JP2002263635A - Method for treating cmp waste water containing suspended silica - Google Patents

Method for treating cmp waste water containing suspended silica

Info

Publication number
JP2002263635A
JP2002263635A JP2001059970A JP2001059970A JP2002263635A JP 2002263635 A JP2002263635 A JP 2002263635A JP 2001059970 A JP2001059970 A JP 2001059970A JP 2001059970 A JP2001059970 A JP 2001059970A JP 2002263635 A JP2002263635 A JP 2002263635A
Authority
JP
Japan
Prior art keywords
silica
evaporator
waste water
water
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001059970A
Other languages
Japanese (ja)
Other versions
JP4367887B2 (en
Inventor
Yoshiyuki Aido
祥之 相戸
Yoshihiro Fujiwara
義浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2001059970A priority Critical patent/JP4367887B2/en
Publication of JP2002263635A publication Critical patent/JP2002263635A/en
Application granted granted Critical
Publication of JP4367887B2 publication Critical patent/JP4367887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate CMP waste water containing suspended silica into the concentrated water containing all of the suspended materials contained in the CMP waste water and the condensed water of steam vaporized by vaporizing/ concentrating the CMP waste water containing suspended silica while the generation of scale due to silica is controlled and the volume of the concentrated water is reduced. SOLUTION: The pH value of the CMP waste water containing suspended silica is adjusted to 8-10 by adding alkali, which is then introduced into an evaporator. The introduced CMP waste water is circulated between the evaporator and a heating vessel. The water content of the CMP waste water is vaporized in the evaporator by heating the circulated CMP waste water indirectly through the heat transfer surface of the heating vessel so that the CMP waste water in the evaporator is concentrated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体部品の製造
に際して使用されるCMP(ケミカルメカニカルポリッ
シング)装置から排出されるCMP廃水のうち、シリカ
系の懸濁物を含むCMP廃水を、蒸発濃縮にて処理する
方法に関するものである。
[0001] The present invention relates to a method for evaporating and concentrating CMP wastewater containing silica-based suspensions among CMP wastewater discharged from a CMP (Chemical Mechanical Polishing) apparatus used in the production of semiconductor components. And a method of processing.

【0002】[0002]

【従来の技術】半導体部品の製造に際して使用されるC
MP(ケミカルメカニカルポリッシング)装置から排出
されるCMP廃水には、シリカ(SiO2 )を主成分と
する微粒の砥粒子、及び、これに砥粒子にて被加工物か
ら剥離又は削られた微粒子を含み、これらが懸濁してい
るから、そのままでは河川等に排出することができな
い。
2. Description of the Related Art C used in the manufacture of semiconductor components
CMP wastewater discharged from an MP (Chemical Mechanical Polishing) device includes fine abrasive particles mainly composed of silica (SiO 2 ) and fine particles separated or shaved from the workpiece by the abrasive particles. Since these are suspended, they cannot be discharged to rivers and the like as they are.

【0003】従来、このCMP廃水の処理には、懸濁物
を凝集沈殿て分離する方法と、懸濁物を濾過によって分
離する方法とが存在する。
Conventionally, in the treatment of the CMP wastewater, there are a method of separating the suspended matter by coagulation sedimentation and a method of separating the suspended matter by filtration.

【0004】前者の凝集沈殿による方法は、例えば、特
開平11−33560号公報、特開平11−34756
9号公報、特開2000−140861号公報及び特開
2000−254656号公報等に記載されているよう
に、CMP廃水に凝集剤を添加して凝縮処理したのち、
沈殿槽に導いてシリカ等の懸濁物を沈殿することによっ
て、懸濁物を含む沈殿汚泥水と、懸濁物を含ない上澄水
とに分離するという方法である。
The former method of coagulation and sedimentation is disclosed, for example, in JP-A-11-33560 and JP-A-11-34756.
No. 9, JP-A-2000-140861 and JP-A-2000-254656, etc., after adding a coagulant to the CMP wastewater and performing a condensation treatment,
This is a method in which a suspension such as silica is precipitated by introducing the suspension into a sedimentation tank, thereby separating the suspension into sediment sludge water containing the suspension and supernatant water containing no suspension.

【0005】一方、後者の濾過による方法は、例えば、
特開平7−316846号公報及び特開平9−1177
63号公報等に記載されているように、CMP廃水を濾
過膜にて濾過することにより、懸濁物を分離するという
方法である。
On the other hand, the latter method using filtration is, for example,
JP-A-7-316846 and JP-A-9-1177
As described in JP-A-63-63, etc., this is a method of separating a suspension by filtering CMP wastewater with a filtration membrane.

【0006】[0006]

【発明が解決しようとする課題】しかし、前者の凝集沈
殿による方法は、CMP廃水に、その懸濁物を効果的に
凝集するために凝集剤を多量に添加しなければならない
から、沈殿分離したあとにおける沈殿汚泥水の量が、前
記凝集剤を多量に添加するだけ増大するから、その後に
おける沈殿汚泥水の乾燥等のような後処理の負荷が増大
し、この後処理に要する経費が大幅にアップするばかり
か、高い沈殿分離を達成するには、CMP廃水の性状に
応じて最適の凝集剤及びこの凝集剤の最適の添加量を選
択しなければならない点も問題であった。
However, in the former method based on coagulation and sedimentation, a large amount of coagulant must be added to the CMP wastewater in order to coagulate the suspension effectively. Since the amount of the sedimentation sludge later increases only by adding a large amount of the flocculant, the load of the post-treatment such as the drying of the sedimentation sludge afterwards increases, and the cost required for the post-treatment is greatly increased In addition to increasing the sedimentation, there is a problem in that an optimum flocculant and an optimal amount of the flocculant must be selected according to the properties of the CMP wastewater in order to achieve a high precipitation and separation.

【0007】また、後者の濾過による方法は、CMP廃
水の性状に応じて濾過膜の種類を最適のものに厳選する
必要があり、場合によって、著しく高価なセラミック膜
を使用しなければならず、また、運転管理の面において
も、CMP廃水の性状に応じて、当該CMP廃水中にお
ける特定の物質を除く等の前処理を必要とするとか、濾
過膜の目詰まりに応じて洗浄作業を行う頻度の設定、及
び最適な透過流速の設定を必要とする等の問題があっ
た。
[0007] In the latter method of filtration, it is necessary to carefully select the type of filtration membrane according to the properties of the CMP wastewater, and in some cases, a significantly expensive ceramic membrane must be used. Also, in terms of operation management, the frequency of performing a cleaning operation in accordance with the properties of the CMP wastewater, such as removal of a specific substance in the CMP wastewater or the like, depending on the clogging of the filtration membrane. And the setting of the optimum permeation flow velocity are required.

【0008】本発明は、シリカ系の懸濁物を含むCMP
廃水を、前記従来の凝集沈殿法又は濾過方法によること
なく、蒸発濃縮にて処理する方法を提供することを技術
的課題とするものである。
[0008] The present invention relates to a CMP comprising a silica-based suspension.
An object of the present invention is to provide a method for treating wastewater by evaporative concentration without using the conventional coagulation sedimentation method or filtration method.

【0009】[0009]

【課題を解決するための手段】この技術的課題を達成す
るため本発明における請求項1は、「シリカの懸濁物を
含むCMP廃水を、そのpH値がアルカリの添加によっ
て8〜10になるように調整し、次いで、蒸発缶内に導
き、この蒸発缶内と加熱缶との間を循環し、この循環中
において前記加熱缶の伝熱面を介しての間接加熱により
前記蒸発缶内で水分を蒸発する濃縮を行い、前記シリカ
の懸濁物を含む濃縮水と、蒸発した水蒸気の凝縮水とに
分離する。」ことを特徴としている。
In order to achieve this technical object, claim 1 of the present invention is directed to a method for producing a CMP wastewater containing a suspension of silica, the pH of which becomes 8 to 10 by adding an alkali. And then guided into the evaporator and circulated between the evaporator and the heating can, during which the indirect heating via the heat transfer surface of the heating can causes the evaporator to circulate within the evaporator. Concentration is performed to evaporate the water, and the concentrated water containing the suspension of the silica is separated into condensed water of the evaporated water vapor. "

【0010】また、請求項2は、「前記請求項1の記載
において、前記伝熱面を介して間接加熱するときにおけ
る熱源側とCMP廃水との間の温度差を、6℃以下にす
る。」ことを特徴としている。
According to a second aspect of the present invention, in the first aspect, the temperature difference between the heat source side and the CMP wastewater at the time of indirect heating via the heat transfer surface is set to 6 ° C. or less. It is characterized by.

【0011】[0011]

【発明の作用・効果】このように、懸濁物を含むCMP
廃水を、伝熱面を介して間接加熱することにより蒸発缶
内で水の蒸発を行い、前記濃縮水と、蒸発した水蒸気の
凝縮水とに分離することにより、前記CMP廃水を、当
該CMP廃水に予め含まれていた懸濁物の全てを含む濃
縮水として減量化することができる一方、前記CMP廃
水における水を、懸濁物を含まない凝縮水として回収す
ることができる。
Operation and effect of the present invention
Water is evaporated in an evaporator by indirectly heating the wastewater through a heat transfer surface, and the CMP wastewater is separated into the concentrated water and the condensed water of the evaporated water vapor. The water in the CMP wastewater can be recovered as condensed water containing no suspended matter, while the water in the CMP wastewater can be reduced as concentrated water containing all of the suspended matter previously contained in the wastewater.

【0012】ところで、処理するCMP廃水が、シリカ
系の懸濁物を含むCMP廃水である場合、これを、伝熱
面を介して間接加熱にて水を蒸発して濃縮することは、
前記伝熱面に、シリカのスケールが付着することになる
から、その蒸発濃縮の運転を比較的短い時間間隔で停止
して、伝熱面に付着するシリカのスケールの除去を行う
ようにしなければならず、スケール除去のための運転停
止を頻繁に行わなければないことになる。
When the CMP wastewater to be treated is a CMP wastewater containing a silica-based suspension, it is necessary to evaporate the water by indirect heating via a heat transfer surface to concentrate the wastewater.
Since silica scale will adhere to the heat transfer surface, the operation of evaporating and concentrating the silica must be stopped at relatively short intervals to remove the silica scale attached to the heat transfer surface. In addition, the operation for removing the scale must be frequently stopped.

【0013】しかし、シリカの水に対する溶解度は、そ
の水溶液のpH値が7のときにおいて、図3に示すよう
に、温度に略直線的に比例して上昇するものの、この水
溶液のpH値を種々に変えたときにおけるシリカの水に
対する溶解度は、前記図3における溶解度に対して、図
4の曲線から求められる修正係数Xを掛け算した値にな
り、水溶液のpH値が8の付近では比較的に緩やかに増
大するが、10を越えると急激に増大することが認めら
れる。
However, as shown in FIG. 3, when the pH of the aqueous solution is 7, the solubility of silica in water increases almost linearly in proportion to the temperature as shown in FIG. The solubility of silica in water when changed to is a value obtained by multiplying the solubility in FIG. 3 by the correction coefficient X obtained from the curve in FIG. 4, and is relatively high when the pH value of the aqueous solution is around 8. It increases gradually, but when it exceeds 10, it is recognized that it increases rapidly.

【0014】そこで、本発明においては、前記シリカの
懸濁物を含むCMP廃水を、そのpH値がアルカリの添
加によって8〜10になるように調整したのち、前記蒸
発缶に導いて、この蒸発缶と加熱缶との間を循環し、こ
の循環中において水を蒸発するという濃縮を行うように
したものであり、これにより、蒸発缶と加熱缶との間を
循環する循環水のpH値は、蒸発濃縮により前記当初に
調整したpH値8〜10を越えてこれよりも更に高くな
り、シリカの溶解度が著しく増大して、前記加熱缶にお
ける伝熱面に付着するシリカのスケールを確実に抑制す
ることができるから、蒸発濃縮の運転を伝熱面にシリカ
スケールが付着することのために停止しなけれならない
時間間隔を、大幅に延長できるのである。
Therefore, in the present invention, the pH value of the CMP wastewater containing the suspension of silica is adjusted to 8 to 10 by adding an alkali, and then the wastewater is led to the evaporator to evaporate the wastewater. It circulates between the can and the heating can to concentrate water by evaporating water during the circulation, whereby the pH value of the circulating water circulating between the evaporator and the heating can is increased. The pH value exceeds the initially adjusted pH value of 8 to 10 and is further increased by evaporation and concentration, and the solubility of silica is significantly increased, and the scale of silica adhered to the heat transfer surface in the heating can is reliably suppressed. As a result, the time interval during which the evaporative concentration operation must be stopped for the silica scale to adhere to the heat transfer surface can be greatly extended.

【0015】しかも、蒸発缶と加熱缶との間を循環する
循環水におけるシリカの溶解度を著しく高い値に保持す
ることができるものでありながら、処理する目的のCM
P廃水には、そのpH値を8〜10にするまでのアルカ
リを添加するだけで良いことになり、換言すると、アル
カリの添加量を少なくできるから、運転経費を節減でき
るとともに、アルカリを添加することのために、処理す
る目的のCMP廃水に予め含まれていた懸濁物の全てを
含む濃縮水の量が増大することを僅少にとどめることが
できて、この濃縮水を乾燥する等の後処理の負荷を軽減
できる。
In addition, while the solubility of silica in the circulating water circulating between the evaporator and the heating can can be maintained at a remarkably high value, the CM for the purpose of treatment is treated.
It is only necessary to add an alkali up to a pH value of 8 to 10 to the P wastewater. In other words, since the amount of the alkali added can be reduced, the operating cost can be reduced and the alkali is added. For this reason, the increase in the amount of concentrated water containing all of the suspension previously contained in the CMP wastewater to be treated can be suppressed only slightly, and after the concentrated water is dried, etc. Processing load can be reduced.

【0016】また、前記の蒸発濃縮に際しては、以下の
実施の形態において述べるように、前記伝熱面を介して
間接加熱するときにおける熱源側との間の温度差を、6
℃以下に保持することにより、単位伝熱面積当たりの交
換熱量を小さくし、ひいては、単位伝熱面積当たりの蒸
発量を少なくした場合に、伝熱面の表面での局部的に過
剰に濃縮することを防止できて、伝熱面に付着するスケ
ールは、付着力が小さいものとなるから、前記伝熱面に
シリカスケールが付着しても、このシリカスケールは比
較的柔らかくなり、このシリカスケールを除去すること
が容易にできるのである。
Further, in the above-mentioned evaporative concentration, as described in the following embodiment, the temperature difference between the heat source side and the indirect heating through the heat transfer surface is reduced by 6%.
By keeping the temperature below ℃, the amount of heat exchanged per unit heat transfer area is reduced, and consequently, when the amount of evaporation per unit heat transfer area is reduced, local excess concentration occurs on the surface of the heat transfer surface. It is possible to prevent that, the scale adheres to the heat transfer surface, since the adhesive force is small, even if the silica scale adheres to the heat transfer surface, the silica scale becomes relatively soft, this silica scale It can be easily removed.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、第1の実施の形態を示す。FIG. 1 shows a first embodiment.

【0019】この図1において、符号1は、供給管路2
から送られてくるシリカの懸濁物を含むCMP廃水に対
するpH調整槽を、符号3は、前記CMP廃水に対する
蒸発濃縮装置を各々示す。
In FIG. 1, reference numeral 1 denotes a supply line 2
Reference numeral 3 denotes an evaporating and concentrating apparatus for the CMP wastewater containing the suspension of silica sent from the company.

【0020】前記pH調整槽1は、攪拌機を備え、前記
管路2から送られてくるシリカの懸濁物を含むのCMP
廃水を受け入れて、そのpH値が、管路4から供給され
る苛性ソーダ等のアリカリの添加量をpHセンサー5に
て増減制御することにより、8〜10になるように調整
する。
The pH adjusting tank 1 is provided with a stirrer, and contains a suspension of silica sent from the pipe 2.
The wastewater is received, and its pH value is adjusted to 8 to 10 by controlling the pH sensor 5 to increase or decrease the amount of alkali such as caustic soda supplied from the pipeline 4.

【0021】このようにpH調整されたCMP廃水は、
前記蒸発濃縮装置3における蒸発缶6内の下部にポンプ
7にて供給される。この場合、前記蒸発缶6内の下部に
は液面センサー8が設けられ、この液面センサー8にて
蒸発缶6内へのCMP廃水供給弁9を開閉制御すること
により、蒸発缶6内の下部に一定の液面を保つように構
成されている。
The pH adjusted CMP wastewater is as follows:
The water is supplied to the lower portion of the evaporator 6 in the evaporator 3 by the pump 7. In this case, a liquid level sensor 8 is provided at a lower portion in the evaporator 6, and the liquid level sensor 8 controls the opening and closing of the CMP wastewater supply valve 9 into the evaporator 6, whereby The lower part is configured to maintain a constant liquid level.

【0022】前記蒸発缶6内の上部には、加熱缶におけ
る水平に延びる伝熱管10の多数本が多段状に設けら
れ、この各伝熱管10の一端は入り口ヘッダー11に他
端は出口ヘッダー12に各々開口しており、前記各伝熱
管10内には、ボイラー(図示せず)から管路13にて
送られて来る熱源としての蒸気が、前記入り口ヘッダー
11を介して供給される。
In the upper part of the evaporator 6, a number of horizontally extending heat transfer tubes 10 in the heating can are provided in a multi-stage manner, one end of each of the heat transfer tubes 10 being an inlet header 11 and the other being an outlet header 12. Each of the heat transfer tubes 10 is supplied with steam as a heat source sent from a boiler (not shown) through a pipe line 13 through the inlet header 11.

【0023】一方、前記蒸発缶6内底部に供給された処
理目的のCMP廃水は、循環ポンプ14にて汲み出さ
れ、前記加熱缶における各伝熱管10の上部に配設した
ノズル15に循環管路16にて送られ、ノズル15から
前記各伝熱管10の外側面に対して散布されたのち、再
び蒸発缶6内の底部に戻るというように循環される。
On the other hand, the CMP wastewater for processing supplied to the inner bottom of the evaporator 6 is pumped out by a circulation pump 14 and is sent to a nozzle 15 disposed above each heat transfer tube 10 in the heating can. After being sent through the passage 16 and sprayed from the nozzle 15 to the outer surface of each of the heat transfer tubes 10, it is circulated again to return to the bottom in the evaporator 6.

【0024】この循環により、蒸発缶6内において、前
記各伝熱管10により間接加熱されることにより、水分
が蒸発する。
By this circulation, in the evaporator 6, the water is evaporated by being indirectly heated by the heat transfer tubes 10.

【0025】この蒸発により、蒸発缶6内におけるCM
P廃水は、水が蒸発するようにいわゆる蒸発濃縮され、
懸濁物の濃度が高い濃縮水になり、濃縮水送出管路17
から排出される。
By this evaporation, CM in the evaporator 6 is
The P wastewater is so-called evaporatively concentrated so that the water evaporates,
The concentrated water having a high concentration of the suspension becomes the concentrated water delivery line 17.
Is discharged from.

【0026】一方、前記蒸発缶6内で蒸発した水蒸気
は、ダクト18を介して凝縮器19に導かれ、ここでの
冷却により凝縮水になり、前記出口ヘッダー12におけ
る凝縮水と一緒に凝縮水ポンプ20により汲み出され
る。
On the other hand, the water vapor evaporated in the evaporator 6 is led to a condenser 19 through a duct 18 and becomes condensed water by cooling there, and condensed water together with the condensed water in the outlet header 12. Pumped by pump 20.

【0027】また、前記蒸発缶6内は、不凝縮性ガスを
前記凝縮器19から真空ポンプ21などの真空発生装置
にて抽出することにより、大気圧以下の減圧状態(例え
ば、沸点が約80℃の減圧状態)に保持され、従って、
この蒸発缶6内での前記した蒸発は、大気圧以下の減圧
状態のもとで行われる。
In the evaporator 6, a non-condensable gas is extracted from the condenser 19 by a vacuum generator such as a vacuum pump 21 so that the gas is reduced to a pressure lower than the atmospheric pressure (for example, the boiling point is about 80 ° C.). ℃ decompression state)
The above-described evaporation in the evaporator 6 is performed under a reduced pressure state below the atmospheric pressure.

【0028】前記濃縮水送出管路17から排出される濃
縮水は、処理目的のCMP廃水に当初より含まれていた
懸濁物の全てを含み、その後における乾燥等の後処理工
程に送られる。
The concentrated water discharged from the concentrated water delivery line 17 contains all of the suspended matter originally contained in the CMP wastewater to be treated, and is sent to a post-processing step such as drying.

【0029】一方、前記凝縮水ポンプ20により汲み出
される凝縮水は、これに懸濁物を含まないことにより、
工業用水等として再利用箇所に凝縮水送出管路22より
送られる。
On the other hand, the condensed water pumped out by the condensed water pump 20 does not contain any suspended matter.
The condensed water is sent from the condensed water delivery pipe 22 to a reuse point as industrial water or the like.

【0030】なお、本実施の形態の場合、前記濃縮水送
出管路17の途中に、比重計等の懸濁物濃度センサー2
3を設け、濃縮水中の懸濁物濃度が所定値以上になった
ときのみ弁24を開いて、乾燥等の後処理工程に送出す
るように構成されている。一方、前記凝縮水送出管路2
2の途中に、水質センサー25を設け、凝縮水の水質が
所定値よりも良いときには弁26を開いて、再利用箇所
に送出するが、凝縮水の水質が所定値よりも悪いときに
は、前記弁26を閉じ、バイパス弁27を開いて再利用
箇所以外の箇所に送出するように構成されている。
In the case of this embodiment, a suspended matter concentration sensor 2 such as a hydrometer is provided in the concentrated water delivery line 17.
3, the valve 24 is opened only when the concentration of the suspended solids in the concentrated water becomes a predetermined value or more, and is sent to a post-processing step such as drying. On the other hand, the condensed water delivery line 2
A water quality sensor 25 is provided in the middle of the step 2, and when the water quality of the condensed water is better than a predetermined value, the valve 26 is opened and sent to a reuse point. The valve 26 is closed, the bypass valve 27 is opened, and the fluid is sent to a location other than the reuse location.

【0031】また、本実施の形態の場合、前記循環管路
16には、タンク28に入れたスケール防止剤が弁29
より適当な時期に適宜供給されるとともに、タンク30
に入れた消泡剤が弁31より適当な時期に適宜供給され
る。
In the case of the present embodiment, the circulation line 16 is provided with a scale inhibitor contained in a tank 28 by a valve 29.
In addition to being supplied appropriately at a more appropriate time, the tank 30
The defoamer put in the tank is supplied from the valve 31 at an appropriate time.

【0032】更にまた、本実施の形態においては、前記
各伝熱管10の表面に、シリカのスケールが所定値以上
に付着した場合には、前記の蒸発濃縮の運転を停止し、
蒸発缶6内等に溜まるCMP廃水を排出したのち、前記
蒸発缶6内に、タンク32に入れた洗浄剤を、弁33を
開いて供給して循環することにより、前記シリカスケー
ルの除去を行い、スケールの除去を終わった洗浄剤は、
前記凝縮水送出管路22に接続した排出弁34より排出
するように構成されている。
Further, in the present embodiment, when the silica scale adheres to the surface of each of the heat transfer tubes 10 to a predetermined value or more, the operation of the evaporation and concentration is stopped,
After discharging the CMP wastewater accumulated in the evaporator 6 and the like, the silica scale is removed by supplying the cleaning agent put in the tank 32 into the evaporator 6 by opening the valve 33 and circulating the same. The cleaning agent that has finished removing the scale
It is configured to be discharged from a discharge valve 34 connected to the condensed water delivery pipe 22.

【0033】ところで、本発明者達の実験によると、シ
リカの懸濁物を含むCMP廃水を1日当たり144立方
メートル処理する設備で、蒸発濃縮装置3での蒸発濃縮
比を12倍とするいうように、前記処理目的のCMP廃
水を、1/12の濃縮水に減量する場合において、前記
処理目的のCMP廃水におけるpH値を、前記pH調整
槽1における苛性ソーダの添加によって8に調整し、こ
れを蒸発濃縮装置3に供給したところ、蒸発濃縮装置3
における循環水のpH値は、9.5〜10を以上になる
のであった。
According to experiments by the present inventors, a facility for processing 144 cubic meters of CMP wastewater containing a suspension of silica per day, and evaporating and concentrating ratio in the evaporating and concentrating device 3 to be 12 times. When the amount of the CMP wastewater to be treated is reduced to 1/12 concentrated water, the pH value of the CMP wastewater to be treated is adjusted to 8 by adding caustic soda in the pH adjusting tank 1, and the water is evaporated. When supplied to the concentrator 3, the evaporative concentrator 3
The pH value of the circulating water at 9.5 to 10 or more.

【0034】ところで、前記蒸発濃縮装置3の加熱缶に
おいて、その各伝熱管10における内側の加熱側と、外
側の被加熱側との間の温度差は、これが大きい程、単位
伝熱面積当たりの伝熱量が増大するから、伝熱面積の縮
小、ひいては、蒸発濃縮装置の小型化を図ることができ
る。
In the heating can of the evaporating and concentrating apparatus 3, the temperature difference between the inner heating side and the outer heated side of each heat transfer tube 10 increases as the temperature difference per unit heat transfer area increases. Since the amount of heat transfer increases, the heat transfer area can be reduced, and the evaporator can be downsized.

【0035】しかし、本発明者達の実験によると、前記
の温度差が、6℃を越えた場合には、前記各伝熱管10
の外側面に付着するシリカのスケールは、硬くなって、
これを容易に除去することができないようになる現象が
認められたが、前記の温度差が6℃以下にした場合に
は、前記各伝熱管10の外側面に付着するシリカのスケ
ールは比較的柔らかい状態になり、洗浄剤による洗浄に
て容易に除去できるのであった。
However, according to experiments performed by the present inventors, when the temperature difference exceeds 6 ° C., each of the heat transfer tubes 10
The silica scale that adheres to the outer surface of the
Although a phenomenon was observed in which this could not be easily removed, when the temperature difference was set to 6 ° C. or less, the scale of silica adhering to the outer surface of each heat transfer tube 10 was relatively small. It became soft and could be easily removed by washing with a detergent.

【0036】次に、図2は、第2の実施の形態を示す。Next, FIG. 2 shows a second embodiment.

【0037】この第2の実施の形態は、蒸発濃縮装置と
して蒸気圧縮型蒸発濃縮装置3′を使用した場合であ
り、その他の構成は、前記第1の実施の形態と同じであ
る。
In the second embodiment, a vapor compression type evaporating and concentrating apparatus 3 'is used as an evaporating and concentrating apparatus, and the other configuration is the same as that of the first embodiment.

【0038】ここにおける蒸気圧縮型蒸発濃縮装置3′
は、蒸発缶6内で発生した水蒸気を、電動モータ35に
て回転駆動されるブロワー36にて圧縮したのち、前記
各伝熱管10の入り口ヘッダー11内に供給する一方、
前記各伝熱管10の出口ヘッダー12から不凝縮性ガス
を真空ポンプ21′などの真空発生装置にて行うことに
より、前記蒸発缶6内での蒸発を、大気圧以下の減圧状
態で行うようにしたものであり、前記蒸発で発生した水
蒸気は、凝縮水として前記出口ヘッダー12に集まり、
ここから凝縮水ポンプ20により汲み出される。
Here, the vapor compression type evaporative concentrator 3 '
After the steam generated in the evaporator 6 is compressed by a blower 36 rotated and driven by an electric motor 35, the steam is supplied into the inlet header 11 of each of the heat transfer tubes 10.
By performing the non-condensable gas from the outlet header 12 of each of the heat transfer tubes 10 by a vacuum generator such as a vacuum pump 21 ′, the evaporation in the evaporator 6 is performed at a reduced pressure below the atmospheric pressure. The steam generated by the evaporation is collected as condensed water at the outlet header 12,
From here, it is pumped by the condensed water pump 20.

【0039】この構成によると、前記電動モータにおけ
る電流は、前記各伝熱管10の外側面へのシリカスケー
ルの付着に反比例して小さくなるから、前記電動モータ
における電流を、電流計37にして検出することによ
り、この電流値にて、スケールの除去を行う時期を知る
ことができる。
According to this structure, the current in the electric motor decreases in inverse proportion to the adhesion of the silica scale to the outer surface of each of the heat transfer tubes 10, and the current in the electric motor is detected by the ammeter 37. By doing so, it is possible to know when to remove the scale from the current value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】シリカの水に対する溶解度を示す図である。FIG. 3 is a graph showing the solubility of silica in water.

【図4】シリカ水溶液のpHによる溶解度の修正係数を
示す図である。
FIG. 4 is a diagram showing a correction coefficient of solubility of a silica aqueous solution depending on pH.

【符号の説明】[Explanation of symbols]

1 pH調整槽 2 シリカの懸濁物を含むCMP廃水供
給管路 3,3 蒸発濃縮装置 6 蒸発缶 10 伝熱管 14 循環ポンプ 17 濃縮水送出管路 19 凝縮器 20 凝縮水ポンプ 21 凝縮水送出管路
DESCRIPTION OF SYMBOLS 1 pH adjustment tank 2 CMP waste water supply line containing suspension of silica 3, 3 Evaporation concentrator 6 Evaporator 10 Heat transfer tube 14 Circulation pump 17 Concentrated water delivery line 19 Condenser 20 Condensed water pump 21 Condensed water delivery tube Road

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シリカの懸濁物を含むCMP廃水を、その
pH値がアルカリの添加によって8〜10になるように
調整し、次いで、蒸発缶内に導き、この蒸発缶内と加熱
缶との間を循環し、この循環中において前記加熱缶の伝
熱面を介しての間接加熱により前記蒸発缶内で水分を蒸
発する濃縮を行い、前記シリカの懸濁物を含む濃縮水
と、蒸発した水蒸気の凝縮水とに分離することを特徴と
するシリカ系懸濁物を含むCMP廃水の処理方法。
1. The CMP waste water containing a suspension of silica is adjusted to have a pH value of 8 to 10 by adding an alkali, and then is introduced into an evaporator. During the circulation, concentration is performed by evaporating water in the evaporator by indirect heating through the heat transfer surface of the heating can, and concentrated water containing a suspension of the silica, A method for treating CMP wastewater containing a silica-based suspension, wherein the wastewater is separated into condensed water of steam.
【請求項2】前記請求項1の記載において、前記伝熱面
を介して間接加熱するときにおける熱源側との間の温度
差を、6℃以下に保持することを特徴とするシリカ懸濁
物を含むCMP廃水の処理方法。
2. The silica suspension according to claim 1, wherein the temperature difference between the indirect heating through the heat transfer surface and the heat source side is maintained at 6 ° C. or less. A method for treating CMP wastewater, comprising:
JP2001059970A 2001-03-05 2001-03-05 Process for treating CMP wastewater containing suspension of silica Expired - Fee Related JP4367887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059970A JP4367887B2 (en) 2001-03-05 2001-03-05 Process for treating CMP wastewater containing suspension of silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059970A JP4367887B2 (en) 2001-03-05 2001-03-05 Process for treating CMP wastewater containing suspension of silica

Publications (2)

Publication Number Publication Date
JP2002263635A true JP2002263635A (en) 2002-09-17
JP4367887B2 JP4367887B2 (en) 2009-11-18

Family

ID=18919460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059970A Expired - Fee Related JP4367887B2 (en) 2001-03-05 2001-03-05 Process for treating CMP wastewater containing suspension of silica

Country Status (1)

Country Link
JP (1) JP4367887B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148954A1 (en) 2006-06-21 2007-12-27 Diaz Gonzales Alcocer Juan Jor Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
JP2012040470A (en) * 2010-08-16 2012-03-01 Japan Organo Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2012106168A (en) * 2010-11-16 2012-06-07 Nippon Steel Corp Apparatus and method for treating wastewater
JP2013198870A (en) * 2012-03-26 2013-10-03 Kurita Water Ind Ltd Evaporative concentration apparatus and cleaning method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148954A1 (en) 2006-06-21 2007-12-27 Diaz Gonzales Alcocer Juan Jor Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
JP2012040470A (en) * 2010-08-16 2012-03-01 Japan Organo Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2012106168A (en) * 2010-11-16 2012-06-07 Nippon Steel Corp Apparatus and method for treating wastewater
JP2013198870A (en) * 2012-03-26 2013-10-03 Kurita Water Ind Ltd Evaporative concentration apparatus and cleaning method for the same

Also Published As

Publication number Publication date
JP4367887B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US8727325B2 (en) Method, apparatus and system for concentrating solutions using evaporation
JP3328779B2 (en) Apparatus and method for treating an emulsion
JP4737670B2 (en) Method and apparatus for treating wastewater containing calcium and sulfuric acid
JP6186193B2 (en) Method for evaporating aqueous solution
CN108408812B (en) Desalination method and device for salt-containing wastewater
CN108275823A (en) A kind of compound Zero discharging system of dense salt waste water and technique
TW201235090A (en) Abrasive recovery method and abrasive recovery device
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
KR100492928B1 (en) Apparatus for processing waste water using heat-pump system
JP2002263635A (en) Method for treating cmp waste water containing suspended silica
CN101874984A (en) Device and method for distilling air-blowing vacuum membrane
KR101344915B1 (en) Substrate treating apparatus and chemical recycling method
WO2000010922A1 (en) Treatment of aqueous wastes
CN106904777A (en) The processing method of full alkali short route energy-conservation saliferous industrial wastewater high
JP6427235B2 (en) Method of evaporation of aqueous solution
KR101801842B1 (en) Apparatus of treating wastewater using concentration control and Method of treating wastewater using the same
JP3366258B2 (en) Method and apparatus for evaporating and concentrating sulfuric acid-containing wastewater
JPH10118404A (en) Method for concentrating liquid
JPH10263301A (en) Liquid thickening
KR200179033Y1 (en) Waste water evaporation concentration plant having function washing
CN103896420A (en) Desulfurization waste water treatment system and method
JP2004188270A (en) Method and equipment for filtering water containing precipitable suspended material
JPH11244843A (en) Steam compression type pure water producing device
JP6731515B1 (en) Wastewater treatment facility and wastewater treatment method
JP2010253360A (en) Method and apparatus for treating cooling water of refrigerator/cold and warm water machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

R150 Certificate of patent or registration of utility model

Ref document number: 4367887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150904

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees