JP2002245855A - Resin component for insulation material, and insulation material using the same - Google Patents

Resin component for insulation material, and insulation material using the same

Info

Publication number
JP2002245855A
JP2002245855A JP2001042481A JP2001042481A JP2002245855A JP 2002245855 A JP2002245855 A JP 2002245855A JP 2001042481 A JP2001042481 A JP 2001042481A JP 2001042481 A JP2001042481 A JP 2001042481A JP 2002245855 A JP2002245855 A JP 2002245855A
Authority
JP
Japan
Prior art keywords
insulating material
resin
resin composition
heat
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001042481A
Other languages
Japanese (ja)
Inventor
Tomohito Ootsuki
智仁 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001042481A priority Critical patent/JP2002245855A/en
Publication of JP2002245855A publication Critical patent/JP2002245855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation material displaying excellent thermal property and electric property when used for semiconductor. SOLUTION: The resin component for insulation material has a component having a foamed structure of 1,000-2,000 m2/g (A), and a heat resistant resin or a precursor of it (B), as essential components, and the insulation material using the same is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁材に関するも
のであり、更に詳しくは、電気・電子機器用、半導体装
置用として優れた特性を有する絶縁材用樹脂組成物及び
これを用いた絶縁材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material, and more particularly, to a resin composition for an insulating material having excellent characteristics for use in electric / electronic devices and semiconductor devices, and an insulating material using the same. It is about.

【0002】[0002]

【従来の技術】電気電子機器用、半導体装置用材料に求
められている特性のなかで、電気特性と耐熱性は、最も
重要な特性である。特に、近年、回路の微細化と信号の
高速化に伴い、誘電率の低い絶縁材料が要求されてい
る。この2つの特性を両立させるための材料として、耐
熱性樹脂を用いた絶縁材が、期待されている。例えば、
従来から用いられている二酸化シリコン等の無機の絶縁
材は、高耐熱性を示すが、誘電率が高く、要求特性が高
度化している現在では、前述の特性について、両立が困
難になりつつある。ポリイミド樹脂に代表される耐熱性
樹脂は、電気特性と耐熱性に優れ、2つの特性の両立が
可能であり、実際にプリント回路のカバーレイや半導体
装置のパッシベーション膜などに用いられている。
2. Description of the Related Art Among the characteristics required for materials for electric / electronic devices and semiconductor devices, electric characteristics and heat resistance are the most important characteristics. In particular, in recent years, with miniaturization of circuits and speeding up of signals, an insulating material having a low dielectric constant has been required. An insulating material using a heat-resistant resin is expected as a material for achieving both of these characteristics. For example,
Conventionally used inorganic insulating materials such as silicon dioxide have high heat resistance, but have a high dielectric constant and the required characteristics are becoming more sophisticated. . A heat-resistant resin typified by a polyimide resin has excellent electrical characteristics and heat resistance, and can achieve both of the two characteristics, and is actually used for a coverlay of a printed circuit, a passivation film of a semiconductor device, and the like.

【0003】しかしながら、近年の半導体装置の高機能
化、高性能化にともない、電気特性、耐熱性について著
しい向上が必要とされているため、更に高性能な樹脂
が、必要とされるようになっている。特に、誘電率につ
いて、2.5を下回るような低誘電率材料が期待されて
おり、従来の絶縁材では、必要とされる特性に達してい
ない。これに対して、これまでには、例えば、ポリイミ
ド樹脂及び溶剤から成る樹脂組成物に、熱分解性樹脂を
添加、または共重合させたものを後工程の加熱により分
解させる。ポリイミド樹脂構造は熱をかけても変化しな
いため、熱分解させた後が空隙を形成する。この空隙に
は、誘電率が約1である空気が、存在していると考えら
れるので、この空隙を用いて絶縁材の誘電率の低減が試
みられている。しかし、ポリイミドの耐熱性樹脂と熱分
解性樹脂が相溶すると可塑化効果で、ガラス転移点が低
くなってしまうため、熱分解性樹脂を分解させる温度域
で、ポリイミド樹脂がやわらかくなり空隙が潰れてしま
い、誘電率を低減させる効果が少ない。また、ポリイミ
ド等の耐熱性樹脂と熱分解性樹脂とを、相溶させずにう
まく相分離構造が形成できたとしても、製造工程におい
て熱分解樹脂を分解させる際の加熱等に、多大なる労力
を要するものであった。
[0003] However, with recent advances in the functions and performance of semiconductor devices, remarkable improvements in electrical characteristics and heat resistance have been required, so that even higher performance resins have been required. ing. In particular, a low dielectric constant material having a dielectric constant of less than 2.5 is expected, and a conventional insulating material does not reach required characteristics. On the other hand, heretofore, for example, a resin composition comprising a polyimide resin and a solvent to which a thermally decomposable resin is added or copolymerized is decomposed by heating in a later step. Since the polyimide resin structure does not change even when heat is applied, voids are formed after thermal decomposition. Since it is considered that air having a dielectric constant of about 1 is present in this gap, attempts have been made to reduce the dielectric constant of the insulating material using this gap. However, when the heat-resistant resin and the thermally decomposable resin of polyimide are compatible with each other, the glass transition point becomes low due to the plasticizing effect.In a temperature range where the thermally decomposable resin is decomposed, the polyimide resin becomes soft and the voids are crushed. The effect of reducing the dielectric constant is small. Even if a heat-resistant resin such as polyimide and a thermally decomposable resin can be successfully formed into a phase-separated structure without being compatible with each other, a large amount of labor is required for heating and the like when decomposing the thermally decomposed resin in a manufacturing process. Required.

【0004】[0004]

【発明が解決しようとする課題】本発明は、極めて低い
誘電率と良好な絶縁性を示すとともに、耐熱性にも優れ
た絶縁材用樹脂組成物及びこれを用いた絶縁材を提供す
る事にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a resin composition for an insulating material which exhibits an extremely low dielectric constant and good insulating properties, and also has excellent heat resistance and an insulating material using the same. is there.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記従来
の問題点を鑑み、鋭意検討を重ねた結果、以下の手段に
より、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, have completed the present invention by the following means.

【0006】すなわち、本発明は、1〜5項に記載の通
りである。 1.比表面積が1,000〜2,000m2/gである
空孔構造を有する成分(A)と、耐熱性樹脂またはその
前駆体(B)とを必須成分とする絶縁材用樹脂組成物。
That is, the present invention is as described in items 1 to 5. 1. A resin composition for an insulating material comprising a component (A) having a pore structure having a specific surface area of 1,000 to 2,000 m 2 / g and a heat-resistant resin or its precursor (B) as essential components.

【0007】2.比表面積が1,000〜2,000m
2/gである空孔構造を有する成分(A)が、活性炭で
ある第1項記載の絶縁材用樹脂組成物。
[0007] 2. Specific surface area is 1,000-2,000m
2. The resin composition for an insulating material according to claim 1, wherein the component (A) having a pore structure of 2 / g is activated carbon.

【0008】4.耐熱性樹脂またはその前駆体(B)
が、ポリイミド樹脂またはポリイミド前駆体である第1
〜3項のいずれか1項に記載の絶縁材用樹脂組成物。
[0008] 4. Heat resistant resin or its precursor (B)
Is a polyimide resin or a polyimide precursor,
Item 4. The resin composition for an insulating material according to any one of Items 3 to 3.

【0009】5.耐熱性樹脂またはその前駆体(B)
が、ポリベンゾオキサゾール樹脂またはポリベンゾオキ
サゾール前駆体である第1〜2項のいずれか1項に記載
の絶縁材用樹脂組成物。
[0009] 5. Heat resistant resin or its precursor (B)
Is a polybenzoxazole resin or a polybenzoxazole precursor, The resin composition for insulating materials according to any one of Items 1 to 2.

【0010】6.第1〜4項のいずれかに1項に記載の
絶縁材用樹脂組成物を用いて得られた絶縁材。
[0010] 6. An insulating material obtained by using the resin composition for an insulating material according to any one of items 1 to 4.

【0011】[0011]

【発明の実施の形態】本発明の絶縁材用樹脂組成物は、
比表面積1,000〜2,000m2/gである空孔構
造を有する成分(A)と、耐熱性樹脂またはその前駆体
(B)とを必須成分として成るものである。前記成分
(A)と成分(B)以外の成分としては、溶剤を用いる
ことが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The resin composition for insulating material of the present invention comprises:
It comprises, as essential components, a component (A) having a pore structure having a specific surface area of 1,000 to 2,000 m 2 / g and a heat-resistant resin or its precursor (B). As a component other than the components (A) and (B), a solvent can be used.

【0012】本発明の絶縁材用樹脂組成物は、比表面積
が1,000〜2,000m2/gである空孔構造を有
する成分(A)を、耐熱性樹脂またはその前駆体(B)
と、混合又は化学的に結合させることにより、得ること
ができる。
The resin composition for an insulating material of the present invention comprises a component (A) having a pore structure having a specific surface area of 1,000 to 2,000 m 2 / g, a heat-resistant resin or a precursor (B) thereof.
And a chemical bond.

【0013】本発明の絶縁材用樹脂組成物は、基材等の
上に塗布して塗膜を形成した後、加熱し製膜を行うこと
により、また、ガラスクロス等に含浸させて、加熱する
ことにより絶縁材とすることができる。
The resin composition for an insulating material of the present invention is coated on a substrate or the like to form a coating film, and then heated to form a film, or impregnated in a glass cloth or the like, and heated. By doing so, an insulating material can be obtained.

【0014】本発明に用いる成分(A)の中空内部は、
空気であるため、空気の誘電率は、1と考えられるの
で、誘電率が1よりも大きな耐熱性樹脂またはその前駆
体(B)に、成分(A)を添加することによって、誘電
率を低減させることができ、絶縁材とした後も、空孔構
造が保持され、低い誘電率の絶縁材を得ることが出来る
ものである。また、成分(A)の空孔の比表面積1,0
00m2/g未満であると空孔の空径分布がマイクロメ
ーターのオーダーになり膜中に分散し、全体としての見
かけ上の誘電率は下がると考えられるが、微小な部分部
分ではナノメーターのオーダーの空孔が分散していない
と真の誘電率は低下しない。また、2,000cm2
gを超えると非常に小さい細孔が増えさらに誘電率が下
がると考えられるが、ナノメーターオーダー以下になり
空孔とは考えられなくなり誘電率が下がらない。
The hollow interior of the component (A) used in the present invention comprises:
Since the air is air, the dielectric constant of the air is considered to be 1. Therefore, the dielectric constant is reduced by adding the component (A) to the heat-resistant resin having a dielectric constant larger than 1 or its precursor (B). The pore structure is maintained even after the insulating material is formed, and an insulating material having a low dielectric constant can be obtained. Further, the specific surface area of the pores of the component (A) is 1,0.
If it is less than 00 m 2 / g, the pore size distribution will be in the order of micrometers and will be dispersed in the film, and the apparent dielectric constant as a whole will be reduced. If the vacancies of the order are not dispersed, the true dielectric constant does not decrease. In addition, 2,000 cm 2 /
When the value exceeds g, it is considered that very small pores increase and the dielectric constant further decreases. However, the dielectric constant is reduced to the order of nanometers or less, and the dielectric constant does not decrease.

【0015】ここでいうBET比表面積法とは、液体窒
素の沸点下で窒素の吸着を行わせ、窒素が単分子層で吸
着剤、例えば活性炭の全表面を覆うときの吸着量(v
m)と窒素分子1個の占める面積から比表面積が算出さ
れる。
[0015] The BET specific surface area method mentioned here means that nitrogen is adsorbed at the boiling point of liquid nitrogen, and the amount of adsorption (v) when nitrogen covers the entire surface of the adsorbent, for example, activated carbon in a monolayer.
The specific surface area is calculated from m) and the area occupied by one nitrogen molecule.

【0016】本発明に用いる比表面積が1,000〜
2,000m2/gである空孔構造を有する成分(A)
としては、SiO2膜、シロキサン膜、活性炭等がある
が活性炭が好ましい。
The specific surface area used in the present invention is 1,000 to
Component (A) having a pore structure of 2,000 m 2 / g
Examples thereof include a SiO 2 film, a siloxane film, and activated carbon, but activated carbon is preferred.

【0017】本発明に用いる活性炭の原料としては、活
性炭がその大部分が炭素からなっているため、加熱燃焼
して炭化する物質は、すべて原料とすることができる。
大量に安価に安定して供給できるものとして、おが屑、
木炭、石炭、ヤシ殼等が使用されている。最近は、リサ
イクルの観点からフェノール樹脂を含む熱硬化性樹脂製
品のスプール、カル、ランナーなどの成形廃材や新聞古
紙にフェノール樹脂を含浸させたものも検討されている
が、これらを用いることができる。また、活性炭の製法
としては、まず、原料を窒素ガス気流中で600〜10
00℃、より好ましくは700〜900℃の温度で炭化
する。ついで、この温度で保持し、窒素ガスを炭化中流
し、自然冷却した後、炭化物を取りだし、更に、700
〜1000℃で、より好ましくは800〜900℃温度
まで昇温させた後、水蒸気を流して賦活を行う。炭化し
た後、賦活、冷却した後、微粉砕して用いる。
As a raw material of the activated carbon used in the present invention, since most of the activated carbon is made of carbon, any substance which is carbonized by heating and burning can be used as the raw material.
Sawdust,
Charcoal, coal, coconut shell, etc. are used. In recent years, from the viewpoint of recycling, thermosetting resin products containing phenolic resin, such as spools, culls, runners, etc., and waste paper impregnated with phenolic resin have been studied, but these can be used. . In addition, as a method for producing activated carbon, first, a raw material is placed in a nitrogen gas stream at 600 to 10%.
The carbonization is performed at a temperature of 00 ° C, more preferably 700 to 900 ° C. Subsequently, the temperature was maintained at this temperature, nitrogen gas was flowed during the carbonization, and after natural cooling, the carbide was taken out.
After the temperature is raised to a temperature of 800 to 900 ° C., more preferably 800 to 900 ° C., activation is performed by flowing steam. After carbonization, activation and cooling, it is pulverized and used.

【0018】本発明に用いる耐熱性樹脂またはその前駆
体(B)の例を挙げると、耐熱性樹脂として、ポリイミ
ド樹脂、ポリイソイミド樹脂、ポリアミドイミド樹脂、
ポリアミド樹脂、ビスマレイミド樹脂、ポリベンゾオキ
サゾール樹脂、ポリヒドロキシアミド樹脂、ポリベンゾ
チアゾール樹脂等であるが、これらに限られるものでは
ない。また、耐熱性樹脂の前駆体(B)の例を挙げる
と、ポリアミック酸、ポリアミド酸、ポリアミド酸エス
テル及びポリイソイミドなどのポリイミド前駆体、ポリ
ヒドロキシアミドなどのポリベンゾオキサゾール前駆体
等であるが、これらに限られるものではない。これらの
なかで、ポリイミド樹脂と、ポリベンゾオキサゾール樹
脂は、耐熱性が高く好ましい。また、これらを単独で用
いても良いし、混合あるいは共重合させてもよい。
Examples of the heat-resistant resin or its precursor (B) used in the present invention include polyimide resin, polyisoimide resin, polyamide-imide resin, and the like.
Examples thereof include a polyamide resin, a bismaleimide resin, a polybenzoxazole resin, a polyhydroxyamide resin, and a polybenzothiazole resin, but are not limited thereto. Examples of the precursor (B) of the heat-resistant resin include polyimide precursors such as polyamic acid, polyamic acid, polyamic acid ester and polyisoimide, and polybenzoxazole precursors such as polyhydroxyamide. It is not limited to. Among them, polyimide resin and polybenzoxazole resin are preferable because of their high heat resistance. These may be used alone, or may be mixed or copolymerized.

【0019】本発明の絶縁材用樹脂組成物の成分とし
て、溶剤を用いる場合に、好ましい溶剤の例を挙げる
と、N,N-ジメチルアセトアミド、N-メチル-2-ピロリド
ン、テトラヒドロフラン、プロピレングリコールモノメ
チルエーテル、プロピレングリコールモノメチルエーテ
ルアセテート、ジエチレングリコールモノメチルエーテ
ル、γ-ブチロラクトン、1,1,2,2-テトラクロロエタン
等であるが、これらに限定されるものではない。また、
これらを2種以上同時に用いても良い。
When a solvent is used as a component of the resin composition for insulating material of the present invention, examples of preferred solvents include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, propylene glycol monomethyl Ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, γ-butyrolactone, 1,1,2,2-tetrachloroethane, and the like, but are not limited thereto. Also,
Two or more of these may be used simultaneously.

【0020】さらに、本発明の絶縁材用樹脂組成物に
は、上記成分以外にも、目的に応じて添加剤を加えるこ
とができる。例えば、塗布性や含浸性を向上させるため
に、界面活性剤等を添加しても良い。
Further, additives other than the above components can be added to the resin composition for insulating material of the present invention according to the purpose. For example, a surfactant or the like may be added to improve applicability and impregnation.

【0021】本発明の絶縁材用樹脂組成物は、各成分
を、絶縁材の空隙率が18〜30%となるように配合す
る。成分(A)と成分(B)との重量比が、5/95か
ら20/80、より好ましくは7/93から15/85
ある。これらを均一に混合または化学的に結合させて得
られる。
The resin composition for an insulating material of the present invention is blended with each component so that the porosity of the insulating material is 18 to 30%. The weight ratio of component (A) to component (B) is from 5/95 to 20/80, more preferably from 7/93 to 15/85.
is there. They are obtained by uniformly mixing or chemically bonding them.

【0022】本発明の絶縁材製造方法の例としては、本
発明の絶縁材用樹脂組成物を用い、上記溶剤に溶解しワ
ニスとした後、適当な支持体、例えば、ガラス、金属、
シリコンウエハやセラミック基盤などに塗布する。具体
的な塗布の方法としては、スピナーを用いた回転塗布、
スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロー
ルコーティングなどが挙げられる。このようにして、塗
膜形成し、加熱乾燥または加熱縮合および乾燥させるこ
とにより、誘電率の低い絶縁材を形成することができ
る。
As an example of the method for producing an insulating material of the present invention, a resin composition for an insulating material of the present invention is dissolved in the above-mentioned solvent to form a varnish, and then a suitable support, for example, glass, metal,
Apply to silicon wafers and ceramic substrates. As a specific coating method, spin coating using a spinner,
Spray coating using a spray coater, dipping, printing, roll coating and the like can be mentioned. In this manner, an insulating material having a low dielectric constant can be formed by forming a coating film and drying by heating or heat condensation and drying.

【0023】[0023]

【実施例】以下に、実施例により、本発明を具体的に説
明するが、本発明は、実施例の内容になんら限定される
ものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which by no means limit the present invention.

【0024】「実施例1」 (1)ポリイミド樹脂の合成 かく拌装置、窒素導入管、原料投入口を備えたセパラブ
ルフラスコ中、2,2−ビス(4−(4,4’−アミノ
フェノキシ)フェニル)ヘキサフルオロプロパン5.1
8g(0.01mol)と2,2’−ビス(トリフルオ
ロメチル)−4,4’−ジアミノビフェニル9.60g
(0.03mol)を、乾燥したN−メチル−2−ピロ
リドン(以下NMPと略す)200gに溶解する。乾燥
窒素下、10℃に溶液を冷却して、ビフェニルテトラカ
ルボン酸二無水物2.94g(0.01mol)とヘキ
サフルオロイソプロピリデン−2,2’−ビス(フタル
酸無水物)13.32g(0.03mol)を添加し
た。添加してから5時間かく拌した後に室温まで戻し、
室温で2時間かく拌し、ポリイミド前駆体であるポリア
ミド酸の溶液を得た。このポリアミド酸溶液に、ピリジ
ン50gを加えた後、無水酢酸5.1g(0.05mo
l)を滴下し、系の温度を70℃に保って、7時間イミ
ド化反応を行った。この溶液を20倍量の水中に滴下し
て沈殿を回収し、60℃で72時間真空乾燥して耐熱性
樹脂であるポリイミド樹脂の固形物を得た。ポリイミド
樹脂の分子量は数平均分子量26,000であった。
Example 1 (1) Synthesis of polyimide resin In a separable flask equipped with a stirrer, a nitrogen inlet tube, and a raw material inlet, 2,2-bis (4- (4,4'-aminophenoxy) ) Phenyl) hexafluoropropane 5.1
8 g (0.01 mol) and 9.60 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl
(0.03 mol) is dissolved in 200 g of dried N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The solution was cooled to 10 ° C. under dry nitrogen, and 2.94 g (0.01 mol) of biphenyltetracarboxylic dianhydride and 13.32 g of hexafluoroisopropylidene-2,2′-bis (phthalic anhydride) ( 0.03 mol) was added. After stirring for 5 hours after the addition, return to room temperature,
The mixture was stirred at room temperature for 2 hours to obtain a solution of polyamic acid as a polyimide precursor. After adding 50 g of pyridine to this polyamic acid solution, 5.1 g of acetic anhydride (0.05 mol) was added.
l) was added dropwise, and an imidization reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into a 20-fold amount of water to collect a precipitate, followed by vacuum drying at 60 ° C. for 72 hours to obtain a solid polyimide resin as a heat-resistant resin. The number average molecular weight of the polyimide resin was 26,000.

【0025】(2)活性炭の作製 おが屑を粉砕し粒度が、9〜24メッシュになるよう
に、ふるい分けした。上記ふるい分けした試料90g
を、直径約60mm、長さ約1.5mの石英菅に入れ菅
状炉にて昇温速度5℃/minで800℃まで昇温し、
その温度で40分間保持し、自然冷却後、炭化試料を取
り出した。炭化中は、窒素ガスを400ml/min流
した。その後、上記炭化試料8gを直径約40mm、長
さ約1mの石英菅に入れ菅状炉にて昇温速度30℃/m
inで800℃まで昇温し、その温度に達した後、水蒸
気を流して所定時間賦活を行った。賦活中は窒素ガスを
300ml/min流した。自然冷却後、活性炭を取り
出した。1mol/Lの塩酸30mlを加え、室温で2
4時間、振とうし酸洗浄を行った。十分に水洗した後、
空気乾燥を行い、粉砕機を用いて0.1μmφ以下に微
粉砕した。得られた活性炭の空孔の比表面積をBET比
表面積法で測定した結果2,000m2/gであった。
(2) Preparation of Activated Carbon Sawdust was crushed and sieved to a particle size of 9 to 24 mesh. 90g of the above sieved sample
Into a quartz tube having a diameter of about 60 mm and a length of about 1.5 m, and heated to 800 ° C. at a rate of 5 ° C./min in a tubular furnace.
The temperature was maintained for 40 minutes, and after natural cooling, a carbonized sample was taken out. During carbonization, nitrogen gas was flowed at 400 ml / min. Thereafter, 8 g of the carbonized sample was placed in a quartz tube having a diameter of about 40 mm and a length of about 1 m, and the temperature was raised at a rate of 30 ° C./m in a tube furnace.
The temperature was raised to 800 ° C. in, and after reaching the temperature, steam was flowed to activate for a predetermined time. During activation, nitrogen gas was flowed at 300 ml / min. After natural cooling, the activated carbon was taken out. 30 ml of 1 mol / L hydrochloric acid was added, and
Shaking acid washing was performed for 4 hours. After washing thoroughly with water,
It was air-dried and finely pulverized to 0.1 μmφ or less using a pulverizer. The specific surface area of the pores of the obtained activated carbon was measured by the BET specific surface area method and found to be 2,000 m 2 / g.

【0026】(3)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリイミド樹脂10.0gを、γ-
ブチロラクトン/1,1,2,2−テトラクロロエタン
(70/30,vol/vol)50.0gに溶解した
後、上記で得た活性炭1.5gを加えてかく拌し、絶縁
材用樹脂組成物を得た。厚さ200nmのタンタルを成
膜したシリコンウエハ上に、この絶縁材用樹脂組成物を
スピンコートした後、窒素雰囲気のオーブン中で加熱硬
化した。加熱硬化の際は、120℃/4分間、150℃
/30分間保持した後、400℃で60分間保持した。
このようにして、厚さ0.8μmの絶縁材の被膜を得
た。この絶縁材の皮膜上に、面積0.1cm2のアルミ
の電極を蒸着により形成し、基板のタンタルとの間のキ
ャパシタンスをLCRメーターにより測定した。膜厚、
電極面積、キャパシタンスから絶縁材の誘電率を算出し
たところ、2.35であった。また、絶縁材の密度を密
度勾配管により求めたところ、1.20であった。活性
炭を添加せず、空隙が全くない場合の密度は1.41で
あったので、これから空隙率は15.0%と算出され
た。
(3) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyimide resin synthesized above was
After dissolving in 50.0 g of butyrolactone / 1,1,2,2-tetrachloroethane (70/30, vol / vol), add 1.5 g of the activated carbon obtained above and stir to obtain a resin composition for insulating material. I got This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. In case of heat curing, 120 ° C / 4 minutes, 150 ° C
/ 30 minutes and then at 400 ° C. for 60 minutes.
Thus, a 0.8 μm thick insulating film was obtained. An aluminum electrode having an area of 0.1 cm 2 was formed on the insulating film by vapor deposition, and the capacitance between the electrode and tantalum on the substrate was measured by an LCR meter. Film thickness,
The dielectric constant of the insulating material calculated from the electrode area and the capacitance was 2.35. Moreover, the density of the insulating material was determined to be 1.20 using a density gradient tube. The density when no activated carbon was added and there were no voids was 1.41, and the porosity was calculated from this to be 15.0%.

【0027】「実施例2」 (1)ポリイミド前駆体の合成 実施例1のポリイミド樹脂の合成においてポリイミド前
駆体の合成に用いた2,2’−ビス(4−(4,4’−
アミノフェノキシ)フェニル)ヘキサフルオロプロパン
5.18g(0.01mol)と2,2’−ビス(トリ
フルオロメチル)−4,4’−ジアミノビフェニル9.
60g(0.03mol)とを4,4’−ジアミノジフ
ェニルエーテル8.01g(0.04mol)に、ビフ
ェニルテトラカルボン酸二無水物2.94g(0.01
mol)とヘキサフルオロイソプロピリデン−2,2’
−ビス(フタル酸無水物)13.32g(0.03mo
l)とをピロメリット酸二無水物8.72g(0.04
mol)に代えた以外は、実施例1と同様にしてポリイ
ミド前駆体であるポリアミド酸の溶液を得た。この溶液
を20倍量の水中に滴下して沈殿を回収し、25℃で7
2時間真空乾燥して耐熱性樹脂であるポリイミドの前駆
体であるポリアミド酸の固形物を得た。得られたポリア
ミド酸の数平均分子量は28,000であった。
Example 2 (1) Synthesis of Polyimide Precursor In the synthesis of the polyimide resin of Example 1, 2,2′-bis (4- (4,4′-
5.18 g (0.01 mol) of aminophenoxy) phenyl) hexafluoropropane and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl
60 g (0.03 mol) and 4,01′-diaminodiphenyl ether (8.01 g, 0.04 mol) and biphenyltetracarboxylic dianhydride 2.94 g (0.01
mol) and hexafluoroisopropylidene-2,2 '
13.32 g of bis (phthalic anhydride) (0.03 mol
l) and 8.72 g (0.04 g) of pyromellitic dianhydride
mol), a solution of polyamic acid as a polyimide precursor was obtained in the same manner as in Example 1. This solution was dropped into 20 times the volume of water to collect a precipitate.
Vacuum drying was performed for 2 hours to obtain a solid of polyamic acid, which is a precursor of polyimide as a heat-resistant resin. The number average molecular weight of the obtained polyamic acid was 28,000.

【0028】(2)活性炭の作製 成形不良品(スプール、ランナーを含む)であるフェノ
ール樹脂廃材として、フェノール樹脂(45wt%)、
炭酸カルシウム(10wt%)、木粉(35wt%)、
硬化剤(5wt%)および着色剤(5wt%)が含まれ
ている物を破砕し、粒度が9〜24メッシュになるよう
にふるい分けした。上記ふるい分け試料90gを、直径
約60mm、長さ約1.5mの石英菅に入れ菅状炉に
て、昇温速度5℃/minで700℃まで昇温し、その
温度で40分間保持し、自然冷却後炭化試料を取り出し
た。炭化中は、窒素ガスを400ml/min流した。
上記で得た炭化試料8gを、直径約40mm、長さ約1
mの石英菅に入れ菅状炉にて、昇温速度30℃/min
で900℃まで昇温し、その温度に達した後、水蒸気を
流して、所定時間賦活を行った。賦活中は窒素ガスを3
00ml/min流した。自然冷却後、活性炭を取り出
した。原料に炭酸カルシウム等が含まれるため2mol
/L塩酸を30mlを加え室温で24hr振とうし酸洗
浄を行った。水洗後に空気乾燥を行い、粉砕機を用いて
0.1μmφ以下に微粉砕した。上記で得た活性炭の空
孔の比表面積をBET比表面積法で測定した結果1,2
00m2/gであった。
(2) Preparation of Activated Carbon Phenol resin (45 wt%) is used as phenol resin waste material which is a molding failure (including spools and runners).
Calcium carbonate (10 wt%), wood flour (35 wt%),
The material containing the curing agent (5 wt%) and the coloring agent (5 wt%) was crushed and sieved to a particle size of 9 to 24 mesh. 90 g of the above sieved sample is placed in a quartz tube having a diameter of about 60 mm and a length of about 1.5 m, and heated to 700 ° C. at a rate of 5 ° C./min in a tube furnace, and held at that temperature for 40 minutes. After natural cooling, a carbonized sample was taken out. During carbonization, nitrogen gas was flowed at 400 ml / min.
8 g of the carbonized sample obtained above was weighed at about 40 mm in diameter and about 1 in length.
m in a quartz tube and in a tube-shaped furnace at a heating rate of 30 ° C./min.
The temperature was raised to 900 ° C. at that temperature, and after reaching the temperature, steam was flowed to activate for a predetermined time. 3 nitrogen gas during activation
The flow was 00 ml / min. After natural cooling, the activated carbon was taken out. 2mol because raw material contains calcium carbonate etc.
Then, 30 ml of / L hydrochloric acid was added, and the mixture was shaken at room temperature for 24 hours to carry out acid washing. After washing with water, air drying was performed, and the mixture was finely pulverized to 0.1 μmφ or less using a pulverizer. The specific surface area of the pores of the activated carbon obtained above was measured by the BET specific surface area method.
00 m 2 / g.

【0029】(3)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリアミド酸10.0gをγ-ブチ
ロラクトン/1,1,2,2−テトラクロロエタン(7
0/30,vol/vol)50.0gに溶解した後、上
記で得た活性炭1.0g加えてかく拌し、絶縁材用樹脂
組成物を得た。厚さ200nmのタンタルを成膜したシ
リコンウエハ上に、この絶縁材用樹脂組成物をスピンコ
ートした後、窒素雰囲気のオーブン中で加熱硬化した。
加熱硬化の際は、120℃/4分間、150℃/30分
間保持した後、400℃で60分間保持した。このよう
にして、厚さ0.7μmの絶縁材の被膜を得た。以下実
施例1と同様にしてこの耐熱性樹脂の誘電率を測定した
ところ2.4であった。また、絶縁材の密度を密度勾配
管により求めたところ、1.10であった。活性炭を添
加せず、空隙が全くない場合の密度は1.43であった
ので、これから空隙率は23.0%と算出された。さら
にTEMで絶縁材皮膜の断面を観察したところ、直径が
0.7nmの空隙が均一に分散していることが分かっ
た。
(3) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyamic acid synthesized as described above was treated with γ-butyrolactone / 1,1,2,2-tetrachloroethane (7
(0/30, vol / vol) 50.0 g, and then added with 1.0 g of the activated carbon obtained above and stirred to obtain a resin composition for insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere.
In the case of heat curing, the film was kept at 120 ° C. for 4 minutes and 150 ° C. for 30 minutes, and then kept at 400 ° C. for 60 minutes. Thus, a coating of an insulating material having a thickness of 0.7 μm was obtained. The dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1 and found to be 2.4. The density of the insulating material was determined to be 1.10. Since the density when no activated carbon was added and there were no voids was 1.43, the porosity was calculated to be 23.0% from this. Further, when the cross section of the insulating material film was observed with a TEM, it was found that voids having a diameter of 0.7 nm were uniformly dispersed.

【0030】「実施例3」 (1)ポリベンゾオキサゾール樹脂の合成 4,4’−ヘキサフルオロイソプロピリデンジフェニル
−1,1’−ジカルボン酸25g、塩化チオニル45m
l及び乾燥ジメチルホルムアミド0.5mlを反応容器
に入れ、60℃で2時間反応させた。反応終了後、過剰
の塩化チオニルを加熱及び減圧により留去した。残査
を、ヘキサンを用いて再結晶を行い、4,4’−ヘキサ
フルオロイソプロピリデンジフェニル−1,1’ジカル
ボン酸クロリドを得た。かく拌装置、窒素導入管、滴下
漏斗を付けたセパラブルフラスコ中、2,2’−ビス
(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオ
ロプロパン7.32g(0.02mol)を、乾燥した
ジメチルアセトアミド100gに溶解し、ピリジン3.
96g(0.05mol)を添加後、乾燥窒素導入下、
−15℃でジメチルアセトアミド50gに、上記により
合成した4,4’−ヘキサフルオロイソプロピリデンジ
フェニル−1,1’−ジカルボン酸クロリド8.58g
(0.02mol)を溶解したものを30分間掛けて滴
下した。滴下終了後、室温まで戻し、室温で5時間かく
拌した。その後、反応液を水1000ml中に滴下し、
沈殿物を集め、40℃で48時間真空乾燥することによ
りポリベンゾオキサゾール前駆体であるポリヒドロキシ
アミドの固形物を得た。このポリヒドロキシアミドをN
MP200gに溶解した溶液にピリジン50gを加えた
後、無水酢酸3.1g(0.03mol)を滴下し、系
の温度を70℃に保って、7時間オキサゾール化反応を
行った。この溶液を20倍量の水中に滴下して沈殿を回
収し、60℃で72時間真空乾燥して耐熱性樹脂である
ポリベンゾオキサゾール樹脂の固形物を得た。得られた
ポリベンゾオキサゾール樹脂の数平均分子量は20,0
00であった。
Example 3 (1) Synthesis of polybenzoxazole resin 25 g of 4,4'-hexafluoroisopropylidenediphenyl-1,1'-dicarboxylic acid, thionyl chloride 45 m
l and 0.5 ml of dry dimethylformamide were placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The residue was recrystallized using hexane to obtain 4,4'-hexafluoroisopropylidenediphenyl-1,1'dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen introducing tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was dried with dimethyl 2. Dissolved in 100 g of acetamide and pyridine
After adding 96 g (0.05 mol), under dry nitrogen introduction,
8.55 g of 4,4′-hexafluoroisopropylidenediphenyl-1,1′-dicarboxylic acid chloride synthesized above was added to 50 g of dimethylacetamide at −15 ° C.
(0.02 mol) was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water,
The precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain a solid polyhydroxyamide as a polybenzoxazole precursor. This polyhydroxyamide is converted to N
After 50 g of pyridine was added to the solution dissolved in 200 g of MP, 3.1 g (0.03 mol) of acetic anhydride was added dropwise, and the oxazole-forming reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into a 20-fold amount of water to collect a precipitate, followed by vacuum drying at 60 ° C. for 72 hours to obtain a polybenzoxazole resin solid as a heat-resistant resin. The number average molecular weight of the obtained polybenzoxazole resin is 20,0.
00.

【0031】(2)活性炭の作製 成形不良品(スプール、ランナーを含む)であるフェノ
ール樹脂廃材として、フェノール樹脂(45wt%)、
炭酸カルシウム(5wt%)、木粉(40wt%)、硬
化剤(5wt%)および着色剤(5wt%)が含まれて
いる物を破砕し、粒度が9〜24メッシュになるように
ふるい分けした。上記ふるい分けした試料90gを直径
約60mm、長さ約1.5mの石英菅に入れ菅状炉に
て、昇温速度5℃/minで900℃まで昇温し、その
温度で40分間保持し、自然冷却後、炭化試料を取り出
した。炭化中は、窒素ガスを400ml/min流し
た。炭化試料8gを直径約40mm、長さ約1mの石英
菅に入れ菅状炉にて昇温速度30℃/minで900℃
まで昇温し、その温度に達した後、水蒸気を流して所定
時間賦活を行った。賦活中は、窒素ガスを300ml/
min流した。自然冷却後、活性炭を取り出した。原料
に炭酸カルシウム等が含まれるため1mol/Lの塩酸
30mlを加え室温で24時間、振とうし酸洗浄を行っ
た。水洗後に空気乾燥を行い、粉砕機を用いて0.1μ
mφ以下に微粉砕した。得られた活性炭の空孔の比表面
積をBET比表面積法で測定した結果2,000m2
gであった。
(2) Preparation of Activated Carbon Phenol resin (45 wt%) is used as phenol resin waste material which is defective in molding (including spool and runner).
A material containing calcium carbonate (5 wt%), wood flour (40 wt%), a hardener (5 wt%) and a coloring agent (5 wt%) was crushed and sieved to a particle size of 9 to 24 mesh. 90 g of the sieved sample is placed in a quartz tube having a diameter of about 60 mm and a length of about 1.5 m, and the temperature is raised to 900 ° C. at a rate of 5 ° C./min in a tubular furnace, and the temperature is maintained for 40 minutes. After natural cooling, a carbonized sample was taken out. During carbonization, nitrogen gas was flowed at 400 ml / min. 8 g of the carbonized sample is placed in a quartz tube having a diameter of about 40 mm and a length of about 1 m, and heated at a rate of 30 ° C./min to 900 ° C. in a tubular furnace.
Then, after reaching the temperature, steam was flowed to activate for a predetermined time. During activation, nitrogen gas was added at 300 ml /
min. After natural cooling, the activated carbon was taken out. Since the raw material contains calcium carbonate and the like, 30 ml of 1 mol / L hydrochloric acid was added, and the mixture was shaken and washed with acid at room temperature for 24 hours. Perform air drying after washing with water and use a crusher to
It was pulverized to mφ or less. The specific surface area of the pores of the obtained activated carbon was measured by the BET specific surface area method. As a result, 2,000 m 2 /
g.

【0032】(3)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリベンゾオキサゾール樹脂10.
0gをγ-ブチロラクトン/1,1,2,2−テトラクロ
ロエタン(70/30,vol/vol)50.0gに溶
解した後、上記で得た活性炭0.8gを添加してかく拌
し、絶縁材用樹脂組成物を得た。厚さ200nmのタン
タルを成膜したシリコンウエハ上に、この絶縁材用樹脂
組成物をスピンコートした後、窒素雰囲気のオーブン中
で加熱硬化した。加熱硬化の際は、120℃/4分間、
150℃/30分間保持した後、400℃で60分間保
持した。このようにして厚さ0.7μmの絶縁材の被膜
を得た。以下実施例1と同様にして、この耐熱性樹脂の
誘電率を測定したところ2.1であった。また、絶縁材
の密度を密度勾配管により求めたところ、1.11であ
った。活性炭を添加せず、空隙が全くない場合の密度は
1.41であったので、これから空隙率は21.3%と
算出された。さらにTEMで絶縁材皮膜の断面を観察し
たところ、直径が0.6nmの空隙が均一に分散してい
ることが分かった。
(3) Preparation of Resin Composition for Insulating Material and Production of Insulating Material Polybenzoxazole resin synthesized as described above.
After dissolving 0 g in 50.0 g of γ-butyrolactone / 1,1,2,2-tetrachloroethane (70/30, vol / vol), 0.8 g of the activated carbon obtained above was added thereto, followed by stirring. A resin composition for materials was obtained. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. In case of heat curing, 120 ° C / 4 minutes,
After holding at 150 ° C. for 30 minutes, it was held at 400 ° C. for 60 minutes. Thus, a 0.7 μm thick insulating film was obtained. Thereafter, the dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1, and it was 2.1. Further, the density of the insulating material was determined to be 1.11 by a density gradient tube. Since the density in the case where no activated carbon was added and there were no voids was 1.41, the porosity was calculated from this to be 21.3%. Further, when the cross section of the insulating material film was observed with a TEM, it was found that voids having a diameter of 0.6 nm were uniformly dispersed.

【0033】「実施例4」 (1)ポリヒドロキシアミドの合成 2,2’−ビス(トリフルオロメチル)ビフェニル−
4,4’−ジカルボン酸22g、塩化チオニル45ml
及び乾燥ジメチルホルムアミド0.5mlを反応容器に
入れ、60℃で2時間反応させた。反応終 了後、過剰
の塩化チオニルを加熱及び減圧により留去した。残査を
ヘキサンを用いて再結晶を行い、2,2’−ビス(トリ
フルオロメチル)ビフェニル−4,4’−ジカルボン酸
クロリドを得た。かく拌装置、窒素導入管、滴下漏斗を
付けたセパラブルフラスコ中、2,2’−ビス(3−ア
ミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパ
ン7.32g(0.02mol)を、乾燥したジメチル
アセトアミド100gに溶解し、ピリジン3.96g
(0.05mol)を添加後、乾燥窒素導入下、−15
℃でジメチルアセトアミド50gに、上記により合成し
た2,2’−ビス(トリフルオロメチル)ビフェニル−
4,4’−ジカルボン酸クロリド8.30g(0.02
mol)を溶解したものを、30分間掛けて滴下した。
滴下終了後、室温まで戻し、室温で5時間かく拌した。
その後、反応液を水1000ml中に滴下し、沈殿物を
集め、40℃で48時間真空乾燥することにより、耐熱
性樹脂であるポリベンゾオキサゾール前駆体であるポリ
ヒドロキシアミドの固形物を得た。得られたポリヒドロ
キシアミドの数平均分子量は、20,000であった。
Example 4 (1) Synthesis of polyhydroxyamide 2,2'-bis (trifluoromethyl) biphenyl-
4,4'-dicarboxylic acid 22g, thionyl chloride 45ml
And 0.5 ml of dry dimethylformamide was put into a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The residue was recrystallized using hexane to obtain 2,2′-bis (trifluoromethyl) biphenyl-4,4′-dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen inlet tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was dried with dimethyl Dissolved in 100 g of acetamide and 3.96 g of pyridine
(0.05 mol), and then -15 under dry nitrogen introduction.
At 50 ° C., 50 g of dimethylacetamide was added to 2,2′-bis (trifluoromethyl) biphenyl-
8.30 g of 4,4'-dicarboxylic acid chloride (0.02
mol) was dropped over 30 minutes.
After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours.
Thereafter, the reaction solution was dropped into 1,000 ml of water, and the precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain a solid substance of polyhydroxyamide, which is a polybenzoxazole precursor which is a heat-resistant resin. The number average molecular weight of the obtained polyhydroxyamide was 20,000.

【0034】(2)活性炭の作製 成形不良品(スプール、ランナーを含む)であるフェノ
ール樹脂廃材として、フェノール樹脂(45wt%)、
炭酸カルシウム(10wt%)、木粉(35wt%)、
硬化剤(5wt%)および着色剤(5wt%)が含まれ
ている物を破砕し、粒度が9〜24メッシュになるよう
にふるい分けした。上記ふるい分け試料90gを直径約
60mm、長さ約1.5mの石英菅に入れ菅状炉にて昇
温速度5℃/minで900℃まで昇温し、その温度で
40分間保持し、自然冷却後炭化試料を取り出した。炭
化中は窒素ガスを400ml/min流した。上記で得
た炭化試料8gを直径約40mm、長さ約1mの石英菅
に入れ菅状炉にて昇温速度30℃/minで800℃ま
で昇温し、その温度に達した後、水蒸気を流して所定時
間賦活を行った。賦活中は窒素ガスを300ml/mi
n流した。自然冷却後活性炭を取り出した。原料に炭酸
カルシウム等が含まれるため1mol/Lの塩酸30m
lを加え室温で24hr振とうし酸洗浄を行った。水洗
後に空気乾燥を行い、粉砕機を用いて0.1μmφ以下
に微粉砕した。得られた活性炭の空孔の比表面積をBE
T比表面積法で測定した結果1,800m2/gであっ
た。
(2) Production of Activated Carbon Phenol resin (45 wt%) is used as phenol resin waste material which is defective in molding (including spools and runners).
Calcium carbonate (10 wt%), wood flour (35 wt%),
The material containing the curing agent (5 wt%) and the coloring agent (5 wt%) was crushed and sieved to a particle size of 9 to 24 mesh. 90 g of the above sieved sample is placed in a quartz tube having a diameter of about 60 mm and a length of about 1.5 m, heated in a tubular furnace to 900 ° C. at a rate of 5 ° C./min, held at that temperature for 40 minutes, and naturally cooled. After the carbonization sample was taken out. During carbonization, nitrogen gas was flowed at 400 ml / min. 8 g of the carbonized sample obtained above was placed in a quartz tube having a diameter of about 40 mm and a length of about 1 m, and heated to 800 ° C. at a rate of 30 ° C./min in a tubular furnace. It was activated for a predetermined time. 300 ml / mi of nitrogen gas during activation
Flowed n times. After natural cooling, the activated carbon was taken out. Since the raw material contains calcium carbonate, etc., 30m of 1mol / L hydrochloric acid
The mixture was shaken at room temperature for 24 hours to carry out acid washing. After washing with water, air drying was performed, and the mixture was finely pulverized to 0.1 μmφ or less using a pulverizer. The specific surface area of the pores of the obtained activated carbon is determined by BE.
As a result of measurement by the T specific surface area method, it was 1,800 m 2 / g.

【0035】(3)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリヒドロキシアミド10.0gを
γ-ブチロラクトン/1,1,2,2−テトラクロロエタ
ン(70/30,vol/vol)50.0gに溶解した
後、上記で得た活性炭1.6gを加えてかく拌し、絶縁
材用樹脂組成物を得た。厚さ200nmのタンタルを成
膜したシリコンウエハ上に、この絶縁材用樹脂組成物を
スピンコートした後、窒素雰囲気のオーブン中で加熱硬
化した。加熱硬化の際は、120℃/4分間、150℃
/30分間保持した後、400℃で60分間保持した。
このようにして、厚さ0.7μmの絶縁材の被膜を得
た。以下実施例1と同様にして、この耐熱性樹脂絶縁材
の誘電率を測定したところ2.2であった。また、耐熱
性樹脂絶縁材の密度を密度勾配管により求めたところ、
1.14であった。活性炭を添加せず、空隙が全くない
場合の密度は1.42であったので、これから空隙率は
19.7%と算出された。さらにTEMで絶縁材皮膜の
断面を観察したところ、直径が0.8nmの空隙が均一
に分散していることが分かった。
(3) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyhydroxyamide synthesized as described above was treated with γ-butyrolactone / 1,1,2,2-tetrachloroethane (70/30, vol. / vol), dissolved in 50.0 g, added with 1.6 g of the activated carbon obtained above, and stirred to obtain a resin composition for insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. In case of heat curing, 120 ° C / 4 minutes, 150 ° C
/ 30 minutes and then at 400 ° C. for 60 minutes.
Thus, a coating of an insulating material having a thickness of 0.7 μm was obtained. Thereafter, the dielectric constant of this heat-resistant resin insulating material was measured in the same manner as in Example 1, and was 2.2. Also, when the density of the heat-resistant resin insulating material was determined using a density gradient tube,
1.14. Since the density when no activated carbon was added and there were no voids was 1.42, the porosity was calculated to be 19.7% from this. Further, when the cross section of the insulating material film was observed with a TEM, it was found that voids having a diameter of 0.8 nm were uniformly dispersed.

【0036】「比較例1」実施例1において、絶縁材用
樹脂組成物の調整に用いた活性炭2.0gを添加しない
以外は、全て実施例1と同様に、絶縁材用樹脂組成物の
調整と絶縁材の製造を行った。得られた耐熱性樹脂絶縁
材の誘電率は2.9であり、密度は1.41であった。
TEMによる絶縁材皮膜の断面観察で、空隙は観察され
なかった。
Comparative Example 1 The procedure of Example 1 was repeated, except that 2.0 g of the activated carbon used for preparing the resin composition for insulating material was not added. And the production of insulating materials. The dielectric constant of the obtained heat-resistant resin insulating material was 2.9, and the density was 1.41.
No void was observed in the cross section of the insulating film by TEM.

【0037】「比較例2」実施例2において、絶縁材用
樹脂組成物の調整に用いた活性炭2.0gを添加しない
以外は、全て実施例2と同様に、絶縁材用樹脂組成物の
調整と絶縁材の製造を行った。得られた耐熱性樹脂の誘
電率は3.0であり、密度は1.43であった。TEM
による絶縁材皮膜の断面観察では空隙は観察されなかっ
た。
"Comparative Example 2" In the same manner as in Example 2, except that 2.0 g of the activated carbon used for preparing the resin composition for insulating material was not added, the preparation of the resin composition for insulating material was carried out. And the production of insulating materials. The obtained heat-resistant resin had a dielectric constant of 3.0 and a density of 1.43. TEM
No void was observed in the cross-section observation of the insulating film by the method.

【0038】「比較例3」実施例3において、絶縁材用
樹脂組成物の調整に用いた活性炭2.0gを添加しない
以外は、全て実施例3と同様に、絶縁材用樹脂組成物の
調整と絶縁材の製造を行った。得られた耐熱性樹脂の誘
電率は2.8であり、密度は1.41であった。TEM
による絶縁材皮膜の断面観察で、空隙は観察されなかっ
た。
Comparative Example 3 The procedure of Example 3 was repeated except that 2.0 g of the activated carbon used in the preparation of the resin composition for insulating material was not added. And the production of insulating materials. The dielectric constant of the obtained heat-resistant resin was 2.8, and the density was 1.41. TEM
No void was observed in the cross-section observation of the insulating material film.

【0039】「比較例4」実施例4において、絶縁材用
樹脂組成物の調整に用いた活性炭2.0gを添加しない
以外は、全て実施例4と同様に、絶縁材用樹脂組成物の
調整と絶縁材の製造を行った。得られた耐熱性樹脂の誘
電率は2.9であり、密度は1.42であった。TEM
による絶縁材皮膜の断面観察で、空隙は観察されなかっ
た。
Comparative Example 4 In the same manner as in Example 4, except that 2.0 g of the activated carbon used for preparing the resin composition for the insulating material was not added, the preparation of the resin composition for the insulating material was carried out. And the production of insulating materials. The dielectric constant of the obtained heat-resistant resin was 2.9, and the density was 1.42. TEM
No void was observed in the cross-section observation of the insulating material film.

【0040】実施例1〜4においては、誘電率が2.1
〜2.4と非常に低い耐熱性樹脂を得ることができた。
比較例1〜4では、比表面積1,000〜2,000m
2/gである空孔構造を有する成分(A)を有していな
いために誘電率を低減できなかった。
In Examples 1 to 4, the dielectric constant was 2.1.
A very low heat-resistant resin of ~ 2.4 was obtained.
In Comparative Examples 1 to 4, the specific surface area was 1,000 to 2,000 m.
The dielectric constant could not be reduced because it did not have the component (A) having a void structure of 2 / g.

【0041】[0041]

【発明の効果】本発明の絶縁材用樹脂組成物及びこれを
用いた絶縁材は、電気特性および耐熱性に優れたもので
あり、これらの特性が要求される様々な分野、例えば、
半導体用の層間絶縁膜、多層回路の層間絶縁膜などとし
て有用な合成樹脂である。
Industrial Applicability The resin composition for insulating material of the present invention and the insulating material using the same are excellent in electrical properties and heat resistance, and are used in various fields where these properties are required, for example,
Synthetic resin useful as an interlayer insulating film for semiconductors, an interlayer insulating film for multilayer circuits, and the like.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 79/04 C08L 79/04 B 79/08 79/08 Z H01L 21/312 H01L 21/312 A B 21/768 21/90 N 23/14 S 23/14 R Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C08L 79/04 C08L 79/04 B 79/08 79/08 Z H01L 21/312 H01L 21/312 AB 21/768 21 / 90 N 23/14 S 23/14 R

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 比表面積が1,000m2/g〜2,0
00m2/gである空孔構造を有する成分(A)と、耐
熱性樹脂またはその前駆体(B)とを必須成分とする絶
縁材用樹脂組成物。
1. A specific surface area of 1,000 m 2 / g to 2.0
A resin composition for an insulating material comprising a component (A) having a pore structure of 00 m 2 / g and a heat-resistant resin or its precursor (B) as essential components.
【請求項2】 比表面積が1,000m2/g〜2,0
00m2/gである空孔構造を有する成分(A)が、活
性炭である請求項1記載の絶縁材用樹脂組成物。
2. A specific surface area of 1,000 m 2 / g to 2.0
The resin composition for an insulating material according to claim 1, wherein the component (A) having a pore structure of 00 m 2 / g is activated carbon.
【請求項3】 耐熱性樹脂またはその前駆体(B)が、
ポリベンゾオキサゾール樹脂またはポリベンゾオキサゾ
ール前駆体である請求項1〜3のいずれか1項に記載の
絶縁材用樹脂組成物。
3. The heat-resistant resin or a precursor (B) thereof,
The resin composition for an insulating material according to any one of claims 1 to 3, which is a polybenzoxazole resin or a polybenzoxazole precursor.
【請求項4】 耐熱性樹脂またはその前駆体(C)が、
ポリイミド樹脂またはポリイミド前駆体である請求項1
〜2のいずれか1項に記載の絶縁材用樹脂組成物。
4. The heat-resistant resin or a precursor (C) thereof,
2. A polyimide resin or a polyimide precursor.
3. The resin composition for an insulating material according to any one of items 2 to 2.
【請求項5】 請求項1〜4のいずれかに1項に記載の
絶縁材用樹脂組成物を用いて得られた絶縁材。
5. An insulating material obtained by using the resin composition for an insulating material according to claim 1. Description:
JP2001042481A 2001-02-19 2001-02-19 Resin component for insulation material, and insulation material using the same Pending JP2002245855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001042481A JP2002245855A (en) 2001-02-19 2001-02-19 Resin component for insulation material, and insulation material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001042481A JP2002245855A (en) 2001-02-19 2001-02-19 Resin component for insulation material, and insulation material using the same

Publications (1)

Publication Number Publication Date
JP2002245855A true JP2002245855A (en) 2002-08-30

Family

ID=18904770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001042481A Pending JP2002245855A (en) 2001-02-19 2001-02-19 Resin component for insulation material, and insulation material using the same

Country Status (1)

Country Link
JP (1) JP2002245855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092152A (en) * 2015-11-05 2017-05-25 日立化成デュポンマイクロシステムズ株式会社 Multilayer body, method for manufacturing the same, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092152A (en) * 2015-11-05 2017-05-25 日立化成デュポンマイクロシステムズ株式会社 Multilayer body, method for manufacturing the same, and semiconductor device

Similar Documents

Publication Publication Date Title
JP5928705B2 (en) Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide
JPH10316853A (en) Resin composition for interlaminar insulating membrane for multilayer interconnection of semiconductor, and production of the insulating membrane
JP2007046065A (en) Polyimide formed article having high tg, high tos, and low moisture content
JP2008239820A (en) Polyamic acid's imidized polymer electrical insulation film and film-forming composition and method for producing the composition
Lv et al. High‐Tg porous polyimide films with low dielectric constant derived from spiro‐(adamantane‐2, 9′(2′, 7′‐diamino)‐fluorene)
CN112679770A (en) Low-dielectric-constant polyimide film and preparation method thereof
TW201326255A (en) Solution of polyamic acid resin containing interpenetrating polymer and metal laminate using the same
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP2005307183A (en) Film-forming composition, coating solution containing the same, and electronic device having insulating film obtained by using the coating solution
JP2003105085A (en) Material for organic insulating film and organic insulating film
JP2001189109A (en) Resin composition for insulator, and insulator using the same
JP2002245855A (en) Resin component for insulation material, and insulation material using the same
JP2006269558A (en) Method of producing flexible laminate substrate
JP4945858B2 (en) Organic insulating film material and organic insulating film
CN114940760A (en) Polyimide film and preparation method and application thereof
JP4590690B2 (en) Resin composition for insulating material and insulating material using the same
JP3211973B2 (en) Heat resistant ceramic ink
JP2001283638A (en) Resin composition for insulating material and insulating material using the same
KR101258432B1 (en) Polyimide film having excellent high temperature stability and substrate for display device using the same
JP2001217234A (en) Insulation material and its manufacturing method
JP2001011181A (en) Resin composition for electrical insulation material and electrical insulation material using the same
KR100559056B1 (en) Insulating layer having low dielectric constant used for semiconductor, method for producing the same and precursor composition for producing the same
KR101548597B1 (en) polyimic acid composite with dispersed dendrite Zinc oxide and high functional polyimide using same
JP2002203430A (en) Insulating material for high frequency electronic component
JP2001226599A (en) Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same