JP2002243910A - Optical element array and its manufacturing method - Google Patents

Optical element array and its manufacturing method

Info

Publication number
JP2002243910A
JP2002243910A JP2001043128A JP2001043128A JP2002243910A JP 2002243910 A JP2002243910 A JP 2002243910A JP 2001043128 A JP2001043128 A JP 2001043128A JP 2001043128 A JP2001043128 A JP 2001043128A JP 2002243910 A JP2002243910 A JP 2002243910A
Authority
JP
Japan
Prior art keywords
optical element
element array
optical
manufacturing
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001043128A
Other languages
Japanese (ja)
Inventor
Shinji Tezuka
伸治 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001043128A priority Critical patent/JP2002243910A/en
Publication of JP2002243910A publication Critical patent/JP2002243910A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a long-length optical element array where occurrence of an interference, what is called cross-talk between adjacent optical elements, is reduced by narrowing the space between the optical elements of a lens array, and a manufacturing method of the optical element array by which the optical element array is molded with high accuracy. SOLUTION: Optical surface 11 being a plurality of optical elements are adjacently formed on the optical element array 10, and recessed parts 12 concave to the surface 11 and having low surface roughness are formed between the optical elements, then the light transmittance of the recessed part 12 is made lower than that of the surface 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光学素子アレイ及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element array and a method for manufacturing the same.

【0002】[0002]

【従来の技術】プリンタ、ファクシミリ、複写装置、プ
ロッタ等の画像形成装置或いは画像記録装置において
は、読取り及び/又は書込み光学系として、所望のレン
ズ形状を有する金型間に溶融状態の熱可塑性樹脂を充填
し成形する射出成形法で形成した光学素子アレイ(レン
ズアレイ)が主に用いられている。
2. Description of the Related Art In an image forming apparatus or an image recording apparatus such as a printer, a facsimile, a copying machine, a plotter, etc., as a reading and / or writing optical system, a thermoplastic resin in a molten state between molds having a desired lens shape. An optical element array (lens array) formed by an injection molding method of filling and molding is mainly used.

【0003】従来、例えば、特開平10−58550号
公報に記載されているようにガラスレンズ上に紫外線硬
化樹脂を用いて非球面成形面を有する複合化レンズを成
型する場合樹脂厚に応じて照射光量を変えることでひけ
の発生を防止するようにしたもの、或いは特開平7−2
03125号公報に記載されているようにレンズアレイ
間に遮光板を配し光の回り込みを防ぎ画質の向上を図る
ようにしたものなどがある。
Conventionally, for example, as described in Japanese Patent Application Laid-Open No. 10-58550, when a composite lens having an aspherical molding surface is formed on a glass lens using an ultraviolet curable resin, irradiation is performed according to the resin thickness. A method in which the occurrence of sink marks is prevented by changing the amount of light,
As disclosed in Japanese Patent No. 03125, there is an arrangement in which a light-shielding plate is arranged between lens arrays to prevent light from entering and to improve image quality.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年高解像
度化への要求が高まっており、これに伴ってレンズ要素
の寸法及び間隔の微小化、高精度化が必要となってい
る。そのため、レンズアレイ形状も厚さ、幅ともに薄く
相対的に長さが長い形状が必要となっている。
By the way, the demand for higher resolution has been increasing in recent years, and accordingly, the dimensions and spacing of lens elements have to be made smaller and higher precision has been required. Therefore, the lens array also needs to have a small thickness and width and a relatively long length.

【0005】しかしながら、射出成型法でレンズアレイ
を形成する場合、成型品の厚みが薄く長さが長いために
端部にまで樹脂が行き渡らず、充填不足による転写不良
がおきやすいという課題がある。また、製品としても光
学素子間隔が狭くなることによって、隣接する光要素間
の干渉所謂クロストークの発生が問題になる。
However, when the lens array is formed by the injection molding method, there is a problem that the resin is not spread to the end portion due to the small thickness and long length of the molded product, and transfer failure due to insufficient filling is likely to occur. Also, as a product, the narrowing of the interval between optical elements causes a problem of occurrence of so-called crosstalk between adjacent optical elements.

【0006】本発明は上記の課題に鑑みてなされたもの
であり、クロストークの発生を低減した長尺の光学素子
アレイ及びこれを高精度で成形することができる光学素
子アレイの製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a long optical element array with reduced occurrence of crosstalk and a method of manufacturing an optical element array capable of molding the optical element array with high precision. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係る光学素子アレイは、複数の光学面が隣
接して形成され、少なくともその表面が紫外線硬化性樹
脂により形成されてなる複合型光学素子アレイにおい
て、各光学素子間に光学面に対して凹状でかつ面粗度が
低い凹部を形成し、この凹部の光透過率が光学面に対し
て低い構成としたものである。
In order to solve the above-mentioned problems, an optical element array according to the present invention has a plurality of optical surfaces formed adjacent to each other, and at least the surfaces are formed of an ultraviolet curable resin. In the composite optical element array, a concave portion having a low surface roughness is formed between each optical element and has a low surface roughness, and the light transmittance of the concave portion is low with respect to the optical surface.

【0008】ここで、凹部に透過率の低い物質を形成す
ることが好ましい。また、紫外線硬化樹脂の厚さが15
0μmを越えないことが好ましい。
Here, it is preferable to form a substance having a low transmittance in the concave portion. Further, when the thickness of the ultraviolet curable resin is 15
Preferably it does not exceed 0 μm.

【0009】本発明に係る光学素子アレイの製造方法
は、複数の隣接する球面又は非球面を有する光学素子上
に紫外線硬化性樹脂を滴下し、光学面の反転形状が形成
された型を載置し、紫外線を照射して樹脂を硬化させた
後離型して本発明に係る光学素子アレイを製造する製造
方法であって、凹部に対応する部分の紫外線の照射強度
を低くする構成としたものである。
In the method of manufacturing an optical element array according to the present invention, an ultraviolet curable resin is dropped on a plurality of adjacent optical elements having a spherical surface or an aspherical surface, and a mold having an inverted optical surface is mounted. A method for manufacturing the optical element array according to the present invention by releasing the resin after irradiating the resin with ultraviolet rays and then releasing the resin, wherein the irradiation intensity of the ultraviolet rays in a portion corresponding to the concave portion is reduced. It is.

【0010】ここで、型を紫外線透過型材料で形成し、
光学要素周辺の凹部に相当する部分に粗面化処理を施す
ことが好ましい。また、型を紫外線透過型材料で形成
し、光学要素周辺の凹部に相当する部分に金属薄膜を形
成することが好ましい。さらに、型の光学要素周辺の凹
部に相当する部分の波長365nmの透過率が光学要素
形成部位に対して10〜90%の範囲内にあることが好
ましい。
Here, the mold is formed of an ultraviolet transmitting material,
It is preferable to perform a surface roughening treatment on a portion corresponding to the concave portion around the optical element. Further, it is preferable that the mold is formed of an ultraviolet transmitting material and a metal thin film is formed in a portion corresponding to a concave portion around the optical element. Further, the transmittance at a wavelength of 365 nm at a portion corresponding to the concave portion around the optical element of the mold is preferably within a range of 10 to 90% with respect to the optical element forming portion.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面を参照して説明する。図1は本発明に係る光学素子
アレイをその製造方法とともに説明する説明図である。
同図(a)に示すように、予め射出成形、エンボス成形
などの公知な手段によりほぼ完成品形状をなすブランク
材1を成形する。このブランク材1としては要求される
光学特性を満たすような精度で成形する必要はない。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an explanatory diagram for explaining an optical element array according to the present invention together with a method for manufacturing the same.
As shown in FIG. 1A, a blank material 1 having a substantially finished product shape is formed in advance by a known means such as injection molding or embossing. The blank 1 does not need to be formed with an accuracy that satisfies the required optical characteristics.

【0012】そして、同図(b)に示すように、ブラン
ク材1のレンズ形成面上に紫外線硬化樹脂層2を塗布、
転写、滴下などの手段で所定の体積になるように形成す
る。この場合、ブランク材1の材質と紫外線硬化樹脂層
2との密着性を改善するため、必要に応じてブランク材
1上には予めシランカップリング処理などの密着増強処
理を施しておくことが好ましい。
Then, as shown in FIG. 1B, an ultraviolet curable resin layer 2 is applied on the lens forming surface of the blank material 1.
It is formed to have a predetermined volume by means such as transfer or dropping. In this case, in order to improve the adhesiveness between the material of the blank material 1 and the ultraviolet curable resin layer 2, it is preferable that the blank material 1 is previously subjected to an adhesion enhancing treatment such as a silane coupling treatment as necessary. .

【0013】続いて、同図(c)に示すように、紫外光
を透過する材料からなり目的とするレンズアレイの反転
形状に加工された型3を紫外線硬化樹脂層2が所定の厚
さとなるように載置する。この型3は各レンズ要素境界
(光学素子アレイの各光学素子間の凹部に相当する部
分)に他の部分に対して紫外光の透過率を減衰させる透
過率減衰部4を設けている。この透過率減衰部4は、金
属などの薄膜形成或いは型表面の粗面化処理で形成して
いる。この透過率減衰部4の波長365nmの透過率は
光学要素形成部位に対して10〜90%の範囲内にある
ことが好ましく、より好ましくは70%以下である。ま
た、型3の紫外線硬化樹脂層2と接触する表面には硬化
後樹脂との離型性を向上させるためにフッ素系塗膜の形
成などを行なっておくことが好ましい。
Subsequently, as shown in FIG. 1C, a mold 3 made of a material that transmits ultraviolet light and processed into an inverted shape of a target lens array is formed so that the ultraviolet-curable resin layer 2 has a predetermined thickness. As shown. The mold 3 is provided with a transmittance attenuating portion 4 for attenuating the transmittance of ultraviolet light with respect to other portions at each lens element boundary (a portion corresponding to a concave portion between the optical elements of the optical element array). The transmittance attenuating portion 4 is formed by forming a thin film of metal or the like or roughening the mold surface. The transmittance of the transmittance attenuating portion 4 at a wavelength of 365 nm is preferably in the range of 10 to 90%, more preferably 70% or less, with respect to the optical element forming portion. Further, it is preferable to form a fluorine-based coating film on the surface of the mold 3 which comes into contact with the ultraviolet-curable resin layer 2 in order to improve the releasability from the cured resin.

【0014】次いで、同図(d)に示すように、ブラン
ク材1上に紫外線硬化樹脂層2を介して型3を載せた状
態で、型3側より紫外線を照射する。このとき、型3の
透過率減衰部4以外の部分の照度が透過率減衰部4に比
べて高いため、この透過率減衰部4以外の部分に対応す
る紫外線硬化樹脂層2の部分が優先的に硬化する。
Next, as shown in FIG. 1D, with the mold 3 placed on the blank material 1 via the ultraviolet curable resin layer 2, ultraviolet rays are irradiated from the mold 3 side. At this time, since the illuminance of the portion other than the transmittance attenuating portion 4 of the mold 3 is higher than that of the transmittance attenuating portion 4, the portion of the ultraviolet curable resin layer 2 corresponding to the portion other than the transmittance attenuating portion 4 has priority. Hardens to

【0015】紫外線硬化樹脂は硬化の際に体積収縮をと
もなうので照度減衰部の未硬化樹脂が高照度部へ移動す
る。この結果として、型3の透過率減衰部4に対応する
部分の樹脂量が減りブランク材1と型3とで形成された
厚さ以下になる。そして、型3表面には離型処理が施さ
れているために、この部分で樹脂は型3から離れて開放
された表面に紫外線を受けてさらに収縮しながら硬化す
る。この結果として、この部分の表面は高照度部に対し
ていわゆるヒケとして窪みとなり,その表面状態も荒れ
たものとなる。
[0015] Since the ultraviolet curable resin undergoes volume shrinkage during curing, the uncured resin in the illuminance attenuation portion moves to the high illuminance portion. As a result, the amount of resin in the portion corresponding to the transmittance attenuating portion 4 of the mold 3 is reduced to be equal to or less than the thickness formed by the blank 1 and the mold 3. Then, since the surface of the mold 3 has been subjected to the release treatment, the resin is cured while receiving the ultraviolet rays on the surface opened apart from the mold 3 while further contracting. As a result, the surface of this portion becomes a depression as a so-called sink to the high illuminance portion, and the surface condition becomes rough.

【0016】なお、実験によると、紫外線硬化樹脂層2
の膜厚が150μm以下であるときには、周辺からの供
給と収縮の関係から良好な形状が得られたが、膜厚が1
50μmを越えるときには供給が十分に行われず転写不
良が起きる。したがって、紫外線硬化樹脂層2の膜厚が
150μmを越えないことが好ましい。
According to the experiment, the ultraviolet curable resin layer 2
When the film thickness was 150 μm or less, a good shape was obtained from the relationship between supply from the periphery and shrinkage.
When it exceeds 50 μm, the supply is not sufficiently performed, and transfer failure occurs. Therefore, it is preferable that the thickness of the ultraviolet curable resin layer 2 does not exceed 150 μm.

【0017】その後、同図(e)に示すように型3を剥
離することで光学素子アレイ10が得られる。この光学
素子アレイ10は、ブランク材1上に設けた紫外線硬化
性樹脂層2で複数の光学素子となる光学面11が隣接し
て形成され、各光学素子間に光学面11に対して凹状で
かつ面粗度が低い凹部12が形成され、この凹部12の
光透過率は光学面11に対して低くなる。
Thereafter, as shown in FIG. 1E, the mold 3 is peeled off to obtain the optical element array 10. In the optical element array 10, an optical surface 11 serving as a plurality of optical elements is formed adjacent to the ultraviolet curable resin layer 2 provided on the blank material 1, and a concave shape with respect to the optical surface 11 is provided between each optical element. A concave portion 12 having a low surface roughness is formed, and the light transmittance of the concave portion 12 is lower than that of the optical surface 11.

【0018】この光学素子アレイ10の表面形状とこれ
に対応する透過率を測定したところ図2に示すようにな
った。照度減衰処理部(型3の透過率減衰部4)を設け
て硬化させた際に得られる紫外線硬化樹脂層2の表面状
態は透過率を減衰させた部分の厚さが薄くなっており平
坦性も悪くなっていることが分かる。
The surface shape of the optical element array 10 and the transmittance corresponding thereto were measured, and the results are as shown in FIG. The surface state of the ultraviolet-curing resin layer 2 obtained when the illuminance attenuation processing section (the transmittance attenuation section 4 of the mold 3) is provided and cured, the thickness of the portion where the transmittance is attenuated is thin, and the flatness is reduced. You can see that it is also getting worse.

【0019】このようにして得られた光学素子アレイ1
0は各レンズ要素(光学面11)境界部が粗面化されて
いるため、この部分から入射した光は散乱し減衰される
ので、隣接光学要素に影響するいわゆるクロストークが
低減する。
The optical element array 1 thus obtained
In the case of 0, since the boundary of each lens element (optical surface 11) is roughened, light incident from this part is scattered and attenuated, so that so-called crosstalk affecting adjacent optical elements is reduced.

【0020】また、この境界部は凹部12となっている
ので、図3に示すように、凹部12に遮光性に優れた材
料(透過率の低い物質)13を塗布などすることにより
さらに確実にクロストークを低減することができる。
Since this boundary is a concave portion 12, as shown in FIG. 3, a material 13 having excellent light-shielding properties (substance having a low transmittance) 13 is applied to the concave portion 12 more reliably. Crosstalk can be reduced.

【0021】なお、上記実施形態では紫外線硬化樹脂層
2を形成した後に型3を重ねているが、予めブランク材
1と型3とで所定の間隙を設けておきその間に紫外線硬
化樹脂を注入することも可能である。
In the above embodiment, the mold 3 is overlapped after the formation of the UV-curable resin layer 2. However, a predetermined gap is provided in advance between the blank material 1 and the mold 3, and the UV-curable resin is injected therebetween. It is also possible.

【0022】また、型3の透過率減衰処理(金属膜形成
や粗面化処理)を紫外線硬化樹脂層2との接触面に施し
ているが、反対面側に施すことでも同様な効果が期待で
きる。ただし、この場合には型3の厚さ分を光が透過す
る際に照度差が小さくなり境界部での硬化速度に大きな
差が生じなくなって上記実施形態ような極端なヒケを発
生させにくくなるので、透過率減衰処理は紫外線硬化樹
脂層2との接触面に施すことが好ましい。
Although the transmittance attenuating process (formation of metal film or surface roughening process) of the mold 3 is performed on the contact surface with the ultraviolet curable resin layer 2, the same effect can be expected by performing the process on the opposite surface. it can. However, in this case, the difference in illuminance when light passes through the thickness of the mold 3 becomes small, so that a large difference does not occur in the curing speed at the boundary portion, and it becomes difficult to generate extreme sink marks as in the above embodiment. Therefore, it is preferable to perform the transmittance attenuation treatment on the contact surface with the ultraviolet curable resin layer 2.

【0023】[0023]

【発明の効果】以上説明したように、本発明に係る光学
素子アレイによれば、各光学素子間に光透過率が低く面
粗度の低い領域を設けたので、目的光源以外からの光を
散乱、減衰させることができ、クロストークを低減する
ことができる。
As described above, according to the optical element array according to the present invention, a region having a low light transmittance and a low surface roughness is provided between each optical element, so that light from sources other than the intended light source is provided. Scattering and attenuation can be achieved, and crosstalk can be reduced.

【0024】ここで、凹部に透過率の低い物質を形成す
ることで、より確実にクロストークを低減することがで
きる。また、紫外線硬化樹脂の厚さが150μmを越え
ないことで、樹脂硬化時の収縮による形状不良を防止で
きる。
Here, by forming a material having a low transmittance in the concave portion, crosstalk can be reduced more reliably. Further, when the thickness of the ultraviolet curable resin does not exceed 150 μm, it is possible to prevent a shape defect due to shrinkage during curing of the resin.

【0025】本発明に係る光学素子アレイの製造方法に
よれば、複数の隣接する球面又は非球面を有する光学素
子上に紫外線硬化性樹脂を滴下し、光学面の反転形状が
形成された型を載置し、紫外線を照射して樹脂を硬化さ
せた後離型して本発明に係る光学素子アレイを製造する
場合に、凹部に対応する部分の紫外線の照射強度を低く
する構成としたので、凹部に対応する部分の硬化が遅れ
るために光学素子領域が硬化収縮する際の樹脂供給源と
なって光学素子領域の形状変化を防ぎ、かつ、供給によ
り光学素子面より窪み、面粗度が悪くなるので光透過率
を下げることができる。
According to the method of manufacturing an optical element array according to the present invention, an ultraviolet curable resin is dropped on a plurality of adjacent optical elements having a spherical surface or an aspherical surface to form a mold having an inverted optical surface. When the optical element array according to the present invention is manufactured by mounting, releasing after curing the resin by irradiating ultraviolet rays, the irradiation intensity of the ultraviolet rays in the portion corresponding to the concave portion is reduced, Since the curing of the portion corresponding to the concave portion is delayed, it becomes a resin supply source when the optical element region cures and contracts, and prevents a change in the shape of the optical element region. Therefore, the light transmittance can be reduced.

【0026】ここで、型を紫外線透過型材料で形成し、
光学要素周辺の凹部に相当する部分に粗面化処理を施す
ことで、凹部となる領域のみを確実に粗面化することが
できる。また、型を紫外線透過型材料で形成し、光学要
素周辺の凹部に相当する部分に金属薄膜を形成すること
でも、凹部となる領域のみを確実に粗面化することがで
きる。
Here, the mold is formed of an ultraviolet transmitting material,
By performing the surface roughening treatment on the portion corresponding to the concave portion around the optical element, it is possible to surely roughen only the region to be the concave portion. Also, by forming the mold with an ultraviolet transmitting material and forming a metal thin film on a portion corresponding to the concave portion around the optical element, it is possible to surely roughen only the region to be the concave portion.

【0027】さらに、型の光学要素周辺の凹部に相当す
る部分の波長365nmの透過率が光学要素形成部位に
対して10〜90%の範囲内にあることで、凹部に相当
する部分の硬化を遅らせることができる。
Further, since the transmittance at a wavelength of 365 nm of the portion corresponding to the concave portion around the optical element of the mold is within the range of 10 to 90% with respect to the optical element forming portion, the portion corresponding to the concave portion can be cured. Can be delayed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光学素子アレイをその製造方法と
ともに説明する説明図
FIG. 1 is an explanatory diagram illustrating an optical element array according to the present invention together with a method for manufacturing the optical element array.

【図2】同光学素子アレイの表面形状と透過率を説明す
る説明図
FIG. 2 is an explanatory diagram illustrating the surface shape and transmittance of the optical element array.

【図3】本発明に係る光学素子アレイの他の実施形態を
説明する説明図
FIG. 3 is an explanatory view illustrating another embodiment of the optical element array according to the present invention.

【符号の説明】[Explanation of symbols]

1…ブランク材、2…紫外線硬化樹脂層、3…型、4…
透過率減衰部、10…光学素子アレイ、11…光学面、
12…凹部。
DESCRIPTION OF SYMBOLS 1 ... Blank material, 2 ... UV curable resin layer, 3 ... Type, 4 ...
Transmittance attenuating section, 10: optical element array, 11: optical surface,
12 ... recess.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の光学面が隣接して形成され、少な
くともその表面が紫外線硬化性樹脂により形成されてな
る複合型光学素子アレイにおいて、各光学素子間に光学
面に対して凹状でかつ面粗度が低い凹部を形成し、この
凹部の光透過率が前記光学面に対して低いことを特徴と
する光学素子アレイ。
1. A composite optical element array in which a plurality of optical surfaces are formed adjacent to each other and at least the surfaces of which are formed of an ultraviolet curable resin, a concave surface between the optical elements and a concave surface between the optical elements. An optical element array, wherein a concave portion having low roughness is formed, and a light transmittance of the concave portion is lower than that of the optical surface.
【請求項2】 請求項1に記載の複合型光学素子アレイ
において、前記凹部に透過率の低い物質を形成したこと
を特徴とする光学素子アレイ。
2. The optical element array according to claim 1, wherein a material having a low transmittance is formed in said concave portion.
【請求項3】 請求項1又は2に記載の光学素子アレイ
において、前記紫外線硬化樹脂の厚さが150μmを越
えないことを特徴とする光学素子アレイ。
3. The optical element array according to claim 1, wherein the thickness of the ultraviolet curable resin does not exceed 150 μm.
【請求項4】 複数の隣接する球面又は非球面を有する
光学素子上に紫外線硬化性樹脂を滴下し、光学面の反転
形状が形成された型を載置し、紫外線を照射して樹脂を
硬化させた後離型して前記請求項1乃至3のいずれかに
記載の光学素子アレイを製造する製造方法であって、前
記凹部に対応する部分の紫外線の照射強度を低くするこ
とを特徴とする光学素子アレイの製造方法。
4. An ultraviolet curable resin is dropped on an optical element having a plurality of adjacent spherical or aspherical surfaces, a mold having an inverted shape of an optical surface is placed, and the resin is cured by irradiating ultraviolet light. 4. A method of manufacturing the optical element array according to claim 1, wherein the mold is released and then the irradiation intensity of ultraviolet rays in a portion corresponding to the concave portion is reduced. A method for manufacturing an optical element array.
【請求項5】 請求項4に記載の光学素子アレイの製造
方法において、前記型を紫外線透過型材料で形成し、光
学要素周辺の凹部に相当する部分に粗面化処理を施すこ
とを特徴とする光学素子アレイの製造方法。
5. The method of manufacturing an optical element array according to claim 4, wherein the mold is formed of an ultraviolet transmitting material, and a portion corresponding to a concave portion around the optical element is subjected to a surface roughening treatment. Of manufacturing an optical element array.
【請求項6】 請求項4に記載の光学素子アレイの製造
方法において、前記型を紫外線透過型材料で形成し、光
学要素周辺の凹部に相当する部分に金属薄膜を形成する
ことを特徴とする光学素子アレイの製造方法。
6. The method for manufacturing an optical element array according to claim 4, wherein the mold is formed of an ultraviolet transmitting material, and a metal thin film is formed in a portion corresponding to a concave portion around the optical element. A method for manufacturing an optical element array.
【請求項7】 請求項5又は6に記載の光学素子アレイ
の製造方法において、前記型の光学要素周辺の凹部に相
当する部分の波長365nmの透過率が光学要素形成部
位に対して10〜90%の範囲内にあることを特徴とす
る光学素子アレイの製造方法。
7. The method for manufacturing an optical element array according to claim 5, wherein a transmittance at a wavelength of 365 nm at a portion corresponding to a concave portion around the optical element of the mold has a transmittance of 10 to 90 with respect to an optical element forming portion. % Of the optical element array.
JP2001043128A 2001-02-20 2001-02-20 Optical element array and its manufacturing method Withdrawn JP2002243910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043128A JP2002243910A (en) 2001-02-20 2001-02-20 Optical element array and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043128A JP2002243910A (en) 2001-02-20 2001-02-20 Optical element array and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002243910A true JP2002243910A (en) 2002-08-28

Family

ID=18905343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043128A Withdrawn JP2002243910A (en) 2001-02-20 2001-02-20 Optical element array and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002243910A (en)

Similar Documents

Publication Publication Date Title
JP4811032B2 (en) Reflective replica optical element
KR101020634B1 (en) Manufacturing method of lens having nanopattern
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
CN101352908A (en) Method for producing optical element
JP5182097B2 (en) Manufacturing method of optical waveguide module
WO2009069940A1 (en) Device and method for fabricating lens
CN108957611B (en) Manufacturing method of grating sheet, grating sheet and display device
JP4371777B2 (en) Resin curing method and resin molded product manufacturing method
US20080273239A1 (en) Imaging lens and method of manufacturing the same
JP2849299B2 (en) Manufacturing method of composite precision molded products
JP6281592B2 (en) Manufacturing method of replica template
JP6578883B2 (en) Film mold and imprint method
JP2002243910A (en) Optical element array and its manufacturing method
KR101751683B1 (en) manufacturing method of elastomeric nano structure
KR100551623B1 (en) Process of Producing Hybrid Lens
US7989149B2 (en) Mold core and method for fabricating mold core
JP2008299148A (en) Junction type optical element and manufacturing method therefor
JP4407290B2 (en) Manufacturing method of mold for optical component
JP4108722B2 (en) Optical element and optical element manufacturing method
JP5702174B2 (en) Mold and mold manufacturing method
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
JP2006341493A (en) Molding die for optical element and manufacturing method of optical element
JPH0545501A (en) Composite type optical element and production thereof
JP2003266450A (en) Optical element and manufacturing method therefor
JP2003222708A (en) Optical element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070731