JP5772593B2 - CuPd alloy nanoparticles, composition and composition for catalyst, and method for producing CuPd alloy nanoparticles - Google Patents

CuPd alloy nanoparticles, composition and composition for catalyst, and method for producing CuPd alloy nanoparticles Download PDF

Info

Publication number
JP5772593B2
JP5772593B2 JP2011513345A JP2011513345A JP5772593B2 JP 5772593 B2 JP5772593 B2 JP 5772593B2 JP 2011513345 A JP2011513345 A JP 2011513345A JP 2011513345 A JP2011513345 A JP 2011513345A JP 5772593 B2 JP5772593 B2 JP 5772593B2
Authority
JP
Japan
Prior art keywords
cupd
nanoparticles
alloy nanoparticles
hydrogen
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011513345A
Other languages
Japanese (ja)
Other versions
JPWO2010131653A1 (en
Inventor
山内 美穂
美穂 山内
達哉 佃
達哉 佃
竜 阿部
竜 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011513345A priority Critical patent/JP5772593B2/en
Publication of JPWO2010131653A1 publication Critical patent/JPWO2010131653A1/en
Application granted granted Critical
Publication of JP5772593B2 publication Critical patent/JP5772593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • B01J35/23
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

関連出願の相互参照Cross-reference of related applications

本出願は、2009年5月14日出願の日本特願2009−117386号の優先権を主張し、その全記載は、ここに特に開示として援用される。   This application claims the priority of Japanese Patent Application No. 2009-117386 filed on May 14, 2009, the entire description of which is specifically incorporated herein by reference.

本発明は、Cu及びPdからなる合金のナノ粒子、このナノ粒子を用いた触媒用組成物、および前記ナノ粒子の製造方法に関する。   The present invention relates to an alloy nanoparticle comprising Cu and Pd, a composition for a catalyst using the nanoparticle, and a method for producing the nanoparticle.

光触媒、および燃料電池の電極にはPtやPdなど高価な金属を触媒に用いる必要がある。これらのPt族金属は非常に高活性であるが、酸素や一酸化炭素からの被毒に弱いこと、電圧低下などが問題となっている。現在、触媒のコストに占める金属コストの割合の低減、耐被毒性の向上のために異種の金属を併用して合金にすることで金属触媒の性能の改善が試みられている。   For the photocatalyst and the electrode of the fuel cell, it is necessary to use an expensive metal such as Pt or Pd as the catalyst. Although these Pt group metals are very highly active, they are problematic in that they are vulnerable to poisoning from oxygen and carbon monoxide and voltage drop. At present, attempts are being made to improve the performance of metal catalysts by reducing the proportion of metal costs in the catalyst cost and improving the poisoning resistance by using alloys of different metals together.

このような合金のナノ粒子は、原料である金属塩の熱分解法(Chemistry of Materials,1990,2,564-567(非特許文献1), Chemistry of Materials,1993,5,254-256(非特許文献2))、あるいは多価アルコールを用いた高温度による方法(Chem.Lett.,1993,1611-1614(非特許文献3), Langmuir,1994,10,4574-4580(非特許文献4))によって作製されている。   Nanoparticles of such alloys are produced by pyrolysis of metal salts as raw materials (Chemistry of Materials, 1990, 2,564-567 (Non-patent Document 1), Chemistry of Materials, 1993, 5, 254-256 (Non-patent Document 2). ), Or a high temperature method using polyhydric alcohol (Chem. Lett., 1993, 1611-1614 (Non-patent Document 3), Langmuir, 1994, 10, 4574-4580 (Non-patent Document 4)). ing.

特開2004-263222号公報JP 2004-263222 A

Chemistry of Materials,1990,2,564-567Chemistry of Materials, 1990,2,564-567 Chemistry of Materials,1993,5,254-256Chemistry of Materials, 1993,5,254-256 Chem.Lett.,1993,1611-1614Chem. Lett., 1993, 1611-1614 Langmuir,1994,10,4574-4580Langmuir, 1994,10,4574-4580

特許文献1及び非特許文献1〜4の全記載は、ここに特に開示として援用される。   The entire descriptions of Patent Document 1 and Non-Patent Documents 1 to 4 are specifically incorporated herein by reference.

従来のCuPd合金ナノ粒子の作製法としては、前記のように、高沸点の有機溶媒を用いた熱分解法、あるいは多価アルコールを溶媒、還元剤として高温度で長時間かけて合成する多価アルコール法が知られている。   As described above, conventional CuPd alloy nanoparticles can be prepared by thermal decomposition using a high-boiling organic solvent or polyvalent alcohol synthesized with polyhydric alcohol as a solvent and reducing agent at a high temperature for a long time. The alcohol method is known.

上記の熱分解法では、原料に酢酸銅及び酢酸パラジウムを使用し、高沸点の有機溶媒(例えば、2-エトキシエタノール(兼還元剤)、メチルイソブチルケトン、キシレン、ブロモベンゼン)に溶解し保護剤であるポリビニルピロリドン(PVP)を混合したのち、二時間ほど還流する(110-156℃)ことで、原料の金属塩が熱分解され、CuPdナノ粒子が合成される。しかし、CuPdナノ粒子とともにCu2Oナノ粒子が副生する場合がある(非特許文献1)が、CuPdナノ粒子のみが得られたとの報告もある(非特許文献2)。In the above pyrolysis method, copper acetate and palladium acetate are used as raw materials and dissolved in a high boiling point organic solvent (for example, 2-ethoxyethanol (also reducing agent), methyl isobutyl ketone, xylene, bromobenzene) and a protective agent. After mixing the polyvinylpyrrolidone (PVP), the raw metal salt is thermally decomposed by refluxing for about 2 hours (110-156 ° C.) to synthesize CuPd nanoparticles. However, there are cases where Cu 2 O nanoparticles are by-produced together with CuPd nanoparticles (Non-patent Document 1), but there are reports that only CuPd nanoparticles were obtained (Non-patent Document 2).

多価アルコール法では、原料に硫酸銅及び酢酸パラジウム、保護剤にPVPを用いて合成される。溶媒であり還元剤でもあるグリコールに上記金属塩、PVP、NaOH(pH調整)を溶解し、198℃で3時間還流することでCuPdナノ粒子が得られる(非特許文献3、4)。   The polyhydric alcohol method is synthesized using copper sulfate and palladium acetate as raw materials and PVP as a protective agent. CuPd nanoparticles can be obtained by dissolving the metal salt, PVP, and NaOH (pH adjustment) in glycol, which is a solvent and a reducing agent, and refluxing at 198 ° C. for 3 hours (Non-patent Documents 3 and 4).

このように熱分解法及び多価アルコール法のいずれの方法でも、110℃を超える高温での処理が必要である。   Thus, both the pyrolysis method and the polyhydric alcohol method require treatment at a high temperature exceeding 110 ° C.

これらの方法で作製されたCuPd合金ナノ粒子は、構成金属の小さなドメインを含み、混合のムラなどがある不均一な合金のナノ粒子である。不均一な合金のナノ粒子では、電気的あるいは化学的特性が低く、安定した触媒特性が得られないなどの問題がある。また、いずれの方法も、生産効率が悪く、作製コストが高くなるという問題もある。   CuPd alloy nanoparticles produced by these methods are heterogeneous alloy nanoparticles containing small domains of constituent metals and uneven mixing. Inhomogeneous alloy nanoparticles have problems such as low electrical or chemical properties and inability to obtain stable catalytic properties. In addition, each method has a problem that the production efficiency is low and the production cost is high.

また、特許文献1には、保護剤を用いた貴金属を含む金属のコロイドの調製方法が記載され、貴金属としてパラジウムが記載され、かつ貴金属以外の金属として銅の記載がある。しかるに、パラジウムと銅の合金からなるコロイドについての実施例の記載はなく、特許文献1に記載の方法によって、CuPd合金ナノ粒子が調製されることは確認できない。   Patent Document 1 describes a method for preparing a colloid of a metal containing a noble metal using a protective agent, describes palladium as the noble metal, and describes copper as a metal other than the noble metal. However, there is no description of examples of colloids composed of an alloy of palladium and copper, and it cannot be confirmed that CuPd alloy nanoparticles are prepared by the method described in Patent Document 1.

本発明は、光触媒、燃料電池の電極触媒として使用しても十分な触媒活性と、耐被毒性を有するCuPd合金ナノ粒子及びその製造方法を提供することを目的とする。さらに本発明は、上記CuPd合金ナノ粒子を用いた触媒用組成物を提供することも目的とする。   An object of the present invention is to provide CuPd alloy nanoparticles having sufficient catalytic activity and toxicity resistance even when used as a photocatalyst or an electrode catalyst of a fuel cell, and a method for producing the same. Another object of the present invention is to provide a composition for a catalyst using the CuPd alloy nanoparticles.

上記課題を解決する本発明は以下のとおりである。
[1]
結晶構造がB2型またはL12型であり、平均粒子径が1〜200nmであり、かつCuxPd(1-x)で示される(但し、B2型の場合は0.3<x<0.7であり、L12型の場合は0.7≦x≦0.98である)、CuPd合金ナノ粒子。
[2]
下記式(1)で表される規則化度が95%以上である[1]に記載のCuPd合金ナノ粒子。
(1−(m−M)/M)×100% (1)
m:CuPd合金ナノ粒子の格子定数
M:Cu原子とPd原子が規則的に配列したバルクの格子定数
[3]
[1]または[2]に記載のCuPd合金ナノ粒子と保護ポリマーとを含む組成物。
[4]
[1]〜[3]のいずれかに記載のCuPdナノ合金粒子を担体に担持した触媒用組成物。
[5]
担体は、無機化合物である[4]に記載の触媒用組成物。
[6]
触媒は、水分解水素発生反応、水分解酸素発生反応、または有機物分解反応に対するものである[5]または[6]に記載の触媒用組成物。
[7]
水または水溶液中に保護ポリマーの存在下でCuイオン及びPdイオンの分散液または溶解液を調製し、
得られた分散液または溶解液に、前記Cuイオン及びPdイオンに対する還元剤を添加して、Cuイオン及びPdイオンを還元してCuPdナノ粒子を調製する
ことを含むCuPdナノ粒子の製造方法。
[8]
前記分散液または溶解液中のCuイオンとPdイオンのモル比が0.3超:0.7未満〜0.7未満:0.3超の範囲であり、
還元温度を10℃以上とし、結晶構造がB2型であり、かつCuxPd(1-x)で示される(但し、0.3<x<0.7)CuPdナノ粒子を調製する[7]に記載の製造方法。
[9]
前記分散液または溶解液中のCuイオンとPdイオンのモル比が0.01:0.99〜0.99:0.01の範囲であり、
還元温度を10℃未満とし、結晶構造がfcc型であり、かつCuxPd(1-x)で示される(但し、0.01≦x≦0.99)CuPdナノ粒子を調製する[7]に記載の製造方法。
[10]
前記分散液または溶解液中のCuイオンとPdイオンのモル比が0.7:0.3〜0.98:0.02の範囲であり、
還元温度を10℃以上とし、結晶構造がL12型であり、かつCuxPd(1-x)で示される(但し、0.7≦x≦0.98)CuPdナノ粒子を調製する[7]に記載の製造方法。
[11]
前記還元剤が水素を含有する化合物である[8]〜[10]のいずれかに記載の製造方法。
[12]
[8]または[10]に記載の方法によりCuPdナノ粒子を製造し、製造されたCuPdナノ粒子を水素雰囲気に暴露して、結晶構造の規則性が向上したCuPdナノ粒子を得る、結晶構造の規則性が向上したCuPdナノ粒子の製造方法。
[13]
[8]または[10]に記載の方法により製造したCuPdナノ粒子の下記式(1)で表される規則化度が98%未満であり、
結晶構造の規則性が向上したCuPdナノ粒子の下記式(1)で表される規則化度が99%以上である[13]に記載の製造方法。
(1−(m−M)/M)×100% (1)
m:CuPd合金ナノ粒子の格子定数
M:Cu原子とPd原子が規則的に配列したバルクの格子定数
[14]
前記水素雰囲気への暴露処理は、0〜200℃の温度で、かつ水素圧1Pa〜10MPaで行う、[12]または[13]に記載の製造方法。
[15]
前記水素雰囲気への暴露処理は、温度が異なる多段階で行う[12]〜[14]のいずれかに記載の製造方法。
[16]
前記水素雰囲気への暴露処理は、30〜150℃の範囲の温度での第一段階と40〜250℃の範囲の温度での第二段階とからなり、かつ第一段階と第二段階の温度差が10〜100℃の範囲である[12]〜[14]のいずれかに記載の製造方法。
The present invention for solving the above problems is as follows.
[1]
The crystal structure is B2 type or L12 type, the average particle size is 1 to 200 nm, and is represented by Cu x Pd (1-x) (in the case of B2 type, 0.3 <x <0. is 7, if the L1 2 type is 0.7 ≦ x ≦ 0.98), CuPd alloy nanoparticles.
[2]
CuPd alloy nanoparticles according to [1], wherein the degree of ordering represented by the following formula (1) is 95% or more.
(1- (m−M) / M) × 100% (1)
m: Lattice constant of CuPd alloy nanoparticles M: Bulk lattice constant in which Cu atoms and Pd atoms are regularly arranged
[3]
A composition comprising the CuPd alloy nanoparticles according to [1] or [2] and a protective polymer.
[4]
The composition for catalysts which carry | supported the CuPd nanoalloy particle in any one of [1]-[3] on the support | carrier.
[5]
The catalyst composition according to [4], wherein the carrier is an inorganic compound.
[6]
The catalyst composition according to [5] or [6], wherein the catalyst is for a water-splitting hydrogen generation reaction, a water-splitting oxygen generation reaction, or an organic matter decomposition reaction.
[7]
Prepare a dispersion or solution of Cu ions and Pd ions in the presence of a protective polymer in water or an aqueous solution,
A method for producing CuPd nanoparticles, comprising: adding a reducing agent for the Cu ions and Pd ions to the obtained dispersion or solution to reduce Cu ions and Pd ions to prepare CuPd nanoparticles.
[8]
The molar ratio of Cu ions and Pd ions in the dispersion or solution is in the range of more than 0.3: less than 0.7 to less than 0.7: more than 0.3.
The reduction temperature is set to 10 ° C. or higher, and CuPd nanoparticles having a crystal structure of B2 type and Cu x Pd (1-x) (provided that 0.3 <x <0.7) are prepared [7]. The manufacturing method as described in.
[9]
The molar ratio of Cu ions to Pd ions in the dispersion or solution is in the range of 0.01: 0.99 to 0.99: 0.01,
The reduction temperature is set to less than 10 ° C., and CuPd nanoparticles having a crystal structure of fcc type and Cu x Pd (1-x) (where 0.01 ≦ x ≦ 0.99) are prepared [7] The manufacturing method as described in.
[10]
The molar ratio of Cu ions to Pd ions in the dispersion or solution is in the range of 0.7: 0.3 to 0.98: 0.02,
The reduction temperature of 10 ° C. or higher, the crystal structure is L1 2 type, and Cu x represented by Pd (1-x) (where, 0.7 ≦ x ≦ 0.98) to prepare a CuPd nanoparticles [7 ] The manufacturing method of description.
[11]
The production method according to any one of [8] to [10], wherein the reducing agent is a compound containing hydrogen.
[12]
A CuPd nanoparticle is produced by the method according to [8] or [10], and the produced CuPd nanoparticle is exposed to a hydrogen atmosphere to obtain a CuPd nanoparticle having improved crystal structure regularity. A method for producing CuPd nanoparticles with improved regularity.
[13]
The degree of ordering represented by the following formula (1) of CuPd nanoparticles produced by the method according to [8] or [10] is less than 98%,
The production method according to [13], wherein the degree of ordering represented by the following formula (1) of CuPd nanoparticles having improved crystal structure regularity is 99% or more.
(1- (m−M) / M) × 100% (1)
m: Lattice constant of CuPd alloy nanoparticles M: Bulk lattice constant in which Cu atoms and Pd atoms are regularly arranged
[14]
[12] or [13], wherein the exposure treatment to the hydrogen atmosphere is performed at a temperature of 0 to 200 ° C. and a hydrogen pressure of 1 Pa to 10 MPa.
[15]
The manufacturing method according to any one of [12] to [14], wherein the exposure treatment to the hydrogen atmosphere is performed in multiple stages at different temperatures.
[16]
The exposure treatment to the hydrogen atmosphere comprises a first stage at a temperature in the range of 30 to 150 ° C. and a second stage at a temperature in the range of 40 to 250 ° C., and the temperature of the first stage and the second stage. The production method according to any one of [12] to [14], wherein the difference is in the range of 10 to 100 ° C.

本発明によれば、規則性の高いCuPd合金ナノ粒子が提供される。具体的には、規則B2型またはL12型の結晶構造を有するCuPd合金ナノ粒子が提供される。従来、このような規則B2型及びL12型の結晶構造のCuPd合金ナノ粒子は知られてはいなかった。According to the present invention, highly ordered CuPd alloy nanoparticles are provided. Specifically, CuPd alloy nanoparticles having a regular type B2 or L1 2 type crystal structure is provided. Conventionally, CuPd alloy nanoparticles such rule type B2 and L1 2 type crystal structure were not known.

さらに本発明によれば、上記規則B2型またはL12型の結晶構造のCuPd合金ナノ粒子、さらにはfcc型の結晶構造のCuPd合金ナノ粒子を高い生産効率で調製し得る、CuPdナノ粒子の製造法が提供される。Further according to the invention, CuPd alloy nanoparticles of the rule type B2 or L1 2 type crystal structure, and further can prepare CuPd alloy nanoparticles having an fcc-type crystal structure with high production efficiency, the production of CuPd nanoparticles Law is provided.

本発明により提供されるCuPd合金ナノ粒子は、PtやPdに比べ安価に製造でき、かつ耐久性も高いため、光触媒、燃料電池の電極触媒などへの応用が期待できる。   Since the CuPd alloy nanoparticles provided by the present invention can be produced at a lower cost than Pt and Pd and have high durability, application to photocatalysts, fuel cell electrode catalysts, and the like can be expected.

不規則な原子配列を有するfcc型CuPdナノ合金粒子の結晶構造と規則的な原子配列を有するB2型CuPdナノ合金粒子の原子模型を示す。The crystal structure of fcc-type CuPd nanoalloy particles with irregular atomic arrangement and the atomic model of B2-type CuPd nanoalloy particles with regular atomic arrangement are shown. 実施例1及び2で得られたCuPdナノ合金粒子の透過型電子顕微鏡写真(上段)とこの写真中の200個の粒子から見積もった平均粒子径(下段)を示す。The transmission electron micrograph (upper stage) of the CuPd nanoalloy particles obtained in Examples 1 and 2 and the average particle diameter (lower stage) estimated from 200 particles in the photographs are shown. 実施例1及び2で得られたCuPdナノ合金粒子の粉末XRD回折ピークの解析結果を示す。The analysis result of the powder XRD diffraction peak of the CuPd nanoalloy particle obtained in Examples 1 and 2 is shown. 実施例1及び2で得られたCuPdナノ合金粒子を水素雰囲気暴露処理した場合の粉末XRD回折パターンの変化を示す。The change of the powder XRD diffraction pattern at the time of carrying out the hydrogen atmosphere exposure process of the CuPd nanoalloy particle obtained in Example 1 and 2 is shown. 実施例2で得られたCuPdナノ合金粒子、このCuPdナノ合金粒子を水素雰囲気暴露処理した場合(2種類)のTEM像を示す。The CuPd nanoalloy particles obtained in Example 2 and the TEM images when the CuPd nanoalloy particles are exposed to a hydrogen atmosphere (two types) are shown. 実施例2で合成したCuPdナノ粒子のH2加圧In-situ粉末X線回折パターンを示す。Showing of H 2 pressure an In-situ X-ray powder diffraction pattern of the synthesized CuPd nanoparticles in Example 2. 実施例3で得られた光水分解水素発生反応の結果を示す。The result of the photohydrolysis hydrogen generation reaction obtained in Example 3 is shown. 実施例3で得られた一酸化炭素被毒試験の結果を示す。The result of the carbon monoxide poisoning test obtained in Example 3 is shown. 実施例2で得られた粒子に水素処理(2)を施した試料についての粉末X線回折パターンとリートベルト法による解析結果を示す。矢印で示す位置にB2構造に特有のピークが観測されている。The powder X-ray-diffraction pattern about the sample which gave the hydrogen treatment (2) to the particle | grains obtained in Example 2 and the analysis result by the Rietveld method are shown. A peak peculiar to the B2 structure is observed at the position indicated by the arrow. 実施例2で作製したばかりの試料と水素処理(1)を施した試料(100℃、2MPa H2)、水素処理(2)を施した試料(100℃、150℃、2MPa H2)のTEM像を示す。TEM of a sample just prepared in Example 2 and a sample subjected to hydrogen treatment (1) (100 ° C., 2 MPa H 2 ) and a sample subjected to hydrogen treatment (2) (100 ° C., 150 ° C., 2 MPa H 2 ) Show the image. 作製したばかりのB2型CuPdナノ粒子(B2-CuPd)および水素処理(2)を施した規則B2型CuPd合金ナノ粒子(2MPa水素、373K、240時間および2MPa水素、423K、24時間)(B2-CuPd after H2 treat.(2))を担持した触媒の光水分解水素発生実験の結果を示す。光析出法により作製された保護剤を含なまない裸のPd(bare-Pd)を担持した触媒も参考として記載した。Newly prepared B2 CuPd nanoparticles (B2-CuPd) and ordered B2 CuPd alloy nanoparticles with hydrogen treatment (2) (2MPa hydrogen, 373K, 240 hours and 2MPa hydrogen, 423K, 24 hours) (B2- The result of the photohydrolysis hydrogen generation experiment of the catalyst which supported CuPd after H2 treat. (2)) is shown. A catalyst carrying bare Pd (bare-Pd) which does not contain a protective agent prepared by a photoprecipitation method is also described for reference.

[CuPd合金ナノ粒子]
本発明は、CuPd合金ナノ粒子に関し、このナノ粒子は、結晶構造がB2型またはL12型であり、平均粒子径が1〜200nmであり、かつCuxPd(1-x)で示される。但し、B2型の場合は0.3<x<0.7であり、L12型の場合は0.7≦x≦0.98である。
[CuPd alloy nanoparticles]
The present invention relates to CuPd alloy nanoparticles, which have a crystal structure of B2 type or L12 type, an average particle diameter of 1 to 200 nm, and represented by Cu x Pd (1-x) . However, in the case of type B2 is 0.3 <x <0.7, in the case of L1 2 type is 0.7 ≦ x ≦ 0.98.

本発明のCuPd合金ナノ粒子は、結晶構造がB2型であるか、またはL12型である。結晶構造がB2型であるCuPd合金ナノ粒子は、CuxPd(1-x)で示され、かつ0.3<x<0.7である。xが0.3以下では、不規則fcc型となり一酸化炭素への耐被毒性が弱くなる。0.7以上ではL12あるいは不規則fcc型となり、不規則fcc型となった場合はB2型と比較して一酸化炭素への耐被毒性が弱くなる。xは、0.3<x<0.7であるが、好ましくは0.4<x<0.6である。B2型の結晶構造は、体心立法構造を基本にしており、立方体の八つの頂点をCu、体心の位置にPdが配置した構造である。CuとPdが入れ替わってもかまわない。CuPd alloy nanoparticles of the present invention, either the crystal structure is of type B2, or L1 2 type. CuPd alloy nanoparticles having a crystal structure of B2 type are represented by Cu x Pd (1-x) and 0.3 <x <0.7. When x is 0.3 or less, it becomes an irregular fcc type and the poisoning resistance to carbon monoxide becomes weak. Becomes L1 2 or irregular fcc type is 0.7 or more, poisoning resistance to carbon monoxide is weak when it becomes irregular fcc-type as compared with the type B2. x is 0.3 <x <0.7, but preferably 0.4 <x <0.6. The B2-type crystal structure is based on a body-centered cubic structure, in which the eight vertices of the cube are Cu and Pd is placed at the position of the body center. Cu and Pd can be interchanged.

結晶構造がL12型であるCuPd合金ナノ粒子は、CuxPd(1-x)で示され、かつ0.7≦x≦0.98である。xが0.98を超えると、不規則fcc構造となり、COへの耐被毒性が低下する。xが0.7未満では、上述のように、B2型の結晶構造となる。L12型の結晶構造は、面心立法構造を基本にしており、立方体の八つの頂点をPd、面心にCuが配置した構造である。組成によっては一方の金属の位置が一方の金属に置換されてもよい。CuPd alloy nanoparticles crystal structure is a L1 2 type is indicated by Cu x Pd (1-x) , and is 0.7 ≦ x ≦ 0.98. When x exceeds 0.98, an irregular fcc structure is formed, and the poisoning resistance to CO decreases. When x is less than 0.7, a B2-type crystal structure is obtained as described above. L1 2 type crystal structure is a face-centered cubic structure to the basic, a structure in which Cu is placed vertices eight cubic Pd, the face-centered. Depending on the composition, the position of one metal may be replaced with one metal.

本発明のCuPd合金ナノ粒子は、結晶構造の規則性が向上したCuPdナノ粒子であり、具体的には、下記式(1)で表される規則化度が98%以上であり、規則化度は、好ましくは99.0%以上、より好ましくは99.5%以上、最も好ましくは100%またはそれ以上である。
(1−(m−M)/M)×100% (1)
m:CuPd合金ナノ粒子の格子定数
M:Cu原子とPd原子が規則的に配列したバルクの格子定数
The CuPd alloy nanoparticles of the present invention are CuPd nanoparticles with improved crystal structure regularity. Specifically, the degree of ordering represented by the following formula (1) is 98% or more. Is preferably 99.0% or more, more preferably 99.5% or more, and most preferably 100% or more.
(1- (m−M) / M) × 100% (1)
m: Lattice constant of CuPd alloy nanoparticles M: Bulk lattice constant in which Cu atoms and Pd atoms are regularly arranged

規則化度の算出の元となるCu原子とPd原子が規則的に配列したバルクの格子定数Mは粉末あるいは単結晶X線回折などの実験により得ることができる。あるいは、化学便覧等に示されたCu原子及びPd原子の金属結合半径値を基にMの推測値Lを計算することもできる。また、CuPd合金ナノ粒子の結晶構造と格子定数mは、粉末X線回折を行い、得られた回折パターンを解析することで求めることができる。   The bulk lattice constant M in which Cu atoms and Pd atoms are regularly arranged as a basis for calculating the degree of ordering can be obtained by experiments such as powder or single crystal X-ray diffraction. Or the estimated value L of M can also be calculated based on the metal bond radius value of Cu atom and Pd atom shown in the chemical handbook. Moreover, the crystal structure and lattice constant m of CuPd alloy nanoparticles can be obtained by performing powder X-ray diffraction and analyzing the obtained diffraction pattern.

例えば、B2型AxB(1-x)合金(0.3<x<0.7)の室温における格子定数の推定値Lは、AおよびBの金属結合半径(化学便覧改訂5版、基礎編II、p.887参照)から見積もられ、AおよびBの金属結合半径をそれぞれa、bとした場合、おおよそ以下のように表される。
L=2×(a×x+b×(1-x))/√3
作製したばかりのB2型AxB(1-x)合金ナノ粒子の格子定数mはA原子とB原子が規則的に配列したバルクの格子定数M(Mは上記式により算出された推定値Lに等しい)よりは大きい。後述のように水素処理によって、金属原子間の相互作用を強め、AxB(1-x)合金ナノ粒子の格子定数をmより減少させ、Mと同程度にすることが出来る。
For example, the estimated value L of the lattice constant of a B2 type A x B (1-x) alloy (0.3 <x <0.7) at room temperature is the metal bond radius of A and B (Chemical Handbook 5th edition, Fundamentals II, p .887), and when the metal bond radii of A and B are a and b, respectively, they are roughly expressed as follows.
L = 2 × (a × x + b × (1-x)) / √3
The lattice constant m of the B2 type A x B (1-x) alloy nanoparticles just prepared is the bulk lattice constant M in which A and B atoms are regularly arranged (M is an estimated value L calculated by the above formula) Is greater than). As will be described later, by hydrogen treatment, the interaction between metal atoms can be strengthened, and the lattice constant of the A x B (1-x) alloy nanoparticles can be decreased from m and can be made comparable to M.

実施例2では、合成したばかりのCu0.5Pd0.5ナノ粒子の規則化度は
(1-(3.036-2.99)/2.99)×100=98.5%
であったが、水素処理によって、100%とすることが出来た。
CuPdナノ粒子の格子定数は、図3または図6に示すような、粉末X線回折パターンをリートベルト法などによって解析することで求めることができる。
In Example 2, the degree of ordering of the just synthesized Cu 0.5 Pd 0.5 nanoparticles is (1- (3.036-2.99) /2.99) × 100 = 98.5%
However, 100% was achieved by hydrogen treatment.
The lattice constant of CuPd nanoparticles can be determined by analyzing a powder X-ray diffraction pattern as shown in FIG. 3 or FIG. 6 by the Rietveld method or the like.

本発明のCuPd合金ナノ粒子の平均粒子径は1〜200nmであり、好ましくは1〜100nm、より好ましくは1〜20nm、さらに好ましくは1〜10nm、さらに一層好ましくは1〜5nmの範囲である。CuPd合金ナノ粒子の平均粒子径は、小さいほど、触媒として利用する場合には活性が高くなる傾向があり好ましい。従って、CuPd合金ナノ粒子の平均粒子径は、小さいほど好ましい。尚、本発明においてCuPd合金ナノ粒子の平均粒子径は、実施例に記載のように、透過型電子顕微鏡(例えば、JEM-2000FX)による粒子の観察で得られた写真に撮影された任意の200個の粒子から見積られた値である。   The average particle diameter of the CuPd alloy nanoparticles of the present invention is 1 to 200 nm, preferably 1 to 100 nm, more preferably 1 to 20 nm, still more preferably 1 to 10 nm, and still more preferably 1 to 5 nm. The smaller the average particle size of the CuPd alloy nanoparticles, the higher the activity when used as a catalyst, which is preferable. Therefore, the smaller the average particle size of the CuPd alloy nanoparticles, the better. In the present invention, the average particle diameter of the CuPd alloy nanoparticles may be any 200 photographed in a photograph obtained by observation of particles with a transmission electron microscope (for example, JEM-2000FX), as described in Examples. It is a value estimated from individual particles.

本発明のCuPd合金ナノ粒子は、平均粒子径が小さく、かつ結晶構造の規則性が向上した粒子である。そのため、触媒として使用すると、高い触媒活性を示し、かつ耐被毒性に優れたものである。   The CuPd alloy nanoparticles of the present invention are particles having a small average particle diameter and improved regularity of the crystal structure. Therefore, when used as a catalyst, it exhibits high catalytic activity and is excellent in poisoning resistance.

[組成物]
本発明は、上記本発明のCuPd合金ナノ粒子と保護ポリマーとを含む組成物に関する。本発明のCuPd合金ナノ粒子は、平均粒子径は1〜200nmであり、最も好ましい場合には、平均粒子径は1〜5nmの範囲である。そのためこの粒子径を維持するために、各ナノ粒子を凝集等から保護する手段を用いることが好ましい。本発明では、そのための手段として保護ポリマーを用いる。
[Composition]
The present invention relates to a composition comprising the CuPd alloy nanoparticles of the present invention and a protective polymer. The CuPd alloy nanoparticles of the present invention have an average particle size of 1 to 200 nm, and in the most preferred case, the average particle size is in the range of 1 to 5 nm. Therefore, in order to maintain this particle size, it is preferable to use a means for protecting each nanoparticle from aggregation or the like. In the present invention, a protective polymer is used as a means for that purpose.

保護ポリマーは、水溶性のポリマーであることが好ましく、具体的にはPVPのような環状アミド構造を有するポリマーが好適である。しかし、これに限らず、保護対象である合金粒子の種類等に応じて、例えばポリビニルアルコール、ポリビニルエーテル、ポリアクリレート、ポリ(メルカプトメチレンスリレン-N-ビニル-2-ピロリドン)、ポリアクリロニトリルを用いることもできる。   The protective polymer is preferably a water-soluble polymer, and specifically, a polymer having a cyclic amide structure such as PVP is suitable. However, the present invention is not limited to this, and for example, polyvinyl alcohol, polyvinyl ether, polyacrylate, poly (mercaptomethylenethrylene-N-vinyl-2-pyrrolidone), polyacrylonitrile is used depending on the type of alloy particles to be protected. You can also.

本発明の組成物は、CuPd合金ナノ粒子と保護ポリマーに加えて溶媒を含有することもできる。溶媒は水系の溶媒であることが好ましく、例えば、水単独であるか、あるいは水と水に親和性のある有機溶媒の混合溶媒であることができる。混合溶媒に用いる有機溶媒は、有機高分子の種類等に応じて適宜選択するとよく、例えばプロパノールやエチレングリコール、グリセリンなどの多価アルコールを用いることができる。   The composition of the present invention can also contain a solvent in addition to the CuPd alloy nanoparticles and the protective polymer. The solvent is preferably an aqueous solvent, for example, water alone or a mixed solvent of water and an organic solvent having an affinity for water. The organic solvent used for the mixed solvent may be appropriately selected according to the type of the organic polymer, and for example, polyhydric alcohols such as propanol, ethylene glycol, and glycerin can be used.

本発明の組成物におけるCuPd合金ナノ粒子、保護ポリマー及び溶媒の組成比は、例えば、CuPd合金ナノ粒子の濃度が1〜99質量%、好ましくは20〜99質量%の範囲であり、保護ポリマーの濃度が1〜99質量%、好ましくは1〜10質量%の範囲であることができる。但し、CuPd合金ナノ粒子、保護ポリマー及び溶媒の合計が100質量%になるように選択する。尚、これらの範囲に限定される意図ではない。   The composition ratio of the CuPd alloy nanoparticles, the protective polymer and the solvent in the composition of the present invention is such that the concentration of the CuPd alloy nanoparticles is in the range of 1 to 99% by mass, preferably 20 to 99% by mass. The concentration can range from 1 to 99% by weight, preferably from 1 to 10% by weight. However, it selects so that the sum total of a CuPd alloy nanoparticle, a protection polymer, and a solvent may be 100 mass%. It is not intended to be limited to these ranges.

[触媒用組成物]
本発明は、上記本発明のCuPdナノ合金粒子を担体に担持した触媒用組成物にも関する。
[Composition for catalyst]
The present invention also relates to a catalyst composition in which the CuPd nanoalloy particles of the present invention are supported on a support.

担持は、特に制限はなく、通常の固体担体に用いられる担体を用いることができる。そのような担体は、例えば、無機化合物であることができる。無機化合物としては、例えば、金属酸化物(TiO2、SrTiO3、WO3、TaON、ZnO、NiO、Cu2O)、金属硫化物(ZnS、CdS、HgS)、金属セレン化物(CdSe)または、それらの誘導体を挙げることが手きる。担体は通常の触媒用担体と同様に種々の形状であることができ、粉末、顆粒状、粒状、成形体(例えば、ハニカム構造)等であることができる。The support is not particularly limited, and a carrier used for a normal solid carrier can be used. Such a carrier can be, for example, an inorganic compound. Examples of inorganic compounds include metal oxides (TiO 2 , SrTiO 3 , WO 3 , TaON, ZnO, NiO, Cu 2 O), metal sulfides (ZnS, CdS, HgS), metal selenides (CdSe), or It is possible to mention their derivatives. The support can have various shapes as in the case of an ordinary catalyst support, and can be a powder, a granule, a granule, a molded body (for example, a honeycomb structure), or the like.

担体に対するCuPdナノ合金粒子の担持量は、特に制限はなく、例えば、0.1〜20質量%の範囲であることができ、触媒活性や性能を考慮すれば、好ましくは0.5〜1質量%の範囲である。但し、用いる触媒反応の種類や条件によっては上記範囲外の担持量を選択することもできる。   The amount of CuPd nanoalloy particles supported on the carrier is not particularly limited, and can be, for example, in the range of 0.1 to 20% by mass, and preferably in the range of 0.5 to 1% by mass in view of catalyst activity and performance. is there. However, depending on the type and conditions of the catalytic reaction to be used, a supported amount outside the above range can be selected.

本発明の触媒用組成物の製造方法は、後述する方法で調製されたCuPdナノ合金粒子を、常法(例えば、浸漬法等)により担体に担持することができる。担持後は、乾燥し、必要により活性化処理(例えば、水素処理)を施すこともできる。   In the method for producing the catalyst composition of the present invention, CuPd nanoalloy particles prepared by the method described later can be supported on a carrier by a conventional method (for example, an immersion method). After the loading, it can be dried and subjected to an activation treatment (for example, hydrogen treatment) if necessary.

本発明の触媒用組成物を触媒として用いる場合の触媒反応としては、例えば、水分解水素発生反応、水分解酸素発生反応、または有機物分解反応であることができる。但し、これらに限定される意図ではない。   The catalytic reaction in the case of using the catalyst composition of the present invention as a catalyst can be, for example, a water-splitting hydrogen generation reaction, a water-splitting oxygen generation reaction, or an organic matter decomposition reaction. However, it is not the intention limited to these.

水分解水素発生反応及び水分解酸素発生反応は、例えば、本発明のCuxPd(1-x)ナノ粒子を担持した半導体の粉末あるいは板状に加工したものを水と混合あるいは接触させ、紫外光あるいは可視光を照射することで実施される。The water-splitting hydrogen generation reaction and the water-splitting oxygen generation reaction may be carried out, for example, by mixing or contacting a semiconductor powder or plate-like product carrying the Cu x Pd (1-x) nanoparticles of the present invention with water, and then contacting the This is performed by irradiating light or visible light.

有機物分解反応は、例えば、本発明のCuxPd(1-x)ナノ粒子を担持した半導体の粉末あるいは板状に加工したものに分解する有機物を含む溶液に混合あるいは接触させ、紫外光あるいは可視光を照射することで実施される。The organic matter decomposition reaction is performed, for example, by mixing or contacting with a solution containing an organic matter that decomposes into a powder of a semiconductor supporting the Cu x Pd (1-x) nanoparticles of the present invention or processed into a plate shape, and ultraviolet light or visible light. It is performed by irradiating light.

本発明の触媒用組成物は、Pt族の金属であるPdにCuを導入したCuPd合金を用いるものであるが、PtやPdを単独の金属で用いる場合に比べて、触媒は高活性であり、かつ、Cuを導入したものであることからPd単独の場合に比べて安価である。さらに、結晶構造の規則性が向上したCuPd合金ナノ粒子であるため耐被毒性も向上したものである。   The catalyst composition of the present invention uses a CuPd alloy in which Cu is introduced into Pd, which is a Pt group metal, but the catalyst is more active than the case where Pt or Pd is used as a single metal. And since it introduces Cu, it is less expensive than the case of Pd alone. Furthermore, since the CuPd alloy nanoparticles have improved regularity of the crystal structure, the poisoning resistance is also improved.

[CuPdナノ粒子の製造方法]
本発明は、CuPdナノ粒子の製造方法に関する。
本発明の製造方法は、
水または水溶液中に保護ポリマーの存在下でCuイオン及びPdイオンの分散液または溶解液を調製する工程、及び
得られた分散液または溶解液に、前記Cuイオン及びPdイオンに対する還元剤を添加して、Cuイオン及びPdイオンを還元してCuPdナノ粒子を調製する工程を含むものである。
[Method for producing CuPd nanoparticles]
The present invention relates to a method for producing CuPd nanoparticles.
The production method of the present invention comprises:
A step of preparing a dispersion or solution of Cu ions and Pd ions in the presence of a protective polymer in water or an aqueous solution, and a reducing agent for the Cu ions and Pd ions is added to the obtained dispersion or solution. And a step of preparing CuPd nanoparticles by reducing Cu ions and Pd ions.

<分散液または溶解液を調製する工程>
Cuイオン源としては、銅を含有する化合物を用いることができ、水または水溶液に対する溶解性に優れたものであることが適当である。そのような化合物としては、例えば、酢酸銅、塩化銅、硫酸銅、塩化銅、硝酸銅およびそれらの水和物などの無機銅含有化合物、さらには、Cuを含む錯体を挙げることができる。
<Process for preparing dispersion or solution>
As the Cu ion source, a compound containing copper can be used, and it is appropriate that the compound has excellent solubility in water or an aqueous solution. Examples of such compounds include inorganic copper-containing compounds such as copper acetate, copper chloride, copper sulfate, copper chloride, copper nitrate and hydrates thereof, and complexes containing Cu.

Pdイオン源としては、パラジウムを含有する化合物を用いることができ、水または水溶液に対する溶解性に優れたものであることが適当である。そのような化合物としては、例えば、酢酸パラジウム、塩化パラジウム、硝酸パラジウムおよびそれらの水和物などの無機パラジウム含有化合物、さらには、パラジウムを含む錯体を挙げることができる。   As the Pd ion source, a compound containing palladium can be used, and it is appropriate that the compound has excellent solubility in water or an aqueous solution. Examples of such compounds include inorganic palladium-containing compounds such as palladium acetate, palladium chloride, palladium nitrate and hydrates thereof, and complexes containing palladium.

保護ポリマーは、上記組成物の説明で挙げたものをそのまま用いることができる。保護ポリマーの役割は、後段の還元工程で生成する合金粒子間の凝集を防止することと、生成する合金粒子のサイズを制御することが挙げられる。金属とポリマーの比率を調整することによって、粒子径を制御することが出来る。例えば、溶液中における保護ポリマーの量を相対的に増やすと、析出する合金粒子の粒径は小さくなる。この現象を利用すれば合金粒子の粒径を制御できる。尚、析出する合金粒子の粒径は、Cuイオン源及びPdイオン源となる金属含有化合物(例えば、塩)の濃度を調整することでも調整できる。   As the protective polymer, those mentioned in the description of the composition can be used as they are. The role of the protective polymer includes preventing aggregation between alloy particles produced in the subsequent reduction step and controlling the size of the produced alloy particles. The particle size can be controlled by adjusting the ratio of metal to polymer. For example, when the amount of the protective polymer in the solution is relatively increased, the particle size of the alloy particles to be precipitated becomes small. By utilizing this phenomenon, the particle size of the alloy particles can be controlled. In addition, the particle size of the alloy particle to precipitate can also be adjusted by adjusting the density | concentration of the metal containing compound (for example, salt) used as Cu ion source and Pd ion source.

分散液または溶解液の調製には、溶媒として、水または水溶液を用いることができる。水溶液は、組成物の説明で挙げた、水と有機溶媒の混合物であることができる。水と有機溶媒の混合物を用いる場合には、金属原料と保護剤の溶解性等を考慮して、有機溶媒の種類や有機溶媒と水との混合比を適宜調整できる。   In preparing the dispersion or solution, water or an aqueous solution can be used as a solvent. The aqueous solution can be a mixture of water and an organic solvent mentioned in the description of the composition. In the case of using a mixture of water and an organic solvent, the kind of the organic solvent and the mixing ratio of the organic solvent and water can be appropriately adjusted in consideration of the solubility of the metal raw material and the protective agent.

分散液または溶解液の調製は、上記溶媒に保護ポリマー並びにCuイオン源及びPdイオン源を加えて、溶解または分散することで行うことができる。保護ポリマー並びにCuイオン源及びPdイオン源の添加順序には制限はない。保護ポリマーを分散または溶解した溶液とCuイオン源を溶解した溶液及びPdイオン源を溶解した溶液を、適宜混合することで調製することもできる。   The dispersion or solution can be prepared by adding a protective polymer, a Cu ion source, and a Pd ion source to the solvent and dissolving or dispersing them. There are no restrictions on the order of addition of the protective polymer and the Cu ion source and Pd ion source. It can also be prepared by appropriately mixing a solution in which the protective polymer is dispersed or dissolved, a solution in which the Cu ion source is dissolved, and a solution in which the Pd ion source is dissolved.

分散液または溶解液中の保護ポリマーの濃度、Cuイオンの濃度及びPdイオンの濃度は、例えば、保護ポリマーが1×10-4〜5質量%の範囲、Cuイオンが3×10-7〜5×10-1質量%の範囲、及びPdイオンが3×10-7〜5×10-1質量%の範囲であることができる。The concentration of the protective polymer, the concentration of Cu ions, and the concentration of Pd ions in the dispersion or solution are, for example, in the range of 1 × 10 −4 to 5 mass% for the protective polymer and 3 × 10 −7 to 5 for Cu ions. × 10 -1 wt% range, and Pd ions can be in the range of 3 × 10 -7 to 5 × 10 -1 wt%.

<還元工程>
上記工程で得られた分散液または溶解液に、前記Cuイオン及びPdイオンに対する還元剤を添加する。還元剤としては、標準還元電位が室温における水素(0eV)よりも負である化合物を用いることが、Cuイオン及びPdイオンを金属に還元する力が強いという観点から適当である。そのような還元剤としては、例えば、MBH4,MEt3BH(M=Na, K), 水素化シアノホウ素ナトリウム NaBH3CN、水素化ホウ素リチウム LiBH4、水素化トリエチルホウ素リチウム LiBHEt3、ボラン錯体 BH3・L、トリエチルシラン Et3SiH、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム (Sodium Bis(2-methoxyethoxy)Alminium Hydride; Red-Al)などを挙げることができる。但し、これらの還元剤の中には、水と爆発的に反応して危険であるため水溶液中で使用できないものもあるので注意を要する。その場合は、溶媒として水以外の溶媒(例えば、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジメチルスルホキサイド等のアプロトニックな極性溶媒)を使用することが適当である。
<Reduction process>
A reducing agent for Cu ions and Pd ions is added to the dispersion or solution obtained in the above step. As the reducing agent, it is appropriate to use a compound whose standard reduction potential is more negative than hydrogen (0 eV) at room temperature from the viewpoint of strong ability to reduce Cu ions and Pd ions to metal. Examples of such a reducing agent include MBH 4 , MEt 3 BH (M = Na, K), sodium cyanoborohydride NaBH 3 CN, lithium borohydride LiBH 4 , lithium triethylborohydride LiBHEt 3 , and borane complex. Examples thereof include BH 3 · L, triethylsilane Et 3 SiH, sodium bis (2-methoxyethoxy) aluminium hydride (Red-Al). However, some of these reducing agents are dangerous because they react explosively with water and cannot be used in an aqueous solution. In that case, it is appropriate to use a solvent other than water (for example, an aprotic polar solvent such as tetrahydrofuran, N, N-dimethylformamide, dimethylsulfoxide) as the solvent.

還元剤の使用量は、金属原料に含まれるCuの物質量等を考慮して適宜決定され、例えば、還元すべきCuイオン及びPdイオンの合計量の当量から50倍当量以下の範囲とすることができる。   The amount of the reducing agent used is appropriately determined in consideration of the amount of Cu contained in the metal raw material, for example, within a range from the equivalent of the total amount of Cu ions and Pd ions to be reduced to 50 times equivalent or less. Can do.

上記還元剤でCuイオン及びPdイオンを還元することで、CuPdナノ粒子が調製される。還元の温度は、還元により調製されるべき合金の結晶構造を考慮して決定され、例えば、0〜110℃の範囲とすることが適当である。合金の結晶構造と還元温度との関係は後述する。   CuPd nanoparticles are prepared by reducing Cu ions and Pd ions with the reducing agent. The temperature of reduction is determined in consideration of the crystal structure of the alloy to be prepared by reduction, and is suitably in the range of 0 to 110 ° C., for example. The relationship between the crystal structure of the alloy and the reduction temperature will be described later.

結晶構造がB2型であるCuPdナノ粒子を調製する場合には、前記分散液または溶解液中のCuイオンとPdイオンのモル比を0.3超:0.7未満〜0.7未満:0.3超の範囲とし、かつ還元温度を、10℃以上の温度とする。この条件で還元を実施すると、結晶構造がB2型であり、かつCuxPd(1-x)で示されるCuPdナノ粒子を調製することができる。規則構造をもつ合金は還元温度が低いと生成しにくい傾向があり、そのため還元温度を、10℃以上の温度とし、好ましくは20℃以上、より好ましくは30℃以上とする。還元温度の上限は、例えば、100℃であり、好ましくは80℃である。xの値はナノ粒子のサイズによって変化する。小さいサイズのナノ粒子は、保護ポリマーの量を増量すること、または、還元剤の量を減量すること、またはその両方により得ることができる。When preparing CuPd nanoparticles having a crystal structure of B2 type, the molar ratio of Cu ions to Pd ions in the dispersion or solution is more than 0.3: less than 0.7 to less than 0.7: 0 And a reduction temperature of 10 ° C. or higher. When reduction is performed under these conditions, CuPd nanoparticles having a crystal structure of B2 type and represented by Cu x Pd (1-x) can be prepared. An alloy having an ordered structure tends to be difficult to form when the reduction temperature is low. Therefore, the reduction temperature is set to 10 ° C. or higher, preferably 20 ° C. or higher, more preferably 30 ° C. or higher. The upper limit of reduction temperature is 100 degreeC, for example, Preferably it is 80 degreeC. The value of x varies with the size of the nanoparticles. Small sized nanoparticles can be obtained by increasing the amount of protective polymer or decreasing the amount of reducing agent, or both.

結晶構造がL12型であるCuPdナノ粒子を調製する場合には、前記分散液または溶解液中のCuイオンとPdイオンのモル比を0.7:0.3〜0.98:0.02の範囲とし、かつ還元温度を、10℃以上の温度とし、結晶構造がL12型であり、かつCuxPd(1-x)で示されるCuPdナノ粒子を調製することができる。規則構造をもつ合金は還元温度が低いと生成しにくい傾向があり、そのため還元温度を、10℃以上の温度とし、好ましくは20℃以上、より好ましくは30℃以上とする。還元温度の上限は、例えば、100℃であり、好ましくは80℃である。If the crystal structure is prepared CuPd nanoparticles is L1 2 type, the molar ratio of Cu ions and Pd ions of the dispersion or solution in 0.7: 0.3 to .98: 0.02 of the range, and reduction temperature, and 10 ° C. or higher, the crystal structure is L1 2 type, and can be prepared CuPd nanoparticles represented by Cu x Pd (1-x) . An alloy having an ordered structure tends to be difficult to form when the reduction temperature is low. Therefore, the reduction temperature is set to 10 ° C. or higher, preferably 20 ° C. or higher, more preferably 30 ° C. or higher. The upper limit of reduction temperature is 100 degreeC, for example, Preferably it is 80 degreeC.

結晶構造がB2型であるCuPdナノ粒子を調製する場合及び結晶構造がL12型であるCuPdナノ粒子を調製する場合には、前記還元剤が水素を含有する化合物であることが好ましい。上記で、標準還元電位が室温における水素(0eV)よりも負である化合物の例として挙げた化合物は、いずれも水素を含有する化合物である。水素を含有する化合物を還元剤として用いると、還元の過程で水素原子が金属原子の隙間に入り込んで金属間の結合を弱くし、金属原子の再配列を促進し、さらには、規則構造をより安定化する傾向がある。また、水素を含有する化合物を還元剤として用いることで、後述する水素雰囲気暴露における規則性の向上がより容易に起こるという利点もある。本発明においては、還元剤に金属水素化物等の水素を含有する化合物を用いることで、合成時から水素を金属に作用させることで効率的にB2型合金及びL12型を得ることができる。If the case crystal structure to prepare CuPd nanoparticles are type B2 and crystal structure to prepare CuPd nanoparticles is L1 2 type, it is preferable that the reducing agent is a compound containing hydrogen. In the above, all of the compounds mentioned as examples of the compound whose standard reduction potential is more negative than hydrogen (0 eV) at room temperature are compounds containing hydrogen. When a compound containing hydrogen is used as a reducing agent, hydrogen atoms enter the gaps between metal atoms during the reduction process, weakening the bond between metals, promoting rearrangement of metal atoms, and further improving the ordered structure. There is a tendency to stabilize. In addition, by using a hydrogen-containing compound as a reducing agent, there is an advantage that the regularity in exposure to a hydrogen atmosphere described later easily occurs. In the present invention, by using a compound containing hydrogen of a metal hydride such as reducing agents, hydrogen from the synthesis can be obtained efficiently B2 type alloys and L1 2 type by the action on the metal.

本発明の製造方法によれば、溶媒として水を使用することができ、かつ比較的低温で、短時間の操作で合金ナノ粒子を作製することができる。さらに、本発明の方法では、構成元素であるCu及びPdが交互にあるいは数個おきに配列した規則合金ナノ粒子であるB2型またはL12型CuPdナノ粒子を調製できる。According to the production method of the present invention, water can be used as a solvent, and alloy nanoparticles can be produced at a relatively low temperature and in a short operation. Further, in the method of the present invention, the type B2 or L1 2 type CuPd nanoparticles it is ordered alloy nanoparticles which are constituent elements Cu and Pd arranged in alternately or several intervals can be prepared.

還元力の強い無機水素化物を還元剤として結晶構造がfcc型であるCuPdナノ粒子を調製する場合には、前記分散液または溶解液中のCuイオンとPdイオンのモル比が0.01:0.99〜0.99:0.01の範囲とし、かつ還元温度を10℃未満とする。この条件で還元を実施すると、結晶構造がfcc型であり、かつCuxPd(1-x)で示される(但し、0.01<x<0.99)CuPdナノ粒子を調製することができる。fcc型の合金は還元温度が高いと生成しにくい傾向があり、そのため還元温度を10℃未満とし、好ましくは5℃以下、より好ましくは0℃以下である。還元温度の下限は、例えば、−10℃である。When preparing CuPd nanoparticles having a crystal structure of fcc type using an inorganic hydride having a strong reducing power as a reducing agent, the molar ratio of Cu ions to Pd ions in the dispersion or solution is 0.01: 0. .99 to 0.99: 0.01, and the reduction temperature is less than 10 ° C. When reduction is performed under these conditions, CuPd nanoparticles having a crystal structure of fcc type and represented by Cu x Pd (1-x) (provided that 0.01 <x <0.99) can be prepared. . The fcc type alloy tends to be difficult to be formed when the reduction temperature is high, and therefore the reduction temperature is less than 10 ° C., preferably 5 ° C. or less, more preferably 0 ° C. or less. The lower limit of the reduction temperature is, for example, −10 ° C.

<水素雰囲気暴露処理>
本発明は、上記方法により結晶構造がB2型またはL12型であるCuPdナノ粒子を製造し、製造されたCuPdナノ粒子を水素雰囲気に暴露して、結晶構造の規則性が向上したCuPdナノ粒子を得る、結晶構造の規則性が向上したCuPdナノ粒子の製造方法を包含する。
<Hydrogen atmosphere exposure treatment>
The present invention, the crystal structure by the above method to produce CuPd nanoparticles are type B2 or L1 2 type, by exposing the CuPd nanoparticles produced in a hydrogen atmosphere, CuPd nanoparticles regularity of the crystal structure is improved And a method for producing CuPd nanoparticles with improved crystal structure regularity.

上記方法により製造した結晶構造がB2型またはL12型であるCuPdナノ粒子は、下記式(1)で表される規則化度が99%未満である。それに対して、水素雰囲気に暴露することで、下記式(1)で表される規則化度が99%以上である、結晶構造の規則性が向上したB2型またはL12型であるCuPdナノ粒子を得ることができる。
(1−(m−M)/M)×100% (1)
m:CuPd合金ナノ粒子の格子定数
M:Cu原子とPd原子が規則的に配列したバルクの格子定数
CuPd nanoparticle crystal structure produced by the above method is type B2 or L1 2 type, the degree of ordering represented by the following formula (1) is less than 99%. In contrast, by exposure to a hydrogen atmosphere, degree of ordering represented by the following formula (1) of at least 99%, CuPd nanoparticles regularity of the crystal structure is type B2 or L1 2 type with improved Can be obtained.
(1- (m−M) / M) × 100% (1)
m: Lattice constant of CuPd alloy nanoparticles M: Bulk lattice constant in which Cu atoms and Pd atoms are regularly arranged

前記水素雰囲気への暴露処理は、上記方法で得られたCuPdナノ粒子と保護ポリマーの混合物から溶媒である水等を除去(例えば、乾燥により)した後に、所定の温度及び水素圧力にて行うことができる。温度は、例えば、0〜200℃の範囲であり、水素圧力は1Pa〜10MPaの範囲であることができる。水素雰囲気暴露処理の条件は、好ましくは50〜150℃の範囲で、かつ水素圧1MPa〜5MPaの範囲である。処理時間は、温度及び圧力に応じて適宜設定することができ、例えば、1〜1000時間の範囲とすることができ、1〜10時間の範囲とすることもできる。但し、この範囲に限定される意図ではない。   The exposure treatment to the hydrogen atmosphere is carried out at a predetermined temperature and hydrogen pressure after removing water (eg, drying) as a solvent from the mixture of CuPd nanoparticles and protective polymer obtained by the above method. Can do. The temperature can be, for example, in the range of 0 to 200 ° C., and the hydrogen pressure can be in the range of 1 Pa to 10 MPa. The conditions for the hydrogen atmosphere exposure treatment are preferably in the range of 50 to 150 ° C. and the hydrogen pressure in the range of 1 MPa to 5 MPa. The treatment time can be appropriately set according to the temperature and pressure, and can be, for example, in the range of 1 to 1000 hours, or in the range of 1 to 10 hours. However, it is not intended to be limited to this range.

さらに水素雰囲気暴露処理は、温度が異なる多段階で行うこともでき、処理温度は段階毎に高くなることが好ましい。多段階処理は、例えば、30〜150℃の範囲、好ましくは50〜150℃の範囲、より好ましくは70〜130℃の範囲の温度での第一段階と40〜250℃の範囲、好ましくは80〜200℃の範囲、より好ましくは120〜180℃の範囲の温度での第二段階とからなり、かつ第一段階と第二段階の温度差が10〜100℃の範囲、好ましくは20〜90℃の範囲、より好ましくは30〜80℃の範囲であることができる。水素雰囲気暴露処理を温度が異なる多段階で行うことで、規則化度をより高めることができ、その結果、TiO2などの光水分解用触媒と併用した場合に、高い光水分解性能を示す、という利点がある。Further, the hydrogen atmosphere exposure treatment can be performed in multiple stages at different temperatures, and the treatment temperature is preferably increased at each stage. The multi-stage treatment is, for example, a first stage at a temperature in the range of 30 to 150 ° C, preferably in the range of 50 to 150 ° C, more preferably in the range of 70 to 130 ° C and in the range of 40 to 250 ° C, preferably 80. The second stage at a temperature in the range of ~ 200 ° C, more preferably in the range of 120-180 ° C, and the temperature difference between the first stage and the second stage is in the range of 10-100 ° C, preferably 20-90 It can be in the range of ° C, more preferably in the range of 30-80 ° C. By performing the hydrogen atmosphere exposure treatment in multiple stages with different temperatures, the degree of ordering can be further increased, and as a result, when used in combination with a photowater decomposition catalyst such as TiO 2 , high photowater decomposition performance is exhibited. There is an advantage that.

多段階処理における水素雰囲気暴露時間は、適宜設定できるが、例えば、第一段階の水素雰囲気暴露時間は、例えば、1〜500時間の範囲、好ましくは100〜400時間の範囲、第二段階の水素雰囲気暴露時間は、例えば、0.1〜200時間の範囲、好ましくは1〜100時間の範囲である。   The hydrogen atmosphere exposure time in the multistage treatment can be set as appropriate. For example, the first stage hydrogen atmosphere exposure time is, for example, in the range of 1 to 500 hours, preferably in the range of 100 to 400 hours, and in the second stage of hydrogen. The atmospheric exposure time is, for example, in the range of 0.1 to 200 hours, preferably in the range of 1 to 100 hours.

上記方法により製造した規則化度が95%未満、好ましくは98%未満、より好ましくは99%未満である結晶構造がB2型またはL12型であるCuPdナノ粒子を水素雰囲気暴露処理に付すことで規則化度が水素雰囲気暴露処理前より高くなり、結晶構造の規則性が向上した、規則化度が98.5%以上、好ましくは99%以上、より好ましくは100%またはそれ以上のB2型またはL12型であるCuPdナノ粒子を得ることができる。更に、バルクよりも格子定数が小さくなるというナノサイズ効果により、100%以上の規則化度が得られることがある。特に、上記方法において還元剤として水素を含有する化合物を用いた場合、還元の過程で水素原子が金属原子の隙間に入り込んでいるため、水素雰囲気暴露処理による規則化度の向上は容易になる、という利点がある。Degree of ordering was prepared by the above method is less than 95%, by preferably subjecting less than 98%, the CuPd nanoparticles to a hydrogen atmosphere exposure process and more preferably a crystalline structure type B2 or L1 2 type is less than 99% The degree of ordering is higher than that before the hydrogen atmosphere exposure treatment, and the regularity of the crystal structure is improved. The ordering degree is 98.5% or more, preferably 99% or more, more preferably 100% or more. can be obtained CuPd nanoparticles is L1 2 type. Furthermore, a degree of ordering of 100% or more may be obtained due to the nanosize effect that the lattice constant is smaller than that of the bulk. In particular, when a hydrogen-containing compound is used as the reducing agent in the above method, since the hydrogen atoms enter the gaps between the metal atoms during the reduction process, it is easy to improve the degree of ordering by the hydrogen atmosphere exposure treatment. There is an advantage.

以下本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
・不規則fcc型CuPdナノ粒子の合成
7.5×10-4molの酢酸銅を100mlのイオン交換水、7.5×10-4molの酢酸パラジウムを50mlのアセトンに溶解した。これらの溶液と1.5×10-1molのポリ[N-ビニル-2-ピロリドン](NW=48000)を混合し、イオン交換水を加えて300mlの溶液を作製し、0℃に冷却した。100mlのイオン交換水に溶解した7.5×10-3mol のNaBH4を一度に加えると黒褐色のコロイド溶液が得られた。30分間撹拌した後、アセトン、水、ジエチルエーテルを用いた再沈殿を3回繰り返して、溶媒、および副生成物の無機化合物を取り除いて、CuPdナノ粒子を得た。このCuPdナノ粒子を元素分析した結果、金属(銅及びパラジウム)の含有率は11.7質量%であり、残りは、ポリ[N-ビニル-2-ピロリドン]であった。尚、上記金属の銅とパラジウムの内訳はICP発光分析から、原料の組成からモル比(原子比)で50:50であると決定した。
Example 1
・ Synthesis of irregular fcc-type CuPd nanoparticles
7.5 × 10 −4 mol of copper acetate was dissolved in 100 ml of ion exchange water, and 7.5 × 10 −4 mol of palladium acetate was dissolved in 50 ml of acetone. These solutions were mixed with 1.5 × 10 −1 mol of poly [N-vinyl-2-pyrrolidone] (NW = 48000), and ion-exchanged water was added to prepare a 300 ml solution, which was cooled to 0 ° C. When 7.5 × 10 −3 mol of NaBH 4 dissolved in 100 ml of ion exchange water was added all at once, a dark brown colloidal solution was obtained. After stirring for 30 minutes, reprecipitation using acetone, water, and diethyl ether was repeated three times to remove the solvent and the by-product inorganic compound to obtain CuPd nanoparticles. As a result of elemental analysis of the CuPd nanoparticles, the metal (copper and palladium) content was 11.7% by mass, and the remainder was poly [N-vinyl-2-pyrrolidone]. The breakdown of the metals copper and palladium was determined by ICP emission analysis to be 50:50 in molar ratio (atomic ratio) from the composition of the raw materials.

(水素雰囲気暴露処理(以下、水素処理という))
上記で得られたCuPdナノ粒子をステンレス製の容器に入れ、ステンレス製の真空ラインと接続した。試料を室温で30分以上、373Kで30分以上加熱・脱気したのち、0.1 MPaの水素圧力を印加して3時間保持するか、または2MPaの水素圧力を印加して6時間保持した。保持後、温度を一定のままで水素を30分程度排気し、常温まで放冷した。
(Hydrogen atmosphere exposure treatment (hereinafter referred to as hydrogen treatment))
The CuPd nanoparticles obtained above were put in a stainless steel container and connected to a stainless steel vacuum line. The sample was heated and degassed at room temperature for 30 minutes or more and at 373 K for 30 minutes or more, and then held for 3 hours by applying a hydrogen pressure of 0.1 MPa, or held for 6 hours by applying a hydrogen pressure of 2 MPa. After the holding, the hydrogen was evacuated for about 30 minutes with the temperature kept constant, and allowed to cool to room temperature.

実施例2
・規則B2型CuPdナノ粒子の合成
7.5×10-4molの酢酸銅を100mlのイオン交換水、7.5×10-4molの酢酸パラジウムを50mlのアセトンに溶解した。これらの溶液と1.5×10-1molのポリ[N-ビニル-2-ピロリドン](NW=48000)を混合し、イオン交換水を加えて300mlの溶液を作製し、30℃に加熱した。100mlのイオン交換水に溶解した7.5×10-3molのNaBH4を一度に加えると黒褐色のコロイド溶液が得られる。50分間撹拌した後、アセトン、水、ジエチルエーテルを用いた再沈殿を3回繰り返して、溶媒、および副生成物の無機化合物を取り除いた。このCuPdナノ粒子を元素分析した結果、金属(銅及びパラジウム)の含有率は18.6質量%であり、残りは、ポリ[N-ビニル-2-ピロリドン]であった。尚、上記金属の銅とパラジウムの内訳は、ICP発光分析からモル比(原子比)で52:48であると決定した。
Example 2
・ Synthesis of ordered B2 type CuPd nanoparticles
7.5 × 10 −4 mol of copper acetate was dissolved in 100 ml of ion exchange water, and 7.5 × 10 −4 mol of palladium acetate was dissolved in 50 ml of acetone. These solutions and 1.5 × 10 −1 mol of poly [N-vinyl-2-pyrrolidone] (NW = 48000) were mixed, and ion-exchanged water was added to prepare a 300 ml solution, which was heated to 30 ° C. When 7.5 × 10 −3 mol of NaBH 4 dissolved in 100 ml of ion exchange water is added at once, a dark brown colloidal solution is obtained. After stirring for 50 minutes, reprecipitation with acetone, water, and diethyl ether was repeated three times to remove the solvent and by-product inorganic compounds. As a result of elemental analysis of the CuPd nanoparticles, the metal (copper and palladium) content was 18.6% by mass, and the remainder was poly [N-vinyl-2-pyrrolidone]. The breakdown of copper and palladium of the metal was determined to be 52:48 in terms of molar ratio (atomic ratio) from ICP emission analysis.

(水素雰囲気暴露処理(以下、水素処理という)(1))
上記で得られたCuPdナノ粒子をステンレス製の容器に入れ、ステンレス製の真空ラインと接続した。試料を室温で30分以上、373Kで30分以上加熱・脱気したのち、0.1 MPaの水素圧力を印加して3時間保持するか、または2MPaの水素圧力を印加して6時間保持した。保持後、温度を一定のままで水素を30分程度排気し、常温まで放冷した。
(Hydrogen atmosphere exposure treatment (hereinafter referred to as hydrogen treatment) (1))
The CuPd nanoparticles obtained above were put in a stainless steel container and connected to a stainless steel vacuum line. The sample was heated and degassed at room temperature for 30 minutes or more and at 373 K for 30 minutes or more, and then held for 3 hours by applying a hydrogen pressure of 0.1 MPa, or held for 6 hours by applying a hydrogen pressure of 2 MPa. After the holding, the hydrogen was evacuated for about 30 minutes with the temperature kept constant, and allowed to cool to room temperature.

(水素雰囲気暴露処理(水素処理)(2))
上記で得られたCuPdナノ粒子をステンレス製の容器に入れ、ステンレス製の真空ラインと接続した。試料を室温で30分以上、373Kで30分以上加熱・脱気したのち、373Kにて2 MPaの水素圧力を印加して240時間保持したのちに、引き続き423Kまで昇温し2MPaの水素圧力を印加して24時間保持した。保持後、温度を一定のままで水素を30分程度排気し、常温まで放冷した。
(Hydrogen atmosphere exposure treatment (hydrogen treatment) (2))
The CuPd nanoparticles obtained above were put in a stainless steel container and connected to a stainless steel vacuum line. After heating and degassing the sample for 30 minutes or more at room temperature and 30 minutes or more at 373 K, after applying a hydrogen pressure of 2 MPa at 373 K and holding for 240 hours, the temperature was continuously raised to 423 K and a hydrogen pressure of 2 MPa was Applied and held for 24 hours. After the holding, the hydrogen was evacuated for about 30 minutes with the temperature kept constant, and allowed to cool to room temperature.

試験例1
(1)透過型電子顕微鏡観察
実施例1及び2で得られた還元後のCuPdナノ粒子をJEM-2000FXにて観察を行った。結果を図2に示す。得られた写真(上図)のうち200個の粒子から平均粒子径を見積もって下図に示す。CuPd(0℃)が実施例1の結果であり、CuPd(30℃)が実施例2の結果である。
Test example 1
(1) Observation with transmission electron microscope The reduced CuPd nanoparticles obtained in Examples 1 and 2 were observed with JEM-2000FX. The results are shown in FIG. The average particle diameter is estimated from 200 particles in the obtained photograph (upper figure) and shown in the lower figure. CuPd (0 ° C.) is the result of Example 1, and CuPd (30 ° C.) is the result of Example 2.

(2)粉末X線回折測定
実施例1及び2で得られた還元後のCuPdナノ粒子をRINT-2000/PCによりCu Kαの波長で回折測定に付した。結果を図3に示す。CuPd(0℃)が実施例1の結果であり、CuPd(30℃)が実施例2の結果である。
(2) Powder X-ray diffraction measurement The reduced CuPd nanoparticles obtained in Examples 1 and 2 were subjected to diffraction measurement at a wavelength of Cu Kα by RINT-2000 / PC. The results are shown in FIG. CuPd (0 ° C.) is the result of Example 1, and CuPd (30 ° C.) is the result of Example 2.

図3に示す結果から、合成温度0℃で作製した試料(実施例1)、合成温度30℃で作製した試料(実施例2)のXRDパターンでは、それぞれ別の回折パターンが観測され、実施例1では不規則fcc型構造、実施例2では規則B2型構造のCuPdナノ粒子が得られることがわかった。   From the results shown in FIG. 3, different diffraction patterns were observed in the XRD patterns of the sample produced at the synthesis temperature of 0 ° C. (Example 1) and the sample produced at the synthesis temperature of 30 ° C. (Example 2). It was found that CuPd nanoparticles having an irregular fcc type structure in Example 1 and an ordered B2 type structure in Example 2 were obtained.

図4には、実施例1及び2で得られた粒子に水素処理を施した試料についてX線回折測定を行った結果を示す。その結果、実施例2で得られた粒子について、水素処理(1)、特に373Kにて水素圧力0.1MPaで3時間の処理により、回折位置が高角度側へシフトし、原子間距離が短縮し、金属配列が整列した合金ナノ粒子が得られることがわかった。   In FIG. 4, the result of having performed the X-ray-diffraction measurement about the sample which performed the hydrogen treatment to the particle | grains obtained in Example 1 and 2 is shown. As a result, the particles obtained in Example 2 were subjected to hydrogen treatment (1), particularly at 373 K for 3 hours at a hydrogen pressure of 0.1 MPa, the diffraction position shifted to the high angle side, and the interatomic distance was shortened. It was found that alloy nanoparticles with aligned metal arrays were obtained.

0.1MPaで3時間処理した場合と2MPaで6時間処理した場合では粉末X線回折パターンに大きな変化はみられなかったため、これらの試料の格子定数に大きな変化はないと推測される。次に、作製したばかりの試料と水素処理(1)を施した試料のTEM像を図5に示す。図5のTEM像では、373Kにて水素圧力0.1MPaで3時間処理した試料のTEM像におけるコントラストは作製したばかりの試料に比べて均一であった。373Kにて水素圧力2MPaで6時間処理した試料では更に均一になっている。これは、水素処理により、粒子内部の構造だけでなく、表面における規則性が向上することを示している。水素により、粒子内部および表面での構造の規則性が向上することで触媒活性が向上したと考えられる。   Since no significant change was observed in the powder X-ray diffraction pattern when treated with 0.1 MPa for 3 hours and when treated with 2 MPa for 6 hours, it is assumed that there was no significant change in the lattice constant of these samples. Next, FIG. 5 shows TEM images of the sample just prepared and the sample subjected to hydrogen treatment (1). In the TEM image of FIG. 5, the contrast in the TEM image of the sample treated for 3 hours at 373 K with a hydrogen pressure of 0.1 MPa was more uniform than that of the sample just prepared. The sample treated with hydrogen pressure of 2MPa at 373K for 6 hours is more uniform. This indicates that hydrogen treatment improves not only the structure inside the particles but also the regularity on the surface. It is considered that the catalytic activity is improved by hydrogen because the regularity of the structure inside and on the surface of the particles is improved.

また、図4に示すように、実施例1で得られた粒子についても、水素圧力2MPaで6時間の水素処理により、回折位置が高角度側へシフトした。この結果は、水素処理が、不規則fcc型CuPd合金においても金属原子間の相互作用を強めることを示すものである。その結果、結果は示していないが、水素処理は、不規則fcc型CuPd合金についても触媒活性を高める働きが有る。   Further, as shown in FIG. 4, the diffraction position of the particles obtained in Example 1 was also shifted to the high angle side by the hydrogen treatment for 6 hours at a hydrogen pressure of 2 MPa. This result shows that hydrogen treatment enhances the interaction between metal atoms even in an irregular fcc-type CuPd alloy. As a result, although the results are not shown, the hydrogen treatment has a function of enhancing the catalytic activity even for the irregular fcc type CuPd alloy.

図9は、実施例2で得られた粒子に水素処理(2)を施した試料についての放射光を用いた粉末X線回折パターンとそのリートベルト法による解析結果である。矢印で示す位置にB2構造に特有のピークが観測されている。これは、粒子内部において結晶が成長し、結晶子サイズが増大したためである。解析の結果、格子定数は2.97Åと決定した。   FIG. 9 is a powder X-ray diffraction pattern using synchrotron radiation and a result of analysis by the Rietveld method for a sample obtained by subjecting the particles obtained in Example 2 to hydrogen treatment (2). A peak peculiar to the B2 structure is observed at the position indicated by the arrow. This is because crystals grow inside the grains and the crystallite size increases. As a result of the analysis, the lattice constant was determined to be 2.97 cm.

図10には、実施例2で作製したばかりの試料と水素処理(1)を施した試料(100℃、2MPa H2)、水素処理(2)を施した試料(100℃、150℃、2MPa H2)のTEM像を示す。FIG. 10 shows a sample just prepared in Example 2, a sample subjected to hydrogen treatment (1) (100 ° C., 2 MPa H 2 ), and a sample subjected to hydrogen treatment (2) (100 ° C., 150 ° C., 2 MPa). A TEM image of H 2 ) is shown.

(3)規則化度の算出
実施例2で合成した(水素処理前の)CuPdナノ粒子の規則化度と水素処理(1)(373 Kにて水素0.1MPa加圧)後のCuPdナノ粒子の規則化度を、図6に示すH2加圧In-situ粉末X線回折パターンからCuPdナノ粒子の格子定数をリートベルト法などによって解析することで求めて、算出した。水素処理前のCuPdナノ粒子の格子定数mは3.036であり、水素処理後のCuPdナノ粒子の格子定数mは2.99であった。その結果、水素処理前のCuPdナノ粒子の規則化度は、(1-(3.036-2.99)/2.99)×100=98.5%であったのに対して、水素処理(1)後のCuPdナノ粒子の規則化度は、(1-(2.99-2.99)/2.99)×100=100%であった。水素処理(2)後のCuPdナノ粒子の規則化度は、(1-(2.97-2.99)/2.99)×100=101%であった。規則化度が100%以上となるのは、表面エネルギーを低下するために格子が圧縮されるという直径がナノメートル領域の粒子にみられるナノサイズ効果により起こる現象である。
(3) Calculation of degree of ordering The degree of ordering of CuPd nanoparticles synthesized in Example 2 (before hydrogen treatment) and hydrogen treatment (1) of CuPd nanoparticles after hydrogen treatment (pressurization of hydrogen at 0.1 MPa at 373 K) The degree of ordering was obtained by calculating the lattice constant of CuPd nanoparticles from the H 2 pressurized In-situ powder X-ray diffraction pattern shown in FIG. 6 by the Rietveld method or the like. The lattice constant m of CuPd nanoparticles before hydrogen treatment was 3.036, and the lattice constant m of CuPd nanoparticles after hydrogen treatment was 2.99. As a result, the degree of ordering of CuPd nanoparticles before hydrogen treatment was (1- (3.036-2.99) /2.99) × 100 = 98.5%, whereas CuPd nanoparticles after hydrogen treatment (1) The degree of ordering was (1- (2.99-2.99) /2.99) × 100 = 100%. The degree of ordering of the CuPd nanoparticles after hydrogen treatment (2) was (1- (2.97-2.99) /2.99) × 100 = 101%. The degree of ordering is 100% or more is a phenomenon caused by the nano-size effect observed in particles in the nanometer region where the lattice is compressed to reduce the surface energy.

実施例3
水分解水素発生に対する活性試験
実施例2で得られた合金粒子1mg(総金属量)を含む試料を20mlのイオン交換水に溶解し、超音波処理を15分おこなった。合金ナノ粒子水溶液に1gのTiO2 (P25)粉末を加え、更に15分超音波処理を行った。得られた懸濁液を濾過してCuPdナノ粒子担持TiO2触媒を作製した。参照試料として直径6.3±1.0nmのPdナノ粒子を担持したTiO2を作製した。
Example 3
Activity test for water splitting hydrogen generation The sample containing 1 mg of alloy particles (total amount of metal) obtained in Example 2 was dissolved in 20 ml of ion-exchanged water and subjected to ultrasonic treatment for 15 minutes. 1 g of TiO 2 (P25) powder was added to the alloy nanoparticle aqueous solution, and ultrasonic treatment was further performed for 15 minutes. The obtained suspension was filtered to prepare a CuPd nanoparticle-supported TiO 2 catalyst. As a reference sample, TiO 2 supporting Pd nanoparticles with a diameter of 6.3 ± 1.0 nm was prepared.

(光水分解水素発生試験)
上記で得られた100mgの担持触媒(実施例2で得た規則B2型CuPd合金ナノ粒子(水素処理(1)前及び後)担持触媒及びPdナノ粒子担持触媒)に10vol.%のメタノール水溶液を加え、250mlの反応溶液を調製した。この溶液を幕張理化学製の閉鎖循環装置に設置し、キセノンランプ照射後に発生する水素量を島津社製ガスクロマトグラフGC-8Aにて定量した。結果を図7に示す。図7には、光水分解反応の触媒として用いられるPd担持触媒の結果も参考として記載する。
(Photohydrolysis hydrogen generation test)
10 vol.% Methanol aqueous solution was added to 100 mg of the supported catalyst obtained above (regular B2 type CuPd alloy nanoparticles obtained in Example 2 (before and after hydrogen treatment (1)) and Pd nanoparticles supported catalyst). In addition, 250 ml of reaction solution was prepared. This solution was installed in a closed circulation device manufactured by Makuhari RI Chemical, and the amount of hydrogen generated after irradiation with a xenon lamp was quantified with a gas chromatograph GC-8A manufactured by Shimadzu Corporation. The results are shown in FIG. In FIG. 7, the result of the Pd-supported catalyst used as the catalyst for the photowater decomposition reaction is also described for reference.

実施例2で作製した水素処理(1)を施した規則B2型CuPd合金ナノ粒子(0.1MPa水素、373K、3時間および2MPa水素、373K、6時間)を担持した触媒は、合成したばかり(水素処理前)のB2構造のCuPd担持触媒に比べて、光水分解による水素生成活性は、それぞれ1.3倍および1.7倍に向上したことがわかった(図7)。さらに、水素処理(1)後の規則B2型CuPd合金ナノ粒子担持触媒は、光水分解反応の触媒として用いられるPd担持触媒よりも高い活性を示すことがわかった。   The catalyst carrying the ordered B2-type CuPd alloy nanoparticles (0.1 MPa hydrogen, 373 K, 3 hours and 2 MPa hydrogen, 373 K, 6 hours) subjected to the hydrogen treatment (1) prepared in Example 2 was just synthesized (hydrogen It was found that the hydrogen generation activity by photowater decomposition was improved 1.3 times and 1.7 times compared to the B2 structure CuPd supported catalyst (before treatment) (FIG. 7). Furthermore, it was found that the ordered B2-type CuPd alloy nanoparticle-supported catalyst after the hydrogen treatment (1) shows higher activity than the Pd-supported catalyst used as a catalyst for the photo-water decomposition reaction.

さらに、実施例2で作製した水素処理(2)を施した規則B2型CuPd合金ナノ粒子(2MPa水素、373K、240時間および2MPa水素、423K、24時間)を担持した触媒についても、10vol.%のメタノール水溶液を加え、250mlの反応溶液を調製した。この溶液を幕張理化学製の閉鎖循環装置に設置し、キセノンランプ照射後に発生する水素量を島津社製ガスクロマトグラフGC-8Aにて定量した。結果を図11に示す。図11には、一般的に用いられる光析出法により作製された保護剤を含なまない裸のPdを担持した触媒についても参考として記載する。水素処理(2)後の規則B2型CuPd合金ナノ粒子担持触媒は、作製したばかりのB2型CuPd合金ナノ粒子担持触媒よりも2倍以上の高い活性を示した。この結果より、活性の高い光水分解触媒を示すナノ粒子を得るには水素処理(2)は水素処理(1)よりも有効であることがわかった。また、水素処理(2)を行ったB2型CuPdを用いた触媒は、光触媒として一般的に使われる裸のPdを担持した触媒よりも活性が高いことがわかった。さらに、裸のPdを使用した触媒は光照射後30分間は高い活性を示したが、それ以降は活性が低下した。実施例では犠牲還元剤としてメタノールを使用しているため、光照射によりホルムアルデヒドが発生する。裸のPdを使用した場合はホルムアルデヒドの被毒により活性が失われるが、本発明で提供するCuPdナノ粒子を用いた触媒にはこのような被毒による性能の劣化は観測されなかった。この結果より、CuPdナノ粒子はホルムアルデヒドによる被毒にも耐性があることを示している。   Furthermore, the catalyst carrying the ordered B2 type CuPd alloy nanoparticles (2MPa hydrogen, 373K, 240 hours and 2MPa hydrogen, 423K, 24 hours) subjected to the hydrogen treatment (2) prepared in Example 2 is also 10 vol.%. Of methanol was added to prepare a 250 ml reaction solution. This solution was installed in a closed circulation device manufactured by Makuhari RI Chemical, and the amount of hydrogen generated after irradiation with a xenon lamp was quantified with a gas chromatograph GC-8A manufactured by Shimadzu Corporation. The results are shown in FIG. FIG. 11 also describes a catalyst supporting bare Pd that does not contain a protective agent prepared by a commonly used photoprecipitation method as a reference. The ordered B2-type CuPd alloy nanoparticle-supported catalyst after the hydrogen treatment (2) showed more than twice as high activity as the B2-type CuPd alloy nanoparticle-supported catalyst just prepared. From this result, it was found that hydrotreating (2) is more effective than hydrotreating (1) to obtain nanoparticles exhibiting a highly active photohydrolysis catalyst. In addition, it was found that the catalyst using B2 type CuPd subjected to the hydrogen treatment (2) has higher activity than the catalyst supporting bare Pd generally used as a photocatalyst. Further, the catalyst using bare Pd showed high activity for 30 minutes after light irradiation, but the activity decreased thereafter. Since methanol is used as a sacrificial reducing agent in the examples, formaldehyde is generated by light irradiation. When naked Pd is used, the activity is lost due to formaldehyde poisoning, but the catalyst using the CuPd nanoparticles provided in the present invention did not show any deterioration in performance due to such poisoning. This result indicates that CuPd nanoparticles are also resistant to formaldehyde poisoning.

実施例1で水素処理して作製したfcc型CuPd合金ナノ粒子担持触媒についは光水分解水素発生試験を行っていないが、前述のように水素処理により、不規則fcc型CuPd合金においても金属原子間の相互作用を強めるので、光水分解反応等の触媒活性は増大するものと考えられる。   The fcc-type CuPd alloy nanoparticle-supported catalyst prepared by hydrogen treatment in Example 1 has not been subjected to a photohydrolysis hydrogen generation test. However, as described above, by hydrogen treatment, even in an irregular fcc-type CuPd alloy, metal atoms It is considered that the catalytic activity such as photo-water splitting reaction is increased.

(一酸化炭素被毒試験)
実施例1及び2で得られた試料(いずれも2MPa水素、373K、6時間水素処理(1)品)を一気圧の一酸化炭素下に30分間放置して一酸化炭素による被毒を行った。結果を図8に示す。
(Carbon monoxide poisoning test)
The samples obtained in Examples 1 and 2 (both 2MPa hydrogen, 373K, 6 hour hydrogen-treated (1) product) were left for 30 minutes under one atmosphere of carbon monoxide and poisoned with carbon monoxide. . The results are shown in FIG.

一酸化炭素被毒後の水素発生量(15時間後)一酸化炭素(CO)被毒による性能劣化の程度は、Pdに比べて不規則fcc型CuPd(実施例1)では1/2、規則B2型CuPdでは1/3(実施例2)となり、耐被毒性に改善が観られた。CO吸着による活性低下率は-47%(Pd)、-24%(不規則fcc型CuPd、実施例1)、-14%(規則B2型CuPd、実施例2))であった。   Hydrogen generation amount after carbon monoxide poisoning (after 15 hours) The degree of performance deterioration due to carbon monoxide (CO) poisoning is 1/2 for irregular fcc-type CuPd (Example 1) compared to Pd. In B2 type CuPd, it was 1/3 (Example 2), and an improvement was observed in the poisoning resistance. The rate of activity decrease due to CO adsorption was -47% (Pd), -24% (irregular fcc-type CuPd, Example 1), and -14% (ordered B2-type CuPd, Example 2)).

本発明は、光触媒の助触媒、燃料電池の電極触媒等のCuPd合金ナノ粒子が関連する分野に有用である。   The present invention is useful in fields related to CuPd alloy nanoparticles such as a photocatalyst promoter and a fuel cell electrode catalyst.

Claims (11)

結晶構造がB2型であり、平均粒子径が1〜200nmでありCuPd(1−x)で示され(但し、0.4<x<0.6)、下記式(1)で表される規則化度が99%以上であるCuPd合金ナノ粒子。
(1−(m−M)/M)×100%(1)
m:CuPd合金ナノ粒子の格子定数
M:Cu原子とPd原子が規則的に配列したバルクの格子定数
The crystal structure is B2 type , the average particle size is 1 to 200 nm, and is represented by Cu x Pd (1-x) (provided that 0.4 <x < 0.6 ), represented by the following formula (1) CuPd alloy nanoparticles having a degree of ordering of 99% or more .
(1- (m−M) / M) × 100% (1)
m: lattice constant of CuPd alloy nanoparticles
M: Bulk lattice constant in which Cu atoms and Pd atoms are regularly arranged
請求項に記載のCuPd合金ナノ粒子と保護ポリマーとを含む組成物。 A composition comprising the CuPd alloy nanoparticles according to claim 1 and a protective polymer. 請求項に記載のCuPd合金ナノ粒子を担体に担持した触媒用組成物。 The composition for catalysts which carry | supported the CuPd alloy nanoparticle of Claim 1 on the support | carrier. 担体は、無機化合物である請求項に記載の触媒用組成物。 4. The catalyst composition according to claim 3 , wherein the support is an inorganic compound. 触媒は、水分解水素発生反応、水分解酸素発生反応、または有機物分解反応に対するものである請求項またはに記載の触媒用組成物。 The catalyst composition according to claim 3 or 4 , wherein the catalyst is for a water-splitting hydrogen generation reaction, a water-splitting oxygen generation reaction, or an organic matter decomposition reaction. 水または水溶液中に保護ポリマーの存在下でCuイオン及びPdイオンの分散液または溶解液を調製し、
得られた分散液または溶解液に、前記Cuイオン及びPdイオンに対する還元剤を添加して、Cuイオン及びPdイオンを還元してCuPd合金ナノ粒子を調製し、
前記CuPd合金ナノ粒子を水素雰囲気に暴露する、
ことを含む、請求項1に記載のCuPd合金ナノ粒子の製造方法であって、
前記還元剤が、MBH(M=Na、K)、MEtBH(M=Na、K)、水素化シアノホウ素ナトリウム、水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、ボラン錯体、トリエチルシラン及び水素化ビス(2−メトキシエトキシ)アルミニウムナトリウムからなる群より選ばれる少なくとも1種である、CuPd合金ナノ粒子の製造方法。
Preparing a dispersion or solution of Cu ions and Pd ions in the presence of a protective polymer in water or an aqueous solution,
To the obtained dispersion or solution, a reducing agent for Cu ions and Pd ions is added to reduce Cu ions and Pd ions to prepare CuPd alloy nanoparticles ,
Exposing the CuPd alloy nanoparticles to a hydrogen atmosphere;
A method for producing CuPd alloy nanoparticles according to claim 1, comprising:
The reducing agent is MBH 4 (M = Na, K), MEt 3 BH (M = Na, K), sodium cyanoborohydride, lithium borohydride, lithium triethylborohydride, borane complex, triethylsilane and hydrogen. A method for producing CuPd alloy nanoparticles, which is at least one selected from the group consisting of sodium bis (2-methoxyethoxy) aluminum chloride.
前記分散液または溶解液中のCuイオンとPdイオンのモル比が0.4超:0.6未満〜0.6未満:0.4超の範囲であり、
還元温度を10℃以上とし、結晶構造がB2型であり、かつCuPd(1−x)で示される(但し、0.4<x<0.6)CuPd合金ナノ粒子を調製する請求項に記載の製造方法。
The dispersion or solution in a molar ratio of Cu ions and Pd ions than 0.4: less than from 0.6 to 0.6: in the range greater than 0.4, and
Claims wherein the reduction temperature is 10 ° C or higher, the crystal structure is B2 type, and Cu x Pd (1-x) (where 0.4 <x < 0.6 ) CuPd alloy nanoparticles are prepared. 6. The production method according to 6 .
前記水素雰囲気への暴露処理前におけるCuPd合金ナノ粒子の下記式(1)で表される規則化度が99%未満であり、
前記水素雰囲気に暴露して、結晶構造の規則性が向上したCuPd合金ナノ粒子の下記式(1)で表される規則化度が99%以上である請求項6または7に記載の製造方法。
(1−(m−M)/M)×100%(1)
m:CuPd合金ナノ粒子の格子定数
M:Cu原子とPd原子が規則的に配列したバルクの格子定数
The degree of ordering represented by the following formula (1) of the CuPd alloy nanoparticles before the exposure treatment to the hydrogen atmosphere is less than 99% ,
The manufacturing method according to claim 6 or 7 , wherein the degree of ordering represented by the following formula (1) of the CuPd alloy nanoparticles having improved crystal structure regularity when exposed to the hydrogen atmosphere is 99% or more.
(1- (m−M) / M) × 100% (1)
m: Lattice constant of CuPd alloy nanoparticles M: Bulk lattice constant in which Cu atoms and Pd atoms are regularly arranged
前記水素雰囲気への暴露処理は、0〜200℃の温度で、かつ水素圧1Pa〜10MPaで行う、請求項に記載の製造方法。 The manufacturing method according to claim 8 , wherein the exposure treatment to the hydrogen atmosphere is performed at a temperature of 0 to 200 ° C. and a hydrogen pressure of 1 Pa to 10 MPa. 前記水素雰囲気への暴露処理は、温度が異なる多段階で行う請求項8または9に記載の製造方法。 The manufacturing method according to claim 8 or 9 , wherein the exposure treatment to the hydrogen atmosphere is performed in multiple stages at different temperatures. 前記水素雰囲気への暴露処理は、30〜150℃の範囲の温度での第一段階と40〜250℃の範囲の温度での第二段階とからなり、かつ第一段階と第二段階の温度差が10〜100℃の範囲である請求項8〜10のいずれか一項に記載の製造方法。 The exposure treatment to the hydrogen atmosphere comprises a first stage at a temperature in the range of 30 to 150 ° C. and a second stage at a temperature in the range of 40 to 250 ° C., and the temperature of the first stage and the second stage. The manufacturing method according to any one of claims 8 to 10, wherein the difference is in a range of 10 to 100 ° C.
JP2011513345A 2009-05-14 2010-05-11 CuPd alloy nanoparticles, composition and composition for catalyst, and method for producing CuPd alloy nanoparticles Expired - Fee Related JP5772593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513345A JP5772593B2 (en) 2009-05-14 2010-05-11 CuPd alloy nanoparticles, composition and composition for catalyst, and method for producing CuPd alloy nanoparticles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009117386 2009-05-14
JP2009117386 2009-05-14
JP2011513345A JP5772593B2 (en) 2009-05-14 2010-05-11 CuPd alloy nanoparticles, composition and composition for catalyst, and method for producing CuPd alloy nanoparticles
PCT/JP2010/057961 WO2010131653A1 (en) 2009-05-14 2010-05-11 CuPd ALLOY NANOPARTICLES AND METHOD FOR PRODUCING SAME

Publications (2)

Publication Number Publication Date
JPWO2010131653A1 JPWO2010131653A1 (en) 2012-11-01
JP5772593B2 true JP5772593B2 (en) 2015-09-02

Family

ID=43085026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011513345A Expired - Fee Related JP5772593B2 (en) 2009-05-14 2010-05-11 CuPd alloy nanoparticles, composition and composition for catalyst, and method for producing CuPd alloy nanoparticles

Country Status (2)

Country Link
JP (1) JP5772593B2 (en)
WO (1) WO2010131653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597780A (en) * 2015-12-29 2016-05-25 中国科学院福建物质结构研究所 Self-assembled Pd-Cu bimetal dendritic nanocrystal catalyst as well as preparation and application thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114234A1 (en) 2011-09-23 2013-03-28 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Energy supply system with reversible functional element
CN104233366B (en) * 2014-09-16 2017-01-25 武汉轻工大学 Preparation method of iridium and copper oxide alloy cathode catalyst
JP2016079106A (en) * 2014-10-10 2016-05-16 国立大学法人九州大学 Manufacturing method of amide compound, alloy particle and catalyst containing the same
JP2016079105A (en) * 2014-10-10 2016-05-16 国立大学法人九州大学 Manufacturing method of olefin compound, alloy particle and catalyst containing the same
JP6953965B2 (en) * 2017-09-29 2021-10-27 信越化学工業株式会社 A member having a photocatalyst / alloy fine particle dispersion having antibacterial / antifungal properties, a method for producing the same, and a photocatalyst / alloy thin film on the surface.
CN110592433B (en) * 2019-08-06 2020-11-20 上海交通大学 Semi-solid metal-based hydrolysis hydrogen production material and preparation method thereof
CN112642486B (en) * 2020-12-09 2023-02-03 广东省科学院化工研究所 MOF-253 encapsulated metal nanoparticle catalyst and preparation method and application thereof
CN112675874B (en) * 2021-01-06 2023-03-17 中国船舶重工集团公司第七一九研究所 For CO 2 Pd-Cu for preparing methanol by catalytic hydrogenation 2 Preparation method of O catalyst
CN113714507B (en) * 2021-08-02 2024-03-05 南京师范大学 Cyano-modified three-dimensional palladium-copper nano coral and preparation method and application thereof
CN113695586B (en) * 2021-08-26 2023-09-01 内蒙古大学 Superfine PdCu/C nanowire alloy material and preparation method and application thereof
CN113814408B (en) * 2021-10-08 2023-05-26 哈尔滨理工大学 Preparation and component regulation and control method of CuPd alloy nanocrystalline
CN117102477A (en) * 2023-08-01 2023-11-24 淮安中顺环保科技有限公司 Copper-palladium alloy nano-particle and preparation method and application thereof
CN117181240B (en) * 2023-09-08 2024-03-19 兰州大学 Nanocomposite for producing ammonia and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000866A (en) * 1999-06-22 2001-01-09 Asahi Chem Ind Co Ltd Water treating catalyst composition and water treatment using the catalyst
JP2002263499A (en) * 2001-03-14 2002-09-17 Suzuki Motor Corp Methanol reforming catalyst and manufacturing method thereof
JP2004097893A (en) * 2002-09-06 2004-04-02 Catalysts & Chem Ind Co Ltd Catalyst for water treatment and water treatment method
JP2005307335A (en) * 2004-03-25 2005-11-04 Sumitomo Metal Mining Co Ltd Copper fine particle, production method therefor and copper fine particle-dispersed liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000866A (en) * 1999-06-22 2001-01-09 Asahi Chem Ind Co Ltd Water treating catalyst composition and water treatment using the catalyst
JP2002263499A (en) * 2001-03-14 2002-09-17 Suzuki Motor Corp Methanol reforming catalyst and manufacturing method thereof
JP2004097893A (en) * 2002-09-06 2004-04-02 Catalysts & Chem Ind Co Ltd Catalyst for water treatment and water treatment method
JP2005307335A (en) * 2004-03-25 2005-11-04 Sumitomo Metal Mining Co Ltd Copper fine particle, production method therefor and copper fine particle-dispersed liquid

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6014027912; 山内美穂, 北川宏: 'ポリマー保護CuPdナノ粒子の水素吸蔵特性' 日本化学会講演予稿集 Vol. 85th No1, 20050311, 385 *
JPN6014027915; 山内美穂, 北川宏: 'ポリマー被覆PdCuナノ粒子の水素吸蔵特性' 分子構造総合討論会2004講演要旨集 Vol. 2004 No1, 20040901, 1P027 *
JPN6014027917; K. Sun, J. Liu, N. K. Nag, N. D. Browning: 'Atomic Scale Characterization of Supported Pd-Cu/gamma-Al2O3 Bimetallic Catalysts' J. Phys. Chem. B Vol.106, No.47, 20021128, 12239-12246 *
JPN6014027919; Yuan Wang, Hanfan Liu, Naoki Toshima: 'Nanoscopic Naked Cu/Pd Powder as Air-Resistant Active Catalyst for Selective Hydration of Acrylonitr' J. Phys. Chem. Vol.100, No.50,, 19961212, 19533-19537 *
JPN6014027921; Jurka Batista, Albin Pintar, Jana Padeznik Gomilsek, Alojz Kodre, Frederic Bornette: 'On the structural characteristics of gamma-alumina-supported Pd-Cu bimetallic catalysts' Applied Catalysis A; General Vol.217, No.1/2, 20010903, 55-68 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597780A (en) * 2015-12-29 2016-05-25 中国科学院福建物质结构研究所 Self-assembled Pd-Cu bimetal dendritic nanocrystal catalyst as well as preparation and application thereof
CN105597780B (en) * 2015-12-29 2019-05-03 中国科学院福建物质结构研究所 Self assembly Pd-Cu bimetallic racemosus shape nanocrystalline catalyst and its preparation and use

Also Published As

Publication number Publication date
JPWO2010131653A1 (en) 2012-11-01
WO2010131653A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5772593B2 (en) CuPd alloy nanoparticles, composition and composition for catalyst, and method for producing CuPd alloy nanoparticles
US8986514B2 (en) Photoreduction catalyst, and method for synthesizing ammonia and method for decreasing nitrogen oxides in water using the same
Cao et al. Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation
Rawool et al. Defective TiO 2 for photocatalytic CO 2 conversion to fuels and chemicals
Akbarzadeh et al. Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants
Zhang et al. Recent Advances in Surfactant‐Free, Surface‐Charged, and Defect‐Rich Catalysts Developed by Laser Ablation and Processing in Liquids
Ong et al. Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance
Yang et al. Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nanoparticles
Yao et al. One-pot synthesis of core-shell Cu@ SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane
Yang et al. Enhanced catalytic activity of NiM (M= Cr, Mo, W) nanoparticles for hydrogen evolution from ammonia borane and hydrazine borane
Navaladian et al. A rapid synthesis of oriented palladium nanoparticles by UV irradiation
Clifford et al. Supported transition metal nanomaterials: Nanocomposites synthesized by ionizing radiation
Kim et al. A novel synthetic method for N doped TiO2 nanoparticles through plasma-assisted electrolysis and photocatalytic activity in the visible region
Song-Il et al. High catalytic kinetic performance of amorphous CoPt NPs induced on CeOx for H2 generation from hydrous hydrazine
Qiu et al. The release of hydrogen from ammonia borane over copper/hexagonal boron nitride composites
Chang et al. Synthesis of Cu/ZnO core/shell nanocomposites and their use as efficient photocatalysts
Mohamed et al. Photocatalytic Oxidation of Carbon Monoxide over NiO/SnO 2 Nanocomposites under UV Irradiation.
US20130315787A1 (en) Nanocrystals and methods and uses thereof
Jiang et al. Facile synthesis of AuPd nanoparticles anchored on TiO2 nanosheets for efficient dehydrogenation of formic acid
Dietrich et al. Designing structurally ordered Pt/Sn nanoparticles in ionic liquids and their enhanced catalytic performance
WO2017068350A1 (en) Methods of making metal oxide catalysts
Waehayee et al. Controlling the photocatalytic activity and benzylamine photooxidation selectivity of Bi2WO6 via ion substitution: effects of electronegativity
Ramdani et al. Synthesis, characterization and kinetic computations of fullerene (C60)–CuO on the mechanism decomposition of ammonium perchlorate
Kharchenko et al. Formation of copper nanoparticles in LTL nanosized zeolite: kinetics study
Liu et al. Facile one-step hydrothermal synthesis of single-crystalline SnNb2O6 nanosheets with greatly extended visible-light response for enhanced photocatalytic performance and mechanism insight

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees