure of on / cm 2 to obtain a mixture compact. Next, after firing the mixture press-formed body, the mixture is rapidly cooled and pulverized. (Aspect of the above (1))

【0014】前記のように、前記混合粉末に圧力を加え
て成形し、混合物加圧成形体の状態で焼成を行うことに
より、室温から焼成温度に至り、加熱焼成の後急冷する
過程までの間に未反応のWO3のガス化による離散を防
止することが可能となり、効率の良い粉体の製造が可能
となる。前記の圧力より低いと混合物圧搾体が脆くな
り、取り扱い時又は焼成時の加熱により壊れ、粉体の加
熱反応に近づくため好ましくない。又、前記の圧力より
高いと、しばしば前記焼成時に発生する体積膨張を緩和
し難く、又、加圧機のハードウェアの制限により安価な
製造が妨げられる。
As described above, the mixed powder is molded by applying pressure, and is fired in the state of a pressed compact of the mixture, so that the temperature is raised from room temperature to the firing temperature. It is possible to prevent the unreacted WO 3 from being separated by gasification, and it is possible to produce powder efficiently. When the pressure is lower than the above-mentioned pressure, the pressed body of the mixture becomes brittle, is broken by heating during handling or firing, and approaches a heating reaction of the powder, which is not preferable. On the other hand, if the pressure is higher than the above-mentioned pressure, it is difficult to alleviate the volume expansion that often occurs during the firing, and inexpensive production is hindered by the limitation of the hardware of the press machine.

【0015】前記成形圧力は、0.002〜200to
n/cm2がより好ましく、0.005〜50ton/
cm2が更に好ましく、0.01〜20ton/cm2
更に好ましく、0.02〜10ton/cm2が更に好
ましく、0.05〜5ton/cm2が更に好ましく、
0.1〜2ton/cm2が更に好ましい。
The molding pressure is 0.002 to 200 to
n / cm 2 is more preferable, and 0.005 to 50 ton /
cm 2 is more preferable, 0.01 to 20 ton / cm 2 is more preferable, 0.02 to 10 ton / cm 2 is more preferable, and 0.05 to 5 ton / cm 2 is more preferable.
0.1-2 ton / cm < 2 > is more preferable.

【0016】又、前記混合粉末の平均粒径を限定するこ
とで混合粉末の混合を均一とし、AO2とWO3との反応
時間を短縮させることにより前記未反応のWO3のガス
化による離散を防止することが可能となり、効率の良い
粉体の製造が可能となる。すなわち、本発明の粉体の他
の製造方法は、焼成したときの組成が(A1-ZZ)(W
1-X X 28となるようにAO2とWO3にD及び又は
Rの単体又は化合物を添加し、乾式又は湿式混合して得
られた混合粉末の加圧成形体を焼成し、急速冷却して後
に粉砕する粉体の製造方法において、前記混合粉末の平
均粒径を0.05〜50μmとすることを特徴とする前
記粉体の製造方法である(上記(2)の態様)。
Further, by limiting the average particle size of the mixed powder, the mixing of the mixed powder is made uniform, and the reaction time between AO 2 and WO 3 is shortened, whereby the unreacted WO 3 is dispersed by gasification. Can be prevented, and efficient powder production can be achieved. That is, in another method for producing the powder of the present invention, the composition when calcined is (A 1 -Z D Z ) (W
A single or compound of D and / or R is added to AO 2 and WO 3 so as to obtain 1-X R X ) 2 O 8, and the pressed compact of the mixed powder obtained by dry or wet mixing is fired. The method for producing a powder, wherein the average particle diameter of the mixed powder is 0.05 to 50 μm in the method for producing a powder which is rapidly cooled and then pulverized (aspect of the above (2)) ).

【0017】これより小さい平均粒径では、製造上のコ
ストがかさむことになる。但し、反応上は平均粒径が小
さい方が良い。これより大きい粒径では固相反応での反
応速度が遅くなってWO3のガス化の散逸が起りやす
く、又、反応時間が長くなるため好ましくない。平均粒
径のより好ましい範囲は0.1〜10μmであり、更に
好ましくは0.2〜5μmである。例えば、平均粒径を
1μmとすることは、好ましく実用的な例である。
If the average particle size is smaller than this, the production cost increases. However, from the viewpoint of the reaction, the smaller the average particle size, the better. If the particle size is larger than this, the reaction speed in the solid-phase reaction is slowed, and the gasification of WO 3 is easily dissipated, and the reaction time is undesirably long. A more preferable range of the average particle size is 0.1 to 10 μm, and further preferably 0.2 to 5 μm. For example, setting the average particle size to 1 μm is a preferable and practical example.

【0018】さらに、前記混合物加圧成形体の最小の寸
法を限定することで、焼成温度から非平衡分解温度以下
の温度までの急冷の際の急速且つ均一な冷却が可能とな
り、効率の良いZrW28の製造が可能となる。ここ
で、最小の寸法とは、例えば、円筒体にあっては長さと
直径のうち寸法の小さい方、円板体にあっては厚さと直
径のうち寸法の小さい方のことである。
Furthermore, by limiting the minimum size of the pressed compact of the mixture, rapid and uniform cooling at the time of quenching from the firing temperature to a temperature equal to or lower than the non-equilibrium decomposition temperature becomes possible, and an efficient ZrW 2 O 8 can be produced. Here, the minimum dimension is, for example, the smaller of the length and the diameter of the cylindrical body, and the smaller of the thickness and the diameter of the disc body.

【0019】すなわち、本発明の粉体の更に他の製造方
法は、焼成したときの組成が(A1- ZZ)(W1-XX
28となるようにAO2とWO3にD及び又はRの単体又
は化合物を添加し、乾式又は湿式混合して得られた混合
粉末を混合物加圧成形体とした後焼成し、急速冷却して
後に粉砕する粉体の製造方法において、前記混合物加圧
成形体の最小の寸法を0.2〜100mmとすることを
特徴とする前記粉体の製造方法である(上記(3)の態
様)。最小の寸法が小さ過ぎる場合には、WO3のガス
化の散逸バリアとしての厚みが薄くなり、製造効率も低
下して好ましくない。又、最小の寸法が大き過ぎる場合
には、冷却が内部まで急速に行われず、しばしば内部に
分解物が生成して残留するため好ましくない。前記最小
の寸法は、より好ましくは1〜15mmであり、更に好
ましくは2〜10mm、更に好ましくは3〜7mmであ
る。
[0019] That is, still another method for producing a powder of the present invention, the composition when calcined (A 1- Z D Z) ( W 1-X R X)
Add a simple substance or a compound of D and / or R to AO 2 and WO 3 so as to obtain 2 O 8 , dry- or wet-mix and obtain a mixed powder, press-mold a mixed powder, fire, and rapidly cool. (3) The method for producing a powder according to the above (3), wherein the minimum size of the pressed compact of the mixture is 0.2 to 100 mm. ). If the minimum dimension is too small, the thickness of WO 3 as a gasification dissipation barrier is reduced, and the production efficiency is undesirably reduced. On the other hand, if the minimum dimension is too large, cooling is not performed rapidly to the inside, and decomposition products are often generated and remain inside, which is not preferable. The minimum dimension is more preferably 1 to 15 mm, still more preferably 2 to 10 mm, and still more preferably 3 to 7 mm.

【0020】また、本件発明は、上記した混合粉末の成
形圧力、混合粉末の平均粒径、混合物加圧成形体の最小
寸法についてのそれぞれの要件を複数併せ備えた製造条
件を採用することによってより好ましい結果を得ること
ができるものである(上記(4)〜(7)の態様)
The present invention is further improved by adopting a manufacturing condition having a plurality of requirements for the molding pressure of the mixed powder, the average particle size of the mixed powder, and the minimum size of the pressed compact of the mixture. Preferred results can be obtained (aspects of (4) to (7) above).

【0021】本発明においては、混合粉末を加圧成形体
とすることで、この物質を安定温度領域で反応させて製
造することが可能になった。すなわち、本発明におい
て、焼成温度は、1120〜1250℃の範囲でかつD
又はRの酸化物の融点以下とすることを特徴とする(上
記(8)の態様)。この温度の範囲は、1150℃以上
とすることが更に好ましい。
In the present invention, by forming the mixed powder into a compact, it is possible to react the substance in a stable temperature range to produce the powder. That is, in the present invention, the firing temperature is in the range of 1120 to 1250 ° C. and D
Alternatively, the melting point is not higher than the melting point of the oxide of R (aspect of the above (8)). More preferably, this temperature range is 1150 ° C. or higher.

【0022】例えば、Vが添加された場合には、それら
の融点は1200℃以下となる場合があり、それらを多
く含む場合は、焼成温度は1150〜1200℃の範囲
でXの値に応じた温度域において行うことが望ましい。
更に詳しく説明すると、これらの物質の固溶体において
は、焼成反応温度がしばしば低温側に移動する。例え
ば、RとしてVを用いてX=0.2とする時は、焼成反
応の最適温度は約1160℃であり、1170℃では融
解してしまう。また、Taでは、Xが最大0.05まで
固溶化するが、それよりも大きくなると固溶化しない。
Taの場合、この量のレベルでは、1200℃で反応さ
せることができる。Vの焼成反応の最適温度条件につい
ては、例をあげて後述する。
For example, when V is added, their melting points may be 1200 ° C. or less, and when they are contained in a large amount, the firing temperature is in the range of 1150 to 1200 ° C. according to the value of X. It is desirable to perform in the temperature range.
More specifically, in a solid solution of these substances, the firing reaction temperature often moves to a lower temperature side. For example, when X = 0.2 using V as R, the optimal temperature of the firing reaction is about 1160 ° C., and melting occurs at 1170 ° C. Further, in the case of Ta, X forms a solid solution up to 0.05, but if it is larger than that, it does not form a solid solution.
In the case of Ta, the reaction can be performed at 1200 ° C. at this level. The optimum temperature conditions for the firing reaction of V will be described later with examples.

【0023】焼成時間は、少なくとも1.5時間必要で
あり(上記(9)の態様)、好ましくは2〜4時間であ
る。焼成時間を6〜8時間に延ばしても、得られる粉体
の性能に顕著な支障はない。焼成雰囲気は、原料とする
D及びRの化合物の化学形に応じて、酸化性雰囲気、不
活性雰囲気、減圧雰囲気等を適宜に選択する。
The firing time is required to be at least 1.5 hours (as described in the above (9)), and is preferably 2 to 4 hours. Even if the firing time is extended to 6 to 8 hours, the performance of the obtained powder is not significantly affected. As the firing atmosphere, an oxidizing atmosphere, an inert atmosphere, a reduced pressure atmosphere, or the like is appropriately selected according to the chemical forms of the D and R compounds used as the raw materials.

【0024】本発明において前記焼成を行うに際して
は、1200℃程度の温度領域でWO 3と反応等を誘起
するようなアルミナ、シリカ系物質との接触は好ましく
ない。そこで、前記焼成は、焼成炉又はルツボ材と前記
混合物加圧成形体との間にZrO2又はSnO2を介在さ
せて行うことが望ましい(上記(10)の態様)。
In the present invention, when performing the sintering,
Is WO in a temperature range of about 1200 ° C. ThreeInduces reactions
Contact with alumina or silica-based material such as
Absent. Therefore, the firing is performed by a firing furnace or a crucible material and the firing
ZrO between the pressed compact of the mixtureTwoOr SnOTwoIntervened
It is desirable to perform the process (embodiment (10) above).

【0025】又、混合物加圧成形体を焼成して後の急速
冷却としては、強制冷却することが必要である(上記
(11)の態様)。強制冷却とは、焼成により高温とな
った加圧成形体を常温に近い炉外の雰囲気中に急速に取
り出して自然冷却させることを含む。そのような炉外に
取り出しての自然冷却においては、分解物がしばしば生
成して残留するが、一部目的とする物質が生成するため
に粉体としては利用できる。しかし、非反応性の気体を
吹きかけて強制冷却することがより好ましい。更には、
多量の非反応性の液体中に焼成体をそのまま又は分割し
投入するか、又は、非反応性冷却ガス例えば窒素等ボン
ベより噴霧する等の冷却ガス、又は非反応性液化ガスで
焼成体を強制冷却することが好ましい。液体として、
水、特に流水を用いることは実用的で好ましい。
For rapid cooling after baking the molded body of the mixture, forced cooling is required (as described in the above (11)). The forced cooling includes rapidly taking out the press-formed body, which has been heated to a high temperature by baking, into an atmosphere outside a furnace near room temperature and allowing it to cool naturally. In such natural cooling taken out of the furnace, decomposition products are often generated and remain, but some of the desired substances are generated, so that they can be used as powder. However, it is more preferable to forcibly cool by blowing a non-reactive gas. Furthermore,
Forcing the fired body into a large amount of non-reactive liquid as it is or dividing and putting it in, or using a non-reactive cooling gas, such as spraying from a cylinder such as nitrogen, or a non-reactive liquefied gas Cooling is preferred. As a liquid,
It is practical and preferable to use water, especially running water.

【0026】AO2/WO3のモル比は、3/1から1/
6までとすることで、明確に負の熱膨張係数を示す(上
記(12)の態様)。このモル比は、1/2から1/5
までとすることがより好ましく(上記(13)の態
様)、化学量論的には1/2から1/2.1までとする
ことが最も好ましい。なお、前記AO2としてはZrO2
が入手が容易であるため、本発明を実施するにあたり実
用的である(上記(14)の態様)。
The molar ratio of AO 2 / WO 3 is from 3/1 to 1 /
By setting up to 6, a negative coefficient of thermal expansion is clearly exhibited (the aspect of (12) above). This molar ratio ranges from 1/2 to 1/5.
Is more preferable (as in the above (13)), and most preferably stoichiometrically from 1/2 to 1 / 2.1. The AO 2 is ZrO 2
Is easy to obtain and therefore practical for implementing the present invention (aspect (14)).

【0027】[0027]

【発明の実施の形態】以下、本発明の粉体の製造方法を
実施例により説明するが、本発明はこれらの実施例によ
って何ら限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the method for producing a powder of the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0028】ZrW28は負の熱膨張を示す化合物であ
り、その際の熱膨張特性を図1に示す。まず、原料混合
粉末について、その製造条件を種々変化させてその生成
率を評価した。その製造方法の条件を評価した結果を表
1に示す。
ZrW 2 O 8 is a compound exhibiting negative thermal expansion, and the thermal expansion characteristics at that time are shown in FIG. First, the production rate of the raw material mixed powder was evaluated by changing the production conditions in various ways. Table 1 shows the results of evaluating the conditions of the manufacturing method.

【0029】[0029]

【表1】 [Table 1]

【0030】また、冷却条件により、X線回折像が変化
する様子を図2に示す。この図2から、分解の状況が冷
却条件で変わることが判る。又、各化合物の比重より計
算したデータを基にZrW28のモル比率を表1に示
す。この値はX線回折像の結果と一致する。このような
評価で条件を選定した。
FIG. 2 shows how the X-ray diffraction image changes depending on the cooling conditions. From FIG. 2, it can be seen that the state of decomposition changes with cooling conditions. Table 1 shows the molar ratio of ZrW 2 O 8 based on data calculated from the specific gravity of each compound. This value matches the result of the X-ray diffraction image. Conditions were selected based on such evaluation.

【0031】[0031]

【実施例1】ZrO2粉末とWO3粉末のZrO2/WO3
比率が1/2となる混合粉体について、1時間湿式混合
を行い、90℃で5時間乾燥の後、この粉末を1軸加圧
機を用い、500Kgw/cm2の圧力を加えて6mm
φ×5mmの加圧成形体にし、焼成試料とした。この加
圧成形体をジルコニアシートを敷いたアルミナ坩堝の中
に入れ、シリコニット電気炉を用いて、昇温速度8℃/
minで1200℃まで昇温して焼成した。次に焼成体
を水冷により急速冷却した後、粉砕した。又ジルコニア
シートを使用せず、前記加圧成形体をアルミナ坩堝に直
接入れた場合、圧搾体の接触部分と反応してAl2(W
43が発生していた。
Example 1 ZrO 2 powder and WO 3 powder ZrO 2 / WO 3
The mixed powder having a ratio of 1/2 was wet-mixed for 1 hour, dried at 90 ° C. for 5 hours, and then subjected to a uniaxial pressing machine to apply a pressure of 500 kgw / cm 2 to 6 mm.
A pressure-molded body having a size of φ × 5 mm was used as a fired sample. This pressed body was placed in an alumina crucible covered with a zirconia sheet, and heated at a rate of 8 ° C. /
The temperature was raised to 1200 ° C. in min. Next, the fired body was rapidly cooled by water cooling and then pulverized. When the pressed compact is directly put into an alumina crucible without using a zirconia sheet, Al 2 (W
O 4 ) 3 had occurred.

【0032】[0032]

【実施例2】ZrO2/WO3の比率を2/1〜1/11
に替えた以外は実施例1と同様にして粉末を得た。Zr
2/WO3の比率と共に熱膨張特性が変わる状況を図3
に示す。このことよりZrO2/WO3の比率が2/1か
ら1/5までは負の熱膨張材料として十分に利用できる
ことが判る。
Example 2 The ratio of ZrO 2 / WO 3 was changed from 2/1 to 1/11.
A powder was obtained in the same manner as in Example 1, except that the powder was changed to. Zr
FIG. 3 shows a situation in which the thermal expansion characteristic changes with the ratio of O 2 / WO 3 .
Shown in From this, it is understood that when the ratio of ZrO 2 / WO 3 is from 2/1 to 1/5, it can be sufficiently used as a negative thermal expansion material.

【0033】[0033]

【実施例3】ZrO2とWO3にV25を混合し、Zr
(W1-XX23のXが0.00、0.05、0.1
0、0.15、0.20になるよう配合したこと以外は
実施例1と同様の条件で粉末を得た。反応によって得ら
れた生成物の熱膨張特性を図4に示す。また、ZrO2
とWO3にTa25を混合し、Zr(W1-XTaX28
のXが0.00、0.02、0.04、0.05になる
よう配合したこと以外は実施例1と同様の条件で粉末を
得た。反応によって得られた生成物の熱膨張特性を図5
に示す。これらの結果によると、元素差はほとんどな
く、この場合はXは0.05が最大の固溶量であり、そ
れ以上添加しても均一な固溶体にならない。但し、0.
2以上になる量を添加しても、混合物として負の熱膨張
材として十分適用できる。
Embodiment 3 ZrO 2 and WO 3 were mixed with V 2 O 5 and ZrO 2 and WO 3 were mixed.
X of (W 1 -X V X ) 2 O 3 is 0.00, 0.05, 0.1
A powder was obtained under the same conditions as in Example 1 except that the amounts were 0, 0.15, and 0.20. FIG. 4 shows the thermal expansion characteristics of the product obtained by the reaction. In addition, ZrO 2
And WO 3 mixed with Ta 2 O 5 , and Zr (W 1 -X Ta X ) 2 O 8
Were obtained under the same conditions as in Example 1 except that X was adjusted to be 0.00, 0.02, 0.04, and 0.05. FIG. 5 shows the thermal expansion characteristics of the product obtained by the reaction.
Shown in According to these results, there is almost no elemental difference. In this case, 0.05 is the maximum solid solution amount of X, and even if added more, X does not become a uniform solid solution. However, 0.
Even if an amount of 2 or more is added, the mixture can be sufficiently applied as a negative thermal expansion material.

【0034】[0034]

【実施例4】ZrO2とWO3にMgOを混合し、(Zr
1-ZMgZ)W28のZが0.00、0.05、0.0
7、0.10、及び0.15となるよう配合したこと以
外は実施例1と同様にして粉末を得た。反応によって得
られた生成物の熱膨張特性を図6に示す。
Embodiment 4 MgO was mixed with ZrO 2 and WO 3 and (ZrO 2
1-Z Mg Z ) Z of W 2 O 8 is 0.00, 0.05, 0.0
A powder was obtained in the same manner as in Example 1 except that the amounts were 7, 0.10, and 0.15. FIG. 6 shows the thermal expansion characteristics of the product obtained by the reaction.

【0035】[0035]

【実施例5】ZrO2とWO3にV25を混合し、Zr
(W1-XX23のXが0.00、0.05、0.1
0、0.15、0.20、0.30となるように配合
し、焼成温度を変えた以外は実施例1と同様にして粉末
を得た。Vを固溶化した場合の反応温度域と焼成結果に
ついて表2に示す。Vの固溶原子割合Xが大きくなるに
伴い反応温度は低下する。Xが0.3では1110℃で
も融解してしまう。
Example 5 ZrO 2 and WO 3 were mixed with V 2 O 5 , and ZrO 2 and WO 3 were mixed.
X of (W 1 -X V X ) 2 O 3 is 0.00, 0.05, 0.1
Powders were obtained in the same manner as in Example 1 except that the amounts were 0, 0.15, 0.20, and 0.30, and the firing temperature was changed. Table 2 shows the reaction temperature range and the firing results when V was dissolved. The reaction temperature decreases as the solid solution atomic ratio X of V increases. If X is 0.3, it will melt even at 1110 ° C.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明によれば、反応副生成物が発生し
ないクリーンな製造工程によって負の熱膨張率をもつ化
合物を容易に製造することが可能である。
According to the present invention, a compound having a negative coefficient of thermal expansion can be easily produced by a clean production process in which no reaction by-product is generated.

【0038】[0038]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ZrW28の熱膨張特性を示した図。FIG. 1 is a diagram showing the thermal expansion characteristics of ZrW 2 O 8 .

【図2】 ZrW28の冷却方法の差によるX線回折像
の差異を示した図。
FIG. 2 is a view showing a difference in an X-ray diffraction image due to a difference in a cooling method of ZrW 2 O 8 .

【図3】 ZrO2/WO3の比率と共に熱膨張特性が変
わる状況を示した図。
FIG. 3 is a diagram showing a situation in which the thermal expansion characteristics change with the ratio of ZrO 2 / WO 3 .

【図4】 Zr(W1-XX 28のXを変えたときの
熱膨張特性の変化を示した図。
FIG. 4 is a diagram showing a change in thermal expansion characteristics when X of Zr (W 1 -X V X ) 2 O 8 is changed.

【図5】 Zr(W1-XTaX28のXを変えたときの
熱膨張特性の変化を示した図。
FIG. 5 is a diagram showing a change in thermal expansion characteristics when X of Zr (W 1 -X Ta X ) 2 O 8 is changed.

【図6】 (Zr1-ZMgZ)W28のZを変えたときの
熱膨張特性の変化を示した図。
FIG. 6 is a diagram showing a change in thermal expansion characteristic when Z of (Zr 1 -Z Mg Z ) W 2 O 8 is changed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 伸 千葉県千葉市花見川区幕張本郷1−20−22 −303 Fターム(参考) 4G030 AA07 AA17 AA19 AA21 AA24 BA21 CA04 GA11 GA22 GA30 GA32 4G031 AA03 AA12 AA13 AA15 AA18 CA04 GA03 GA06 GA13 GA15 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shin Nishiyama 1-20-22-303 Makuhari Hongo, Hanamigawa-ku, Chiba-shi, Chiba F-term (reference) 4G030 AA07 AA17 AA19 AA21 AA24 BA21 CA04 GA11 GA22 GA30 GA32 4G031 AA03 AA12 AA13 AA15 AA18 CA04 GA03 GA06 GA13 GA15

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 焼成したときの組成が(A1-ZZ)(W
1-XX 28 (AはZr又はHf又はそれらの混合
物、DはZrO2又はHfO2に固溶し得る元素から選ば
れた少なくとも一つの元素、Zは各元素によって限定さ
れる最大固溶原子割合以下の値(0を含む)、RはWO
3に固溶し得る元素から選ばれた少なくとも一つの元
素、Xは各元素によって限定される最大固溶原子割合以
下の値(0を含む))になるようにAO2とWO3にD及
び又はRの単体又は化合物を添加し、乾式又は湿式混合
して得られた混合粉末を加圧成形体とした後焼成し、急
速冷却して後に粉砕する粉体の製造方法において、前記
混合粉末に成形圧力0.001〜500ton/cm2
を加え、混合物加圧成形体として行うことを特徴とする
前記粉体の製造方法。
1. The composition when fired is (A 1 -Z D Z ) (W
1-X R x ) 2 O 8 (A is Zr or Hf or a mixture thereof, D is at least one element selected from elements capable of forming a solid solution in ZrO 2 or HfO 2 , and Z is limited by each element Values below the maximum solid solution atom ratio (including 0), R is WO
At least one element selected from the elements capable of forming a solid solution in 3 , X represents D and A in the AO 2 and WO 3 so as to have a value (including 0) or less of the maximum solid solution atomic ratio defined by each element. Or a simple substance or a compound of R is added, and a mixed powder obtained by dry or wet mixing is formed into a press-molded body, and then calcined, rapidly cooled, and then pulverized. Molding pressure 0.001 to 500 ton / cm 2
And pressurizing the mixture to form a mixture.
【請求項2】 焼成したときの組成が(A1-ZZ)(W
1-X X 28(AはZr又はHf又はそれらの混合
物、DはZrO2又はHfO2に固溶し得る元素から選ば
れた少なくとも一つの元素、Zは各元素によって限定さ
れる最大固溶原子割合以下の値(0を含む)、RはWO
3に固溶し得る元素から選ばれた少なくとも一つの元
素、Xは各元素によって限定される最大固溶原子割合以
下の値(0を含む))になるようにAO2とWO3にD及
び又はRの単体又は化合物を添加し、乾式又は湿式混合
して得られた混合粉末の加圧成形体を焼成し、急速冷却
して後に粉砕する粉体の製造方法において、前記混合粉
末の平均粒径を0.05〜50μmとすることを特徴と
する前記粉体の製造方法。
2. The composition when fired is (A 1 -Z D Z ) (W
1-X R x ) 2 O 8 (A is Zr or Hf or a mixture thereof, D is at least one element selected from elements capable of forming a solid solution in ZrO 2 or HfO 2 , and Z is limited by each element Values below the maximum solid solution atom ratio (including 0), R is WO
At least one element selected from the elements capable of forming a solid solution in 3 , X represents D and A in the AO 2 and WO 3 so as to have a value (including 0) or less of the maximum solid solution atomic ratio defined by each element. Or a simple substance or a compound of R is added, and a pressed body of a mixed powder obtained by dry or wet mixing is calcined, rapidly cooled, and then pulverized, wherein the average particle size of the mixed powder is The method for producing the powder, wherein the diameter is 0.05 to 50 μm.
【請求項3】 焼成したときの組成が(A1-ZZ)(W
1-XX28(AはZr又はHf又はそれらの混合物、
DはZrO2又はHfO2に固溶し得る元素から選ばれた
少なくとも一つの元素、Zは各元素によって限定される
最大固溶原子割合以下の値(0を含む)、RはWO3
固溶し得る元素から選ばれた少なくとも一つの元素、X
は各元素によって限定される最大固溶原子割合以下の値
(0を含む))になるようにAO2とWO3にD及び又は
Rの単体又は化合物を添加し、乾式又は湿式混合して得
られた混合粉末を混合物加圧成形体とした後焼成し、急
速冷却して後に粉砕する粉体の製造方法において、前記
混合物加圧成形体の最小の寸法を0.2〜100mmと
することを特徴とする前記粉体の製造方法。
3. The composition when fired is (A 1 -Z D Z ) (W
1-X R x ) 2 O 8 (A is Zr or Hf or a mixture thereof;
D (including 0) of at least one element selected from the elements that may be dissolved in ZrO 2 or HfO 2, Z is maximum solid atomic ratio following values defined by each element, R represents a solid in WO 3 At least one element selected from soluble elements, X
Is obtained by adding a simple substance or a compound of D and / or R to AO 2 and WO 3 so as to have a value (including 0) or less of the maximum solid solution atom ratio limited by each element, and performing dry or wet mixing. In a method for producing a powder, in which the obtained mixed powder is fired after being formed into a mixture press-molded body, rapidly cooled and then pulverized, the minimum size of the mixture press-molded body is set to 0.2 to 100 mm. A method for producing the powder, characterized in that:
【請求項4】 粉末の平均粒径を0.05〜50μmと
することを特徴とする請求項1記載の粉体の製造方法。
4. The method according to claim 1, wherein the average particle diameter of the powder is 0.05 to 50 μm.
【請求項5】 混合物加圧成形体の最小の寸法を0.2
〜100mmとすることを特徴とする請求項1記載の粉
体の製造方法。
5. The minimum size of the pressed compact of the mixture is 0.2
The method for producing a powder according to claim 1, wherein the thickness is set to 100 mm.
【請求項6】 混合物加圧成形体の最小の寸法を0.2
〜100mmとすることを特徴とする請求項2記載の粉
体の製造方法。
6. The minimum size of the pressed compact of the mixture is 0.2
3. The method for producing a powder according to claim 2, wherein the thickness is set to 100 mm.
【請求項7】 粉末の平均粒径を0.05〜50μmと
し、成形体の最小の寸法を0.2〜100mmとするこ
とを特徴とする請求項1記載の粉体の製造方法。
7. The method according to claim 1, wherein the average particle size of the powder is 0.05 to 50 μm, and the minimum size of the compact is 0.2 to 100 mm.
【請求項8】 焼成温度を1120〜1250℃の範囲
でかつD又はRの酸化物の融点以下とすることを特徴と
する請求項1乃至請求項7のいずれかに記載の粉体の製
造方法。
8. The method for producing a powder according to claim 1, wherein the sintering temperature is in the range of 1120 to 1250 ° C. and not higher than the melting point of the oxide of D or R. .
【請求項9】 焼成時間が1.5時間以上であることを
特徴とする請求項8に記載の粉体の製造方法。
9. The method for producing a powder according to claim 8, wherein the sintering time is 1.5 hours or more.
【請求項10】 焼成炉又はルツボ材と前記混合粉末の
加圧成形体との間にZrO2又はSnO2を介在させて焼
成することを特徴とする請求項1乃至請求項9のいずれ
かに記載の粉体の製造方法。
10. The firing according to claim 1, wherein ZrO 2 or SnO 2 is interposed between a firing furnace or a crucible material and the pressed compact of the mixed powder. A method for producing the powder described in the above.
【請求項11】 急速冷却は、強制冷却により行うこと
を特徴とする請求項1乃至請求項10のいずれかに記載
の粉体の製造方法。
11. The method for producing a powder according to claim 1, wherein the rapid cooling is performed by forced cooling.
【請求項12】 AO2/WO3のモル比が、3/1から
1/6までであることを特徴とする請求項1乃至請求項
11のいずれかに記載の粉体の製造方法。
12. The method according to claim 1, wherein the molar ratio of AO 2 / WO 3 is from 3/1 to 1/6.
【請求項13】 AO2/WO3のモル比が、1/2から
1/5までであることを特徴とする請求項12に記載の
粉体の製造方法。
13. The method according to claim 12, wherein the molar ratio of AO 2 / WO 3 is from 1/2 to 1/5.
【請求項14】 AがZrであることを特徴とする請求
項1乃至請求項13のいずれかに記載の粉体の製造方
法。
14. The method for producing a powder according to claim 1, wherein A is Zr.
JP2001061569A 2001-03-06 2001-03-06 Method for producing powder Pending JP2002265274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001061569A JP2002265274A (en) 2001-03-06 2001-03-06 Method for producing powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001061569A JP2002265274A (en) 2001-03-06 2001-03-06 Method for producing powder

Publications (1)

Publication Number Publication Date
JP2002265274A true JP2002265274A (en) 2002-09-18

Family

ID=18920843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001061569A Pending JP2002265274A (en) 2001-03-06 2001-03-06 Method for producing powder

Country Status (1)

Country Link
JP (1) JP2002265274A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028181A1 (en) * 2005-09-07 2007-03-15 Arc Seibersdorf Research Gmbh Method for production of a ceramic material and ceramic material
JP2007246300A (en) * 2006-03-13 2007-09-27 Tokyo Univ Of Science Zirconium tungstate-magnesium tungstate composite, method for producing the same, and molded product equipped with the same
CN100425537C (en) * 2006-09-08 2008-10-15 郑州大学 Synthesis method of zirconium tungstate with minus thermal-expansion coefficient
WO2014156215A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Zirconium tungstate
CN106565236A (en) * 2016-10-25 2017-04-19 哈尔滨工业大学 Method for preparing near-zero thermal expansion ZrO2/ZrW2O8 composite material
JP2019178037A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 Zirconium tungstate and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104877A (en) * 2000-09-27 2002-04-10 Moritex Corp Method of synthesizing heat-shrinkable oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104877A (en) * 2000-09-27 2002-04-10 Moritex Corp Method of synthesizing heat-shrinkable oxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028181A1 (en) * 2005-09-07 2007-03-15 Arc Seibersdorf Research Gmbh Method for production of a ceramic material and ceramic material
JP2007246300A (en) * 2006-03-13 2007-09-27 Tokyo Univ Of Science Zirconium tungstate-magnesium tungstate composite, method for producing the same, and molded product equipped with the same
CN100425537C (en) * 2006-09-08 2008-10-15 郑州大学 Synthesis method of zirconium tungstate with minus thermal-expansion coefficient
WO2014156215A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Zirconium tungstate
JP5982058B2 (en) * 2013-03-29 2016-08-31 Jx金属株式会社 Zirconium tungstate
CN106565236A (en) * 2016-10-25 2017-04-19 哈尔滨工业大学 Method for preparing near-zero thermal expansion ZrO2/ZrW2O8 composite material
CN106565236B (en) * 2016-10-25 2019-04-05 哈尔滨工业大学 Prepare near-zero thermal expansion ZrO2/ZrW2O8The method of composite material
JP2019178037A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 Zirconium tungstate and manufacturing method therefor

Similar Documents

Publication Publication Date Title
Chandratreya et al. Reaction mechanisms in the formation of PZT solid solutions
JP2006028001A (en) Crystallographic orientation ceramic, and its manufacturing method
Laoratanakul et al. Phase formation and dielectric properties of bismuth sodium titanate–potassium sodium niobate ceramics
JP4874574B2 (en) Method for producing perovskite ceramics
JP2002265274A (en) Method for producing powder
JP2008263056A (en) Thermoelectric conversion material and method of manufacturing the same
JPH05262516A (en) Production of k-or rb-beta&#34;-or beta-alumina powder preparation, the preparation, production of k-or rb-beta&#34;-or beta-alumina ceramic molding, the molding, and ion conductor made of the molding
JP4533209B2 (en) Oxide ceramics and method for producing the same
JP4569491B2 (en) Piezoelectric actuator
JPH08231223A (en) Thermoelectric conversing material
JP7356364B2 (en) Hexagonal boron nitride powder and method for producing hexagonal boron nitride powder
KR101954075B1 (en) A manufacturing method of stabilized-zirconia using self-propagating high-temperature synthesis and the stabilized-zirconia prepared by this method
JP2001089230A (en) Powdery composition for production of barium titanate- base sintered compact and sintered compact
Al-Shahrani Sintering behavior and thermal property of Mg 2 SnO 4
JP2008124404A (en) Thermoelectric material and manufacturing method of thermoelectric material
CN106007706A (en) High-performance sodium bismuth titanate-based leadless piezoelectric ceramic and preparation method thereof
JPH07201528A (en) Porcelain composition used for thermistor and its manufacture
JPWO2005047206A1 (en) Material exhibiting negative or low thermal expansion coefficient and method for producing the same
JP4844043B2 (en) Thermoelectric conversion material and method for producing the same
JP3012027B2 (en) Phosphoric acid-based sintered body and method for producing the same
JP4989044B2 (en) Method for manufacturing dielectric ceramics
JP5069444B2 (en) Method for manufacturing dielectric ceramics
CN114477996B (en) Preparation method of barium titanate-based ceramic
JP2003063877A (en) Method for manufacturing multicomponent piezoelectric material
JP2006347823A (en) Combustion synthesis method and dielectric ceramic

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110928