JP2002248477A - Electrochemical water treatment method - Google Patents

Electrochemical water treatment method

Info

Publication number
JP2002248477A
JP2002248477A JP2001049804A JP2001049804A JP2002248477A JP 2002248477 A JP2002248477 A JP 2002248477A JP 2001049804 A JP2001049804 A JP 2001049804A JP 2001049804 A JP2001049804 A JP 2001049804A JP 2002248477 A JP2002248477 A JP 2002248477A
Authority
JP
Japan
Prior art keywords
water
porous carbon
carbon electrode
microorganisms
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001049804A
Other languages
Japanese (ja)
Inventor
Hiroshi Inagaki
浩 稲垣
Mitsuo Enomoto
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2001049804A priority Critical patent/JP2002248477A/en
Publication of JP2002248477A publication Critical patent/JP2002248477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical water treatment method cable of sterilizing with high efficiency microorganisms existing in every kind of water such as drinking water, industrial water or the like by performing the treatment stably over a long period. SOLUTION: In the water treatment method for supplying a current to an electrolytic cell wherein a porous carbon electrode is mounted between power supply terminal electrodes to polarize the porous carbon electrode and supplying water to be treated containing microorganisms to the electrolytic cell to sterilize microorganisms electrochemically, the porous carbon electrode is periodically taken out of the electrolytic cell to be subjected to heat treatment and subsequently washed with water to remove the residue bonded to the porous carbon electrode. The heat treatment is preferably performed in air for one hr or more at 180-400 deg.C or performed in an inert atmosphere for one hr or more at 180-1,200 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、飲料水、食品分野
における各種処理水、風呂水等の生活用水、あるいは工
業用水等の微生物を含有する各種被処理水を電気化学的
に滅菌処理する水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water for electrochemically sterilizing various kinds of treated water containing microorganisms such as drinking water, various treated water in the food field, bath water and the like, or industrial water. Regarding the processing method.

【0002】[0002]

【従来の技術】水道水や井戸水等の飲料水や生活用水、
各種工業用水等の各種水中には菌類、原生動物、藻類、
細菌等の微生物が存在しており、これらの微生物は温度
等の環境条件によっては著しく繁殖が進み、水質が損な
われ、更に設備上のトラブルの原因となる場合もある。
そこで、水中の微生物を滅菌するために従来から種々の
方法が開発されており、塩素や過酸化水素等の薬剤を添
加する方法が広く行われている。しかしながら、塩素に
よる滅菌処理は残留塩素による新たな問題を生じ、また
残留物が問題とならない過酸化水素やオゾンを添加する
方法ではコスト高となるため大量の水を滅菌処理する手
段としては好ましくない。また、紫外線照射や加熱煮沸
等による滅菌法もあるが能率が悪いためにコストが高く
なり、大量の水を効率良く滅菌処理する手段としては不
適当である。
2. Description of the Related Art Drinking water such as tap water and well water and domestic water,
Fungi, protozoa, algae,
There are microorganisms such as bacteria, and these microorganisms remarkably proliferate depending on environmental conditions such as temperature, so that water quality is impaired, and there is also a case where trouble occurs in equipment.
Therefore, various methods have been conventionally developed for sterilizing microorganisms in water, and methods of adding agents such as chlorine and hydrogen peroxide have been widely used. However, the sterilization treatment with chlorine causes a new problem due to residual chlorine, and the method of adding hydrogen peroxide or ozone, in which the residue does not cause a problem, is costly and thus is not preferable as a means for sterilizing a large amount of water. . In addition, there are sterilization methods such as irradiation with ultraviolet light and boiling by heating, but the cost is high due to poor efficiency, and it is not suitable as a means for efficiently sterilizing a large amount of water.

【0003】そこで近年、大量の水を効率良く、能率的
に低コストで滅菌処理する手段として電気化学的に酸化
して微生物を滅菌する方法が開発されている。この方法
は絶縁性材料を介してメッシュ状金属電極で挟持された
多孔質炭素電極を多段に積層し、上下のメッシュ状金属
電極に直流電圧あるいは10Hz以下の交流電圧を印加
して多孔質炭素電極を分極させ、微生物を含有する被処
理水を供給すると、微生物を含む被処理水は多孔質炭素
電極の微細気孔中を流通する過程で分極した陽極部にお
いて電気化学的反応、すなわち微生物と陽極部間で電子
の移動が起きて微生物が死滅するものである。したがっ
て、通電が継続されている限り微生物の滅菌が継続し、
更に、この微生物を死滅させる電気化学的反応には微小
電流が流れるのみであるので分極した陽極部及び陰極部
においてガス発生を伴う電気分解反応は実質的に生じな
いので、経済的に有利な運転が可能であり、また炭素電
極の酸化損耗も抑制される。
[0003] In recent years, a method for sterilizing microorganisms by electrochemical oxidation has been developed as a means for efficiently and efficiently sterilizing large amounts of water at low cost. In this method, a porous carbon electrode sandwiched between mesh metal electrodes via an insulating material is laminated in multiple stages, and a DC voltage or an AC voltage of 10 Hz or less is applied to the upper and lower mesh metal electrodes to form a porous carbon electrode. When the treated water containing the microorganisms is supplied, the treated water containing the microorganisms undergoes an electrochemical reaction at the polarized anode portion in the process of flowing through the fine pores of the porous carbon electrode, that is, the microorganisms and the anode portion. The transfer of electrons between them causes the microorganisms to die. Therefore, sterilization of microorganisms continues as long as electricity is supplied,
Furthermore, since only a very small current flows in the electrochemical reaction for killing the microorganism, the electrolysis reaction accompanied by gas generation does not substantially occur in the polarized anode and cathode parts, so that the operation is economically advantageous. Is also possible, and the oxidative wear of the carbon electrode is also suppressed.

【0004】しかしながら、微生物の滅菌処理を比較的
長時間に亘って中断したような場合には微生物の繁殖が
進み、被処理水の流通孔である多孔質炭素電極の開気孔
部分の一部が繁殖した微生物により閉塞されるようにな
る。一方、長時間に亘って運転を継続して水処理した場
合には被処理水中に含まれる微生物の死骸や各種有機質
物が蓄積し、多孔質炭素電極の表面や開気孔部に堆積し
てくる。その結果、被処理水は多孔質炭素電極の開気孔
部分を円滑に流通し難くなり、水処理能率及び水処理効
率が低下する問題点がある。
However, when the sterilization treatment of microorganisms is interrupted for a relatively long time, the growth of microorganisms proceeds, and a part of the open pores of the porous carbon electrode, which is a flow hole of the water to be treated, is reduced. Becomes blocked by the propagated microorganisms. On the other hand, when the operation is continued for a long time and the water treatment is performed, dead microorganisms and various organic substances contained in the water to be treated accumulate and accumulate on the surface of the porous carbon electrode and the open pores. . As a result, it becomes difficult for the water to be treated to smoothly flow through the open pores of the porous carbon electrode, and there is a problem that the water treatment efficiency and the water treatment efficiency decrease.

【0005】[0005]

【発明が解決しようとする課題】そこで、本出願人の一
人はこれらの問題点を解決するために電気化学的に微生
物を滅菌する水処理方法において、定期的に電解槽を1
0%濃度以下の過酸化水素水または12%濃度以下の次
亜塩素酸ソーダ水溶液を洗浄液として洗浄することを特
徴とする水処理方法を開発、提案した(特開平9−2254
67号公報)。この方法によれば、微生物及び有機質物を
化学的に酸化分解するので多孔質炭素電極の開気孔部分
に堆積し、閉塞する微生物や有機質物を効果的に滅菌、
分解し、常に滅菌性能を維持することができる。
SUMMARY OF THE INVENTION In order to solve these problems, one of the applicants of the present invention has proposed a method of electrochemically sterilizing microorganisms in a water treatment method.
A water treatment method characterized by washing with a hydrogen peroxide solution having a concentration of 0% or less or an aqueous solution of sodium hypochlorite having a concentration of 12% or less as a cleaning solution has been developed and proposed (JP-A-9-2254).
No. 67). According to this method, microorganisms and organic substances are chemically oxidized and decomposed, so that the microorganisms and organic substances that accumulate on the open pores of the porous carbon electrode and block are effectively sterilized,
Decomposes and can always maintain sterilization performance.

【0006】更に、本発明者らは上記問題点を解消する
ために別異の観点から研究を進めた結果、化学的な酸化
分解処理より簡易な手段である熱処理により多孔質炭素
電極の開気孔部分に堆積して該気孔部を閉塞する微生物
やその死骸、各種有機質物等が分解除去できることを確
認した。すなわち、本発明はこの知見に基づいて開発に
至ったもので、その目的とするところは被処理水の流通
路となる多孔質炭素電極の開気孔部分に堆積し、流通路
を閉塞する微生物やその死骸、各種有機質物等を除去し
て、効率よく被処理水中に存在する微生物を滅菌処理す
ることのできる電気化学的水処理方法を提供することに
ある。
Further, the present inventors have conducted research from a different point of view in order to solve the above-mentioned problems, and as a result, the open pores of the porous carbon electrode have been subjected to a heat treatment which is a simpler method than the chemical oxidative decomposition treatment. It was confirmed that microorganisms, dead bodies, various organic substances, and the like that accumulate on the portions and block the pores can be decomposed and removed. In other words, the present invention has been developed based on this finding, and its purpose is to accumulate in the open pores of the porous carbon electrode serving as the flow path of the water to be treated, and to remove microorganisms and the like that block the flow path. It is an object of the present invention to provide an electrochemical water treatment method capable of removing the dead body, various organic substances, and the like and efficiently sterilizing microorganisms present in the water to be treated.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の電気化学的水処理方法は、給電用のターミ
ナル電極間に多孔質炭素電極を装着した電解槽に通電し
て多孔質炭素電極を分極させ、該電解槽に微生物を含有
する被処理水を供給して電気化学的に微生物を死滅させ
る水処理方法において、定期的に電解槽から多孔質炭素
電極を取り出して熱処理し、次いで通水洗浄して多孔質
炭素電極に付着した残留物を除去することを構成上の特
徴とする。
According to the present invention, there is provided an electrochemical water treatment method comprising the steps of: supplying electricity to an electrolytic cell provided with a porous carbon electrode between power supply terminal electrodes; In a water treatment method in which the carbon electrode is polarized and the microorganisms are killed electrochemically by supplying treated water containing microorganisms to the electrolytic cell, the porous carbon electrode is periodically taken out of the electrolytic cell and heat-treated, Then, the structure is characterized by removing the residue attached to the porous carbon electrode by washing with water.

【0008】また、熱処理は、具体的には空気中180
〜400℃の温度で、または不活性雰囲気中180〜1
200℃の温度で、1時間以上熱処理することが好まし
い。
[0008] The heat treatment is specifically performed in air at 180 ° C.
At a temperature of ~ 400 ° C or in an inert atmosphere 180-1
The heat treatment is preferably performed at a temperature of 200 ° C. for one hour or more.

【0009】[0009]

【発明の実施の形態】図1は、電気化学的に微生物を滅
菌処理する水処理装置(電解槽)9を例示した縦断面略
図である。図1において円筒形状の電解槽ケース1は合
成樹脂等の電気絶縁性の材料で構成され、電解槽ケース
1内部の上下端部には給電用のターミナル電極となる上
部電極2(陽極)と下部電極3(陰極)が設けられてい
る。この上部電極2と下部電極3との間には多孔質炭素
電極4が電気絶縁性を保つためのリング状スペーサー5
を介して複数個(図示例では5個)が積層され、また多
孔質炭素電極4の上面及び下面には炭素電極より酸素過
電圧の低い白金等を被覆したチタンのメッシュ状電極6
が被着されている。
FIG. 1 is a schematic vertical sectional view illustrating a water treatment apparatus (electrolysis tank) 9 for sterilizing microorganisms electrochemically. In FIG. 1, a cylindrical electrolytic cell case 1 is made of an electrically insulating material such as a synthetic resin, and upper and lower ends inside the electrolytic cell case 1 have an upper electrode 2 (anode) serving as a power supply terminal electrode and a lower electrode. An electrode 3 (cathode) is provided. A ring-shaped spacer 5 is provided between the upper electrode 2 and the lower electrode 3 so that the porous carbon electrode 4 maintains electrical insulation.
(Five in the illustrated example) are laminated through the electrode, and a titanium mesh electrode 6 coated with platinum or the like having a lower oxygen overvoltage than the carbon electrode is formed on the upper and lower surfaces of the porous carbon electrode 4.
Is attached.

【0010】給電用の上部及び下部電極に直流電圧を印
加して通電すると多孔質炭素電極4の下面が陽に、上面
が陰に分極する。この状態で電解槽への被処理水の下部
入口7から微生物を含有する被処理水を供給すると、被
処理水は多孔質炭素電極4の多数の微細開気孔を流通し
て上部出口8から流出される。そして、被処理水は微細
開気孔を流通する過程で分極した陽極部における電気化
学反応により微生物と電極間で電子の移動が起こり、酸
化還元反応によって微生物が死滅する。このようにし
て、微生物を含有する各種被処理水を電気化学的に滅菌
処理することができる。
When a DC voltage is applied to the upper and lower electrodes for power supply and energized, the lower surface of the porous carbon electrode 4 is polarized positively and the upper surface is polarized negatively. When water to be treated containing microorganisms is supplied from the lower inlet 7 of the water to be treated to the electrolytic cell in this state, the water to be treated flows through many fine open pores of the porous carbon electrode 4 and flows out of the upper outlet 8. Is done. Then, in the water to be treated, electrons are transferred between the microorganisms and the electrodes by an electrochemical reaction at the anode portion polarized in the process of flowing through the fine open pores, and the microorganisms are killed by the oxidation-reduction reaction. In this manner, various kinds of water to be treated containing microorganisms can be electrochemically sterilized.

【0011】多孔質炭素電極に用いる多孔質炭素材とし
ては、通水抵抗が小さく、被処理水との接触面積が大き
な多孔構造を備えていれば製法には関わりなく、例えば
粒度を調整したコークス粒子をピッチバインダーで混練
して成形し、焼成炭化した粒子結合タイプの多孔質炭素
材、炭素繊維や炭素繊維製造用有機繊維をパルプととも
に抄紙して得られたシートを熱硬化性樹脂等の有機高分
子の炭化物で一体化して得られる多孔質炭素材、等を用
いることができる。
Regarding the porous carbon material used for the porous carbon electrode, if it has a porous structure having a small water flow resistance and a large contact area with the water to be treated, regardless of the production method, for example, coke of which particle size is adjusted, Particles are kneaded with a pitch binder, molded, and calcined and carbonized.A particle-bonded porous carbon material, and a sheet obtained by forming carbon fibers and organic fibers for carbon fiber production together with pulp into an organic material such as a thermosetting resin. For example, a porous carbon material obtained by integrating with a polymer carbide can be used.

【0012】多孔質炭素材は被処理水が円滑に流通し、
また気孔内を流通時に効率よく電気化学的反応が起こり
微生物を死滅させることが必要であり、気孔性状として
は開気孔の平均気孔径が25〜500μm の範囲にある
ことが好ましい。平均気孔径が大きく、500μm を超
えると被処理水中の微生物が電極部と充分に接触するこ
となく通過するので滅菌効率が低下し、一方25μm を
下回ると通水抵抗が増大して目詰まりが生じ易く円滑な
運転が阻害されるためである。なお、気孔率としては2
0〜80%、より好ましくは30〜60%である。
In the porous carbon material, the water to be treated flows smoothly,
In addition, it is necessary that an electrochemical reaction occurs efficiently when flowing through the pores to kill microorganisms, and the pores preferably have an average pore diameter of 25 to 500 µm. If the average pore diameter is larger than 500 μm, the microorganisms in the water to be treated will pass through without contacting the electrode part sufficiently, resulting in reduced sterilization efficiency. If it is smaller than 25 μm, water flow resistance will increase and clogging will occur. This is because easy and smooth driving is hindered. The porosity is 2
It is 0 to 80%, more preferably 30 to 60%.

【0013】電解槽に通電して多孔質炭素電極を分極さ
せ、被処理水を通水して被処理水中の微生物を電気化学
的に死滅させると、微生物の死骸は被処理水の流通とと
もに電解槽から排出されるが、水処理を長期間継続して
行うと微生物の死骸の一部は多孔質炭素電極の開気孔部
に堆積し、次第に開気孔を閉塞するようになる。更に被
処理水中に含まれる各種の有機質物も堆積してくる。一
方、水処理装置の運転を長期間中断した場合には温度環
境等により微生物の急激な繁殖が起こり、多孔質炭素電
極の開気孔部に堆積し、開気孔部を閉塞することとな
る。
When electricity is supplied to the electrolytic cell to polarize the porous carbon electrode and pass through the water to be treated to electrochemically kill microorganisms in the water to be treated, the dead bodies of the microorganisms are electrolyzed together with the flow of the water to be treated. Although the water is discharged from the tank, if the water treatment is continued for a long period of time, a part of the dead body of the microorganisms is deposited on the open pores of the porous carbon electrode and gradually closes the open pores. Further, various organic substances contained in the water to be treated also accumulate. On the other hand, when the operation of the water treatment apparatus is interrupted for a long period of time, rapid growth of microorganisms occurs due to the temperature environment and the like, and the microorganisms accumulate in the open pores of the porous carbon electrode and close the open pores.

【0014】このようにして、被処理水の流通路である
多孔質炭素電極の開気孔部の一部が閉塞されるようにな
ると、被処理水の円滑な流通が阻害され、滅菌効率の著
しい低下を招くこととなる。したがって、高い滅菌効率
で安定に水処理を行うためには、微生物やその死骸、各
種有機質物等が開気孔部に多量に堆積する前に除去して
おくことが重要となる。
In this way, when a part of the open pores of the porous carbon electrode, which is the flow passage of the water to be treated, is blocked, the smooth flow of the water to be treated is hindered, and the sterilization efficiency is remarkable. This will lead to a decrease. Therefore, in order to stably perform water treatment with high sterilization efficiency, it is important to remove microorganisms, their dead bodies, various organic substances, and the like before large amounts are accumulated in the open pores.

【0015】そこで、本発明においては定期的に電解槽
から多孔質炭素電極を取り出して、熱処理することによ
り開気孔部に堆積した微生物やその死骸、各種有機質物
等の分解除去を図るものである。熱処理条件としては空
気中で180〜400℃の温度、または不活性雰囲気中
で180〜1200℃の温度で適宜時間、例えば1時間
以上処理することが好ましい。
Therefore, in the present invention, the porous carbon electrode is periodically taken out of the electrolytic cell and subjected to heat treatment to decompose and remove microorganisms and their dead bodies, various organic substances, etc., deposited on the open pores. . As the heat treatment conditions, it is preferable to perform the treatment at a temperature of 180 to 400 ° C. in air or at a temperature of 180 to 1200 ° C. in an inert atmosphere for an appropriate time, for example, 1 hour or more.

【0016】空気中の熱処理温度が180℃を下回ると
燃焼や分解除去が充分に進行せず、また400℃を超え
ると多孔質炭素電極の表面酸化が生じて滅菌効果が低下
するとともに耐久性が低くなる。また不活性雰囲気中の
熱処理温度が180℃を下回ると堆積物の熱分解除去が
充分に進行しないが、1200℃を超える温度で熱処理
しても分解除去効果の向上はあまり認められないためで
ある。
If the heat treatment temperature in the air is lower than 180 ° C., combustion and decomposition and removal do not proceed sufficiently. If the temperature exceeds 400 ° C., the surface of the porous carbon electrode is oxidized, and the sterilizing effect is reduced and the durability is reduced. Lower. If the heat treatment temperature in an inert atmosphere is lower than 180 ° C., the thermal decomposition removal of the deposit does not sufficiently proceed, but even if the heat treatment is performed at a temperature higher than 1200 ° C., the improvement of the decomposition removal effect is not so much recognized. .

【0017】このようにして熱処理することにより多孔
質炭素電極の開気孔部に堆積した微生物やその死骸、有
機質物等は酸化、脱水、揮散、分解等により除去される
が、一部の熱処理物が開気孔部に残留してくる。これら
の残留物は多孔質炭素電極に通水して開気孔部に水を流
通させることにより除去することができる。
By performing the heat treatment as described above, microorganisms, their dead bodies, organic substances, and the like deposited on the open pores of the porous carbon electrode are removed by oxidation, dehydration, volatilization, decomposition, and the like. Remains in the open pores. These residues can be removed by passing water through the porous carbon electrode and flowing water through the open pores.

【0018】多孔質炭素電極の熱処理は、例えば所定の
水処理時間、水処理量等に達した時点で定期的に電解槽
から多孔質炭素電極を取り出して熱処理することにより
行われる。なお、水処理時の運転条件の変化、例えば一
定の水圧下における供給する被処理水の通水量の低下度
合い、所定の通水量を確保するための圧力損失の増大度
合い、あるいは滅菌効率の低下度合い、等を指標として
定期的に熱処理する時点を設定することが望ましい。こ
のようにして、定期的に熱処理した多孔質炭素電極は電
解槽に再び装着され、通水量や滅菌効率等を元の状態に
回復させることができ、水処理能率及び水処理効率を高
水準に保持した電気化学的水処理が可能となる。
The heat treatment of the porous carbon electrode is performed, for example, by periodically taking out the porous carbon electrode from the electrolytic cell when a predetermined water treatment time, water treatment amount, or the like is reached, and performing heat treatment. Changes in operating conditions during water treatment, for example, the degree of decrease in the flow rate of water to be supplied under a constant water pressure, the degree of increase in pressure loss for securing a predetermined flow rate, or the degree of decrease in sterilization efficiency It is desirable to set the point of time for performing the heat treatment periodically using the index as an index. In this way, the porous carbon electrode that has been periodically heat-treated can be mounted again in the electrolytic cell, and the water flow rate, the sterilization efficiency, etc. can be restored to the original state, and the water treatment efficiency and water treatment efficiency can be raised to a high level. The retained electrochemical water treatment becomes possible.

【0019】[0019]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0020】実施例1〜8 炭素繊維に熱硬化性樹脂を含浸して積層し、焼成炭化し
て直径74.5mm、厚さ9mmの円板状の多孔質炭素電極
(平均開気孔径50μm 、気孔率58%)を作製し、そ
の上下両面に直径74.5mm、厚さ1mmの白金メッキし
たエキスパンド状チタン製金属メッシュを被着し、厚さ
1mmのEPDM製リング状スペーサーを介して、透明な
硬質ポリ塩化ビニルで作製した内径75mm、高さ100
mmの円筒形状の電解槽ケース内に装着した。なお、多孔
質炭素電極は8段に積層し、その上下両端部には給電用
のターミナル電極として白金メッキしたエキスパンド状
チタンからなる金属電極を配置した。このようにして図
1に示した電気化学的水処理装置である電解槽を組み立
てた。
Examples 1 to 8 A carbon fiber impregnated with a thermosetting resin was laminated, fired and carbonized to form a disk-shaped porous carbon electrode having a diameter of 74.5 mm and a thickness of 9 mm (average open pore diameter of 50 μm, A porosity of 58%) was prepared, and a platinum-plated expanded titanium metal mesh having a diameter of 74.5 mm and a thickness of 1 mm was applied to the upper and lower surfaces thereof, and was transparent through a 1 mm-thick EPDM ring-shaped spacer. 75mm inside diameter, height 100 made of perfect rigid polyvinyl chloride
It was installed in a cylindrical electrolytic cell case of mm. The porous carbon electrodes were laminated in eight stages, and metal electrodes made of platinum-plated expanded titanium were arranged on both upper and lower ends as power supply terminal electrodes. Thus, the electrolytic cell as the electrochemical water treatment apparatus shown in FIG. 1 was assembled.

【0021】この電解槽のターミナル電極に直流電源か
ら35Vの定電圧を印加して多孔質炭素電極を分極さ
せ、約10000個/ミリリットルの一般細菌を含む試
験用の被処理水(COD 5mg酸素/l)100リットルを1.
3Kg/cm2の圧力で電解槽の下部入口から供給して多孔質
炭素電極の開気孔を流通させ、上部出口から流出した被
処理水は再び電解槽の下部入口に供給して循環させた。
なお、通水量は3.0リットル/分で、電流は50mAで
あった。
A constant voltage of 35 V is applied from a DC power source to the terminal electrode of this electrolytic cell to polarize the porous carbon electrode, and the test water to be treated containing about 10,000 cells / milliliter of general bacteria (COD 5 mg oxygen / l) 100 liters for 1.
3 kg / at a pressure of cm 2 is supplied from the lower inlet of the electrolytic cell by flowing the open pores of the porous carbon electrode, the treatment water flowing out from the upper outlet was circulated by supplying the lower inlet again electrolyzer.
The flow rate was 3.0 liter / min, and the current was 50 mA.

【0022】この循環方式により連続運転して30日間
水処理したのちの通水量と1パス滅菌率〔{1−(出口
側生菌数/入口側生菌数)}×100(%)〕を測定し
た。次いで、電解槽から多孔質炭素電極を取り外して条
件を変えて熱処理及び通水洗浄した後、再び電解槽に装
着して水処理を再開し、再開直後の通水量と1パス滅菌
率を測定した。
The water flow rate and the 1-pass sterilization rate after continuous water treatment for 30 days by this circulation system and the 1-pass sterilization rate [{1- (number of viable bacteria on the exit side / number of viable bacteria on the entrance side)] × 100 (%)] It was measured. Next, the porous carbon electrode was removed from the electrolytic cell, the conditions were changed, and heat treatment and water washing were performed under different conditions. Then, the cell was mounted on the electrolytic cell again, and water treatment was restarted. .

【0023】また、上記の熱処理を行った多孔質炭素電
極を厚さ9mm、幅10mm、長さ70mmに加工し、濃度
0.0012 mol/lの硫酸ナトリウム水溶液(水温30
℃)中で陽極電位を1.2 V/RHEに設定して定電位腐食
試験を行い、24時間腐食試験後の電流値(腐食電流)
を測定した。
The heat-treated porous carbon electrode was processed to a thickness of 9 mm, a width of 10 mm, and a length of 70 mm, and a 0.0012 mol / l aqueous solution of sodium sulfate (water temperature of 30).
℃), set the anode potential to 1.2 V / RHE and conduct a constant potential corrosion test, and the current value (corrosion current) after the corrosion test for 24 hours
Was measured.

【0024】比較例1 実施例と同じ循環方式により連続して30日間水処理し
た後、通水量と1パス滅菌率〔{1−(出口側生菌数/
入口側生菌数)}×100(%)〕を測定し、次いで、
電解槽から多孔質炭素電極を取り外して熱処理を施すこ
となく通水洗浄のみを行い、再び電解槽に装着して水処
理を再開し、再開直後の通水量と1パス滅菌率を測定し
た。また、実施例と同一の方法により腐食電流を測定し
た。
Comparative Example 1 After water treatment for 30 days continuously by the same circulation method as in the example, the water flow rate and the 1-pass sterilization rate [{1- (the number of viable bacteria on the exit side /
The number of viable bacteria on the inlet side)} × 100 (%)], and then
The porous carbon electrode was removed from the electrolytic cell, and only water washing was performed without performing heat treatment. The cell was again mounted in the electrolytic cell to restart water treatment, and the amount of water passed immediately after the restart and the 1-pass sterilization rate were measured. Further, the corrosion current was measured by the same method as in the example.

【0025】比較例2 実施例と同じ循環方式により連続して30日間水処理し
た後、通水量と1パス滅菌率〔{1−(出口側生菌数/
入口側生菌数)}×100(%)〕を測定し、次いで、
電解槽から多孔質炭素電極を取り外して濃度10重量%
の次亜塩素酸ナトリウム水溶液(温度20℃)5リット
ル中に24時間浸漬したのち水洗した。この多孔質炭素
電極を再び電解槽に装着して水処理を再開し、再開直後
の通水量と1パス滅菌率を測定し、また実施例と同一の
方法により腐食電流を測定した。
COMPARATIVE EXAMPLE 2 After water treatment for 30 days continuously by the same circulation method as in the example, the water flow rate and the 1-pass sterilization rate [# 1- (the number of viable bacteria on the exit side /
The number of viable bacteria on the inlet side)} × 100 (%)], and then
Remove the porous carbon electrode from the electrolytic cell, and the concentration is 10% by weight.
Was immersed in 5 liters of an aqueous solution of sodium hypochlorite (temperature: 20 ° C.) for 24 hours and then washed with water. The porous carbon electrode was mounted on the electrolytic cell again, and the water treatment was restarted. The water flow rate and the 1-pass sterilization rate immediately after the restart were measured, and the corrosion current was measured by the same method as in the example.

【0026】このようにして、所定の時間連続して水処
理した後の多孔質炭素電極の熱処理条件と、熱処理の前
後における通水量及び1パス滅菌率の変化、腐食電流値
等を表1に示した。
Table 1 shows the heat treatment conditions of the porous carbon electrode after continuous water treatment for a predetermined period of time, changes in the water flow rate and the 1-pass sterilization rate before and after the heat treatment, the corrosion current value, and the like. Indicated.

【0027】[0027]

【表1】 (注) *1 熱処理に代えて次亜塩素酸ナトリウム水溶液中に浸漬処理[Table 1] (Note) * 1 Immersion treatment in sodium hypochlorite aqueous solution instead of heat treatment

【0028】表1の結果から、30日間連続して水処理
したのち電解槽から多孔質炭素電極を取り出し、熱処
理、次いで通水洗浄して多孔質炭素電極に付着した残留
物を除去した後、再び電解槽に装着して水処理を再開し
た実施例では通水量及び滅菌率とも増大し、次亜塩素酸
ナトリウム水溶液中に浸漬処理した比較例2と同等もし
くはそれ以上に水処理性能が回復していることが判る。
特に、熱処理を空気中180〜400℃の温度、あるい
は不活性雰囲気中180〜1200℃の温度で1時間以
上行った場合には水処理性能の回復が著しいことが認め
られる。また、これらの熱処理を施しても腐食電流は低
位にあり熱処理による多孔質炭素電極の耐久性の低下は
認められない。これに対して、熱処理を行わない比較例
1で通水量、滅菌率とも殆ど変わらず、水処理性能の回
復、向上が認められないことが判明する。
From the results shown in Table 1, after the water treatment was continuously performed for 30 days, the porous carbon electrode was taken out of the electrolytic cell, heat-treated, and washed with water to remove the residue attached to the porous carbon electrode. In the embodiment in which the water treatment was resumed by re-attaching to the electrolytic cell, the water flow rate and the sterilization rate both increased, and the water treatment performance was recovered to be equal to or more than that of Comparative Example 2 immersed in the sodium hypochlorite aqueous solution. You can see that
In particular, when the heat treatment is performed in air at a temperature of 180 to 400 ° C. or in an inert atmosphere at a temperature of 180 to 1200 ° C. for 1 hour or more, it is recognized that the water treatment performance is remarkably recovered. In addition, even when these heat treatments are performed, the corrosion current is low, and no decrease in the durability of the porous carbon electrode due to the heat treatment is observed. On the other hand, in Comparative Example 1 in which the heat treatment was not performed, the water flow rate and the sterilization rate were hardly changed, and it was found that the water treatment performance was not recovered or improved.

【0029】[0029]

【発明の効果】以上のとおり、本発明の電気化学的水処
理方法によれば、水処理を行っている際に定期的に電解
槽から多孔質炭素電極を取り出して熱処理及び通水洗浄
することにより、被処理水の流通路である多孔質炭素電
極の開気孔部に堆積した微生物やその死骸、各種有機質
物等を効果的に分解除去することができる。したがって
通水量や滅菌効率等の水処理性能の低下を防止し、長期
に亘って安定に高効率、高能率で微生物を含有する被処
理水を電気化学的に滅菌処理することが可能となり、飲
料水、食品分野における各種処理水、工業用水等の水中
に存在する微生物を電気化学的に滅菌処理する水処理方
法として極めて有用である。
As described above, according to the electrochemical water treatment method of the present invention, during the water treatment, the porous carbon electrode is periodically taken out of the electrolytic cell and subjected to heat treatment and water washing. Thereby, microorganisms and their dead bodies, various organic substances, and the like deposited on the open pores of the porous carbon electrode, which is the flow path of the water to be treated, can be effectively decomposed and removed. Therefore, it is possible to prevent a decrease in water treatment performance such as a flow rate and a sterilization efficiency, and to stably electrochemically sterilize water to be treated containing microorganisms with high efficiency and efficiency for a long period of time. It is extremely useful as a water treatment method for electrochemically sterilizing microorganisms present in water, such as various treated waters in the field of water and food, and industrial water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気化学的に微生物を滅菌処理する水処理装置
(電解槽)を例示した縦断面略図である。
FIG. 1 is a schematic vertical sectional view illustrating a water treatment apparatus (electrolysis tank) for electrochemically sterilizing microorganisms.

【符号の説明】[Explanation of symbols]

1 電解槽ケース 2 上部電極 3 下部電極 4 多孔質炭素電極 5 リング状スペーサー 6 メッシュ状電極 7 被処理水の下部入口 8 被処理水の上部出口 9 電解槽 DESCRIPTION OF SYMBOLS 1 Electrolyzer case 2 Upper electrode 3 Lower electrode 4 Porous carbon electrode 5 Ring-shaped spacer 6 Mesh electrode 7 Lower inlet of treated water 8 Upper outlet of treated water 9 Electrolyzer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 給電用のターミナル電極間に多孔質炭素
電極を装着した電解槽に通電して多孔質炭素電極を分極
させ、該電解槽に微生物を含有する被処理水を供給して
電気化学的に微生物を死滅させる水処理方法において、
定期的に電解槽から多孔質炭素電極を取り出して熱処理
し、次いで通水洗浄して多孔質炭素電極に付着した残留
物を除去することを特徴とする電気化学的水処理方法。
An electrolytic cell having a porous carbon electrode mounted between terminal terminals for power supply is polarized to polarize the porous carbon electrode, and water to be treated containing microorganisms is supplied to the electrolytic cell to perform electrochemical treatment. In a water treatment method that kills microorganisms,
An electrochemical water treatment method comprising periodically removing a porous carbon electrode from an electrolytic cell and heat-treating the same, and then removing the residue attached to the porous carbon electrode by washing with water.
【請求項2】 熱処理が、空気中180〜400℃の温
度または不活性雰囲気中180〜1200℃の温度で1
時間以上処理するものである請求項1記載の電気化学的
水処理方法。
2. The heat treatment is carried out at a temperature of 180 to 400 ° C. in air or at a temperature of 180 to 1200 ° C. in an inert atmosphere.
The electrochemical water treatment method according to claim 1, wherein the treatment is carried out for at least one hour.
JP2001049804A 2001-02-26 2001-02-26 Electrochemical water treatment method Pending JP2002248477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049804A JP2002248477A (en) 2001-02-26 2001-02-26 Electrochemical water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049804A JP2002248477A (en) 2001-02-26 2001-02-26 Electrochemical water treatment method

Publications (1)

Publication Number Publication Date
JP2002248477A true JP2002248477A (en) 2002-09-03

Family

ID=18910859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049804A Pending JP2002248477A (en) 2001-02-26 2001-02-26 Electrochemical water treatment method

Country Status (1)

Country Link
JP (1) JP2002248477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047055A (en) * 2016-09-21 2018-03-29 Toto株式会社 Washing equipment for bathroom wash place floor
JP2018047053A (en) * 2016-09-21 2018-03-29 Toto株式会社 Washing equipment for bathroom wash place floor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047055A (en) * 2016-09-21 2018-03-29 Toto株式会社 Washing equipment for bathroom wash place floor
JP2018047053A (en) * 2016-09-21 2018-03-29 Toto株式会社 Washing equipment for bathroom wash place floor

Similar Documents

Publication Publication Date Title
JP6214063B2 (en) Method for imparting filtration capacity in electrolytic cells for wastewater treatment
JP4116949B2 (en) Electrochemical sterilization and sterilization method
JP3689541B2 (en) Seawater electrolyzer
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
KR100712389B1 (en) The process and the apparatus for cleansing the electronic part using functional water
JPH10151463A (en) Water treatment method
CN1329576A (en) Electrolytic apparatus, methods purification of aqueous solutions and synthesis of chemicals
US20030089622A1 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
WO2001083378A1 (en) Method and apparatus for clarification treatment of water
JP4098617B2 (en) Sterilization method
JP2002248477A (en) Electrochemical water treatment method
KR102492246B1 (en) Hybrid water treatment system for red tide removal and perchlorate control and water treatment method using the same
JPH1110160A (en) Method for treating water by electrolytic oxidation
JP2000325958A (en) Electrochemical water-treating method
JP3673000B2 (en) Electrolyzer for electrolyzed water production
CN113003877B (en) Treatment device and method for refractory organic wastewater
KR200307692Y1 (en) Functional drinking water supply apparatus for Indoor electrolytic treatment of microorganism contaminated
RU2038323C1 (en) Equipment for purification and disinfection of water
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JP3677129B2 (en) Cleaning method with electrolytic ion water
JPH1043765A (en) Electrolyte cell for electrolytic treatment of water to be treated
JPH09239371A (en) Treatment of ethanolamine-containing waste dilute hydrochloric acid
JP2002263650A (en) Method for generating ozone by electrolysis and ozone generating device
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms