JP2002246330A - Ion implantation method - Google Patents

Ion implantation method

Info

Publication number
JP2002246330A
JP2002246330A JP2001037153A JP2001037153A JP2002246330A JP 2002246330 A JP2002246330 A JP 2002246330A JP 2001037153 A JP2001037153 A JP 2001037153A JP 2001037153 A JP2001037153 A JP 2001037153A JP 2002246330 A JP2002246330 A JP 2002246330A
Authority
JP
Japan
Prior art keywords
film
substrate
ion implantation
resist
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001037153A
Other languages
Japanese (ja)
Inventor
Fumihiko Hirose
文彦 廣瀬
Yutaka Soda
裕 左右田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2001037153A priority Critical patent/JP2002246330A/en
Publication of JP2002246330A publication Critical patent/JP2002246330A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ion implantation method at a low cost, with which the degradation of the base surface of a resist coating film is prevented. SOLUTION: In this ion implantation method, a protective film is formed on a part other than a region to be doped on a substrate to be processed, the substrate is irradiated with ionized dopant atoms and the dopant atoms are doped to the surface layer part of the substrate without the protective film. The protective film is turned into a two-layer structure of a heat resistant film and a photoresist film, the heat resistant film 3 is formed between the substrate 2 and the photoresist film 4, and the heat resistant film is removed from the substrate together with the photoresist film, after ion implantation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
製造プロセスに用いられるイオン注入方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an ion implantation method used in a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】従来、半導体、主としてSiを用いた電
子デバイスの製造過程では、Siの結晶の特定部分に所
定量の不純物をドープすることが行われる。従来、ドー
ピング方法としては、拡散法やイオン注入法が利用され
てきたが、1μm程度の浅いドーピングプロファイルを
形成する際はイオン注入法が用いられる。
2. Description of the Related Art Conventionally, in a process of manufacturing an electronic device using a semiconductor, mainly Si, a predetermined portion of a crystal of Si is doped with a predetermined amount of impurities. Conventionally, as a doping method, a diffusion method or an ion implantation method has been used. However, when a doping profile as shallow as about 1 μm is formed, the ion implantation method is used.

【0003】図2に従来のイオン注入方法の原理図を示
す。ドーピング対象となる基板2上にドーピングを施す
部分だけ開口部を持つ保護マスク(フォトレジスト膜)
4を形成する。この基板2に、ドーピングをされる原子
(以下、ドーパントという)をイオン化させ、数十ke
V程度の運動エネルギーまで加速させて照射する。こう
することで開口部を通して、Siの結晶中にドーパント
が打ち込まれる。結晶に打ち込まれるドーパントの密度
を変えるには、打ち込むドーパントの照射量を制御すれ
ばよい。また結晶中のドーパントの打ち込み深さについ
ては、ドーパントの加速エネルギーを変えることで制御
可能である。
FIG. 2 shows the principle of a conventional ion implantation method. A protective mask (photoresist film) having an opening only on the part to be doped on the substrate 2 to be doped.
4 is formed. On this substrate 2, atoms to be doped (hereinafter referred to as dopants) are ionized, and several tens ke
Irradiation is performed by accelerating to a kinetic energy of about V. This allows the dopant to be implanted into the Si crystal through the opening. In order to change the density of the dopant implanted in the crystal, the dose of the implanted dopant may be controlled. The implantation depth of the dopant in the crystal can be controlled by changing the acceleration energy of the dopant.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のイオン
注入方法においては保護マスク4の熱変質が問題となっ
ていた。保護マスク4は開口部の加工が容易であること
から従来フォトレジスト膜が用いられてきた。保護膜は
注入ドーパントをSi結晶まで到達させないよう阻止す
る働きがあるが、そのためイオン照射時に保護膜表面で
熱が発生する。イオン照射量が多くなると保護膜が過熱
され、焼き付きを起こす。その結果、レジスト膜が炭化
し、こびりつきになり、またSi表面が改質し、その
後、その上に膜を積層させた場合、密着性が悪くなり、
歩留まり劣化の原因となっていた。そのため、イオン注
入後は酸素プラズマ雰囲気にさらして、こびりついた炭
化物を除去して、さらにSi結晶表面を酸化させて、フ
ッ化水素酸で表面をエッチングするなどの方法がとられ
てきた。
However, in the conventional ion implantation method, thermal deterioration of the protective mask 4 has been a problem. Conventionally, a photoresist film has been used for the protective mask 4 because the opening can be easily processed. The protective film has a function of preventing the implanted dopant from reaching the Si crystal. Therefore, heat is generated on the surface of the protective film during ion irradiation. When the ion irradiation amount is increased, the protective film is overheated, causing burn-in. As a result, the resist film is carbonized, sticks, and the surface of the Si is modified, and then, when the film is laminated thereon, the adhesion becomes poor,
This was a cause of yield deterioration. Therefore, after the ion implantation, a method of exposing to an oxygen plasma atmosphere to remove the sticking carbide, further oxidizing the surface of the Si crystal, and etching the surface with hydrofluoric acid has been adopted.

【0005】このような酸素プラズマにさらす方法は、
専用装置によるコスト高と時間と人件費がかかるなどの
問題があった。かかる問題は保護膜にレジストを用いる
ことに起因しているが、これを避けるためにSiO2
やSi34膜を用いる方法もとられるが、この場合プラ
ズマCVD装置が必要となり、コスト高の問題が生じて
いた。
The method of exposing to such oxygen plasma is as follows.
There were problems such as high cost due to the dedicated device, time and labor costs. Such a problem is caused by the use of a resist as a protective film. To avoid this problem, a method using an SiO 2 film or a Si 3 N 4 film has been proposed. In this case, a plasma CVD apparatus is required, which increases cost. Problem had arisen.

【0006】本発明は上記の課題を解決するためになさ
れたものであって、変質したレジスト塗膜との接触によ
る下地表面の劣化を防止することができる低コストのイ
オン注入方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a low-cost ion implantation method capable of preventing deterioration of a base surface due to contact with a deteriorated resist coating film. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明に係るイオン注入
方法は、被処理基板上に、ドーピングさせたい領域以外
の部分に保護膜を形成し、該基板にイオン化させたドー
ピング原子を照射して、保護膜のない基板の表層部分に
ドーピング原子をドープさせるイオン注入方法におい
て、前記保護膜は耐熱性膜とフォトレジスト膜との二層
構造とし、前記耐熱性膜を基板とフォトレジスト膜との
間に形成し、イオン注入後に前記耐熱性膜をフォトレジ
スト膜とともに基板上から除去することを特徴とする。
According to the ion implantation method of the present invention, a protective film is formed on a portion other than a region to be doped on a substrate to be processed, and the substrate is irradiated with ionized doping atoms. In an ion implantation method in which doping atoms are doped into a surface layer portion of a substrate without a protective film, the protective film has a two-layer structure of a heat-resistant film and a photoresist film, and the heat-resistant film is formed of a substrate and a photoresist film. The method is characterized in that the heat-resistant film is removed from the substrate together with the photoresist film after ion implantation.

【0008】耐熱性膜としてガラス膜を用いることが望
ましい。この場合に、ガラス膜には回転塗布ガラス膜を
用いることが好ましい。
It is desirable to use a glass film as the heat resistant film. In this case, it is preferable to use a spin coating glass film as the glass film.

【0009】ガラス膜の形成方法として、アルコキシラ
ン(Siに酸素と炭素と水素が化合した分子)を有機溶
媒に溶かした溶液を被処理基板上に塗布あるいは回転塗
布させた後に、該基板を室温で放置するか、又は高温に
加熱して、塗布溶液中の有機溶媒を揮発させることが好
ましい。
As a method of forming a glass film, a solution in which alkoxylan (molecule obtained by combining oxygen, carbon and hydrogen in Si) is dissolved in an organic solvent is applied or spin-coated on a substrate to be processed, and then the substrate is cooled to room temperature. It is preferable that the organic solvent in the coating solution is volatilized by leaving the coating solution at high temperature or heating to a high temperature.

【0010】また、フッ化水素酸を含む水溶液をイオン
注入後の基板に接触させ、前記ガラス膜の部分を溶解す
ることにより、その上のフォトレジスト膜を浮き上がら
せて基板から除去することが好ましい。
Further, it is preferable that an aqueous solution containing hydrofluoric acid is brought into contact with the substrate after the ion implantation, and a portion of the glass film is dissolved, so that the photoresist film thereon floats up and is removed from the substrate. .

【0011】(作用)図1の(e)に示すように、フォ
トレジスト膜と基板表面との間にガラス膜を挿入するこ
とで、イオン注入後にレジスト膜が炭化しても、炭化し
たレジストは基板表面に接していないので、基板表面は
変質しない。レジスト膜はたとえば300℃程度になる
と炭化してしまうが、ガラス膜は1000℃程度まで変
質しない。この耐久温度差があるため、イオン注入時で
レジスト膜が焼き付きして炭化しても、ガラス自体に変
質は起こりにくい。ガラスに変質が無ければ、基板表面
も変質せず、それによる歩留まり劣化の問題はさけられ
る。
(Effect) As shown in FIG. 1E, by inserting a glass film between the photoresist film and the substrate surface, even if the resist film is carbonized after ion implantation, the carbonized resist remains Since it is not in contact with the substrate surface, the substrate surface does not deteriorate. The resist film is carbonized, for example, at about 300 ° C., but the glass film does not deteriorate to about 1000 ° C. Due to this difference in durability temperature, even if the resist film is burned and carbonized at the time of ion implantation, the glass itself hardly deteriorates. If the glass is not deteriorated, the surface of the substrate is not deteriorated, thereby avoiding the problem of yield deterioration.

【0012】従来、炭化レジストのこびりつきの問題が
あったが、本発明ではガラス膜を挿入しているため、イ
オン注入後フッ化水素酸を含む水溶液にさらして、保護
膜のガラス膜の部分を溶かして、その上に乗っているレ
ジスト膜を浮き上がらせることにより、こびりつきを残
さずに保護膜を除去できる。こびりつき自体は基板と炭
化レジストが反応することで起こるが、ガラスを挿入す
ることで、炭化レジストはガラス膜にこびりつくが、フ
ッ化水素酸でガラス自体を溶かすことで、こびりついた
レジストは浮き上がって除去される。
Conventionally, there has been a problem of sticking of the carbonized resist. However, in the present invention, since a glass film is inserted, the glass film is exposed to an aqueous solution containing hydrofluoric acid after ion implantation, and the glass film portion of the protective film is removed. By dissolving and lifting the resist film on the protective film, the protective film can be removed without leaving sticking. The sticking itself is caused by the reaction between the substrate and the carbonized resist.By inserting glass, the carbonized resist sticks to the glass film. Is done.

【0013】本発明ではガラス膜の形成において塗布で
高額な装置を用いないため、従来のレジスト膜だけの保
護膜形成方法に比べて、専用装置によるコスト増は避け
られる。また、こびりつきを除去する工程で、酸素プラ
ズマ処理が不要になり、その分コストを抑えることがで
きる。上記保護膜において、ガラス膜とレジスト膜の2
量とせずに、ガラス膜だけにした場合は、次のような不
具合が生じる。ガラス膜を被処理基板上に形成した際
に、ガラス膜と被処理基板の熱膨張差でガラス膜に多数
のクラック(ひび割れ)が生じる。ガラス膜は硬くて脆
い性質を有するため、クラックが容易に発生する。クラ
ックが生じた状態でイオン注入を行った場合、クラック
の部分で注入イオンが阻止できず、保護膜としての機能
が果たせなくなる。これに対してガラス膜にレジスト膜
をつけることで、レジスト膜はそれ自体に柔軟性があ
り、クラックは発生せず、イオン注入で保護膜として完
全に機能する。さらに上記のようなこびりつき回避の利
点を享受することができる。
In the present invention, since an expensive apparatus is not used for coating in forming a glass film, an increase in cost due to a dedicated apparatus can be avoided as compared with the conventional method of forming a protective film using only a resist film. Further, in the step of removing sticking, the oxygen plasma treatment becomes unnecessary, and the cost can be reduced accordingly. In the above protective film, a glass film and a resist film
If only the glass film is used instead of the amount, the following problems occur. When a glass film is formed on a substrate to be processed, many cracks (cracks) occur in the glass film due to a difference in thermal expansion between the glass film and the substrate to be processed. Since the glass film is hard and brittle, cracks easily occur. If ion implantation is performed in a state where a crack has occurred, the implanted ion cannot be blocked at the crack, and the function as a protective film cannot be performed. On the other hand, by attaching a resist film to the glass film, the resist film itself has flexibility, does not crack, and functions completely as a protective film by ion implantation. Further, the advantage of avoiding sticking as described above can be enjoyed.

【0014】[0014]

【発明の実施の形態】以下、添付の図面を参照して本発
明の好ましい実施の形態について説明する。本実施形態
では半導体デバイスの製造に本発明のイオン注入方法を
用いた場合について説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In the present embodiment, a case where the ion implantation method of the present invention is used for manufacturing a semiconductor device will be described.

【0015】図1の(a)に示すように、初期状態のシ
リコン基板2は600μmの厚さのものである。
As shown in FIG. 1A, the silicon substrate 2 in the initial state has a thickness of 600 μm.

【0016】図1の(b)に示すように、シリコン基板
2の片面にアルコキシラン(Siに酸素と炭素と水素が
化合した分子)を有機溶媒に溶かした溶液を塗布し、ガ
ラス膜3を形成する。溶液の塗布にはスピンコーティン
グ法を用いることが望ましいが、ハケ塗りなどの他の塗
布法を用いるようにしてもよい。
As shown in FIG. 1B, a solution in which alkoxylan (molecule obtained by combining oxygen, carbon, and hydrogen with Si) is dissolved in an organic solvent is applied to one surface of the silicon substrate 2, and the glass film 3 is formed. Form. It is desirable to use a spin coating method for applying the solution, but another coating method such as brush coating may be used.

【0017】溶液塗布後、基板2を室温で約1時間放置
するか、又は100℃以上の高温に加熱し、塗膜中に含
まれる溶媒を揮発させ、平均膜厚0.1μmのガラス膜
3とする。
After the application of the solution, the substrate 2 is left at room temperature for about 1 hour or heated to a high temperature of 100 ° C. or more to volatilize the solvent contained in the coating film and form a glass film 3 having an average thickness of 0.1 μm. And

【0018】スピンコーティング法によりガラス膜3の
上にフォトレジスト溶液を塗布し、これを所定温度に加
熱し、平均膜厚2μmのフォトレジスト膜とする。次い
で、フォトリソグラフィによりレジスト膜4をパターン
エッチングし、図1の(c)に示すように、イオン注入
させたい領域のみが開口する開口部5aを有するレジス
ト膜4とする。
A photoresist solution is applied onto the glass film 3 by a spin coating method and heated to a predetermined temperature to form a photoresist film having an average thickness of 2 μm. Next, the resist film 4 is pattern-etched by photolithography to form a resist film 4 having an opening 5a in which only the region to be ion-implanted is opened as shown in FIG.

【0019】フッ化水素酸を含む水溶液中に前記レジス
ト膜4を有する基板2を短時間浸漬し、レジスト開口部
5aのガラス膜3を溶解除去する。これにより図1の
(d)に示すように、シリコン基板2の素地が露出する
開口部5bを得る。基板2を洗浄し、乾燥させる。
The substrate 2 having the resist film 4 is immersed in an aqueous solution containing hydrofluoric acid for a short time to dissolve and remove the glass film 3 in the resist opening 5a. Thereby, as shown in FIG. 1D, an opening 5b from which the base of the silicon substrate 2 is exposed is obtained. The substrate 2 is washed and dried.

【0020】その後、シリコン基板2をイオン注入装置
(例えば、電子ビーム励起型イオン注入装置)内に装入
し、イオン注入領域5cに所定条件下でn型イオンを注
入する。高エネルギーのイオンを打ち込むと、イオン注
入領域5cの周囲のフォトレジスト膜4にもイオンが打
ち込まれ、運動エネルギーのかなりの部分が熱エネルギ
ーに変換されて高温になり、この熱によりフォトレジス
ト膜4が炭化される。炭化したフォトレジスト膜4は、
焼き付きによりガラス膜3に強固に密着するが、ガラス
膜3が挿入されているためシリコン基板2にはこびり付
かない。このためシリコン基板2の熱的な変質が有効に
防止される。
Thereafter, the silicon substrate 2 is loaded into an ion implantation device (for example, an electron beam excitation type ion implantation device), and n-type ions are implanted into the ion implantation region 5c under predetermined conditions. When high-energy ions are implanted, ions are also implanted into the photoresist film 4 around the ion-implanted region 5c, and a considerable part of the kinetic energy is converted into heat energy and becomes high temperature. Is carbonized. The carbonized photoresist film 4
Although it adheres firmly to the glass film 3 by burning, it does not stick to the silicon substrate 2 because the glass film 3 is inserted. Therefore, thermal deterioration of the silicon substrate 2 is effectively prevented.

【0021】その後、基板をフッ化水素酸溶液中に浸漬
することにより、ガラス膜3は完全に除去され、それに
伴いフォトレジスト膜4も同時に剥離除去される。これ
によりn型ドーパントの高濃度領域5cをもつシリコン
基板2が得られる。このようにして得られたシリコン基
板2は、領域5cを除く表面部位に炭化レジスト膜のこ
びり付きがなく、変質も受けないので、高品質半導体デ
バイスの製造に適している。
Thereafter, the glass film 3 is completely removed by immersing the substrate in a hydrofluoric acid solution, so that the photoresist film 4 is simultaneously peeled off. Thereby, silicon substrate 2 having high concentration region 5c of the n-type dopant is obtained. The silicon substrate 2 thus obtained is suitable for the manufacture of high-quality semiconductor devices because the carbonized resist film does not stick to the surface except for the region 5c and is not deteriorated.

【0022】次に、本発明の実施例と比較例について説
明する。 (実施例)被処理基板として4インチ径のシリコン基板
2を用いた。シリコン基板2は650μmの厚さのもの
である。
Next, examples of the present invention and comparative examples will be described. (Example) A silicon substrate 2 having a diameter of 4 inches was used as a substrate to be processed. The silicon substrate 2 has a thickness of 650 μm.

【0023】保護膜の形成は次のようにして行なった。The formation of the protective film was performed as follows.

【0024】ガラス膜形成用の溶液としてアルコキシラ
ンを酢酸ブチル溶液に溶解してなる東京応化株式会社製
のOCD剤5.9%溶液を使用した。同溶液をSi基板
2上に所定量供給するとともに、基板2を2000rp
mで約30秒間回転させ、図1の(b)に示すようにS
i基板2の片面に平均膜厚0.1μmのガラス膜3を形
成した。さらに、基板2を約85℃の雰囲気で1時間程
度放置し、ガラス膜3に含まれる有機溶媒を揮発させ
た。
As a solution for forming a glass film, a 5.9% OCD agent solution manufactured by Tokyo Ohka Co., Ltd. prepared by dissolving alkoxylan in a butyl acetate solution was used. The same solution is supplied on the Si substrate 2 in a predetermined amount, and the substrate 2 is supplied at 2000 rpm.
m for about 30 seconds, and as shown in FIG.
A glass film 3 having an average thickness of 0.1 μm was formed on one surface of the i-substrate 2. Further, the substrate 2 was left in an atmosphere of about 85 ° C. for about 1 hour to volatilize the organic solvent contained in the glass film 3.

【0025】その後、東京応化株式会社製のポジレジス
ト剤を基板2に回転塗布し、平均膜厚2μmのフォトレ
ジスト膜4を形成した。そして、フォトリソグラフィの
パターンエッチングによりイオン注入予定領域のレジス
ト膜4を部分除去し、図1の(c)に示す開口部5aを
形成した。その基板2をフッ化水素酸1%水溶液中に数
秒間だけ浸漬し、開口部5aに露出するガラス膜3を溶
解除去し、図1の(d)に示すシリコン基板2の素地が
露出する開口部5bを形成した。
Thereafter, a positive resist agent manufactured by Tokyo Ohka Co., Ltd. was spin-coated on the substrate 2 to form a photoresist film 4 having an average film thickness of 2 μm. Then, the resist film 4 in the region to be ion-implanted was partially removed by photolithography pattern etching to form an opening 5a shown in FIG. 1C. The substrate 2 is immersed in a 1% aqueous solution of hydrofluoric acid for only a few seconds to dissolve and remove the glass film 3 exposed at the opening 5a, and to expose the substrate of the silicon substrate 2 shown in FIG. The portion 5b was formed.

【0026】上記実施例の基板を5枚供試した。燐
(P)イオンをエネルギー50keVの運動エネルギー
まで加速させ、各基板にそれぞれ照射した。照射量は5
×1015/cm2とした。その結果、表面のレジスト膜
は全数炭化した。しかし、この基板をフッ化水素酸1%
溶液中に数分間以上にわたり浸漬することで、レジスト
膜の下のガラス膜3が溶け出すので、炭化したレジスト
膜は基板から容易に剥離した。レジスト除去後のシリコ
ン基板の表面特性は顕微鏡観察により評価した。5枚の
シリコン基板につき調べた結果、レジストの取れ残りや
こびりつきは皆無であった。
Five substrates of the above embodiment were tested. Phosphorus (P) ions were accelerated to a kinetic energy of 50 keV, and each substrate was irradiated. The irradiation dose is 5
× 10 15 / cm 2 . As a result, the entire resist film on the surface was carbonized. However, this substrate was treated with 1% hydrofluoric acid.
By dipping in the solution for several minutes or more, the glass film 3 under the resist film was melted, so that the carbonized resist film was easily separated from the substrate. The surface characteristics of the silicon substrate after removing the resist were evaluated by microscopic observation. As a result of examining the five silicon substrates, there was no remaining residue or sticking of the resist.

【0027】(比較例)比較例としてガラス膜が無い状
態の基板、すなわち図2に示すレジスト膜4を直接塗布
した基板2の領域5cに対してイオン注入した場合につ
いて説明する。この比較例の基板を10枚以上供試し
た。上記実施例と同じ条件でイオン注入を行った。その
結果、全数の基板においてレジスト膜は炭化し、この炭
化したレジスト膜は薬液処理では溶解除去することがで
きなかったので、酸素プラズマ処理により除去した。ま
た、除去後のSi基板の表面では変色が見られ、炭化レ
ジストとの接触による変質も確認された。この変質のあ
る部分では、後工程で金属膜を積層したときに剥がれが
生じ、電子デバイスとして加工を終了した時点での歩留
まりを劣化させる原因となった。
(Comparative Example) As a comparative example, a case where ions are implanted into a substrate 5 without a glass film, that is, a region 5c of the substrate 2 directly coated with the resist film 4 shown in FIG. 2 will be described. Ten or more substrates of this comparative example were tested. Ion implantation was performed under the same conditions as in the above embodiment. As a result, the resist film was carbonized in all of the substrates, and the carbonized resist film could not be dissolved and removed by the chemical solution treatment, and was removed by oxygen plasma treatment. Further, discoloration was observed on the surface of the Si substrate after the removal, and alteration due to contact with the carbonized resist was also confirmed. In a part where the deterioration occurs, the metal film is peeled off when the metal film is laminated in a later step, which causes a decrease in the yield at the time of finishing the processing as an electronic device.

【0028】[0028]

【発明の効果】本発明によればイオン注入時における保
護膜としてのレジストの焼き付きによるこびりつきや基
板表面変質の問題を避けることができる。これによりそ
の後電子デバイスを形成した際に、メタルの密着性劣化
などの問題を解消でき、最終的には歩留まり向上につな
がる。また従来レジストの焼き付きによるこびりつき除
去のため、酸素プラズマ処理が必要であったが、本発明
ではそれを省略でき、かかるコストを削減できる。
According to the present invention, it is possible to avoid the problem of sticking and deterioration of the substrate surface due to burning of a resist as a protective film during ion implantation. As a result, when an electronic device is subsequently formed, problems such as deterioration of metal adhesion can be solved, and ultimately yield can be improved. In addition, oxygen plasma treatment was conventionally required to remove sticking due to burning of resist, but this can be omitted in the present invention, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(e)は本発明の実施形態に係るイオ
ン注入方法を示す工程図。
FIGS. 1A to 1E are process diagrams showing an ion implantation method according to an embodiment of the present invention.

【図2】従来のイオン注入方法を説明するための原理
図。
FIG. 2 is a principle diagram for explaining a conventional ion implantation method.

【符号の説明】[Explanation of symbols]

2…シリコン基板、 3…耐熱性膜(ガラス膜)、 4…保護マスク(フォトレジスト膜)、 5a,5b…開口部、 5c…イオン注入領域、 6…励起イオン。 Reference numeral 2 denotes a silicon substrate; 3 denotes a heat-resistant film (glass film); 4 denotes a protective mask (photoresist film); 5a and 5b denotes an opening;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 左右田 裕 大阪府大阪市東淀川区西淡路3丁目1番56 号 株式会社三社電機製作所内 Fターム(参考) 4K029 AA06 BB03 BD01 CA10 HA05 5F058 AD05 AD08 AG03 AG06 BD01 BD07 BH11 BH15  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Sokita 3-1-1, Nishiawaji, Higashiyodogawa-ku, Osaka-shi, Osaka F term (reference) 4K029 AA06 BB03 BD01 CA10 HA05 5F058 AD05 AD08 AG03 AG06 BD01 BD07 BH11 BH15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理基板上に、ドーピングさせたい領
域以外の部分に保護膜を形成し、該基板にイオン化させ
たドーピング原子を照射して、保護膜のない基板の表層
部分にドーピング原子をドープさせるイオン注入方法に
おいて、前記保護膜は耐熱性膜とフォトレジスト膜との
二層構造とし、前記耐熱性膜を基板とフォトレジスト膜
との間に形成し、イオン注入後に前記耐熱性膜をフォト
レジスト膜とともに基板上から除去することを特徴とす
るイオン注入方法。
A protective film is formed on a portion of a substrate other than a region to be doped on a substrate to be processed, and the substrate is irradiated with ionized doping atoms, so that doping atoms are applied to a surface layer portion of the substrate without the protective film. In the ion implantation method for doping, the protective film has a two-layer structure of a heat-resistant film and a photoresist film, and the heat-resistant film is formed between a substrate and a photoresist film. An ion implantation method characterized by removing the photoresist film from the substrate together with the photoresist film.
【請求項2】 前記耐熱性膜としてガラス膜を用いるこ
とを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein a glass film is used as the heat-resistant film.
【請求項3】 前記ガラス膜の形成方法として、アルコ
キシラン(Siに酸素と炭素と水素が化合した分子)を
有機溶媒に溶かした溶液を被処理基板上に塗布あるいは
回転塗布させた後に、該基板を室温で放置するか、又は
高温に加熱して、塗布溶液中の有機溶媒を揮発させるこ
とを特徴とする請求項2記載の方法。
3. A method of forming a glass film, comprising: applying or spin-coating a solution of alkoxylan (molecule obtained by combining oxygen, carbon, and hydrogen on Si) in an organic solvent onto a substrate to be processed; The method according to claim 2, wherein the substrate is left at room temperature or heated to a high temperature to volatilize the organic solvent in the coating solution.
【請求項4】 フッ化水素酸を含む水溶液をイオン注入
後の基板に接触させ、前記ガラス膜の部分を溶解するこ
とにより、その上のフォトレジスト膜を浮き上がらせて
基板から除去することを特徴とする請求項2記載の方
法。
4. The method according to claim 1, wherein an aqueous solution containing hydrofluoric acid is brought into contact with the substrate after the ion implantation, and a portion of the glass film is dissolved, so that the photoresist film thereon floats up and is removed from the substrate. The method according to claim 2, wherein
JP2001037153A 2001-02-14 2001-02-14 Ion implantation method Withdrawn JP2002246330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037153A JP2002246330A (en) 2001-02-14 2001-02-14 Ion implantation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037153A JP2002246330A (en) 2001-02-14 2001-02-14 Ion implantation method

Publications (1)

Publication Number Publication Date
JP2002246330A true JP2002246330A (en) 2002-08-30

Family

ID=18900327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037153A Withdrawn JP2002246330A (en) 2001-02-14 2001-02-14 Ion implantation method

Country Status (1)

Country Link
JP (1) JP2002246330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004097914A1 (en) * 2003-04-25 2006-07-13 住友電気工業株式会社 Manufacturing method of semiconductor device
JP2012064876A (en) * 2010-09-17 2012-03-29 Lapis Semiconductor Co Ltd Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004097914A1 (en) * 2003-04-25 2006-07-13 住友電気工業株式会社 Manufacturing method of semiconductor device
US7759211B2 (en) 2003-04-25 2010-07-20 Sumitomo Electric Industries, Ltd. Method of fabricating semiconductor device
JP2012064876A (en) * 2010-09-17 2012-03-29 Lapis Semiconductor Co Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US8563408B2 (en) Spin-on formulation and method for stripping an ion implanted photoresist
JP3054123B2 (en) Ion implantation method
WO2004097914A1 (en) Method for manufacturing semiconductor device
JP2002016013A (en) Method of manufacturing silicon carbide semiconductor device
JP2002246330A (en) Ion implantation method
JPH0143451B2 (en)
JP2001052979A (en) Formation method for resist, working method for substrate, and filter structure
JP3117687B2 (en) Aperture plate and processing method thereof
JP2002270813A (en) Manufacturing method of semiconductor device
KR20150133739A (en) Method for doping silicon sheets
KR920010694B1 (en) Impurity doping method for semiconductor substrate
JP3103629B2 (en) Method for manufacturing arsenic compound semiconductor device
JP2004119754A (en) Wire, manufacturing method of wire, semiconductor device, and manufacturing method thereof
JPH07263436A (en) Oxidation of silicon substrate
JPS5958837A (en) Manufacture of semiconductor device
JPH0529243A (en) Manufacture of semiconductor device
JPH03185823A (en) Manufacture of semiconductor device
TWI305025B (en) Manufacturing method of ultra-thin gate dielectric layer
JPH10125571A (en) Pattern forming method
KR20000018569A (en) Method for forming photoresist patterns
JPS6248028A (en) Forming method for field oxide film
JP2000294536A (en) Manufacture of semiconductor device
KR20020050370A (en) Method of manufacturing a seimconductor device with minimizing the formation of watermarks
JPS61187233A (en) Formation of electrodes in semiconductor device
JPH02146734A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060130

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513