JP2002104877A - Method of synthesizing heat-shrinkable oxide - Google Patents

Method of synthesizing heat-shrinkable oxide

Info

Publication number
JP2002104877A
JP2002104877A JP2000293322A JP2000293322A JP2002104877A JP 2002104877 A JP2002104877 A JP 2002104877A JP 2000293322 A JP2000293322 A JP 2000293322A JP 2000293322 A JP2000293322 A JP 2000293322A JP 2002104877 A JP2002104877 A JP 2002104877A
Authority
JP
Japan
Prior art keywords
oxide
shrinkable
heat
platinum foil
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000293322A
Other languages
Japanese (ja)
Inventor
Yuko Morito
戸 祐 幸 森
Takuya Hashimoto
本 拓 也 橋
Takashi Uehara
原 岳 志 上
Satoyuki Katsube
部 智 行 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2000293322A priority Critical patent/JP2002104877A/en
Publication of JP2002104877A publication Critical patent/JP2002104877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To synthesize a lot of heat-shrinkable oxide such as Zr(1-x)HfxW2O8, Zr(1-x)YxW2O8 having a negative coefficient of thermal expansion with a low price. SOLUTION: The heat-shrinkable oxide is synthesized as follows: in a 1st process, a mixture of either one between zirconium oxide ZrO2 and hafnium oxide HfO2 or both of them is mixed with tungsten trioxide WO3 with mole ratio 1:2 of stoichiometric ratio, then refine them to obtain raw material powder; in a 2nd process, the powder is formed by pressing into a pellet; in a 3rd process the pellet is covered with platinum foil, or put into a quartz container, and sealed with platinum foil; in a 4th process, it is subjected to heat treatment in the atmosphere at the temperature of >=1160 deg.C to <=1250 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負の熱膨張係数を
有するZr(1−x)Hf、Zr(1 −x)
を合成する熱収縮性酸化物の合成方法に関
する。
The present invention relates to the, Zr has a negative thermal expansion coefficient (1-x) Hf x W 2 O 8, Zr (1 -x)
The present invention relates to a method for synthesizing a heat-shrinkable oxide for synthesizing Y x W 2 O 8 .

【0002】[0002]

【従来の技術】負の熱膨張係数を有するZrW
どの熱収縮性酸化物は、熱膨張制御が課題となっている
素子などの温度変化による形状変化の影響を相殺するも
のとして、最近応用が期待されている。
2. Description of the Related Art A heat-shrinkable oxide such as ZrW 2 O 8 having a negative coefficient of thermal expansion cancels out the influence of a shape change due to a temperature change of an element or the like for which thermal expansion control is a problem. Recently, applications are expected.

【0003】この合成方法としては、溶液法や固相反応
法が知られている。溶液法は、以下の[1]〜[7]の
手順により、熱収縮性酸化物ZrWの単相多結晶
体を合成することができる。 [1]:0.5molのZrを含むZrOCl・8H
Oの水溶液Aと、1molのWを含む(NH
1240の水溶液Bを作成 [2]:25mlの水に、水溶液A、Bを攪拌しながら
少しずつ滴下して、50ml加える [3]:形成された白色沈殿を10時間連続攪拌 [4]:125mlの6molのHClを加えた後、4
8時間還流 [5]:室温に冷やした後、デカンテーションして濾過 [6]:得られた固体を7日間放置 [7]:空気中600℃で熱処理
As this synthesis method, a solution method and a solid phase reaction method are known. Solution method may be by the following procedures [1] to [7], to synthesize a single phase polycrystalline body of the heat-shrinkable oxide ZrW 2 O 8. [1]: including Zr of 0.5 mol ZrOCl 2 · 8H
Aqueous solution A of 2 O and (NH 4 ) 6 H containing 1 mol of W
Aqueous solution B of 2 W 12 O 40 is prepared [2]: Aqueous solutions A and B are added dropwise to 25 ml of water while stirring, and 50 ml is added [3]: White precipitate formed is continuously stirred for 10 hours [ 4]: After adding 125 ml of 6 mol of HCl, 4
Reflux for 8 hours [5]: Cool to room temperature, decant and filter [6]: Leave the obtained solid for 7 days [7]: Heat treat in air at 600 ° C

【0004】また、固相反応法は、以下の[1]〜
[5]の手順により、熱収縮性酸化物ZrWの単
相多結晶体を合成することができる。 [1]:ZrO及びWOの粉末を定比組成で混合 [2]:シリカチューブに真空封入 [3]:1150℃で12時間熱処理 [4]:得られた白色粉末を粉砕 [5]:白金坩堝で1200℃、12時間熱処理
[0004] The solid-state reaction method includes the following [1] to
According to the procedure [5], a single-phase polycrystal of the heat-shrinkable oxide ZrW 2 O 8 can be synthesized. [1]: ZrO 2 and WO 3 powders are mixed at a stoichiometric composition [2]: Vacuum sealing in a silica tube [3]: Heat treatment at 1150 ° C. for 12 hours [4]: Pulverization of the obtained white powder [5] : Heat treatment in a platinum crucible at 1200 ° C for 12 hours

【0005】[0005]

【発明が解決しようとする課題】ところで、熱収縮性酸
化物を熱膨張制御材料として応用するためには、大量且
つ安価に合成する必要がある。しかしながら、前述した
溶液法では、原材料のZrOCl・8HO及び(N
1240の空気中での安定性が劣るた
め使用しにくいという問題がある。また、固相反応法
は、シリカチューブへ真空封入するために大掛かりな設
備を必要とし、その封入作業も面倒であるという問題が
あった。さらに、上述した合成方法では、いずれも一度
に1g未満の少量の熱収縮性酸化物ZrWしか合
成することができず、大量合成の要請に応じることがで
きない。
By the way, in order to apply the heat-shrinkable oxide as a thermal expansion control material, it is necessary to synthesize a large amount and at a low cost. However, the solution method described above, the raw material ZrOCl 2 · 8H 2 O and the (N
There is a problem that the stability of H 4 ) 6 H 2 W 12 O 40 in air is poor, so that it is difficult to use. In addition, the solid-phase reaction method requires a large-scale facility for vacuum sealing in a silica tube, and there is a problem that the sealing operation is troublesome. Furthermore, in the above-mentioned synthesis methods, all can synthesize only a small amount of the heat-shrinkable oxide ZrW 2 O 8 of less than 1 g at a time, and cannot meet a demand for mass synthesis.

【0006】そこで本発明は、熱収縮性酸化物を大量且
つ安価に合成できるようにすることを技術的課題として
いる。
Accordingly, an object of the present invention is to make it possible to synthesize a heat-shrinkable oxide in a large amount at low cost.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、請求項1の発明は、負の熱膨張係数を有するZr
(1−x)Hf(0≦x≦1)を合成する熱
収縮性酸化物の合成方法であって、酸化ジルコニウムZ
rO及び酸化ハフニウムHfOのいずれか一方又は
双方の混合物と、三酸化タングステンWOとをモル比
1:2の化学量論比で混合した原料粉末をペレット状に
プレス成形し、このペレットを白金箔で包み、又は、石
英容器に入れて白金箔で封をした後、1160℃以上1
250℃未満で加熱処理することを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS]
In addition, the invention of claim 1 provides a Zr having a negative coefficient of thermal expansion.
(1-x)HfxW2O8Heat for synthesizing (0 ≦ x ≦ 1)
A method for synthesizing a shrinkable oxide, comprising: a zirconium oxide Z
rO2And hafnium oxide HfO2Either one or
Both mixtures and tungsten trioxide WO3And the molar ratio
Raw material powder mixed at a stoichiometric ratio of 1: 2 into pellets
Press molding, wrap this pellet in platinum foil, or stone
After putting in a British container and sealing with platinum foil,
The heat treatment is performed at a temperature lower than 250 ° C.

【0008】この発明によれば、例えばZrW
合成する場合に、酸化ジルコニウムZrOと三酸化タ
ングステンWOをモル比1:2の化学量論比で混合し
たものを原料粉末として使用しているので、原材料のす
べてが反応したときに酸化ジルコニウムZrOや三酸
化タングステンWOが不純物として残ることはない。
According to the present invention, for example, when synthesizing ZrW 2 O 8 , a mixture of zirconium oxide ZrO 2 and tungsten trioxide WO 3 at a stoichiometric ratio of 1: 2 by mole is used as a raw material powder. Therefore, zirconium oxide ZrO 2 and tungsten trioxide WO 3 do not remain as impurities when all of the raw materials react.

【0009】また、原料粉末をペレット状に成形してい
るので、そのまま保存しても変質しにくく、取り扱いが
極めて簡単で、一定数のペレットを熱処理するようにす
れば、重さを量ることなく同じ条件で合成を行なうこと
ができる。
Further, since the raw material powder is formed into pellets, it is hardly deteriorated even if it is stored as it is, the handling is extremely simple, and if a certain number of pellets are heat-treated, the weight is weighed. And synthesis can be performed under the same conditions.

【0010】そして、そのペレットを白金箔で包み、又
は、石英容器に入れて白金箔で封をして熱処理している
ので、空気中で熱処理しても、高温域でタングステンW
が蒸発することがない。また、原材料を白金箔で包み、
または、石英容器に入れて白金箔で封をしておけば、空
気中で熱処理しても、不純物が精製されないことが確認
されており、したがって、熱処理も極めて簡単に済む。
そして、このプロセスにより約4〜25g以上の熱収縮
性酸化物ZrWの合成に成功した。
Since the pellets are wrapped in platinum foil or placed in a quartz container and sealed with platinum foil and heat-treated, even if heat-treated in air, tungsten W
Does not evaporate. Also, wrap the raw materials with platinum foil,
Alternatively, if it is put in a quartz container and sealed with platinum foil, it has been confirmed that even if heat treatment is performed in the air, impurities are not purified, and thus heat treatment is extremely simple.
Then, it succeeded in the synthesis of the heat-shrinkable oxide of at least about 4~25g by the process ZrW 2 O 8.

【0011】なお、原材料の酸化ジルコニウムZrO
に替えて、酸化ハフニウムHfOや、酸化ジルコニウ
ムZrO及び酸化ハフニウムHfOの混合物を使用
した場合も、これらと三酸化タングステンWOをモル
比1:2の化学量論比で混合すれば、熱収縮性酸化物Z
rWのジルコニウムZrの一部又は全部をハフニ
ウムHfに置換したZr(1−x)Hfが合
成される。
The raw material zirconium oxide ZrO 2
In the case where hafnium oxide HfO 2 or a mixture of zirconium oxide ZrO 2 and hafnium oxide HfO 2 is used instead of these, if these are mixed with tungsten trioxide WO 3 in a stoichiometric ratio of 1: 2, Heat shrinkable oxide Z
rW 2 part or all of the zirconium Zr in O 8 was replaced with hafnium Hf Zr (1-x) Hf x W 2 O 8 is synthesized.

【0012】請求項2の発明は、酸化ジルコニウムZr
及び微量の酸化イットリウムYの混合物と三
酸化タングステンWOをモル比1:2の化学量論比で
混合した原料粉末を、ペレット状にプレス成形した後、
石英容器に入れて白金箔で封をした後、1160℃以上
1250℃未満で加熱処理することを特徴とする。
The invention according to claim 2 is characterized in that zirconium oxide Zr
A raw material powder obtained by mixing a mixture of O 2 and a trace amount of yttrium oxide Y 2 O 3 with tungsten trioxide WO 3 at a stoichiometric ratio of 1: 2 is press-formed into pellets,
After being put in a quartz container and sealed with platinum foil, heat treatment is performed at 1160 ° C. or more and less than 1250 ° C.

【0013】本発明では、原材料の酸化ジルコニウムZ
rOに替えて、酸化ジルコニウムZrO及び微量の
酸化イットリウムYの混合物を使用しており、こ
の混合物と三酸化タングステンWOをモル比1:2の
化学量論比で混合しているので、熱収縮性酸化物ZrW
のジルコニウムZrの一部をイットリウムYに置
換したZr(1−x)が合成される。
In the present invention, zirconium oxide Z as a raw material is used.
Instead of rO 2 , a mixture of zirconium oxide ZrO 2 and a trace amount of yttrium oxide Y 2 O 3 is used, and this mixture and tungsten trioxide WO 3 are mixed at a stoichiometric ratio of 1: 2 molar ratio. The heat-shrinkable oxide ZrW
2 Zr (1-x) Y x W 2 O 8 in which a part of the zirconium Zr is replaced with yttrium Y of O 8 is synthesized.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて具体的に説明する。図1は本発明方法の手順
を示す説明図、図2は本発明方法により合成された熱収
縮性酸化物Zr(1−x)Hf、Zr
(1−x)のX線回折パターンを示すグラ
フである。
Embodiments of the present invention will be specifically described below with reference to the drawings. 1 is an explanatory view showing a procedure of the method of the present invention, FIG 2 is heat-shrinkable oxide Zr (1-x) synthesized by the method of the present invention Hf x W 2 O 8, Zr
Is a graph showing a (1-x) X-ray diffraction pattern of Y x W 2 O 8.

【0015】図1は熱収縮性酸化物Zr(1−x)Hf
、Zr(1− x)の合成工程を
示すものであるが、第1工程で混合する原材料の種類が
熱収縮性酸化物の種類に応じて異なる(第1工程(a)
〜(d))が、それ以後の第2〜4工程は、熱収縮性酸
化物の種類にかかわりなく共通である。
FIG. 1 shows a heat-shrinkable oxide Zr (1-x) Hf
while indicating step of synthesizing x W 2 O 8, Zr ( 1- x) Y x W 2 O 8, the kind of raw materials to be mixed in the first step differs depending on the type of heat-shrinkable oxide ( First step (a)
To (d)), but the subsequent second to fourth steps are common regardless of the type of the heat-shrinkable oxide.

【0016】第1工程(a)は、熱収縮性酸化物ZrW
を合成する場合を示し、酸化ジルコニウムZrO
と、三酸化タングステンWOとをモル比1:2の化
学量論比で混合し、原料粉末を得る。
In the first step (a), a heat-shrinkable oxide ZrW is used.
2 O 8 is synthesized, and zirconium oxide ZrO is shown.
2 and tungsten trioxide WO 3 are mixed at a stoichiometric ratio of 1: 2 to obtain a raw material powder.

【0017】第1工程(b)は、熱収縮性酸化物HfW
を合成する場合を示し、酸化ハフニウムHfO
と、三酸化タングステンWOとをモル比1:2の化学
量論比で混合し、原料粉末を得る。
In the first step (b), the heat-shrinkable oxide HfW
2 O 8 is synthesized, and hafnium oxide HfO 2
And tungsten trioxide WO 3 are mixed at a stoichiometric ratio of 1: 2 to obtain a raw material powder.

【0018】第1工程(c)は、ジルコニウムZrとハ
フニウムHfを含む熱収縮性酸化物Zr(1−x)Hf
(0<x<1)を合成する場合を示し、酸化
ジルコニウムZrO及び酸化ハフニウムHfOの混
合物と、三酸化タングステンWOとをモル比1:2の
化学量論比で混合し、原料粉末を得る。
In the first step (c), a heat-shrinkable oxide Zr (1-x) Hf containing zirconium Zr and hafnium Hf is used.
xW 2 O 8 (0 <x <1) is synthesized, and a mixture of zirconium oxide ZrO 2 and hafnium oxide HfO 2 and tungsten trioxide WO 3 are mixed at a stoichiometric ratio of 1: 2 by mole. Mix to obtain raw material powder.

【0019】第1工程(d)は、微量のイットリウムY
を含む熱収縮性酸化物Zr(1−x)(0
<x<<1)を合成する場合を示し、酸化ジルコニウム
ZrO及び微量(0〜3%程度)の酸化イットリウム
の混合物と三酸化タングステンWOをモル比
1:2の化学量論比で混合し、原料粉末を得る。
In the first step (d), a small amount of yttrium Y
Heat-shrinkable oxide containing Zr (1-x) Y x W 2 O 8 (0
<X << 1) is synthesized, and a mixture of zirconium oxide ZrO 2 and a trace amount (about 0 to 3%) of yttrium oxide Y 2 O 3 and tungsten trioxide WO 3 in a stoichiometric ratio of 1: 2 Mix at stoichiometric ratio to obtain raw material powder.

【0020】第2工程では、第1工程で混合した原料粉
末を打錠機(図示せず)やプレスなどで、直径10m
m、厚さ5mm、重さ1.5g程度のペレットPに成形
する。
In the second step, the raw material powder mixed in the first step is compressed by a tableting machine (not shown) or a press to a diameter of 10 m.
m, thickness 5 mm, and weigh about 1.5 g.

【0021】次いで、第3工程では、このペレットPを
必要個数だけ白金箔1で包んだり、石英容器2に入れて
白金箔3でその口を塞ぎ、白金ワイヤ4で縛って封をす
る。
Next, in a third step, the pellets P are wrapped in a required number of pieces with platinum foil 1 or put in a quartz container 2 and the opening thereof is closed with platinum foil 3 and tied up with platinum wire 4 and sealed.

【0022】そして、第4工程では、白金箔1で包み、
または、白金箔3で封をしたペレットPを炉5内に入れ
て空気中で1200℃に加熱した。白金箔1で包んだペ
レットPは17時間加熱した後、ペレットPを入れた石
英容器2は140時間加熱した後、夫々室温で急冷し
た。そして、白金箔1で包んだプロセスでは、約4g程
度の熱収縮性酸化物を合成することができた。また、石
英容器2に入れたプロセスでは、約25g程度の熱収縮
性酸化物を合成することができた。なお、1150℃以
下で加熱すると本発明に係る熱収縮性酸化物が合成され
ず、1250℃以上で加熱すると本発明に係る熱収縮性
酸化物が溶解することが確認されたので、加熱温度は、
1160℃以上1250℃未満である。
Then, in the fourth step, wrapping with platinum foil 1
Alternatively, the pellet P sealed with the platinum foil 3 was placed in the furnace 5 and heated to 1200 ° C. in the air. After heating the pellets P wrapped with the platinum foil 1 for 17 hours, the quartz container 2 containing the pellets P was heated for 140 hours and then rapidly cooled at room temperature. Then, in the process of wrapping with the platinum foil 1, about 4 g of the heat-shrinkable oxide could be synthesized. Further, in the process in which the heat-shrinkable oxide was placed in the quartz container 2, about 25 g of the heat-shrinkable oxide could be synthesized. Note that it was confirmed that the heat-shrinkable oxide according to the present invention was not synthesized when heated at 1150 ° C. or lower, and that the heat-shrinkable oxide according to the present invention was dissolved when heated at 1250 ° C. or higher. ,
1160 ° C or higher and lower than 1250 ° C.

【0023】図2はこのようにして合成した熱収縮性酸
化物Zr(1−x)Hf (x=0,0.6,
1)のX線回折パターンを示すグラフである。これによ
れば、熱収縮性酸化物Zr(1−x)Hf
は、x=0からx=1まで、ZrW(a=9.15
5Åの立方晶)に帰属するピークしか観測されていない
ので、これより、不純物が精製されていないことがわか
る。
FIG. 2 shows the heat-shrinkable acid thus synthesized.
Compound Zr(1-x)Hf xW2O8(X = 0,0.6,
It is a graph which shows the X-ray diffraction pattern of 1). This
Then, the heat-shrinkable oxide Zr(1-x)HfxW2O
8ZrW from x = 0 to x = 12O8(A = 9.15
Only peaks belonging to (5Å cubic)
It can be seen from this that the impurities have not been purified
You.

【0024】また、図3は熱収縮性酸化物Zr
(1−x)(X=0、0.01、0.03、0.05)
のX線回折パターンを示す。これによれば、1%置換の
熱収縮性酸化物Zr0.990.01の回折
パターンのピークは、ZrWと一致するので不純
物は精製されていないことがわかるが、3%置換及び5
%置換の熱収縮性酸化物Zr0.970. 03
及びZr0.950.05の回折パターン
では、ZrW と異なるピーク(矢印図示)が観察
されており、不純物が精製されていることがわかる。し
たがって、ジルコニウムZrをイットリウムYに置換す
る場合は、その割合を1%以下にすることが望ましい。
FIG. 3 shows a heat-shrinkable oxide Zr.
(1-x)YxW2O8(X = 0,0.01,0.03,0.05)
3 shows an X-ray diffraction pattern of the sample. According to this, 1% substitution
Heat shrinkable oxide Zr0.99Y0.01W2O8Diffraction
The peak of the pattern is ZrW2O8Impure because it matches
It can be seen that the product was not purified, but 3% substitution and 5
% Substituted heat shrinkable oxide Zr0.97Y0. 03W2O
8And Zr0.95Y0.05W2O8Diffraction pattern
Then, ZrW 2O8Observed different peaks (arrows shown)
It can be seen that the impurities have been purified. I
Accordingly, zirconium Zr is replaced with yttrium Y.
In this case, it is desirable that the ratio be 1% or less.

【0025】これらの試料の熱収縮性を高温X線回折で
評価した。図4は高温X線回折ピークを用いてZrW
の格子定数の温度変化を測定した結果である。室温
〜123℃のα領域、123〜164℃のγ領域、16
4℃以上のβ領域で、いずれも熱収縮が観測され、夫々
の熱膨張係数は、 α領域:−10.2×10−6−1 γ領域:−16.6×10−6−1 β領域:−10.7×10−6−1 と測定された。
The heat shrinkability of these samples was measured by high temperature X-ray diffraction.
evaluated. FIG. 4 shows ZrW using high-temperature X-ray diffraction peaks.2
O85 shows the result of measuring the temperature change of the lattice constant of the sample. room temperature
Α region at ~ 123 ° C, γ region at 123-164 ° C, 16
Thermal contraction was observed in the β region above 4 ° C.
Has a coefficient of thermal expansion of α region: −10.2 × 10-6K-1  γ region: −16.6 × 10-6K-1  β region: −10.7 × 10-6K-1  It was measured.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、簡
単な設備で、純度の極めて高い熱収縮性酸化物を一度に
4.5〜25gと大量に合成することができ、しかも、
設備が簡単で、各工程における作業も簡単であるので、
製造コストを大幅に軽減して安価に合成することができ
るという大変優れた効果を奏する。
As described above, according to the present invention, heat-shrinkable oxides of extremely high purity can be synthesized in a large amount of 4.5 to 25 g at a time with simple equipment.
Since the equipment is simple and the work in each process is also easy,
This has an excellent effect that the production cost can be greatly reduced and the synthesis can be performed at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の手順を示す説明図。FIG. 1 is an explanatory view showing the procedure of the method of the present invention.

【図2】Zr(1−x)HfのX線回折パタ
ーンを示すグラフ。
Graph showing an X-ray diffraction pattern of Figure 2 Zr (1-x) Hf x W 2 O 8.

【図3】Zr(1−x)のX線回折パター
ンを示すグラフ。
3 is a graph showing an X-ray diffraction pattern of Zr (1-x) Y x W 2 O 8.

【図4】ZrWの格子定数の温度変化を示すグラ
フ。
FIG. 4 is a graph showing a change in lattice constant of ZrW 2 O 8 with temperature.

【符号の説明】[Explanation of symbols]

P………ペレット 1………白金箔 2………石英容器 3………白金箔 4………白金ワイヤ P ... Pellet 1 ... Platinum foil 2 ... Quartz container 3 ... Platinum foil 4 ... Platinum wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝 部 智 行 神奈川県横須賀市船越町3−34 Fターム(参考) 4G030 AA17 AA18 AA24 BA21 GA19 GA27 GA31 4G031 AA12 AA15 BA21 GA06 GA11 GA14  ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Tomoyuki Katsube 3-34 Funakoshi-cho, Yokosuka-shi, Kanagawa F-term (reference) 4G030 AA17 AA18 AA24 BA21 GA19 GA27 GA31 4G031 AA12 AA15 BA21 GA06 GA11 GA14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負の熱膨張係数を有するZr(1−x)
(0≦x≦1)を合成する熱収縮性酸化物
の合成方法であって、 酸化ジルコニウムZrO及び酸化ハフニウムHfO
のいずれか一方又は双方の混合物と、三酸化タングステ
ンWOとをモル比1:2の化学量論比で混合した原料
粉末をペレット状にプレス成形し、このペレットを白金
箔で包み、又は、石英容器に入れて白金箔で封をした
後、1160℃以上1250℃未満で加熱処理すること
を特徴とする熱収縮性酸化物の合成方法。
1. Zr (1-x) H having a negative coefficient of thermal expansion
f x W 2 O 8 (0 ≦ x ≦ 1) A process for the synthesis of heat-shrinkable oxide to synthesize, zirconium oxide ZrO 2 and hafnium oxide HfO 2
The raw material powder obtained by mixing any one or both of the above and tungsten trioxide WO 3 at a stoichiometric ratio of 1: 2 is press-formed into pellets, and the pellets are wrapped with platinum foil, or A method for synthesizing a heat-shrinkable oxide, comprising: placing in a quartz container, sealing with platinum foil, and performing heat treatment at 1160 ° C. or more and less than 1250 ° C.
【請求項2】負の熱膨張係数を有するZr(1−x)
(0<x<<1)を合成する熱収縮性酸化物
の合成方法であって、 酸化ジルコニウムZrO及び微量の酸化イットリウム
の混合物と三酸化タングステンWOをモル比
1:2の化学量論比で混合した原料粉末をペレット状に
プレス成形し、このペレットを白金箔で包み、又は、石
英容器に入れて白金箔で封をした後、1160℃以上1
250℃未満で加熱処理することを特徴とする熱収縮性
酸化物の合成方法。
2. Zr (1-x) Y having a negative coefficient of thermal expansion
A method of synthesizing a heat-shrinkable oxide for synthesizing xW 2 O 8 (0 <x << 1), comprising: mixing a mixture of zirconium oxide ZrO 2 and a trace amount of yttrium oxide Y 2 O 3 with tungsten trioxide WO 3 The raw material powder mixed at a stoichiometric ratio of 1: 2 was press-molded into pellets, and the pellets were wrapped in platinum foil, or placed in a quartz container and sealed with platinum foil, and then heated to 1160 ° C. or higher.
A method for synthesizing a heat-shrinkable oxide, comprising performing heat treatment at a temperature of less than 250 ° C.
JP2000293322A 2000-09-27 2000-09-27 Method of synthesizing heat-shrinkable oxide Pending JP2002104877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000293322A JP2002104877A (en) 2000-09-27 2000-09-27 Method of synthesizing heat-shrinkable oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293322A JP2002104877A (en) 2000-09-27 2000-09-27 Method of synthesizing heat-shrinkable oxide

Publications (1)

Publication Number Publication Date
JP2002104877A true JP2002104877A (en) 2002-04-10

Family

ID=18776134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293322A Pending JP2002104877A (en) 2000-09-27 2000-09-27 Method of synthesizing heat-shrinkable oxide

Country Status (1)

Country Link
JP (1) JP2002104877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265274A (en) * 2001-03-06 2002-09-18 Takeo Hattori Method for producing powder
WO2007028181A1 (en) * 2005-09-07 2007-03-15 Arc Seibersdorf Research Gmbh Method for production of a ceramic material and ceramic material
CN105384437A (en) * 2015-11-17 2016-03-09 梅庆波 Preparation method of zirconium oxide product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265274A (en) * 2001-03-06 2002-09-18 Takeo Hattori Method for producing powder
WO2007028181A1 (en) * 2005-09-07 2007-03-15 Arc Seibersdorf Research Gmbh Method for production of a ceramic material and ceramic material
CN105384437A (en) * 2015-11-17 2016-03-09 梅庆波 Preparation method of zirconium oxide product

Similar Documents

Publication Publication Date Title
Tran et al. Synthesis and characterization of mixed phases in the Ca–Co–O system using the Pechini method
Pet’kov et al. Characterization and controlling thermal expansion of materials with kosnarite-and langbeinite-type structures
YAMAGUCHI et al. Crystallization and transformation of distorted tetragonal YNbO4
JP2002104877A (en) Method of synthesizing heat-shrinkable oxide
JPH0193425A (en) Production of lithium niobate powder
JP4831462B2 (en) Method for producing terbium oxides Tb11O20 and Tb7O12
JP2949232B1 (en) Bismuth calcium compounds and their production
JPH07257926A (en) Production of bi5o7(no2)
JP4831463B2 (en) Method for producing rare earth oxysulfate
JP3742875B2 (en) Method for producing yttrium / aluminum / iron composite oxide
Chatterjee et al. Sol Gel Synthesis of Reactor Blanket Material (Li2ZrO3) using nitrate route and its Characterization
JP4320398B2 (en) Composite oxide, method for producing composite oxide, temperature sensor material for resistance thermometer, and resistance thermometer
JPS63195116A (en) Production of superconductor
JPH08133740A (en) Bismuth-rare earth metal oxide solid solution having body-centered cubic structure and its production
JPH07277735A (en) Solid solution of oxides of bismuth and rare earth metals having body-centered cubic lattice structure and production thereof
JPH0435407B2 (en)
JPH0375225A (en) Compound having monoclinic system structure expressed by cu2ta5s8 and production thereof
JPS5933539B2 (en) Compound having hexagonal layered structure represented by LuAlMnO↓4 and method for producing the same
JPS606891B2 (en) Compound having hexagonal layered structure represented by TmGaCuO↓4 and method for producing the same
JPS6041618B2 (en) Compound having hexagonal layered structure represented by YbFeCoO↓4 and method for producing the same
JPH0769638A (en) Compound having composition of bav10-xo17 (0&lt;x&lt;0.7) and synthesizing method thereof
JPH0733429A (en) Y-b compound and its production
JPS606894B2 (en) Compound having hexagonal layered structure represented by TmGaZnO↓4 and method for producing the same
JPH0371376B2 (en)
JPH0246524B2 (en) SCALZN3O6DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO