JP2002263499A - Methanol reforming catalyst and manufacturing method thereof - Google Patents

Methanol reforming catalyst and manufacturing method thereof

Info

Publication number
JP2002263499A
JP2002263499A JP2001071504A JP2001071504A JP2002263499A JP 2002263499 A JP2002263499 A JP 2002263499A JP 2001071504 A JP2001071504 A JP 2001071504A JP 2001071504 A JP2001071504 A JP 2001071504A JP 2002263499 A JP2002263499 A JP 2002263499A
Authority
JP
Japan
Prior art keywords
sol
catalyst
methanol
gel
reforming catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001071504A
Other languages
Japanese (ja)
Other versions
JP3896796B2 (en
Inventor
Kaoru Takeishi
薫 武石
Hiromitsu Suzuki
啓充 鈴木
Nobutoshi Konagai
信寿 小長井
Fumikazu Kimata
文和 木俣
Yukio Yamamoto
幸生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2001071504A priority Critical patent/JP3896796B2/en
Publication of JP2002263499A publication Critical patent/JP2002263499A/en
Application granted granted Critical
Publication of JP3896796B2 publication Critical patent/JP3896796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method reforming catalyst having a function that high hydrogen production per unit volume and excellent methanol reforming activity even at a low temperature (about 250 deg.C) are attained. SOLUTION: The methanol reforming catalyst contains copper, palladium and silica and hydrogen is generated by steam-reforming of methanol. The methanol reforming catalyst is manufactured by a manufacturing method including a step for forming sol by adding an acid into a metallic alkoxide, a step for adding a catalytic metal aqueous solution to the sol and stirring the mixture, a step for drying the stirred sol by evaporation to form gel, a step for firing the gel and a step for reducing the calcined gel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、メタノールから水素を
製造するメタノール改質触媒に関するものである。詳細
には、本発明は優れた改質性能と低温活性を有するメタ
ノール改質触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a methanol reforming catalyst for producing hydrogen from methanol. More specifically, the present invention relates to a methanol reforming catalyst having excellent reforming performance and low-temperature activity.

【0002】[0002]

【従来の技術】電気化学反応による発電方式を用いた燃
料電池は、高エネルギー効率と優れた環境特性とを有す
ることから、近年、自動車への応用が期待されている。
燃料電池の原理は、水の電気分解の逆反応、すなわち水
素と酸素が結びついて水を生成する際に発生する電気エ
ネルギーを利用している。この燃料電池に用いる燃料水
素源として、メタノールの水蒸気改質によって生成され
る水素が注目されている。なぜなら、メタノールは近
年、石油、石炭、天然ガスなどの多くの資源から大量生
産される技術が確立されてきており、安価に入手できる
からである。さらに、メタノールの取り扱いの面から見
て水素ガスに比べ危険が少ないため運搬や備蓄が容易で
ある。また、改質反応温度が200〜400℃程度であ
ることから、簡易に水素を作り出すシステムが実現でき
るからである。
2. Description of the Related Art In recent years, a fuel cell using a power generation system by an electrochemical reaction has high energy efficiency and excellent environmental characteristics, and is expected to be applied to an automobile in recent years.
The principle of a fuel cell utilizes the reverse reaction of water electrolysis, that is, electric energy generated when hydrogen and oxygen combine to generate water. Attention has been paid to hydrogen generated by steam reforming of methanol as a fuel hydrogen source used in this fuel cell. This is because in recent years, technology for mass-producing methanol from many resources such as petroleum, coal, and natural gas has been established, and methanol can be obtained at low cost. In addition, transportation and storage are easy because there is less danger than hydrogen gas when handling methanol. Further, since the reforming reaction temperature is about 200 to 400 ° C., a system for easily producing hydrogen can be realized.

【0003】メタノール改質触媒として、一般に銅、亜
鉛およびアルミナを原料とする触媒がよく知られてい
る。例えば、特開昭53−76991号公報、特開平1
−111445号公報、特開平11−19516号公報
などがある。これらの触媒の製造方法においては、共沈
法、含浸法などの方法が使用されている。
[0003] As a methanol reforming catalyst, a catalyst generally using copper, zinc and alumina as raw materials is well known. For example, Japanese Unexamined Patent Application Publication No.
And Japanese Patent Application Laid-Open No. 11-19516. In the production of these catalysts, methods such as coprecipitation and impregnation are used.

【0004】ここで、含浸法は、アルミナ(Al23
等の無機酸化物の担体を触媒金属溶液に含浸して担持す
ることによって、触媒を製造する方法である。 この
含浸法では、触媒金属が触媒層の表面にのみ担持されて
おり、分散性が悪く、熱によって活性金属がシンタリン
グ(凝集)するため、改質活性の低下を引き起こすとい
う問題がある。
[0004] Here, the impregnation method uses alumina (Al 2 O 3 ).
This is a method for producing a catalyst by impregnating a carrier of an inorganic oxide, such as, with a catalyst metal solution and supporting it. In this impregnation method, the catalyst metal is supported only on the surface of the catalyst layer, has poor dispersibility, and the active metal is sintered (agglomerated) by heat, which causes a problem of lowering the reforming activity.

【0005】また、共沈法は、無機金属塩の水溶液に酸
やアルカリを添加して、金属酸化物あるいは金属水酸化
物を沈殿させることによって、触媒を製造する方法であ
る。この共沈法では、原料中に含まれる不純物を排除し
にくく、沈殿時に使用した塩類を不純物として取り込み
やすく、沈殿の成長の際にpHのばらつきなどによって
均質な触媒を調製しにくいといった問題が生じる。
The coprecipitation method is a method for producing a catalyst by adding an acid or an alkali to an aqueous solution of an inorganic metal salt to precipitate a metal oxide or a metal hydroxide. In this coprecipitation method, there are problems that it is difficult to remove impurities contained in the raw material, it is easy to take in the salts used during precipitation as impurities, and it is difficult to prepare a homogeneous catalyst due to variations in pH during the growth of the precipitate. .

【0006】燃料電池電気自動車用のメタノール改質装
置には、コンパクトかつ始動性の高い改質装置が要求さ
れる。このために、メタノール改質触媒に所望される機
能は、単位容積当たりの水素生成量が高く、低温(約2
00℃)時でもメタノール改質活性の優れていることで
ある。しかし、銅、亜鉛およびアルミナを原料にし、共
沈法、含浸法などの方法によって製造されたような従来
のメタノール改質触媒にはこのような機能に劣る問題が
ある。よって、従来のメタノール改質触媒よりも、単位
容積当たりの水素生成量が高く、低温(約200℃)時
でもメタノール改質活性の優れている機能があるメタノ
ール改質触媒が必要である。
[0006] For a methanol reformer for a fuel cell electric vehicle, a reformer that is compact and has high startability is required. For this reason, the desired function of the methanol reforming catalyst is that the amount of hydrogen generated per unit volume is high and the temperature is low (about 2
(00.degree. C.), the methanol reforming activity is excellent. However, conventional methanol reforming catalysts produced from copper, zinc and alumina as raw materials by a method such as a coprecipitation method or an impregnation method have a problem that such functions are inferior. Therefore, there is a need for a methanol reforming catalyst which has a higher amount of hydrogen generation per unit volume than conventional methanol reforming catalysts and has a function of excellent methanol reforming activity even at low temperatures (about 200 ° C.).

【0007】[0007]

【発明が解決しようとする課題】本発明は上記問題を鑑
みてなされたものであり、単位容積当たりの水素生成量
が高く、低温(約250℃)時でもメタノール改質活性
の優れている機能があるメタノール改質触媒を提供する
ことを目的とする。さらに、低温(約250℃)から高
温(約400℃)までメタノールからの水素生成能を高
く維持できるメタノール改質触媒を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a function to produce a large amount of hydrogen per unit volume and to have excellent methanol reforming activity even at a low temperature (about 250 ° C.). An object of the present invention is to provide a certain methanol reforming catalyst. It is another object of the present invention to provide a methanol reforming catalyst capable of maintaining a high ability to generate hydrogen from methanol from a low temperature (about 250 ° C.) to a high temperature (about 400 ° C.).

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るメタノール改質触媒は、銅と、パラジ
ウムと、シリカとを含んでなり、メタノールの水蒸気改
質により水素を発生させる。本発明に係るメタノール改
質触媒は、金属アルコキシドに酸を加えゾルを生成する
ステップと、このゾルに触媒金属水溶液を加え、撹拌す
るステップと、撹拌されたゾルを、蒸発乾燥し、ゲルを
生成するステップと、ゲルを乾燥し、焼成するステップ
と、焼成された前記ゲルを還元処理するステップとを含
む製造方法によって製造される。
In order to achieve the above object, a methanol reforming catalyst according to the present invention comprises copper, palladium, and silica, and generates hydrogen by steam reforming of methanol. . The methanol reforming catalyst according to the present invention comprises the steps of: adding an acid to a metal alkoxide to form a sol; adding a catalytic metal aqueous solution to the sol; stirring; and evaporating and drying the stirred sol to form a gel. And a step of drying and firing the gel, and a step of subjecting the fired gel to a reduction treatment.

【0009】また、本発明に係るメタノール改質触媒
は、パラジウム:銅の比率が、1:20から1:5の範
囲であることが好適である。また、本発明に係るメタノ
ール改質器は、反応経路の前段に本発明に係るメタノー
ル改質触媒を配置し、反応経路の後段に銅と亜鉛とアル
ミナとを含み、アルミナの担体を、銅と亜鉛とを含む溶
液に含浸して担持する方法によって製造された触媒を配
置することが好ましい。本発明に係るメタノール改質触
媒は、反応温度が250℃から400℃の範囲で、メタ
ノール改質率が82%以上であることができる。
The methanol reforming catalyst according to the present invention preferably has a palladium: copper ratio of 1:20 to 1: 5. Further, the methanol reformer according to the present invention, the methanol reforming catalyst according to the present invention is disposed at the preceding stage of the reaction path, contains copper, zinc and alumina at the latter stage of the reaction path, the carrier of alumina, copper and alumina It is preferable to dispose a catalyst produced by a method of impregnating and supporting a solution containing zinc. The methanol reforming catalyst according to the present invention may have a reaction temperature in the range of 250 ° C. to 400 ° C. and a methanol reforming rate of 82% or more.

【0010】また、本発明は、金属アルコキシドに酸を
加え、ゾルを生成するステップと、該ゾルに触媒金属水
溶液を加え、撹拌するステップと、撹拌されたゾルを、
蒸発乾燥し、ゲルを生成するステップと、前記ゲルを乾
燥し、焼成するステップと、焼成された前記ゲルを還元
処理するステップとを含むメタノール改質触媒の製造方
法を提供する。
The present invention also provides a step of adding an acid to a metal alkoxide to form a sol, a step of adding an aqueous catalyst metal solution to the sol and stirring, and
A method for producing a methanol reforming catalyst, comprising: evaporating and drying to form a gel; drying and firing the gel; and reducing the fired gel.

【0011】金属アルコキシドとは、アルコール類にお
ける水酸基の水素を金属で置換することにより得られる
化合物である。例えば、オルトケイ酸テトラエチル((C
25O)4Si)などが挙げられるが、これに限定される
ものではない。ゾルとは、コロイド溶液とほぼ同義に使
用され、液体中に分散していて流動性を示し、粒子は活
発にブラウン運動している状態をいう。ゲルとは、コロ
イド粒子が独立した運動性を失って、集合して固化した
状態をいう。還元処理するとは、処理される物質に電子
を付加することをいう。具体的には、水素雰囲気中で処
理される物質に水素を添加することをいう。触媒金属水
溶液とは、触媒機能を有する金属を含む水溶液のことで
ある。例えば、硝酸パラジウム水溶液や硝酸銅水溶液や
硝酸亜鉛水溶液などが挙げられるが、触媒機能を有する
金属を含む水溶液ならばよく、限定されるものではな
い。
[0011] A metal alkoxide is a compound obtained by substituting hydrogen of a hydroxyl group in alcohols with a metal. For example, tetraethyl orthosilicate ((C
2 H 5 O) 4 Si) and the like, but not limited thereto. The sol is used almost synonymously with a colloid solution, and refers to a state in which it is dispersed in a liquid and exhibits fluidity, and particles are actively Browning. The gel refers to a state in which the colloid particles lose their independent motility and are aggregated and solidified. The reduction treatment means adding electrons to the substance to be treated. Specifically, it means adding hydrogen to a substance to be treated in a hydrogen atmosphere. The catalyst metal aqueous solution is an aqueous solution containing a metal having a catalytic function. For example, an aqueous solution of palladium nitrate, an aqueous solution of copper nitrate, an aqueous solution of zinc nitrate, and the like can be mentioned, but any aqueous solution containing a metal having a catalytic function may be used and is not limited.

【0012】上に述べたように、本発明によれば、単位
容積当たりの水素生成量が高く、低温(約250℃)時
でもメタノール改質活性の優れている機能があるメタノ
ール改質触媒を提供することができる。さらに、低温
(約250℃)から高温(約400℃)までメタノール
からの水素生成能を高く維持できるメタノール改質触媒
を提供することができる。
As described above, according to the present invention, a methanol reforming catalyst having a function of producing a large amount of hydrogen per unit volume and having excellent methanol reforming activity even at a low temperature (about 250 ° C.). Can be provided. Further, it is possible to provide a methanol reforming catalyst capable of maintaining a high ability to generate hydrogen from methanol from a low temperature (about 250 ° C.) to a high temperature (about 400 ° C.).

【0013】[0013]

【発明の実施の形態】本発明では、メタノール水蒸気改
質触媒の水素生成能と低温活性のさらなる向上を目指し
て、触媒調製法や触媒成分の鋭意検討を行った。この検
討結果、ゾル・ゲル法により調製したパラジウム、銅お
よびシリカからなる触媒がメタノールの水蒸気改質にお
ける低温活性に優れ、副生成物であるジメチルエーテル
(以下「DME」ともいう)などを生成することが少な
いという高活性な触媒であることを見いだした。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a catalyst preparation method and a catalyst component were intensively studied with the aim of further improving the hydrogen generating ability and low-temperature activity of a methanol steam reforming catalyst. As a result of this study, it was found that a catalyst composed of palladium, copper and silica prepared by the sol-gel method has excellent low-temperature activity in steam reforming of methanol and produces dimethyl ether (hereinafter also referred to as “DME”) as a by-product. The catalyst was found to be a highly active catalyst with little.

【0014】ここで、ゾル・ゲル法による触媒製造方法
とは、以下のようなステップを用いて、触媒を製造する
方法をいう。金属アルコキシドに酸を加え、pH2〜3
にすることで加水分解反応が起こり均一なゾルができ
る。このゾルに触媒金属水溶液を加え十分に攪拌する。
つぎに、エバポレータにて蒸発乾燥させることによって
ゲル化する。さらに、このゲルを乾燥、焼成後、還元処
理する。以上のステップによって触媒を製造する方法が
ゾル・ゲル法による触媒製造方法である。しかし、本発
明においてゾル・ゲル法による触媒製造方法が以上の方
法に限定されるものではなく、ゾルとゲルの状態を用い
て触媒を作成する方法ならばよく、広義に含むものとす
る。ここで、金属アルコキシドとは、アルコール類にお
ける水酸基の水素を金属で置換することにより得られる
化合物であり、例えば、オルトケイ酸テトラエチル((C
25O)4Si)などが挙げられる。ここで、触媒金属水
溶液とは、触媒機能を有する金属を含む水溶液のことで
あり、例えば、硝酸パラジウム水溶液や硝酸銅水溶液や
硝酸亜鉛水溶液などが挙げられる。
Here, the method for producing a catalyst by the sol-gel method refers to a method for producing a catalyst using the following steps. Add acid to metal alkoxide, pH 2-3
, A hydrolysis reaction occurs and a uniform sol is formed. An aqueous solution of a catalytic metal is added to the sol and sufficiently stirred.
Next, gelation is performed by evaporating and drying with an evaporator. Further, after the gel is dried and fired, a reduction treatment is performed. A method for producing a catalyst by the above steps is a method for producing a catalyst by the sol-gel method. However, in the present invention, the method for producing a catalyst by the sol-gel method is not limited to the above method, and any method may be used as long as it is a method of preparing a catalyst using the state of a sol and a gel. Here, the metal alkoxide is a compound obtained by substituting hydrogen of a hydroxyl group in alcohols with a metal, for example, tetraethyl orthosilicate ((C
2 H 5 O) 4 Si) and the like. Here, the aqueous catalyst metal solution is an aqueous solution containing a metal having a catalytic function, and examples thereof include palladium nitrate aqueous solution, copper nitrate aqueous solution, and zinc nitrate aqueous solution.

【0015】ゾル・ゲル法によって生成した触媒は、一
般的に担持した活性金属の分散度が高く、金属の粒子径
を小さく制御できるという優れた点がある。また、金属
が担体とのネットワークを作りシンタリングしにくいと
いう点でも優れている。ところで、従来のように担体と
してアルミナを使用した場合、アルミナが酸性を有して
いるため以下に示すメタノールの脱水反応が生じやす
く、副生成物としてDMEを生じるという問題がある。
この傾向は、ゾル・ゲル法で調製したアルミナで特に高
い。 2CH3OH→CH3OCH3+H2O ………(1)
The catalyst produced by the sol-gel method is generally excellent in that the active metal carried thereon has a high degree of dispersion and the particle size of the metal can be controlled to be small. It is also excellent in that the metal forms a network with the carrier and is difficult to sinter. By the way, when alumina is used as a carrier as in the prior art, there is a problem that the following dehydration reaction of methanol easily occurs because alumina has acidity, and DME is generated as a by-product.
This tendency is particularly high for alumina prepared by the sol-gel method. 2CH 3 OH → CH 3 OCH 3 + H 2 O (1)

【0016】一方、担体にシリカを使用すると、低温活
性ではアルミナを使用した場合とほとんど差がなく、シ
リカには酸性がほとんどないため、副生成物であるDM
Eを生じないことが鋭意研究の結果、分かった。
On the other hand, when silica is used as the carrier, there is almost no difference in the low-temperature activity from the case where alumina is used. Since silica has almost no acidity, the by-product DM
As a result of earnest research, it was found that E did not occur.

【0017】本発明に係る実施の形態である、パラジウ
ムと、銅と、シリカとを含み、ゾル・ゲル法により調製
したメタノール改質触媒において、水素生成量の高いメ
タノール改質触媒は、パラジウムと銅との総量が5から
30重量%(以下、「wt%」ともいう)で、パラジウ
ム:銅の比率が、1:20から1:5の範囲が適してい
る。特に、パラジウムと銅との総量が10wt%、パラ
ジウム:銅の比率が1:9のメタノール改質触媒が、最
も水素の生成量が優れている。
In the embodiment of the present invention, a methanol reforming catalyst containing palladium, copper and silica and prepared by a sol-gel method, which has a high hydrogen generation amount, is palladium and Suitably, the total amount with copper is 5 to 30% by weight (hereinafter also referred to as "wt%") and the ratio of palladium: copper is 1:20 to 1: 5. In particular, a methanol reforming catalyst having a total amount of palladium and copper of 10 wt% and a palladium: copper ratio of 1: 9 has the best hydrogen generation amount.

【0018】また、本触媒の高温性能を補うため、メタ
ノール改質器の反応経路の前段にゾル・ゲル法により調
製したパラジウムと、銅と、シリカとを含む低温活性に
優れたメタノール改質触媒を配置し、反応経路の後段に
従来の含浸法により調製した銅と、亜鉛とアルミナとを
含む高温活性に優れた触媒を配置する。この配置によっ
て、低温(約250℃)から高温(約400℃)まで幅
広くメタノール改質の活性が高く、特に、メタノール改
質器が通常運転される300℃前後の温度で水素生成量
を最大にすることができる。ここで、含浸法とは、アル
ミナ(Al23)等の無機酸化物の担体を触媒金属溶液
に含浸して担持することによって、触媒を製造する方法
である。
Further, in order to supplement the high-temperature performance of the present catalyst, a methanol reforming catalyst excellent in low-temperature activity, comprising palladium, copper and silica prepared by a sol-gel method at the preceding stage of the reaction path of the methanol reformer. And a catalyst having excellent high-temperature activity, comprising copper prepared by a conventional impregnation method, zinc and alumina, is disposed at a later stage of the reaction path. Due to this arrangement, the activity of methanol reforming is high from a low temperature (about 250 ° C.) to a high temperature (about 400 ° C.). In particular, the amount of hydrogen generation is maximized at a temperature around 300 ° C. where the methanol reformer is normally operated. can do. Here, the impregnation method is a method for producing a catalyst by impregnating a carrier of an inorganic oxide such as alumina (Al 2 O 3 ) into a catalyst metal solution and supporting the carrier.

【0019】[0019]

【実施例】[実施例1:ゾル・ゲル法によるCu−Pd
/SiO2の調製]0.0679gの硝酸パラジウムと
水40mlを混合し攪拌しながら80℃に加熱した。こ
こにオルトケイ酸テトラエチル11.0mlとエチレン
グリコール8.3mlの混合溶液を加え、攪拌しながら
加熱した。この混合溶液を80℃のまま攪拌を15分以
上続け、硝酸を加えてpHを2以下に調整した。これに
硝酸銅溶液(銅として0.282g)を加え、80℃の
まま10分以上攪拌を続けた。これをエバポレータによ
って減圧し、80℃で蒸発乾燥すると、ゲル化した固体
が得られた。このゲル化した固体を150℃で乾燥し、
500℃で5時間の焼成後、水素還元を行い、3.1g
のCu−Pd/SiO2を得た。この触媒の組成は重量
比で、銅(Cu)は9wt%、パラジウム(Pd)は1
wt%、シリカ(SiO2)は90wt%であった。
[Example 1] Cu-Pd by sol-gel method
/ Preparation of SiO 2 ] 0.0679 g of palladium nitrate and 40 ml of water were mixed and heated to 80 ° C. with stirring. A mixed solution of 11.0 ml of tetraethyl orthosilicate and 8.3 ml of ethylene glycol was added thereto, and the mixture was heated with stirring. The mixed solution was kept stirring at 80 ° C. for 15 minutes or more, and nitric acid was added to adjust the pH to 2 or less. A copper nitrate solution (0.282 g as copper) was added thereto, and stirring was continued at 80 ° C. for 10 minutes or more. This was depressurized by an evaporator and evaporated to dryness at 80 ° C. to obtain a gelled solid. The gelled solid is dried at 150 ° C.
After calcining at 500 ° C. for 5 hours, hydrogen reduction was carried out, and 3.1 g
Of Cu-Pd / SiO 2 was obtained. The composition of this catalyst was 9 wt% of copper (Cu) and 1 palladium (Pd) by weight.
wt% and silica (SiO 2 ) was 90 wt%.

【0020】[実施例2:ゾル・ゲル法によるCu−P
d/SiO2触媒の調製]実施例1と同様の方法によっ
て行った。0.0340gの硝酸パラジウムと水40m
lを混合し攪拌しながら80℃に加熱した。ここにオル
トケイ酸テトラエチル11.0mlとエチレングリコー
ル8.3mlの混合溶液を加え、攪拌しながら加熱し
た。この混合溶液を80℃のまま攪拌を15分以上続
け、硝酸を加えてpHを2以下に調整した。これに硝酸
銅溶液(銅として0.297g)を加え、80℃のまま
10分以上攪拌を続けた。これをエバポレータによって
減圧し、80℃で蒸発乾燥すると、ゲル化した固体が得
られた。このゲル化した固体を150℃で乾燥し、50
0℃で5時間の焼成後、水素還元を行い、3.1gのC
u−Pd/SiO2を得た。実施例1とは銅とパラジウ
ムの組成比が異なり、Cuは9.5wt%、Pdは0.
5wt%、SiO2は90wt%であるCu−Pd/S
iO2触媒を調製した。
Example 2: Cu-P by sol-gel method
Preparation of d / SiO 2 catalyst] The same procedure as in Example 1 was carried out. 0.0340g of palladium nitrate and 40m of water
and heated to 80 ° C. with stirring. A mixed solution of 11.0 ml of tetraethyl orthosilicate and 8.3 ml of ethylene glycol was added thereto, and the mixture was heated with stirring. The mixed solution was kept stirring at 80 ° C. for 15 minutes or more, and nitric acid was added to adjust the pH to 2 or less. A copper nitrate solution (0.297 g as copper) was added thereto, and stirring was continued at 80 ° C. for 10 minutes or more. This was depressurized by an evaporator and evaporated to dryness at 80 ° C. to obtain a gelled solid. The gelled solid is dried at 150 ° C.
After calcination at 0 ° C. for 5 hours, hydrogen reduction was carried out, and 3.1 g of C
u-Pd / SiO 2 was obtained. The composition ratio of copper and palladium is different from that of Example 1, Cu is 9.5 wt%, and Pd is 0.1%.
5 wt%, SiO 2 is 90wt% Cu-Pd / S
An iO 2 catalyst was prepared.

【0021】[実施例3:ゾル・ゲル法によるCu−P
d/SiO2触媒の調製]実施例1と同様の方法によっ
て行った。0.1358gの硝酸パラジウムと水80m
lを混合し攪拌しながら80℃に加熱した。ここにオル
トケイ酸テトラエチル11.0mlとエチレングリコー
ル8.3mlの混合溶液を加え、攪拌しながら加熱し
た。この混合溶液を80℃のまま攪拌を15分以上続
け、硝酸を加えてpHを2以下に調整した。これに硝酸
銅溶液(銅として0.251g)を加え、80℃のまま
10分以上攪拌を続けた。これをエバポレータによって
減圧し、80℃で蒸発乾燥すると、ゲル化した固体が得
られた。このゲル化した固体を150℃で乾燥し、50
0℃で5時間の焼成後、水素還元を行い、3.1gのC
u−Pd/SiO2を得た。実施例1とは銅とパラジウ
ムの組成比が異なり、Cuは8wt%、Pdは2wt
%、SiO2は90wt%であるCu−Pd/SiO2
媒を調製した。
[Example 3: Cu-P by sol-gel method]
d / SiO 2 catalyst preparation] The same procedure as in Example 1 was carried out. 0.1358 g of palladium nitrate and 80 m of water
and heated to 80 ° C. with stirring. A mixed solution of 11.0 ml of tetraethyl orthosilicate and 8.3 ml of ethylene glycol was added thereto, and the mixture was heated with stirring. Stirring of the mixed solution was continued at 80 ° C. for 15 minutes or more, and nitric acid was added to adjust the pH to 2 or less. A copper nitrate solution (0.251 g as copper) was added thereto, and stirring was continued at 80 ° C. for 10 minutes or more. This was depressurized by an evaporator and evaporated to dryness at 80 ° C. to obtain a gelled solid. The gelled solid is dried at 150 ° C.
After calcination at 0 ° C. for 5 hours, hydrogen reduction was performed, and 3.1 g of C
u-Pd / SiO 2 was obtained. The composition ratio of copper and palladium is different from that of Example 1, Cu is 8 wt%, and Pd is 2 wt%.
%, SiO 2 was prepared Cu-Pd / SiO 2 catalyst is 90 wt%.

【0022】[比較例1:ゾル・ゲル法によるCu−P
d/Al23の調製]0.0679gの硝酸パラジウム
と水40mlを混合し、攪拌しながら70℃に加熱す
る。ここにアルミニウムイソプロポキシド2.49gを
分散させた70℃の水を加える。さらに、硝酸を加えて
pHを2から3に調整しゾルを得る。これに硝酸銅溶液
(銅として0.282g)を加え、70℃のまま10分
以上攪拌を続ける。これをエバポレータにより減圧下に
し、80℃で蒸発乾燥するとゲル化した固体が得られ
る。これを150℃で乾燥し、500℃で5時間の焼成
後、450℃で水素還元を行い、3.1gのCu−Pd
/Al23を得た。この触媒の組成はCuは9wt%、
Pdは1wt%、Al23は90wt%であった。
Comparative Example 1: Cu-P by sol-gel method
d / Preparation of Al 2 O 3 ] 0.0679 g of palladium nitrate and 40 ml of water are mixed and heated to 70 ° C. with stirring. To this is added water at 70 ° C. in which 2.49 g of aluminum isopropoxide is dispersed. Further, the pH is adjusted from 2 to 3 by adding nitric acid to obtain a sol. To this, a copper nitrate solution (0.282 g as copper) is added, and stirring is continued at 70 ° C. for 10 minutes or more. This is reduced under reduced pressure by an evaporator and dried by evaporation at 80 ° C. to obtain a gelled solid. This was dried at 150 ° C., calcined at 500 ° C. for 5 hours, and then subjected to hydrogen reduction at 450 ° C. to obtain 3.1 g of Cu—Pd.
/ Al 2 O 3 was obtained. The composition of this catalyst is 9 wt% Cu,
Pd was 1 wt% and Al 2 O 3 was 90 wt%.

【0023】[比較例2:含浸法によるCu−Zn/A
23の調製]9.5gの硝酸銅(銅として2.5g)
を15mlのイオン交換水によって溶解し、その溶液に
11.36gの硝酸亜鉛(亜鉛として2.5g)を添加
し、撹拌しながら溶解した。その後、さらに、γ-Al2
35gを混合し、12時間以上撹拌した。温風乾燥
後、オーブンによって500℃、1時間焼成後、450
℃で水素還元を行い、Cu−Zn/Al23を得た。こ
の触媒の組成はCuは25wt%、Znは25wt%、
Al23は50wt%であった。
[Comparative Example 2: Cu-Zn / A by impregnation method]
Preparation of l 2 O 3 ] 9.5 g of copper nitrate (2.5 g as copper)
Was dissolved in 15 ml of ion-exchanged water, and 11.36 g of zinc nitrate (2.5 g as zinc) was added to the solution and dissolved with stirring. Then, γ-Al 2
5 g of O 3 were mixed and stirred for 12 hours or more. After drying with hot air, baking at 500 ° C for 1 hour in an oven, 450
Hydrogen reduction was performed at ℃ to obtain Cu-Zn / Al 2 O 3 . The composition of this catalyst is Cu 25 wt%, Zn 25 wt%,
Al 2 O 3 was 50 wt%.

【0024】[比較例3:市販の銅、亜鉛触媒]市販の
銅、亜鉛触媒として日揮化学製のN211を用いた。こ
の触媒の組成はCu:Znの重量比が1:1であった。
[Comparative Example 3: Commercially available copper and zinc catalysts] Nikki Chemical's N211 was used as a commercially available copper and zinc catalyst. The composition of this catalyst had a weight ratio of Cu: Zn of 1: 1.

【0025】[実施例4:ゾル・ゲル法によるCu−P
d/SiO2と、含浸法によるCu−Zn/Al23
を用いたメタノール改質触媒]図4は、メタノール改質
器の模式図である。図4のように、反応経路の前段1に
ゾル・ゲル法で調製した実施例1のCu−Pd/SiO
2を0.05g配置し、反応経路の後段2に含浸法によ
り調製した比較例2のCu−Zn/Al23を0.05
g配置した、2段触媒を調製した。
[Example 4: Cu-P by sol-gel method]
Methanol Reforming Catalyst Using d / SiO 2 and Cu—Zn / Al 2 O 3 by Impregnation] FIG. 4 is a schematic view of a methanol reformer. As shown in FIG. 4, the Cu—Pd / SiO of Example 1 prepared by the sol-gel method at the first stage of the reaction route
2 was placed in an amount of 0.05 g, and Cu—Zn / Al 2 O 3 of Comparative Example 2 prepared by impregnation in
Thus, a two-stage catalyst having a g arrangement was prepared.

【0026】[調製した各メタノール改質触媒の改質反
応実験]メタノール改質反応実験は、固定床流通系メタ
ノール改質器で行った。調製した触媒粉末を反応管内に
配置し、気化した水とメタノールがモル比で1:1にな
るように、いずれもアルゴンガスで16mmol/g−
触媒量/時間に調整して反応管に導入した。反応温度は
200℃から400℃に設定し、反応ガスおよび生成物
の分析はガスクロマトグラフにより行った。
[Reformation experiment of each prepared methanol reforming catalyst] The methanol reforming experiment was carried out by a fixed bed flow-through methanol reformer. The prepared catalyst powder was placed in a reaction tube, and all were vaporized with argon gas at 16 mmol / g- so that the molar ratio of vaporized water and methanol was 1: 1.
The amount was adjusted to the amount of catalyst / hour and introduced into the reaction tube. The reaction temperature was set at 200 ° C. to 400 ° C., and the analysis of the reaction gas and the product was performed by gas chromatography.

【0027】図1は、各実施例と各比較例の触媒におけ
る反応温度と水素生成量との関係を表したグラフであ
る。図1から明らかなように、含浸法により調製した比
較例2のCu−Zn/Al23よりも、ゾル・ゲル法で
調製した実施例1のCu−Pd/SiO2および比較例
1のCu−Pd/Al23の方がメタノール改質反応の
低温活性に優れていた。実施例1のCu−Pd/SiO
2は、反応温度250℃から400℃の範囲で、メタノ
ール改質率64%以上、水素生成量36mmol/g-
触媒量/時間以上が得られた。
FIG. 1 is a graph showing the relationship between the reaction temperature and the amount of hydrogen generated in the catalysts of the examples and comparative examples. As is clear from FIG. 1, the Cu—Pd / SiO 2 of Example 1 prepared by the sol-gel method and the Cu—Pd / SiO 2 of Comparative Example 1 were better than the Cu—Zn / Al 2 O 3 of Comparative Example 2 prepared by the impregnation method. Cu-Pd / Al 2 O 3 was superior in low-temperature activity of the methanol reforming reaction. Cu-Pd / SiO of Example 1
2 is a reaction temperature range of 250 ° C to 400 ° C, a methanol reforming rate of 64% or more, and a hydrogen generation amount of 36 mmol / g-
A catalyst amount / hour or more was obtained.

【0028】図2は、各実施例と各比較例の触媒におけ
る反応温度と副生成物のDMEの生成率との関係を表し
たグラフである。図2から明らかなように、ゾル・ゲル
法によって調製した比較例1のCu−Pd/Al2
3は、アルミナが酸性を有しているため副生成物である
ジメチルエーテルの生成率が高い。一方、ゾル・ゲル法
で調製した実施例1のCu−Pd/SiO2ではDME
がほとんど生成しない。したがって、メタノール改質触
媒としては、ゾル・ゲル法で調製したCu−Pd/Si
2が、最もよい。
FIG. 2 is a graph showing the relationship between the reaction temperature and the by-product DME generation rate in the catalysts of the examples and comparative examples. As is clear from FIG. 2, the Cu—Pd / Al 2 O of Comparative Example 1 prepared by the sol-gel method was used.
No. 3 has a high generation rate of dimethyl ether as a by-product because alumina has acidity. On the other hand, the Cu—Pd / SiO 2 of Example 1 prepared by the sol-gel method
Is hardly generated. Therefore, as the methanol reforming catalyst, Cu-Pd / Si prepared by the sol-gel method was used.
O 2 is best.

【0029】図1において、ゾル・ゲル法によって調製
した実施例1のCu−Pd/SiO 2は、低温活性に優
れているが高温(約400℃)になると、含浸法により
調製した比較例2のCu−Zn/Al23の方が水素生
成量が大きい。そこで、図4(実施例4)のように、反
応経路の前段1にゾル・ゲル法によって調製した実施例
1のCu−Pd/SiO2を配置し、反応経路の後段2
に含浸法により調製した比較例2のCu−Zn /Al2
3をメタノール改質器に配置した。図1から明らかな
ように、反応温度が250℃から400℃の範囲で、メ
タノール改質率82%以上、水素生成量39mmol/
g-触媒量/時間以上が得られ、低温(約250℃)か
ら高温(約400℃)まで水素生成量を高くできた。ま
た、メタノール改質器が通常運転される300℃前後の
温度で水素生成量が44mmol/g-触媒量/時間と
最大にすることができた。
In FIG. 1, prepared by the sol-gel method
Cu-Pd / SiO of Example 1 TwoHas excellent low-temperature activity
When the temperature rises (about 400 ° C), the impregnation method
Prepared Cu-Zn / Al of Comparative Example 2TwoOThreeIs hydrogen-producing
Great yield. Therefore, as shown in FIG.
Example prepared by the sol-gel method in the first stage of the reaction route
Cu-Pd / SiO 1TwoAnd the latter 2 of the reaction path
Cu—Zn / Al of Comparative Example 2 prepared by impregnationTwo
OThreeWas placed in a methanol reformer. It is clear from FIG.
When the reaction temperature is in the range of 250 ° C to 400 ° C,
Tanol reforming rate 82% or more, hydrogen production 39 mmol /
g-catalyst amount / hour or more and low temperature (about 250 ° C)
To a high temperature (about 400 ° C.). Ma
In addition, the temperature around 300 ° C where the methanol reformer is normally operated
The amount of hydrogen generated at temperature is 44 mmol / g-catalyst amount / hour.
Could be maximized.

【0030】図3は、実施例1〜3のゾル・ゲル法によ
って調製したCu−Pd/SiO2触媒のPd含有量を
変化させた場合の水素生成量との関係を表したグラフで
ある。図3の縦軸は水素生成量[mmol/g-触媒量/
時間]を表し、横軸は触媒中のPdに対するCuとPd
の総量との比を表す。横軸のPd/(Cu+Pd)の値
が、0.05は実施例2を示し、0.10は実施例1を
示し、0.20は実施例3を示す。メタノール改質触媒
に関する水素生成量を高く維持するのには、Pd:Cu
が1:5(図3の横軸で0.17)から1:20(図3
の横軸で0.05)の範囲がよいことが図3から分かっ
た。また、Pd:Cuが1:9(図3の横軸で0.1
0)で最も水素生成量が高いことが図3から分かった。
FIG. 3 is a graph showing the relationship between the Pd content of the Cu-Pd / SiO 2 catalyst prepared by the sol-gel method of Examples 1 to 3 and the amount of hydrogen generated when the Pd content was changed. The vertical axis of FIG. 3 indicates the amount of hydrogen generated [mmol / g-catalyst amount /
Time], and the horizontal axis represents Cu and Pd with respect to Pd in the catalyst.
Represents the ratio to the total amount of The value of Pd / (Cu + Pd) on the horizontal axis is 0.05 for Example 2, 0.10 for Example 1, and 0.20 for Example 3. In order to maintain a high hydrogen generation amount for the methanol reforming catalyst, Pd: Cu
From 1: 5 (0.17 on the horizontal axis in FIG. 3) to 1:20 (FIG.
It was found from FIG. 3 that the range of 0.05) was good on the horizontal axis. Pd: Cu is 1: 9 (0.1 in the horizontal axis of FIG. 3).
It was found from FIG. 3 that the amount of hydrogen generation was highest at 0).

【0031】[0031]

【発明の効果】上記に述べたように、本発明に係るメタ
ノール改質触媒によれば、銅、亜鉛およびアルミナから
なる触媒と比較して、低温活性に優れ、副生成物である
DMEの生成が少なくできる。また、本発明に係るメタ
ノール改質触媒はゾル・ゲル法を用いて製造されるた
め、触媒活性に寄与する銅およびパラジウム分散度が向
上し、水素の生成能が向上できる。また、本発明に係る
メタノール改質触媒によって、低温(約250℃)から
高温(約400℃)までメタノールからの水素生成能を
高く維持でき、また、メタノール改質器が通常運転され
る300℃前後の温度で水素生成量が最大とすることが
できる。さらに、ゾル・ゲル法で調製したため、活性金
属のシンタリングも起きにくく、触媒寿命も長いものと
なる。
As described above, the methanol reforming catalyst according to the present invention is superior in activity at low temperatures and produces DME as a by-product as compared with a catalyst comprising copper, zinc and alumina. Can be reduced. Further, since the methanol reforming catalyst according to the present invention is produced by using a sol-gel method, the degree of dispersion of copper and palladium that contribute to the catalytic activity is improved, and the ability to generate hydrogen can be improved. Further, the methanol reforming catalyst according to the present invention can maintain a high ability to generate hydrogen from methanol from a low temperature (about 250 ° C.) to a high temperature (about 400 ° C.). The hydrogen generation amount can be maximized at the temperature before and after. Furthermore, since the catalyst is prepared by the sol-gel method, sintering of the active metal does not easily occur, and the catalyst life becomes longer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例と各比較例の触媒における
反応温度と水素生成量との関係を表したグラフである。
FIG. 1 is a graph showing the relationship between the reaction temperature and the amount of hydrogen generated in catalysts of an example according to the present invention and comparative examples.

【図2】本発明に係る実施例と各比較例の触媒における
反応温度と副生成物のDMEの生成率との関係を表した
グラフである。
FIG. 2 is a graph showing the relationship between the reaction temperature and the by-product DME generation rate in the catalysts of Examples according to the present invention and Comparative Examples.

【図3】本発明に係る実施例のゾル・ゲル法で調製した
Cu−Pd/SiO2触媒において、Pd/(Cu+P
d)の比と水素生成量の関係を表したグラフである。
FIG. 3 shows a Pd / (Cu + P) in a Cu—Pd / SiO 2 catalyst prepared by a sol-gel method according to an embodiment of the present invention.
It is a graph showing the relationship between the ratio of d) and the amount of generated hydrogen.

【図4】反応経路の前段1にゾル・ゲル法により調製し
たCu−Pd/SiO2を配置し、反応経路の後段2に
含浸法により調製したCu−Zn/Al23を配置した
2段触媒の模式図である。
FIG. 4 is a diagram in which Cu-Pd / SiO 2 prepared by the sol-gel method is arranged at the first stage of the reaction route, and Cu-Zn / Al 2 O 3 prepared by the impregnation method is arranged at the second stage of the reaction route. It is a schematic diagram of a stage catalyst.

【符号の説明】[Explanation of symbols]

1 ゾル・ゲル法によって調製したCu−Pd/SiO
2 2 含浸法により調製したCu−Zn/Al23
1 Cu-Pd / SiO prepared by sol-gel method
It was prepared by 2 2 impregnation Cu-Zn / Al 2 O 3

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小長井 信寿 静岡県浜松市高塚町300番地 スズキ株式 会社内 (72)発明者 木俣 文和 静岡県浜松市高塚町300番地 スズキ株式 会社内 (72)発明者 山本 幸生 静岡県浜松市高塚町300番地 スズキ株式 会社内 Fターム(参考) 4G040 EA02 EA06 EC01 EC03 4G069 AA03 AA08 BA01B BA02A BA02B BA21C BC31A BC31B BC35B BC72A BC72B BD05C BE06C CC25 EE08 FA02 FB06 FB08 FB30 FB31 FB43 FB44 FC02 4G140 EA02 EA06 EC01 EC03 5H027 AA02 BA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuhisa Konagai 300, Takatsukacho, Hamamatsu-shi, Shizuoka Suzuki Co., Ltd. (72) Inventor Fumika Kimata 300, Takatsukacho, Hamamatsu-shi, Shizuoka Suzuki Co., Ltd. Person Yukio Yamamoto 300 Takatsuka-cho, Hamamatsu-shi, Shizuoka Suzuki Co., Ltd. F-term (reference) 4G040 EA02 EA06 EC01 EC03 4G069 AA03 AA08 BA01B BA02A BA02B BA21C BC31A BC31B BC35B BC72A BC72B BD05C BE06FB40 FB FB FB FB FB FB FB FB FB FB FB FB FB FB FB FB FB40 EA02 EA06 EC01 EC03 5H027 AA02 BA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 パラジウムと、銅と、シリカとを含んで
なり、メタノールの水蒸気改質により水素を発生させる
ためのメタノール改質触媒。
1. A methanol reforming catalyst comprising palladium, copper, and silica, for producing hydrogen by steam reforming of methanol.
【請求項2】 ゾル・ゲル法により製造されたことを特
徴とする請求項1に記載のメタノール改質触媒。
2. The methanol reforming catalyst according to claim 1, wherein the catalyst is produced by a sol-gel method.
【請求項3】 金属アルコキシドに酸を加え、ゾルを生
成するステップと、 該ゾルに触媒金属水溶液を加え、撹拌するステップと、 撹拌されたゾルを、蒸発乾燥し、ゲルを生成するステッ
プと、 前記ゲルを乾燥し、焼成するステップと、 焼成された前記ゲルを還元処理するステップとを含む製
造方法によって製造されることを特徴とする請求項1に
記載のメタノール改質触媒。
3. A step of adding an acid to the metal alkoxide to form a sol; a step of adding a catalytic metal aqueous solution to the sol and stirring; and a step of evaporating and drying the stirred sol to form a gel; 2. The methanol reforming catalyst according to claim 1, wherein the catalyst is produced by a production method including a step of drying and calcining the gel, and a step of reducing the calcined gel. 3.
【請求項4】 パラジウム:銅の比率が、1:20から
1:5の範囲である請求項1〜3のいずれかに記載のメ
タノール改質触媒。
4. The methanol reforming catalyst according to claim 1, wherein the ratio of palladium: copper is in the range of 1:20 to 1: 5.
【請求項5】 反応経路の前段に請求項1〜4のいずれ
かのメタノール改質触媒を配置し、反応経路の後段にア
ルミナの担体に銅と亜鉛とを含浸させてなる触媒を配置
したことを特徴とするメタノール改質器。
5. The method according to claim 1, wherein the methanol reforming catalyst according to any one of claims 1 to 4 is arranged at a stage preceding the reaction path, and a catalyst obtained by impregnating a carrier of alumina with copper and zinc is arranged at a stage subsequent to the reaction path. A methanol reformer characterized by the following.
【請求項6】 金属アルコキシドに酸を加え、ゾルを生
成するステップと、 該ゾルに触媒金属水溶液を加え、撹拌するステップと、 撹拌されたゾルを、蒸発乾燥し、ゲルを生成するステッ
プと、 前記ゲルを乾燥し、焼成するステップと、 焼成された前記ゲルを還元処理するステップとを含むメ
タノール改質触媒の製造方法。
6. A step of adding an acid to the metal alkoxide to form a sol; a step of adding a catalytic metal aqueous solution to the sol and stirring; a step of evaporating and drying the stirred sol to form a gel; A method for producing a methanol reforming catalyst, comprising: a step of drying and calcining the gel; and a step of reducing the calcined gel.
JP2001071504A 2001-03-14 2001-03-14 Methanol reforming catalyst and production method thereof Expired - Fee Related JP3896796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071504A JP3896796B2 (en) 2001-03-14 2001-03-14 Methanol reforming catalyst and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071504A JP3896796B2 (en) 2001-03-14 2001-03-14 Methanol reforming catalyst and production method thereof

Publications (2)

Publication Number Publication Date
JP2002263499A true JP2002263499A (en) 2002-09-17
JP3896796B2 JP3896796B2 (en) 2007-03-22

Family

ID=18929220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071504A Expired - Fee Related JP3896796B2 (en) 2001-03-14 2001-03-14 Methanol reforming catalyst and production method thereof

Country Status (1)

Country Link
JP (1) JP3896796B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043884A (en) * 2006-08-17 2008-02-28 National Institute Of Advanced Industrial & Technology Catalyst for steam-reforming methanol
WO2010131653A1 (en) * 2009-05-14 2010-11-18 国立大学法人北海道大学 CuPd ALLOY NANOPARTICLES AND METHOD FOR PRODUCING SAME
US9174199B2 (en) 2009-05-26 2015-11-03 Basf Corporation Methanol steam reforming catalysts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043884A (en) * 2006-08-17 2008-02-28 National Institute Of Advanced Industrial & Technology Catalyst for steam-reforming methanol
WO2010131653A1 (en) * 2009-05-14 2010-11-18 国立大学法人北海道大学 CuPd ALLOY NANOPARTICLES AND METHOD FOR PRODUCING SAME
JP5772593B2 (en) * 2009-05-14 2015-09-02 宇部興産株式会社 CuPd alloy nanoparticles, composition and composition for catalyst, and method for producing CuPd alloy nanoparticles
US9174199B2 (en) 2009-05-26 2015-11-03 Basf Corporation Methanol steam reforming catalysts

Also Published As

Publication number Publication date
JP3896796B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
WO2016124161A1 (en) Pt/α-moc1-x supported catalyst, and synthesis and uses thereof
US20090214417A1 (en) Preparation of cobalt-boron alloy catalysts useful for generating hydrogen from borohydrides
CN104971727B (en) A kind of preparation method of Ni-based catalyst for hydrogen production from methane vapor reforming
CN114405505B (en) Platinum modified indium-based oxide catalyst and preparation method and application thereof
US8435486B2 (en) Redox material for thermochemical water splitting, and method for producing hydrogen
JP4202072B2 (en) Method for preparing hydrogen production catalyst
CN111167440A (en) Catalyst for ammonia borane hydrolysis hydrogen evolution and preparation method thereof
JP4607715B2 (en) Catalyst and method for producing catalyst
JP3951127B2 (en) Dimethyl ether steam reforming catalyst and method for producing the same
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
JP2004059507A (en) Method for reducing carbon dioxide by using photocatalyst
CN112246273B (en) Catalyst for preparing low-carbon alcohol through carbon dioxide conversion, preparation method and application
US11845666B2 (en) Method for preparing synthesis gas
KR20110004172A (en) Nickel catalyst supported on porous zirconia containing metal oxide stabilizer, preparation method thereof and method for producing hydrogen by autothermal reforming of ethanol using said catalyst
KR100963077B1 (en) Nickel catalysts supported on mesoporous alumina prepared by using block copolymer as a structure-directing agent, preparation method thereof and production method of hydrogen gas by steam reforming of lng using said catalysts
KR20080113658A (en) Nickel-alumina xerogel catalysts for steam reforming of liquefied natural gas and methods of producing the same
US11795055B1 (en) Systems and methods for processing ammonia
JP3896796B2 (en) Methanol reforming catalyst and production method thereof
CN110038565B (en) High-airspeed catalyst for hydrogen production from methanol water and preparation method and application thereof
JP4106645B2 (en) Method for producing dimethyl ether steam reforming catalyst and catalyst thereby
KR101269621B1 (en) Mesoporous nickel-M-alumina aerogel catalyst and preparation method thereof
CN113684495A (en) Nitrogen-doped carbon-zinc oxide composite material and preparation method and application thereof
JP2010029856A (en) Catalyst and manufacturing method of catalyst
JP4103069B2 (en) Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst
US11866328B1 (en) Systems and methods for processing ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees