JP2002254209A - Surface-coated cemented carbide cutting tool whose hard coating layer has excellent chipping resistance in heavy cutting - Google Patents

Surface-coated cemented carbide cutting tool whose hard coating layer has excellent chipping resistance in heavy cutting

Info

Publication number
JP2002254209A
JP2002254209A JP2001052283A JP2001052283A JP2002254209A JP 2002254209 A JP2002254209 A JP 2002254209A JP 2001052283 A JP2001052283 A JP 2001052283A JP 2001052283 A JP2001052283 A JP 2001052283A JP 2002254209 A JP2002254209 A JP 2002254209A
Authority
JP
Japan
Prior art keywords
cutting
hard coating
coating layer
coated
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001052283A
Other languages
Japanese (ja)
Inventor
Akihiro Kondou
暁裕 近藤
Koichi Maeda
浩一 前田
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MMC Kobelco Tool Co Ltd
Original Assignee
MMC Kobelco Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MMC Kobelco Tool Co Ltd filed Critical MMC Kobelco Tool Co Ltd
Priority to JP2001052283A priority Critical patent/JP2002254209A/en
Publication of JP2002254209A publication Critical patent/JP2002254209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cemented carbide cutting tool whose hard coating layer has excellent chipping resistance in heavy cutting. SOLUTION: On the surface-coated cemented carbide cutting tool, a hard coating layer having an average thickness of 1 to 10 μm is physically deposited on the surface of a tungsten carbide group cemented carbide substrate or a titanium carbonitride series cermet. The hard coating layer is composed of metallic compound nitride having such a composition formula as (Ti1-( X+ Y) VXMY) N, where M is one type or two or more types among Y, Zr and Hf, X is 0.20 to 0.55 in an atomic ratio, and Y is 0.05 to 0.25 in an atomic ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、硬質被覆層がす
ぐれた靭性を有し、したがって特に各種鋼などの高送り
や高切込みなどの重切削条件での切削加工ですぐれた耐
チッピング性を発揮する表面被覆超硬合金製切削工具
(以下、被覆超硬工具という)に関するものである。
[0001] The present invention relates to a hard coating layer having excellent toughness, and therefore exhibits excellent chipping resistance especially in heavy cutting conditions such as high feed and high cutting of various steels. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).

【0002】[0002]

【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。
2. Description of the Related Art Generally, cutting tools include a throw-away tip which is detachably attached to a tip of a cutting tool for turning or planing of various materials such as steel and cast iron. Drills and miniature drills used for drilling and drilling, and solid type end mills used for face milling and grooving of the work material, shoulder milling, and the like, and the detachable insert is detachably attached. In addition, a throw-away end mill tool or the like that performs cutting in the same manner as the solid type end mill is known.

【0003】また、上記の各種切削工具の1つとして、
一般に、例えば図1に概略説明図で示される物理蒸着装
置の1種であるアークイオンプレーティング装置を用
い、基本的に、例えば雰囲気を1.3×10-3Paの真
空として、ヒータで装置内を500℃の温度に加熱した
状態で、アノード電極と、所定の成分組成を有する合金
がセットされたカソード電極(蒸発源)との間に、例え
ば電圧:35V、電流:100Aの条件でアーク放電を
発生させ、同時に装置内に反応ガスとして窒素ガスを導
入し、一方炭化タングステン(以下、WCで示す)基超
硬合金または炭窒化チタン(以下、TiCNで示す)基
サーメットからなる基体(以下、これらを総称して超硬
基体と云う)には、例えば−100Vのバイアス電圧を
印加した条件で、前記超硬基体の表面に、上記カソード
電極を構成する合金の合金成分の複合窒化物からなる硬
質被覆層を1〜10μmの平均層厚で蒸着することによ
り製造された被覆超硬工具も知られている。
[0003] As one of the above-mentioned various cutting tools,
In general, for example, an arc ion plating apparatus which is a kind of a physical vapor deposition apparatus schematically shown in FIG. 1 is used, and basically, for example, the atmosphere is set to a vacuum of 1.3 × 10 −3 Pa and the apparatus is heated by a heater. While the inside is heated to a temperature of 500 ° C., an arc is applied between an anode electrode and a cathode electrode (evaporation source) on which an alloy having a predetermined component composition is set, for example, under the conditions of a voltage: 35 V and a current: 100 A. A discharge is generated, and at the same time, a nitrogen gas is introduced as a reaction gas into the apparatus, while a base (hereinafter, referred to as a cermet) based on tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter, referred to as TiCN). , These are collectively referred to as a super-hard substrate), for example, under the condition that a bias voltage of -100 V is applied, the surface of the super-hard substrate is coated with the alloy constituting the cathode electrode. It is also known manufactured coated carbide tool by depositing a hard coating layer made of a composite nitride of the alloy components with an average layer thickness of 1 to 10 [mu] m.

【0004】[0004]

【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化、さらに低コスト化の要
求は強く、これに伴い、切削加工は、切削加工装置の高
性能化と相俟って、高送りや高切込みなどの重切削条件
での切削加工が行なわれる傾向にあるが、従来提案され
ている各種被覆超硬工具においては、これを鋼や鋳鉄な
どの通常の条件での切削加工に用いた場合には問題はな
いが、これを高靭性が要求される前記重切削に用いた場
合には、硬質被覆層の靭性不足が原因で切刃部にチッピ
ング(微小欠け)が発生し易く、比較的短時間で使用寿
命に至るのが現状である。
On the other hand, in recent years, there has been a strong demand for labor saving, energy saving, and cost reduction in cutting work, and with this, cutting work has been combined with high performance of cutting equipment. Therefore, there is a tendency that cutting is performed under heavy cutting conditions such as high feed and high depth of cut. There is no problem when used for machining, but when it is used for heavy cutting where high toughness is required, chipping (small chipping) occurs at the cutting edge due to insufficient toughness of the hard coating layer At present, it is easy to perform and the service life is reached in a relatively short time.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、従来提案されている各種被覆超
硬工具のうち、特に例えば特許第3045184号公報
に記載される被覆超硬工具、すなわち上記の超硬基体の
表面に、例えば上記のアークイオンプレーティング装置
を用いて、高硬度を有するが、靭性が不十分なTiとV
の金属複合窒化物(以下、(Ti,V)Nで示す)から
なる硬質被覆層を、1〜10μmの平均層厚で物理蒸着
してなる被覆超硬工具に着目し、これの硬質被覆層にす
ぐれた靭性を付与し、もって各種鋼や鋳鉄などの重切削
条件での切削加工でも、硬質被覆層がすぐれた耐チッピ
ング性を発揮する被覆超硬工具を開発すべく研究を行っ
た結果、上記の従来被覆超硬工具の硬質被覆層を構成す
る(Ti,V)N層の組成を、組成式:(Ti1-XX
Nで表わした場合、原子比で、X:0.20〜0.55
を満足する組成に特定した上で、これにY、Zr、およ
びHfのうちの1種または2種以上(以下、Mで示す)
をTiおよびVの合量に占める割合(原子比)で、0.
05〜0.25を満足する割合で固溶含有させると、こ
の結果の硬質被覆層はVによってもたらされる高硬度が
損なわれることなく、すぐれた靭性を具備するようにな
り、したがってこの硬質被覆層を物理蒸着してなる被覆
超硬工具は、これを高送りや高切込みなどの重切削条件
での切削加工に用いても切刃部にチッピングの発生な
く、すぐれた耐摩耗性を長期に亘って発揮するようにな
る、という研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoint, among the various coated carbide tools conventionally proposed, in particular, the coated carbide tool described in, for example, Japanese Patent No. 3045184, that is, the above-described arc is formed on the surface of the above-mentioned carbide substrate. Using an ion plating device, Ti and V having high hardness but insufficient toughness
Focusing on a coated carbide tool formed by physical vapor deposition of a hard coating layer made of a metal composite nitride (hereinafter, referred to as (Ti, V) N) with an average layer thickness of 1 to 10 μm, As a result of conducting research to develop a coated carbide tool that provides excellent toughness and has a hard coating layer that exhibits excellent chipping resistance even under heavy cutting conditions such as various steels and cast irons, The composition of the (Ti, V) N layer constituting the hard coating layer of the conventional coated carbide tool is represented by a composition formula: (Ti 1−X V X )
When represented by N, in atomic ratio, X: 0.20 to 0.55
Is specified, and one or more of Y, Zr, and Hf (hereinafter, referred to as M)
Is the ratio (atomic ratio) in the total amount of Ti and V,
When the solid solution is contained in a proportion satisfying the range from 0.5 to 0.25, the resulting hard coating layer has excellent toughness without impairing the high hardness provided by V, and Coated cemented carbide tools made by physical vapor deposition provide excellent wear resistance over a long period of time without chipping at the cutting edge even when used for cutting under heavy cutting conditions such as high feed and high depth of cut. The research results showed that they would be able to demonstrate their performance.

【0006】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、組成式:(T
1-(X+Y)XY)N(ただし、MはY、Zr、および
Hfのうちの1種または2種以上、Xは原子比で0.2
0〜0.55、Yは同じく原子比で0.05〜0.25
を示す)を有する金属複合窒化物[以下、(Ti,V,
M)Nで示す]からなる硬質被覆層を1〜10μmの平
均層厚で物理蒸着してなる、重切削で硬質被覆層がすぐ
れた耐チッピング性を発揮する被覆超硬工具に特徴を有
するものである。
The present invention has been made on the basis of the above research results, and has a composition formula (T
i 1- (X + Y) V X MY ) N (where M is one or more of Y, Zr and Hf, and X is 0.2 in atomic ratio)
0 to 0.55, Y is also 0.05 to 0.25 in atomic ratio
] (Hereinafter, (Ti, V,
M) The hard coating layer is characterized by being coated with a hard coating layer having an average thickness of 1 to 10 μm and having a hard coating layer that exhibits excellent chipping resistance by heavy cutting. It is.

【0007】なお、この発明の被覆超硬工具において、
硬質被覆層を構成する(Ti,V,M)NにおけるVは
TiNに対して硬さおよび耐熱性を向上させるために固
溶するものであり、したがって組成式:(Ti1-(X+Y)
XY)NのX値が原子比で0.20未満では所望の硬
さおよび耐熱性を確保することができず、一方そのX値
が同0.55を越えると、TiNによってもたらされる
すぐれた靭性が急激に低下するようになり、切刃部にチ
ッピングが発生し易くなるという理由で、X値を原子比
で0.20〜0.55、望ましくは0.3〜0.5と定
めた。
[0007] In the coated carbide tool of the present invention,
The V in (Ti, V, M) N constituting the hard coating layer forms a solid solution with TiN in order to improve the hardness and the heat resistance. Therefore, the composition formula: (Ti 1− (X + Y) )
V X M Y) at less than 0.20 X value atomic ratio of N can not be ensured the desired hardness and heat resistance, whereas if the X value exceeds the same 0.55, caused by TiN Since the excellent toughness suddenly decreases and chipping easily occurs in the cutting edge portion, the X value is 0.20 to 0.55 in atomic ratio, preferably 0.3 to 0.5. I decided.

【0008】また、硬質被覆層におけるMは、上記の通
り硬質被覆層にすぐれた靭性を具備せしめ、もって重切
削条件での切削加工ですぐれた耐チッピング性を発揮せ
しめる作用をもつが、組成式:(Ti1-(X+Y)XY
NのY値が原子比で0.05未満では所望のすぐれた靭
性を確保することができず、一方そのY値が同0.25
を超えると硬質被覆層の硬さが急激に低下し、摩耗進行
が促進されるようになることから、Y値を0.05〜
0.25、望ましくは0.1〜0.2と定めた。
[0008] Further, M in the hard coating layer has the function of providing the hard coating layer with excellent toughness as described above and thereby exhibiting excellent chipping resistance in cutting under heavy cutting conditions. : (Ti 1- (X + Y) V X MY )
If the Y value of N is less than 0.05 in atomic ratio, desired excellent toughness cannot be secured, while the Y value is 0.25
When it exceeds, the hardness of the hard coating layer rapidly decreases, and the progress of abrasion is promoted.
0.25, desirably 0.1 to 0.2.

【0009】さらに、硬質被覆層の平均層厚を1〜10
μmとしたのは、その層厚が1μmでは所望のすぐれた
耐摩耗性を長期に亘って確保することができず、一方そ
の層厚が10μmを越えると、硬質被覆層の剥離が発生
し易くなるという理由によるものである。
Further, the average thickness of the hard coating layer is 1 to 10
The reason why the thickness is set to μm is that if the layer thickness is 1 μm, the desired excellent wear resistance cannot be secured for a long period of time, while if the layer thickness exceeds 10 μm, the hard coating layer is liable to peel off. It is because it becomes.

【0010】[0010]

【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの平
均粒径を有するWC粉末、TiC粉末、ZrC粉末、V
C粉末、TaC粉末、NbC粉末、Cr3 2 粉末、T
iN粉末、TaN粉末、およびCo粉末を用意し、これ
ら原料粉末を、表1に示される配合組成に配合し、ボー
ルミルで72時間湿式混合し、乾燥した後、100MP
a の圧力で圧粉体にプレス成形し、この圧粉体を6P
aの真空中、温度:1400℃に1時間保持の条件で焼
結し、焼結後、切刃部分にR:0.05のホーニング加
工を施してISO規格・CNMG120408の形状を
もったWC基超硬合金製のチップ超硬基体A1〜A10
を形成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. (Example 1) As raw material powders, WC powder, TiC powder, ZrC powder, V
C powder, TaC powder, NbC powder, Cr 3 C 2 powder, T
An iN powder, a TaN powder, and a Co powder were prepared, and these raw material powders were blended in the blending composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then dried.
a into a green compact at a pressure of
a. Vacuum, sintering at a temperature of 1400 ° C. for 1 hour, and after sintering, apply a honing process of R: 0.05 to the cutting edge part to obtain a WC base having the shape of ISO standard CNMG120408. Chip cemented carbide substrate A1 to A10 made of cemented carbide
Was formed.

【0011】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408の形状をもったTiCN系サ
ーメット製のチップ超硬基体B1〜B6を形成した。
In addition, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 100 MPa, and the green compact is heated in a nitrogen atmosphere of 2 kPa at a temperature of:
After sintering under the condition of holding at 1500 ° C. for 1 hour, after sintering, the cutting edge portion is subjected to a honing process of R: 0.03, and a TiCN-based cermet chip cemented carbide substrate having a shape of ISO standard CNMG120408. B1 to B6 were formed.

【0012】ついで、これらチップ超硬基体A1〜A1
0およびB1〜B6のそれぞれを、アセトン中で超音波
洗浄し、乾燥した状態で、それぞれ図1に例示される通
常のアークイオンプレーティング装置に装入し、一方カ
ソード電極(蒸発源)として種々の組成をもったTi−
V−M合金またはTi−V合金を装着し、装置内を排気
して1.3-3Paの真空に保持しながら、ヒーターで装
置内を500℃に加熱した後、Arガスを装置内に導入
して2.5PaのAr雰囲気とし、この状態で超硬基体
に−800vのバイアス電圧を印加して超硬基体表面を
Arガスボンバート洗浄し、ついで装置内を2.5Pa
の窒素ガス(反応ガス)の雰囲気とすると共に、前記超
硬基体に印加するバイアス電圧を−100vに下げて、
前記カソード電極とアノード電極との間にアーク放電を
発生させ、もって前記超硬基体A1〜A10およびB1
〜B6のそれぞれの表面に、表3〜5に示される目標組
成および目標層厚の硬質被覆層を蒸着することにより、
図2(a)に概略斜視図で、同(b)に概略縦断面図で
示される形状を有する本発明被覆超硬工具としての本発
明表面被覆超硬合金製スローアウエイチップ(以下、本
発明被覆超硬チップと云う)1〜30 、および従来
被覆超硬工具としての従来表面被覆超硬合金製スローア
ウエイチップ(以下、従来被覆超硬チップと云う)1〜
16をそれぞれ製造した。
Next, the chip carbide substrates A1 to A1
0 and each of B1 to B6 were ultrasonically cleaned in acetone and dried, and each was charged into a normal arc ion plating apparatus illustrated in FIG. 1 while various cathode electrodes (evaporation sources) were used. Ti- with the composition of
After mounting the VM alloy or the Ti-V alloy, and evacuating the inside of the apparatus and keeping the apparatus at a vacuum of 1.3 -3 Pa, the inside of the apparatus is heated to 500 ° C. with a heater, and Ar gas is introduced into the apparatus. An Ar atmosphere of 2.5 Pa was introduced, and in this state, a bias voltage of -800 V was applied to the cemented carbide substrate to clean the surface of the cemented carbide substrate with Ar gas bombardment.
And the bias voltage applied to the cemented carbide substrate was reduced to -100 V,
An arc discharge is generated between the cathode electrode and the anode electrode, so that the carbide substrates A1 to A10 and B1
By depositing a hard coating layer having a target composition and a target layer thickness shown in Tables 3 to 5 on each surface of
FIG. 2A is a schematic perspective view, and FIG. 2B is a schematic longitudinal sectional view of the present invention. A coated carbide tip) and a conventional surface coated cemented carbide throwaway tip as a coated carbide tool (hereinafter referred to as a conventionally coated carbide tip) 1 to 30
16 were each manufactured.

【0013】なお、この結果得られた本発明被覆超硬チ
ップ1〜30および従来被覆超硬チップ1〜16の硬質
被覆層について、その厚さ断面中央部をオージェ分光分
析装置を用いて測定したところ、それぞれ表3〜5に示
される目標組成と実質的に同じ値を示し、またその厚さ
を、走査型電子顕微鏡を用いて測定したところ、いずれ
も同じく表3〜5に示される目標層厚と実質的に同じ平
均値(5点測定の平均値)を示した。
With respect to the hard coating layers of the coated superhard tips 1 to 30 of the present invention and the conventional superhard tips 1 to 16 obtained as a result, the center of the thickness section was measured using an Auger spectroscopic analyzer. However, each of them shows substantially the same value as the target composition shown in Tables 3 to 5, and its thickness is measured using a scanning electron microscope. The average value was substantially the same as the thickness (average value measured at five points).

【0014】つぎに、上記本発明被覆超硬チップ1〜3
0および従来被覆超硬チップ1〜16をそれぞれ工具鋼
製バイトの先端部に固定治具にてネジ止めした状態で、
本発明被覆超硬チップ1〜19および従来被覆超硬チッ
プ1〜9については、 被削材:JIS・SCM440の丸棒、 切削速度:200m/min.、 切り込み:10mm、 送り:0.4mm/rev.、 切削時間:10分、の条件での合金鋼の乾式高切込み連
続旋削加工試験、 被削材:JIS・S40Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:200m/min.、 切り込み:4mm、 送り:0.8mm/rev.、 切削時間:10分、の条件での炭素鋼の乾式高切込み断
続旋削加工試験を行い、また本発明被覆超硬チップ20
〜30および従来被覆超硬チップ10〜16について
は、 被削材:JIS・SCM440Cの丸棒、 切削速度:200m/min.、 切り込み:3.5mm、 送り:0.2mm/rev.、 切削時間:10分、の条件での合金鋼の乾式高切込み連
続旋削加工試験 被削材:JIS・S40Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:200m/min.、 切り込み:1.0mm、 送り:0.5mm/rev.、 切削時間:10分、の条件での炭素鋼の乾式高送り断続
旋削加工試験を行い、いずれの旋削加工試験でも切刃部
の逃げ面摩耗幅を測定した。この測定結果を表3〜5に
示した。
Next, the coated carbide tips 1 to 3 of the present invention will be described.
0 and the conventional coated carbide tips 1 to 16 are screwed to the tip of a tool steel tool with a fixing jig, respectively.
For the coated carbide tips 1 to 19 of the present invention and the conventionally coated carbide tips 1 to 9, the work material is a JIS SCM440 round bar, and the cutting speed is 200 m / min. Infeed: 10 mm, Feed: 0.4 mm / rev. Cutting time: 10 minutes, dry high-cut continuous turning test of alloy steel under the condition of: 10 min. Work material: JIS S40C, 4 longitudinally-elongated round bars at regular intervals in the longitudinal direction, Cutting speed: 200 m / min. , Notch: 4 mm, feed: 0.8 mm / rev. , Cutting time: 10 minutes, a dry high-interruption intermittent turning test of carbon steel was performed.
Workpiece: JIS SCM440C round bar, Cutting speed: 200 m / min. Infeed: 3.5 mm Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry high-cut continuous turning test of alloy steel under the condition of: Work material: JIS S40C, 4 longitudinally spaced round bars at equal intervals in the longitudinal direction, Cutting speed: 200 m / min. Infeed: 1.0 mm, Feed: 0.5 mm / rev. A dry high-feed intermittent turning test of carbon steel was performed under the conditions of cutting time: 10 minutes, and the flank wear width of the cutting edge was measured in each turning test. The measurement results are shown in Tables 3 to 5.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、同1.8μmのCo粉末、
および同1.2μmの炭素(C)粉末を用意し、これら
原料粉末をそれぞれ表6に示される配合組成に配合し、
さらにワックスを加えてアセトン中で24時間ボールミ
ル混合し、減圧乾燥した後、100MPaの圧力で所定
形状の各種の圧粉体にプレス成形し、これらの圧粉体
を、6Paの真空雰囲気中、7℃/分の昇温速度で13
70〜1470℃の範囲内の所定の温度に昇温し、この
温度に1時間保持後、炉冷の条件で焼結して、直径が8
mm、13mm、および26mmの3種の超硬基体形成
用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体
から、研削加工にて、表6に示される組合せで、切刃部
の直径×長さがそれぞれ6mm×13mm、10mm×
22mm、および20mm×45mmの寸法をもったエ
ンドミル超硬基体a〜hをそれぞれ製造した。
(Example 2) As the raw material powder, the average particle size was as follows:
Medium coarse WC powder having 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm
μm (Ti, W) C powder, 1.8 μm Co powder,
And 1.2 μm carbon (C) powder were prepared, and these raw material powders were respectively blended into the blending compositions shown in Table 6,
Further, the wax was added, and the mixture was ball-milled in acetone for 24 hours, dried under reduced pressure, and then press-molded at a pressure of 100 MPa into various compacts of a predetermined shape. 13 ° C / min.
The temperature was raised to a predetermined temperature in the range of 70 to 1470 ° C., kept at this temperature for 1 hour, and then sintered under furnace cooling conditions to obtain a diameter of 8 mm.
mm, 13 mm, and 26 mm to form three types of round bar sintered bodies for forming a cemented carbide substrate, and from the three types of round bar sintered bodies, by grinding, in a combination shown in Table 6, The diameter x length of the cutting edge is 6mm x 13mm, 10mm x
End mill superhard substrates a to h having dimensions of 22 mm and 20 mm × 45 mm were produced, respectively.

【0021】ついで、これらのエンドミル超硬基体a〜
hのそれぞれを、アセトン中で超音波洗浄し、乾燥した
状態で、同じく図1に例示される通常のアークイオンプ
レーティング装置に装入し、上記実施例1と同一の条件
で、表7、8に示される目標組成および目標層厚をもっ
た硬質被覆層を蒸着することにより、図3(a)に概略
正面図で、同(b)に切刃部の概略横断面図で示される
形状を有する本発明被覆超硬工具としての本発明表面被
覆超硬合金製エンドミル(以下、本発明被覆超硬エンド
ミルと云う)1〜16および従来被覆超硬工具としての
従来表面被覆超硬合金製エンドミル(以下、従来被覆超
硬エンドミルと云う)1〜8をそれぞれ製造した。
Next, these end mill super hard substrates a to
h were ultrasonically cleaned in acetone, dried, and charged into a normal arc ion plating apparatus also illustrated in FIG. 1 under the same conditions as in Example 1 above, and Table 7, By depositing a hard coating layer having the target composition and target layer thickness shown in FIG. 8, the shape shown in the schematic front view in FIG. 3A and the schematic cross-sectional view of the cutting edge in FIG. End mill made of the surface-coated cemented carbide of the present invention as the coated carbide tool of the present invention (hereinafter referred to as the coated carbide end mill of the present invention) 1 to 16 and the end mill made of the conventional surface-coated cemented carbide as the conventionally coated carbide tool (Hereinafter referred to as conventional coated carbide end mills) 1 to 8 were manufactured.

【0022】また、この結果得られた本発明被覆超硬エ
ンドミル1〜16および従来被覆超硬エンドミル1〜8
の硬質被覆層について、その厚さ断面中央部をオージェ
分光分析装置を用いて測定したところ、それぞれ表7、
8に示される目標組成と実質的に同じ値を示し、またそ
の厚さを、走査型電子顕微鏡を用いて測定したところ、
いずれも同じく表7、8に示される目標層厚と実質的に
同じ平均値(5点測定の平均値)を示した。
The coated carbide end mills 1 to 16 of the present invention and the conventional coated carbide end mills 1 to 8
Of the hard coating layer was measured using an Auger spectrometer at the center of the thickness cross section.
8 shows substantially the same value as the target composition shown in FIG. 8, and its thickness was measured using a scanning electron microscope.
In each case, the average value (the average value of the five-point measurement) was substantially the same as the target layer thickness shown in Tables 7 and 8.

【0023】つぎに、上記本発明被覆超硬エンドミル1
〜16および従来被覆超硬エンドミル1〜8のうち、本
発明被覆超硬エンドミル1〜6および従来被覆超硬エン
ドミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SKD61の板材、 切削速度:30m/min.、 溝深さ(切込み):4mm、 テーブル送り:130mm/min、の条件での焼入れ
鋼の乾式高切込み溝切削加工試験、本発明被覆超硬エン
ドミル7〜12および従来被覆超硬エンドミル4〜6に
ついては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SKD11の板材、 切削速度:50m/min.、 溝深さ(切込み):12mm、 テーブル送り:300mm/min、の条件でのダイス
鋼の乾式高切込み溝切削加工試験、本発明被覆超硬エン
ドミル13〜16、および従来被覆超硬エンドミル7,
8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S45Cの板材、 切削速度:120m/min.、 溝深さ(切込み):10mm、 テーブル送り:800mm/min、の条件での炭素鋼
の湿式高送り溝切削加工試験(水溶性切削油使用)、を
それぞれ行い、いずれの溝切削加工試験でも切刃部の外
周刃の逃げ面摩耗幅がが使用寿命の目安とされる0.1
mmに至るまでの切削溝長を測定した。この測定結果を
表6、7にそれぞれ示した。
Next, the coated carbide end mill 1 of the present invention will be described.
-16 and conventional coated carbide end mills 1-8, the coated coated carbide end mills 1-6 and the coated conventional carbide end mills 1-3 are as follows: Work material: plane dimension: 100 mm x 250 mm, thickness: 5
0 mm JIS SKD61 plate material, Cutting speed: 30 m / min. Groove depth (cut): 4 mm, Table feed: 130 mm / min, dry high-cut groove cutting test of hardened steel, coated carbide end mills 7 to 12 of the present invention and coated coated end mills of conventional 4 to 6 About: Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SKD11 plate material, Cutting speed: 50 m / min. Groove depth (cut): 12 mm, Table feed: 300 mm / min, dry high-cut groove cutting test of die steel, coated carbide end mills 13 to 16 of the present invention, and coated coated end mills 7,
For No. 8, Work material: Plane dimensions: 100 mm × 250 mm, thickness: 5
JIS S45C plate material of 0 mm, Cutting speed: 120 m / min. , Groove depth (cut): 10 mm, table feed: 800 mm / min, wet high feed groove cutting test of carbon steel (using water-soluble cutting oil) was performed. The flank wear width of the outer peripheral edge of the cutting edge portion is used as a standard of service life.
The cut groove length up to mm was measured. The measurement results are shown in Tables 6 and 7, respectively.

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】[0026]

【表8】 [Table 8]

【0027】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体a〜c形成用)、13mm(超硬
基体d〜f形成用)、および26mm(超硬基体g、h
形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼
結体から、研削加工にて、溝形成部の直径×長さがそれ
ぞれ4mm×13mm(超硬基体a‘〜c’)、8mm
×22mm(超硬基体d‘〜f’)、および16mm×
45mm(超硬基体g‘、h’)の寸法をもったドリル
超硬基体a‘〜h’をそれぞれ製造した。
(Example 3) The diameters of 8 mm (for forming the superhard substrates a to c), 13 mm (for forming the superhard substrates d to f), and 26 mm (for the superhard substrate g) produced in Example 2 described above. h
(For forming), the diameter x length of the groove forming portion was 4 mm x 13 mm (the carbide substrate a ') by grinding from the three types of round rod sintered bodies. ~ C '), 8mm
× 22 mm (carbide substrate d ′ to f ′) and 16 mm ×
Drill super hard substrates a 'to h' each having a size of 45 mm (super hard substrates g 'and h') were manufactured.

【0028】ついで、これらのドリル超硬基体a‘〜
h’の切刃に、ホーニングを施し、アセトン中で超音波
洗浄し、乾燥した状態で、同じく図1に例示される通常
のアークイオンプレーティング装置に装入し、上記実施
例1と同一の条件で、表9,10に示される目標組成お
よび目標層厚をもった硬質被覆層を蒸着することによ
り、図4(a)に概略正面図で、同(b)に溝形成部の
概略横断面図で示される形状を有する本発明被覆超硬工
具としての本発明表面被覆超硬合金製ドリル(以下、本
発明被覆超硬ドリルと云う)1〜16、および従来被覆
超硬工具としての従来表面被覆超硬合金製ドリル(以
下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造
した。
Next, these drill superhard substrates a 'to
The cutting edge of h ′ is honed, ultrasonically cleaned in acetone, and dried, and then loaded into a normal arc ion plating apparatus also illustrated in FIG. Under conditions, a hard coating layer having a target composition and a target layer thickness shown in Tables 9 and 10 is deposited, so that a schematic front view is shown in FIG. Drills made of the surface-coated cemented carbide of the present invention (hereinafter, referred to as coated carbide drills of the present invention) 1 to 16 as coated carbide tools of the present invention having the shape shown in the plan view, and conventional as coated carbide tools Drills made of surface-coated cemented carbide (hereinafter referred to as conventional coated cemented carbide drills) 1 to 8 were manufactured, respectively.

【0029】さらに、この結果得られた本発明被覆超硬
ドリル1〜16および従来被覆超硬ドリル1〜8の硬質
被覆層についても、その厚さ断面中央部をオージェ分光
分析装置を用いて測定したところ、それぞれ表9,10
に示される目標組成と実質的に同じ値を示し、またその
厚さを、走査型電子顕微鏡を用いて測定したところ、い
ずれも同じく表9,10に示される目標層厚と実質的に
同じ平均値(5点測定の平均値)を示した。
Further, with respect to the hard coating layers of the coated carbide drills 1 to 16 of the present invention and the conventional coated carbide drills 1 to 8 obtained as described above, the center of the thickness section was measured using an Auger spectroscopic analyzer. Table 9 and 10 respectively
Shows substantially the same value as the target composition shown in Table 2, and the thickness thereof was measured using a scanning electron microscope. As a result, the average was substantially the same as the target layer thickness also shown in Tables 9 and 10. The values (average values of five-point measurements) are shown.

【0030】つぎに、上記本発明被覆超硬ドリル1〜1
6および従来被覆超硬ドリル1〜8のうち、本発明被覆
超硬ドリル1〜6および従来被覆超硬ドリル1〜3につ
いては、 被削材:平面寸法:100mm×250厚さ:10mm
のJIS・SCM440の板材、 切削速度:80m/min.、 送り:0.35mm/rev、の条件での合金鋼の湿式
高送り穴あけ切削加工試験(水溶性切削油使用)、本発
明被覆超硬ドリル7〜12よび従来被覆超硬ドリル4〜
6については、 被削材:平面寸法:100mm×250mm、厚さ:2
0mmのJIS・S50Cの板材、 切削速度:60m/min.、 送り:0.40mm/rev、の条件での炭素鋼の湿式
高送り穴あけ切削加工試験(水溶性切削油使用)、本発
明被覆超硬ドリル13〜16および従来被覆超硬ドリル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:4
5mmのJIS・SCM435の板材、 切削速度:60m/min.、 送り:0.45mm/rev、の条件での合金鋼の湿式
高送り穴あけ切削加工試験(水溶性切削油使用)、をそ
れぞれ行い、いずれの湿式高送り穴あけ切削加工試験で
も先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの
穴あけ加工数を測定した。この測定結果を表9,10に
それぞれ示した。
Next, the coated carbide drills 1 to 1 according to the present invention will be described.
6 and the conventional coated carbide drills 1 to 8, the coated carbide drills 1 to 6 of the present invention and the conventional coated carbide drills 1 to 3 are: work material: plane dimension: 100 mm × 250 thickness: 10 mm
JIS SCM440 plate material, Cutting speed: 80 m / min. , Feed: 0.35 mm / rev, wet high-feed drilling cutting test of alloy steel (using water-soluble cutting oil), coated carbide drills 7 to 12 of the present invention and conventional coated carbide drills 4 to 4
About 6, work material: plane dimensions: 100 mm x 250 mm, thickness: 2
0 mm JIS S50C plate, Cutting speed: 60 m / min. , Feed: 0.40 mm / rev, wet high-feed drilling test of carbon steel (using water-soluble cutting oil), coated carbide drills 13 to 16 of the present invention, and coated carbide drills 7 and 8 of the prior art , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 4
5 mm JIS SCM435 plate, Cutting speed: 60 m / min. , Feed: 0.45 mm / rev, a wet high-feed drilling cutting test (using water-soluble cutting oil) of alloy steel was conducted under the conditions of 0.45 mm / rev. The number of holes drilled until the flank wear width reached 0.3 mm was measured. The measurement results are shown in Tables 9 and 10, respectively.

【0031】[0031]

【表9】 [Table 9]

【0032】[0032]

【表10】 [Table 10]

【0033】[0033]

【発明の効果】表3〜10に示される結果から、硬質被
覆層が高硬度とすぐれた靭性を有する(Ti,V,M)
N層からなる本発明被覆超硬工具は、いずれも鋼の切削
加工を高切込みおよび高送りの重切削条件で行っても、
切刃部にチッピングの発生なく、すぐれた耐摩耗性を発
揮するのに対して、硬質被覆層が(Ti,V)N層で構
成された従来被覆超硬工具においては、重切削条件での
切削加工では硬質被覆層の靭性不足が原因で切刃部にチ
ッピングが発生し、これが摩耗進行を著しく促進するこ
とから、比較的短時間で使用寿命に至ることが明らかで
ある。上述のように、この発明の被覆超硬工具は、各種
の鋼や鋳鉄などの通常の条件での切削加工は勿論のこ
と、特に高切込みおよび高送りの重切削条件での切削加
工ですぐれた耐チッピング性を発揮し、長期に亘ってす
ぐれた耐摩耗性を示すものであるから、切削加工の省力
化および省エネ化、さらに低コスト化に十分満足に対応
できるものである。
From the results shown in Tables 3 to 10, the hard coating layer has high hardness and excellent toughness (Ti, V, M)
The coated carbide tool of the present invention composed of an N layer, even if the cutting of steel is performed under heavy cutting conditions of high depth of cut and high feed,
The conventional coated carbide tool, in which the hard coating layer is composed of a (Ti, V) N layer, exhibits excellent wear resistance without occurrence of chipping in the cutting edge portion. In the cutting process, chipping occurs at the cutting edge portion due to insufficient toughness of the hard coating layer, and this significantly promotes the progress of wear, so that it is clear that the service life can be reached in a relatively short time. As described above, the coated carbide tool of the present invention is excellent not only in cutting under various conditions such as steel and cast iron, but also in cutting under high cutting conditions and high feed heavy cutting conditions. Since it exhibits chipping resistance and exhibits excellent wear resistance over a long period of time, it can sufficiently cope with labor saving and energy saving of cutting work, and furthermore, cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アークイオンプレーティング装置の概略説明図
である。
FIG. 1 is a schematic explanatory view of an arc ion plating apparatus.

【図2】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。
FIG. 2A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic longitudinal sectional view of a coated carbide tip.

【図3】(a)は被覆超硬エンドミル概略正面図、
(b)は同切刃部の概略横断面図である。
FIG. 3A is a schematic front view of a coated carbide end mill,
(B) is a schematic cross-sectional view of the cutting blade portion.

【図4】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
FIG. 4A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

【手続補正書】[Procedure amendment]

【提出日】平成13年3月26日(2001.3.2
6)
[Submission date] March 26, 2001 (2001.3.2)
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、MoC粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408の形状をもったTiCN系サ
ーメット製のチップ超硬基体B1〜B6を形成した。
In addition, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder , ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 100 MPa, and the green compact is heated in a nitrogen atmosphere of 2 kPa at a temperature of:
After sintering under the condition of holding at 1500 ° C. for 1 hour, after sintering, the cutting edge portion is subjected to a honing process of R: 0.03, and a TiCN-based cermet chip cemented carbide substrate having a shape of ISO standard CNMG120408. B1 to B6 were formed.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】つぎに、上記本発明被覆超硬エンドミル1
〜16および従来被覆超硬エンドミル1〜8のうち、本
発明被覆超硬エンドミル1〜6および従来被覆超硬エン
ドミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SKD61の板材、 切削速度:30m/min.、 溝深さ(切込み):4mm、 テーブル送り:130mm/min.、の条件での焼入
れ鋼の乾式高切込み溝切削加工試験、本発明被覆超硬エ
ンドミル7〜12および従来被覆超硬エンドミル4〜6
については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SKD11の板材、 切削速度:50m/min.、 溝深さ(切込み):12mm、 テーブル送り:300mm/min.、の条件でのダイ
ス鋼の乾式高切込み溝切削加工試験、本発明被覆超硬エ
ンドミル13〜16、および従来被覆超硬エンドミル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S45Cの板材、 切削速度:120m/min.、 溝深さ(切込み):10mm、 テーブル送り:800mm/min.、の条件での炭素
鋼の湿式高送り溝切削加工試験(水溶性切削油使用)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の
外周刃の逃げ面摩耗幅がが使用寿命の目安とされる0.
1mmに至るまでの切削溝長を測定した。この測定結果
を表6、7にそれぞれ示した。 ─────────────────────────────────────────────────────
Next, the coated carbide end mill 1 of the present invention will be described.
-16 and conventional coated carbide end mills 1-8, the coated coated carbide end mills 1-6 and the coated conventional carbide end mills 1-3 are as follows: Work material: plane dimension: 100 mm x 250 mm, thickness: 5
0 mm JIS SKD61 plate material, Cutting speed: 30 m / min. , Groove depth (cut): 4 mm, table feed: 130 mm / min. , Dry type high cutting groove cutting test of quenched steel under the following conditions, coated carbide end mills 7 to 12 of the present invention and conventional coated carbide end mills 4 to 6
About: Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SKD11 plate material, Cutting speed: 50 m / min. , Groove depth (cut): 12 mm, table feed: 300 mm / min. , The dry-type high-cut groove cutting test of the die steel, the coated carbide end mills 13 to 16 of the present invention, and the conventionally coated carbide end mills 7 and 8 are as follows: Work material: plane dimension: 100 mm × 250 mm, thickness Sa: 5
0 mm JIS S45C plate, Cutting speed: 120 m / min. , Groove depth (cut): 10 mm, table feed: 800 mm / min. , Wet high feed groove cutting test of carbon steel under conditions (using water-soluble cutting oil),
In each of the groove cutting tests, the flank wear width of the outer peripheral edge of the cutting edge portion is used as a guide for the service life.
The cutting groove length up to 1 mm was measured. The measurement results are shown in Tables 6 and 7, respectively. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年8月7日(2001.8.7)[Submission date] August 7, 2001 (2001.8.7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】ついで、これらチップ超硬基体A1〜A1
0およびB1〜B6のそれぞれを、アセトン中で超音波
洗浄し、乾燥した状態で、それぞれ図1に例示される通
常のアークイオンプレーティング装置に装入し、一方カ
ソード電極(蒸発源)として種々の組成をもったTi−
V−M合金またはTi−V合金を装着し、装置内を排気
して1.3×10- 3Paの真空に保持しながら、ヒー
ターで装置内を500℃に加熱した後、Arガスを装置
内に導入して2.5PaのAr雰囲気とし、この状態で
超硬基体に−800vのバイアス電圧を印加して超硬基
体表面をArガスボンバート洗浄し、ついで装置内を
2.5Paの窒素ガス(反応ガス)の雰囲気とすると共
に、前記超硬基体に印加するバイアス電圧を−100v
に下げて、前記カソード電極とアノード電極との間にア
ーク放電を発生させ、もって前記超硬基体A1〜A10
およびB1〜B6のそれぞれの表面に、表3〜5に示さ
れる目標組成および目標層厚の硬質被覆層を蒸着するこ
とにより、図2(a)に概略斜視図で、同(b)に概略
縦断面図で示される形状を有する本発明被覆超硬工具と
しての本発明表面被覆超硬合金製スローアウエイチップ
(以下、本発明被覆超硬チップと云う)1〜30 、
および従来被覆超硬工具としての従来表面被覆超硬合金
製スローアウエイチップ(以下、従来被覆超硬チップと
云う)1〜16をそれぞれ製造した。
Next, the chip carbide substrates A1 to A1
0 and each of B1 to B6 were ultrasonically cleaned in acetone and dried, and each was charged into a normal arc ion plating apparatus illustrated in FIG. 1 while various cathode electrodes (evaporation sources) were used. Ti- with the composition of
After mounting the VM alloy or the Ti-V alloy, and evacuating the inside of the apparatus and keeping the apparatus at a vacuum of 1.3 × 10 −3 Pa , the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is supplied. Into a 2.5 Pa Ar atmosphere, and in this state, applying a bias voltage of -800 V to the cemented carbide substrate to clean the surface of the cemented carbide substrate with Ar gas bombardment. (Reactive gas) atmosphere and the bias voltage applied to the superhard substrate is -100 V
And an arc discharge is generated between the cathode electrode and the anode electrode.
By depositing a hard coating layer having a target composition and a target layer thickness shown in Tables 3 to 5 on the respective surfaces of B1 and B1 to B6, a schematic perspective view is shown in FIG. A throw-away tip made of a surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention having a shape shown in a vertical cross-sectional view (hereinafter, referred to as the coated cemented carbide tip of the present invention) 1 to 30;
In addition, conventional surface-coated cemented carbide throwaway tips (hereinafter, referred to as conventionally coated cemented carbide tips) 1 to 16 as conventional coated cemented carbide tools were manufactured, respectively.

フロントページの続き (72)発明者 田中 裕介 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツ−ル株式会社 内 Fターム(参考) 3C037 CC01 CC04 CC09 CC11 3C046 AA01 FF03 FF05 FF10 FF11 FF19 FF25 4K029 AA04 BA58 BC00 BD05 EA01Continuation of the front page (72) Inventor Yusuke Tanaka 179 Kanegasaki Nishi-Oike, Uozumi-machi, Akashi-shi, Hyogo 1 FMC Term, FMC Term (Reference) 3C037 CC01 CC04 CC09 CC11 3C046 AA01 FF03 FF05 FF10 FF11 FF19 FF25 4K029 AA04 BA58 BC00 BD05 EA01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、組成式:(T
1-(X+Y)XY)N(ただし、MはY、Zr、および
Hfのうちの1種または2種以上、Xは原子比で0.2
0〜0.55、Yは同じく原子比で0.05〜0.25
を示す)を有する金属複合窒化物からなる硬質被覆層を
1〜10μmの平均層厚で物理蒸着してなる、重切削で
硬質被覆層がすぐれた耐チッピング性を発揮する表面被
覆超硬合金製切削工具。
1. The method according to claim 1, wherein a surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate has a composition formula: (T
i 1- (X + Y) V X MY ) N (where M is one or more of Y, Zr and Hf, and X is 0.2 in atomic ratio)
0 to 0.55, Y is also 0.05 to 0.25 in atomic ratio
A hard coating layer made of a metal composite nitride having a thickness of 1 to 10 μm by physical vapor deposition. Cutting tools.
JP2001052283A 2001-02-27 2001-02-27 Surface-coated cemented carbide cutting tool whose hard coating layer has excellent chipping resistance in heavy cutting Pending JP2002254209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052283A JP2002254209A (en) 2001-02-27 2001-02-27 Surface-coated cemented carbide cutting tool whose hard coating layer has excellent chipping resistance in heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052283A JP2002254209A (en) 2001-02-27 2001-02-27 Surface-coated cemented carbide cutting tool whose hard coating layer has excellent chipping resistance in heavy cutting

Publications (1)

Publication Number Publication Date
JP2002254209A true JP2002254209A (en) 2002-09-10

Family

ID=18912938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052283A Pending JP2002254209A (en) 2001-02-27 2001-02-27 Surface-coated cemented carbide cutting tool whose hard coating layer has excellent chipping resistance in heavy cutting

Country Status (1)

Country Link
JP (1) JP2002254209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519231A (en) * 2009-02-27 2012-08-23 スルザー メタプラス ゲーエムベーハー COATING SYSTEM AND COATING METHOD FOR PRODUCING COATING SYSTEM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519231A (en) * 2009-02-27 2012-08-23 スルザー メタプラス ゲーエムベーハー COATING SYSTEM AND COATING METHOD FOR PRODUCING COATING SYSTEM

Similar Documents

Publication Publication Date Title
JP2003211304A (en) Surface coating cemented carbide cutting tool having hard coating layer showing excellent wear resistance at high speed cutting
JP2002239810A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2003127003A (en) Cemented carbide-made cutting tool with surface clad whose rigid clad layer exerts excellent wear resistance in high velocity cutting machining
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP2003340606A (en) Surface-covered cemented carbide made cutting tool having hard coated layer to exhibit excellent abrasion resistance in high-speed cutting work
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003117705A (en) Surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3508754B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer for excellent chip lubrication
JP3690292B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3982301B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2002254204A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip
JP2003001502A (en) Cemented carbide-made cutting tool with surface clad excellent in surface lubricative property against chips
JP2002254209A (en) Surface-coated cemented carbide cutting tool whose hard coating layer has excellent chipping resistance in heavy cutting
JP2003025112A (en) Surface coated cemented carbide cutting tool excellent in surface lubricity for cutting chip
JP2003136305A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3508746B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent wear resistance in high speed cutting
JP2002192402A (en) Surface coated-hard metal cutting tool having superior surface lubricity to chips
JP3478276B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent chipping resistance in high-speed heavy cutting
JP3573115B2 (en) Surface-coated cemented carbide cutting tool with excellent surface lubricity to chips
JP2003019604A (en) Surface coated cemented carbide cutting tool having hard coating layer with excellent heat radiation
JP3951292B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent chipping resistance with a hard coating layer in high-speed intermittent machining
JP2003001504A (en) Cemented carbide-made cutting tool with surface clad exerting excellent chipping resistivity in high velocity cutting processing
JP2004009162A (en) Cutting tool made of surface coated cemented carbide exerting excellent wear resistance of hard coat layer in high speed cutting
JP2002254207A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip