JP2002241894A - High hardness prehardened steel for cold working having excellent machinability, die for cold working using the steel and working method for the steel - Google Patents

High hardness prehardened steel for cold working having excellent machinability, die for cold working using the steel and working method for the steel

Info

Publication number
JP2002241894A
JP2002241894A JP2001331472A JP2001331472A JP2002241894A JP 2002241894 A JP2002241894 A JP 2002241894A JP 2001331472 A JP2001331472 A JP 2001331472A JP 2001331472 A JP2001331472 A JP 2001331472A JP 2002241894 A JP2002241894 A JP 2002241894A
Authority
JP
Japan
Prior art keywords
steel
hardness
cold working
less
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001331472A
Other languages
Japanese (ja)
Other versions
JP3830030B2 (en
Inventor
Yukio Abe
行雄 阿部
Eiji Nakatsu
英司 中津
Isao Tamura
庸 田村
Yoshihiro Kada
善裕 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001331472A priority Critical patent/JP3830030B2/en
Publication of JP2002241894A publication Critical patent/JP2002241894A/en
Application granted granted Critical
Publication of JP3830030B2 publication Critical patent/JP3830030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high hardness prehardened steel which has excellent machinability, a die for cold working using the steel, and a working method for the steel. SOLUTION: The prehardened steel for cold working has a composition containing, by mass, 0.3 to <0.5% C, 0.7 to 2.0% Si and 0.08 to 0.25% S, and is refined to a hardness of 50HRC. Preferably, the prehardened steel concretely has a composition containing 0.3 to <0.5% C, 0.7 to 2.0% Si, 0.1 to 2.0% Mn, 0.08 to 0.25% S, 0.5 to 15.0% Cr, one or two kinds selected from W and Mo by <=3.5% in terms of (Mo+1/2 W), <=4.0% V and <=0.15% N, and the balance Fe with inevitable impurities. Then, the die for cold working is obtained subjecting the prehardened steel to cutting, e.g. at a cutting speed of >=50 m/min. Further, in the working of the steel having a hardness of >=50HRC at a cutting speed of >=50 m/min, the steel contains 0.3 to <0.5% C, 0.7 to 2.0% Si and 0.08 to 0.25% S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、家庭電化
製品、プリント基板、農機具等に使用される鋼板等の打
抜き、曲げ、絞り、トリミング用の金型等に使用される
冷間加工用高硬度プリハードン鋼ならびにそれを用いて
なる金型、そしてこれら手段の達成に寄与する鋼の加工
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold working mold used for a die for punching, bending, drawing and trimming of a steel sheet used for automobiles, household appliances, printed circuit boards, agricultural equipment and the like. The present invention relates to a prehardened steel having hardness, a mold using the same, and a method of processing steel that contributes to achieving these means.

【0002】[0002]

【従来の技術】自動車や家庭電化製品等の部品製造には
打抜き等の加工が用いられる。その金型に使用される金
型材、特に冷間加工用金型材には、耐摩耗性付与のため
炭化物を多量に含み、さらに焼入れ性に優れかつ靭性を
確保するためにCr含有量が多い材料が求められてお
り、例えばJISG4404規定の合金工具鋼鋼材であ
るSKD11等の高C−高Cr系鋼が使用されている。
また、耐摩耗性を特に必要としない場合はSKS3とい
った低合金鋼も油焼入れ後300℃以下での焼戻しで調
質し使用されている。
2. Description of the Related Art Processing such as punching is used for manufacturing parts such as automobiles and home appliances. The mold material used for the mold, especially the mold material for cold working, contains a large amount of carbide for imparting abrasion resistance, and further has excellent quenching properties and a large Cr content for securing toughness. For example, a high C-high Cr steel such as SKD11 which is an alloy tool steel specified in JIS G4404 is used.
When abrasion resistance is not particularly required, a low alloy steel such as SKS3 is also used after tempering at 300 ° C. or less after oil quenching.

【0003】[0003]

【発明が解決しようとする課題】ところが近年自動車メ
ーカー等では、価格競争に打ち勝つためにこれまであら
ゆる分野でコスト低減を実施し、金型関連では型製作工
数の削減も必要となった。一方、全体的な社会の流れと
して多品種少量生産への移行があり、その点からも金型
にも如何に早く作れるかが重要視されてきている。
However, in recent years, in order to overcome price competition, automobile manufacturers and the like have been implementing cost reductions in all fields, and it has become necessary to reduce the number of mold manufacturing steps in relation to dies. On the other hand, as a general social trend, there is a shift to high-mix low-volume production, and from that point, it is increasingly important how quickly molds can be made.

【0004】現在の一般的な金型の製作は、焼なまし状
態の素材を主に切削加工により形状の粗加工を行い、焼
入焼戻し処理を行い打抜き等製品の加工に必要な硬さに
高められる。焼入焼戻しを行なうと熱処理による変寸、
変形が生じるため切削、研削等の仕上加工を行い金型の
製作が完了する。したがって金型の製作効率の向上には
焼きなまし状態での被削性が良好であり、かつ熱処理変
寸、変形が少ないことが望ましく、特開平11−928
71号のような冷間工具鋼が提案されている。
[0004] At present, a general mold is manufactured by roughing a shape of a material in an annealed state mainly by cutting, quenching and tempering, and obtaining a hardness necessary for processing of a product such as punching. Enhanced. When quenching and tempering are performed, size changes due to heat treatment,
Since deformation occurs, finishing such as cutting and grinding is performed, and the manufacture of the mold is completed. Therefore, in order to improve the manufacturing efficiency of the mold, it is desirable that the machinability in the annealed state is good, and that the heat treatment does not change in size or deform.
A cold tool steel such as No. 71 has been proposed.

【0005】しかしながら、さらなる型製作工数および
コスト低減の要求が高まる現状において、焼入焼戻し状
態から切削加工を行なうことで現在の一般的な工程であ
る切削加工後の熱処理および仕上加工の省略の分、型製
作効率が向上できる、いわゆるプリハードン鋼へのニー
ズが高まっている。
[0005] However, in the current situation where the demands for further man-hours and cost reduction for molds are increasing, cutting from the quenching and tempering state can omit the heat treatment and finishing after cutting, which are current general steps. There is a growing need for so-called pre-hardened steel, which can improve mold manufacturing efficiency.

【0006】現在プリハードン鋼を用いた型製作は一部
のプラスチック型や熱間鍛造型等で行われているがその
硬さは40HRC程度であり、冷間加工による打抜き等
で必要とされる50HRC以上の硬さには達していな
い。これは高硬度になるにつれて切削加工時の工具への
抵抗、衝撃が高くなり、工具の強度を越えるため早期に
欠損が生じ工具寿命へと至るためである。
[0006] At present, mold making using pre-hardened steel is performed with some plastic molds and hot forging dies, but the hardness is about 40 HRC, and 50 HRC required for punching by cold working or the like. It does not reach the above hardness. This is because the higher the hardness, the higher the resistance and impact to the tool during the cutting process, which exceeds the strength of the tool, causing early fracture and extending the life of the tool.

【0007】一方、切削加工の分野では高速加工による
切削効率の向上が進んでいるが、50HRCを超える高
硬度材では高速加工を行なうと上述の工具への衝撃に加
え、切削温度の過度な上昇により工具の軟化または工具
への被加工材の溶着が進み、やはり早期に工具寿命に至
る。既存の冷間加工用の工具鋼のJIS SKD11
は、焼入焼戻し後の高硬度状態における切削加工では、
以上の理由により型製作工数の短縮の観点からその効
率、工具寿命の要求を満たせない場合が多い。
On the other hand, in the field of cutting, the cutting efficiency has been improved by high-speed machining. However, in the case of a high-hardness material exceeding 50 HRC, when the high-speed machining is performed, the cutting temperature is excessively increased in addition to the above-mentioned impact on the tool. As a result, the softening of the tool or the welding of the workpiece to the tool progresses, and the tool life also reaches an early stage. JIS SKD11 of existing cold working tool steel
Is the cutting process in the high hardness state after quenching and tempering,
For the above reasons, the efficiency and tool life requirements cannot be met in many cases from the viewpoint of shortening the man-hours for mold production.

【0008】また、JIS SKS3はSKD11に比
べると焼入焼戻し状態での被削性は良好であるが、必ず
しも型製作効率の低減要求を満たすものではなく、また
油焼入れ、低温焼戻し鋼のため切削加工とともに型製作
によく用いられる放電加工において歪の問題が生じる。
Further, JIS SKS3 has better machinability in the quenched and tempered state than SKD11, but does not always satisfy the requirement for reduction of the mold manufacturing efficiency. The problem of distortion arises in electric discharge machining, which is often used in mold making together with machining.

【0009】以上、従来より金型等に適用されてきた工
具鋼には50HRC以上の硬さでプリハードン状態での
切削加工は実用上困難である。そこで本発明は50HR
C以上の高硬度が得られ、プリハードンでの加工が可能
となるよう焼入焼戻し後の被削性を向上した工具鋼およ
びそれを用いてなる金型、そしてこれら手段の達成に寄
与する鋼の加工方法を提供するものである。
As described above, it is practically difficult to cut a pre-hardened state with a hardness of 50 HRC or more for tool steel conventionally applied to molds and the like. Therefore, the present invention provides a 50 HR
Tool steel with improved hardness after quenching and tempering so that high hardness of not less than C can be obtained and processing with pre-hardened, a mold using the same, and a steel that contributes to the achievement of these means. A processing method is provided.

【0010】[0010]

【課題を解決するための手段】したがって、本発明者ら
は50HRC以上の高硬度が得られ、その高硬度におい
て被削性が良好となるような成分について検討を行った
ところ、適正な成分バランスを見いだし、本発明に至っ
た。
Accordingly, the present inventors have studied the components which can obtain a high hardness of 50 HRC or more and have good machinability at the high hardness. And have led to the present invention.

【0011】すなわち、質量%で、C:0.3%以上
0.5%未満、Si:0.7〜2.0%、S:0.08
〜0.25%を含む冷間加工用鋼であって、50HRC
以上、更には55HRC以上の硬さに調質された冷間加
工用高硬度プリハードン鋼である。
That is, in mass%, C: 0.3% or more and less than 0.5%, Si: 0.7 to 2.0%, S: 0.08
Cold working steel containing ~ 0.25%, 50 HRC
As described above, it is a high hardness prehardened steel for cold working which has been tempered to a hardness of 55 HRC or more.

【0012】具体的な成分組成として望ましくは、質量
%で、C:0.3%以上0.5%未満、Si:0.7〜
2.0%、Mn:0.1〜2.0%、S:0.08〜
0.25%、Cr:0.5〜15.0%、WまたはMo
の1種あるいは2種を(Mo+1/2W)で3.5%以
下、V:4.0%以下、N:0.15%以下、残部Fe
および不可避的不純物からなる冷間加工用高硬度プリハ
ードン鋼である。
As a specific component composition, desirably, in mass%, C: 0.3% or more and less than 0.5%, Si: 0.7 to 0.7%
2.0%, Mn: 0.1-2.0%, S: 0.08-
0.25%, Cr: 0.5 to 15.0%, W or Mo
(Mo + / W) 3.5% or less, V: 4.0% or less, N: 0.15% or less, balance Fe
And a hardened prehardened steel for cold working comprising inevitable impurities.

【0013】さらに望ましくは、質量%で、C:0.3
〜0.45%、Si:0.8〜2.0%、Mn:0.1
〜2.0%、S:0.08〜0.25%、Cr:4.0
〜6.0%、WまたはMoの1種あるいは2種を(Mo
+1/2W)で2.0%以下、V:1.0%以下、N:
0.15%以下、残部Feおよび不可避的不純物からな
る冷間加工用高硬度プリハードン鋼である。
More desirably, in mass%, C: 0.3
-0.45%, Si: 0.8-2.0%, Mn: 0.1
2.0%, S: 0.08-0.25%, Cr: 4.0
~ 6.0%, one or two of W or Mo (Mo
+ 1 / 2W), 2.0% or less, V: 1.0% or less, N:
It is a high-hardness prehardened steel for cold working comprising 0.15% or less, with the balance being Fe and unavoidable impurities.

【0014】さらに上述の組成に加えて、Nb、Ta、
Tiの1種または2種以上が合わせて0.4%以下、N
i:4.0%以下、Cu:2.0%以下、Co:5.0
%以下、Zr:0.2%以下、Se:0.15%以下、
Ca:100ppm以下、あるいはAl:1.5%以下
の冷間加工用高硬度プリハードン鋼である。
Further, in addition to the above composition, Nb, Ta,
0.4% or less of one or more of Ti in total, N
i: 4.0% or less, Cu: 2.0% or less, Co: 5.0
% Or less, Zr: 0.2% or less, Se: 0.15% or less,
High hardness prehardened steel for cold working with Ca: 100 ppm or less or Al: 1.5% or less.

【0015】さらには、上記調質された冷間加工用高硬
度プリハードン鋼にて、その調質された状態より切削加
工されて使用される冷間加工用高硬度プリハードン鋼で
あって、前記切削速度が50m/min以上である冷間
加工用高硬度プリハードン鋼である。そして、これら本
発明の冷間加工用高硬度プリハードン鋼を切削加工して
なる冷間加工用金型である。
Further, in the tempered high-hardness pre-hardened steel for cold working, the high-hardness pre-hardened steel for cold working is used after being cut from the tempered state. High-hardness prehardened steel for cold working with a speed of 50 m / min or more. And, it is a mold for cold working formed by cutting the high hardness pre-hardened steel for cold working of the present invention.

【0016】本発明のプリハードン鋼、冷間加工用金型
の達成は、高硬さに調質された鋼の切削加工において、
その切削工具の高寿命化に最適な条件を確立できたとこ
ろにも大きく依るものである。すなわち、本発明の鋼の
加工方法は、50HRC以上の硬さに調質された鋼に対
し、50m/min以上の切削加工速度を適用する鋼の
加工方法であって、鋼の組成は質量%でC:0.3%以
上0.5%未満、Si:0.7〜2.0%、S:0.0
8〜0.25%を含む鋼とすることを特徴とする鋼の加
工方法である。
The achievement of the prehardened steel and the cold working mold according to the present invention is achieved by cutting a steel having a high hardness.
It depends largely on where the optimum conditions for extending the life of the cutting tool have been established. That is, the steel processing method of the present invention is a steel processing method in which a cutting speed of 50 m / min or more is applied to steel tempered to a hardness of 50 HRC or more, and the composition of the steel is mass%. C: 0.3% to less than 0.5%, Si: 0.7 to 2.0%, S: 0.0
A steel working method characterized in that the steel contains 8 to 0.25%.

【0017】[0017]

【発明の実施の形態】本発明の特徴は50HRC以上、
さらには55HRC以上の硬さが得られ、かつその焼入
焼戻し後の高硬さ状態での被削性が良好となるよう成
分、特にC、SiおよびS量の適正化を図ったところに
ある。以下、本発明での成分の限定理由について述べ
る。
DETAILED DESCRIPTION OF THE INVENTION The features of the present invention are 50 HRC or more,
Furthermore, the components, especially C, Si and S content, are optimized so that a hardness of 55 HRC or more can be obtained and the machinability in a high hardness state after quenching and tempering is good. . Hereinafter, the reasons for limiting the components in the present invention will be described.

【0018】Cは本発明において重要な元素である。C
は焼入れ性を向上し、熱処理後の硬さを維持するために
必要である。またCはCr,Mo,W,Vと結合して炭
化物を形成し、耐摩耗性や焼戻し軟化抵抗を向上させ
る。さらに耐摩耗性付与のため行われる表面処理におい
て十分な膜厚を有するMX型化合物(TiC,VC等)
の生成に重要である。
C is an important element in the present invention. C
Is necessary for improving the hardenability and maintaining the hardness after the heat treatment. C combines with Cr, Mo, W, and V to form a carbide, and improves wear resistance and tempering softening resistance. Further, an MX type compound (TiC, VC, etc.) having a sufficient film thickness in a surface treatment performed for imparting wear resistance.
Is important in generating

【0019】しかしながら、焼入焼戻し後の高硬度にお
いては被削性を向上させるにはC量を少なくすることが
重要である。50HRC以上の高硬度になると切削時に
被加工材の温度が上昇し、工具が軟化して工具寿命に至
る。また被加工材の工具への溶着が多くなり溶着物が剥
離するときに工具も同時に剥離が生じ工具のチッピン
グ、欠損から工具寿命に至る。
However, in the case of high hardness after quenching and tempering, it is important to reduce the amount of C in order to improve machinability. When the hardness becomes higher than 50 HRC, the temperature of the workpiece increases during cutting, the tool is softened, and the tool life is extended. In addition, the welding of the workpiece to the tool increases, and when the welded material peels, the tool also peels off at the same time, leading to chipping and chipping of the tool, leading to a long tool life.

【0020】被削性を向上させるにはSの添加またはT
e等の添加による硫化物の形態制御による手法もとられ
るが、高硬度での切削温度上昇等による被削性低下を抑
制するためには、やはりC量を低減することが重要であ
ることを本発明者らは見いだした。C量を少なくするこ
とで切削時の過度の切削温度上昇を抑えるため、被削性
は向上する。しかしながら少なすぎると50HRC以上
の高硬度が得られない。したがって、必要硬さが得られ
る範囲でC量を低くする、C量の適確な調整が本発明の
重要なところであり、Cの含有量は0.3%以上0.5
%未満、望ましくは0.3〜0.45%とした。
To improve machinability, the addition of S or T
Although a method based on morphological control of sulfide by addition of e or the like is used, it is important to reduce the amount of C in order to suppress a decrease in machinability due to a rise in cutting temperature at high hardness. The present inventors have found. Since the excessive increase in cutting temperature during cutting is suppressed by reducing the amount of C, machinability is improved. However, if it is too small, a high hardness of 50 HRC or more cannot be obtained. Therefore, it is important for the present invention to appropriately adjust the amount of C so as to reduce the amount of C within a range in which the required hardness can be obtained.
%, Desirably 0.3 to 0.45%.

【0021】Siは被削性向上のために重要な元素であ
る。Si添加により切削中に酸化物が低融点化し、工具
と被加工材間の溶着を防ぐのに有効な酸化皮膜が生じ、
これが工具と被加工材との直接接触を防ぎ工具摩耗の低
減、つまり被削性が向上する。この効果を得るために
は、少なくとも0.7%以上の添加が必要である。また
Siは、Si脱酸剤及び鋳造性改善の目的でも含有する
が、過多の含有は基地の成分偏析も激しくし靭性が低下
するのでSiの含有量は0.7〜2.0%、望ましくは
0.8〜2.0%とした。さらに望ましくは0.8〜
1.7%である。
Si is an important element for improving machinability. The oxide lowers the melting point during cutting due to the addition of Si, and an effective oxide film is formed to prevent welding between the tool and the workpiece.
This prevents direct contact between the tool and the workpiece and reduces tool wear, ie, improves machinability. In order to obtain this effect, it is necessary to add at least 0.7% or more. Further, Si is also contained for the purpose of improving the Si deoxidizing agent and castability. However, excessive content also causes intense segregation of the components of the matrix and lowers the toughness. Therefore, the content of Si is preferably 0.7 to 2.0%. Was set to 0.8 to 2.0%. More preferably 0.8 to
1.7%.

【0022】Sは被削性を高める硫化物生成に重要な元
素である。しかし、添加しすぎると靭性や溶接性の低下
を招くので、0.08〜0.25%とした。好ましくは
0.1%〜0.25%、特には0.13〜0.25%で
ある。
S is an element important for sulfide generation which enhances machinability. However, if added too much, the toughness and weldability are reduced, so the content was made 0.08 to 0.25%. Preferably it is 0.1% to 0.25%, especially 0.13 to 0.25%.

【0023】次に、本発明の冷間加工用高硬度プリハー
ドン鋼を達成するに好ましい、具体的な成分組成につい
て説明する。
Next, a description will be given of specific component compositions which are preferable for achieving the high hardness prehardened steel for cold working of the present invention.

【0024】Mnは焼入れ性向上のために含有し、0.
1%未満では焼入れ硬さを安定して得るには不十分であ
る。また被削性を向上させる硫化物であるMnSの生成
に必要である。一方、多すぎるとSiと同様基地の成分
偏析も激しくなるので0.1〜2.0%とした。好まし
くは0.6〜1.5%である。
Mn is contained for improving hardenability.
If it is less than 1%, it is insufficient to obtain a stable quench hardness. It is also necessary for the production of MnS, a sulfide that improves machinability. On the other hand, if the content is too large, the segregation of the components in the matrix becomes intense as in the case of Si. Preferably it is 0.6 to 1.5%.

【0025】CrはCと結合して炭化物を生成し耐摩耗
性を向上するとともに、焼入れ性を増す効果、そしてC
VD処理や塩浴法などによる複雑形状への表面処理後の
冷却中に起こる一種の焼き割れ現象を防止する効果があ
る。しかし、多すぎるとCr炭化物の増加による靭性及
び被削性低下の原因となる。さらに固液共存温度幅が大
きくなり鋳造欠陥発生の危険度が増し、実質的に製造性
に困難が生じる原因となる。よってCrの添加量は0.
5〜15.0%とした。本発明の達成においてより望ま
しくは4.0〜6.0%である。
Cr combines with C to form carbides, thereby improving wear resistance and increasing hardenability.
This has the effect of preventing a kind of burning cracking phenomenon that occurs during cooling after surface treatment into a complex shape by VD treatment, salt bath method, or the like. However, if it is too large, it causes a decrease in toughness and machinability due to an increase in Cr carbide. Further, the temperature range of the solid-liquid coexistence becomes large, and the risk of casting defects increases, which substantially causes difficulty in manufacturability. Therefore, the amount of Cr added is 0.
It was set to 5 to 15.0%. In achieving the present invention, it is more preferably 4.0 to 6.0%.

【0026】Mo及びWは焼入れ性を向上する。またC
と結合して硬い炭化物を形成し、耐摩耗性を向上させ
る。MoとWの各特性に与える効果は同様のものが多
く、その効果の程度は質量比でMoがWの2倍相当であ
る。よって、その効果に寄与する含有量は(Mo+1/
2W)量で表すことが可能である。本発明ではMo,W
の1種または2種を含有させることができ、つまりMo
の全含有量を2倍のW含有量で置き換え使用してもよ
く、Moの一部をそれに相当するW量に置き換え使用し
てもよい。経済性からはMoの使用が好ましい。過多の
添加量ではMo,W系炭化物の晶出量が多くなり被削性
及び靭性を劣化させるので3.5%以下、望ましくは
2.0%以下とした。0.2〜1.1%が好ましい。
Mo and W improve hardenability. Also C
To form hard carbides and improve wear resistance. In many cases, the effects on the characteristics of Mo and W are similar, and the degree of the effect is such that Mo is twice as large as W in terms of mass ratio. Therefore, the content contributing to the effect is (Mo + 1 /
2W). In the present invention, Mo, W
One or two of Mo, Mo,
May be replaced with a double W content, or a part of Mo may be replaced with a corresponding W content. Mo is preferably used from the viewpoint of economy. Excessive addition increases the amount of crystallization of Mo and W-based carbides and deteriorates machinability and toughness. Therefore, the content is set to 3.5% or less, preferably 2.0% or less. 0.2-1.1% is preferred.

【0027】Vは工具鋼に必要な軟化抵抗を増大させる
元素であるが、過多の含有では凝固時に巨大なV系炭化
物を晶出し、被削性を低下させる原因となる。よって本
発明では4.0%以下、望ましくは1.0%以下とし
た。0.1〜0.5%が好ましい。
V is an element that increases the softening resistance required for tool steel. However, when V is excessively contained, it crystallizes a huge V-based carbide at the time of solidification, which causes a reduction in machinability. Therefore, in the present invention, the content is set to 4.0% or less, preferably 1.0% or less. 0.1-0.5% is preferable.

【0028】Nは基地や炭化物中に固溶して結晶粒を微
細化し靭性を高める。また焼入れ焼戻し硬さを高める。
本発明においては添加・含有の如何は問わないが、上記
の効果を得るにおいても多量の添加は必要なく、固溶限
の制約もあり0.15%以下とする。なお、上記効果を
得る場合においては、0.02%以上で十分である。
N forms a solid solution in a matrix or carbide to refine crystal grains and increase toughness. It also increases the quenching and tempering hardness.
In the present invention, it does not matter whether it is added or contained. However, in order to obtain the above effects, a large amount of addition is not required, and the content is limited to 0.15% or less due to the limitation of the solid solubility limit. In the case where the above effects are obtained, 0.02% or more is sufficient.

【0029】加えて、本発明の冷間加工用高硬度プリハ
ードン鋼の場合、以下の元素の含有が可能である。
In addition, in the case of the high hardness prehardened steel for cold working of the present invention, the following elements can be contained.

【0030】Nb、Ta、Tiはいずれも焼入れ加熱保
持中の結晶粒の成長を抑制し、結晶粒を微細化し、靭性
を高める。しかし過多の添加は粗大な炭化物が生じ、か
えって靭性を低下させるのでNb、Ta、Tiは合わせ
て0.4%以下とする。なお、上記効果を得る場合にお
いては、0.008%以上が好ましい。
Nb, Ta, and Ti all suppress the growth of crystal grains during quenching and holding, refine the crystal grains, and increase the toughness. However, excessive addition generates coarse carbides and lowers the toughness. Therefore, the total content of Nb, Ta, and Ti is set to 0.4% or less. In the case where the above effects are obtained, the content is preferably 0.008% or more.

【0031】Niは焼入れ性と衝撃遷移温度を上げるこ
とによる靭性向上が認められる元素であるが、本合金系
では特に溶接性劣化を防止でき、実用上に操業可能な表
面処理領域を広げる方向に作用する。しかし過多の添加
は被削性を劣化させるため4.0%以下とする。上記効
果を得る場合、好ましくは0.01%以上である。
Ni is an element whose toughness is improved by increasing the quenchability and impact transition temperature. However, in the present alloy system, deterioration of weldability can be particularly prevented, and the surface treatment region which can be practically operated is expanded. Works. However, excessive addition deteriorates machinability, so that the content is set to 4.0% or less. When the above effects are obtained, the content is preferably 0.01% or more.

【0032】Cuは焼入焼戻し硬さを向上させる元素で
ある。被削性向上のためにC量を低くしてもCu添加に
より硬さを確保できる。過多の含有は素材製造時の熱間
加工性を損ねるので2.0%以下とする。上記効果を得
る場合、好ましくは0.5%以上である。
Cu is an element that improves quenching and tempering hardness. Even if the amount of C is reduced to improve machinability, hardness can be secured by adding Cu. Excessive content impairs the hot workability during the production of the material, so it is set to 2.0% or less. When the above-mentioned effect is obtained, it is preferably at least 0.5%.

【0033】Coは焼戻しにおける微細析出炭化物の凝
集を抑制する元素であり、高硬度が得られる。したがっ
て、被削性向上のためにC量を低くしてもCo添加によ
り硬さを確保できる。過多の含有は製造コストを高める
ので5.0%以下とする。上記効果を得る場合、好まし
くは1.0%以上である。
Co is an element that suppresses agglomeration of finely precipitated carbides during tempering, and provides high hardness. Therefore, even if the amount of C is reduced to improve machinability, hardness can be secured by adding Co. Excessive content increases the production cost, so is made 5.0% or less. When the above effects are obtained, it is preferably 1.0% or more.

【0034】Zrは硫化物に対して有効な接種作用を有
するZrOまたはZrNとなり、硫化物が均一に分布
し被削性が向上する。過多の含有ではZrOまたはZ
rN量が多くなり被削性を害するので0.2%以下とす
る。上記効果を得る場合、好ましくは0.005%以上
である。
Zr becomes ZrO 2 or ZrN which has an effective inoculating action on sulfides, so that the sulfides are uniformly distributed and the machinability is improved. ZrO 2 or Z
Since the amount of rN increases and the machinability is impaired, the content is set to 0.2% or less. When the above effects are obtained, the content is preferably 0.005% or more.

【0035】Seは鍛造による硫化物の延伸を抑制し被
削性を向上させる元素である。しかし過多の含有は機械
的性質の低下を招くので0.15%以下とした。上記効
果を得る場合、好ましくは0.03%以上である。
Se is an element that suppresses elongation of sulfide by forging and improves machinability. However, an excessive content causes a decrease in mechanical properties, so the content was made 0.15% or less. When the above effects are obtained, it is preferably at least 0.03%.

【0036】Caは機械的性質の低下を伴わない快削元
素である。その快削機構は鋼中に微量に分散している酸
化物を低融点化させ、これが切削熱で溶け出し、刃先に
保護膜を形成するためである。また硫化物の鍛伸方向へ
の延伸を抑え、鍛伸垂直方向の靭性低下を抑制する効果
がある。しかし、蒸気圧が高いため溶鋼中から抜けやす
く、100ppm程度までが現状の添加技術的レベルで
ある。なお上記効果を得る場合には、10ppm以上が
好ましい。
Ca is a free-cutting element that does not cause a decrease in mechanical properties. The free-cutting mechanism lowers a small amount of oxides dispersed in the steel to lower the melting point, which melts out by cutting heat and forms a protective film on the cutting edge. Further, it has an effect of suppressing the sulfide from being stretched in the forging and stretching direction and suppressing a decrease in toughness in the forging and stretching perpendicular direction. However, since the vapor pressure is high, it easily escapes from the molten steel, and up to about 100 ppm is the current technical level of addition. In order to obtain the above effect, the content is preferably 10 ppm or more.

【0037】また、本発明の工具鋼はその他求められる
効果に則して、上記の成分組成にPb、Te、Bi、I
n、Be、Ceのうちの1種または2種以上を合わせて
0.2%以下なら含有しても問題はない。
In addition, the tool steel of the present invention has Pb, Te, Bi, I
There is no problem if one or more of n, Be, and Ce are contained in a total amount of 0.2% or less.

【0038】その他、希土類は本発明の工具鋼における
被削性を向上する目的で合わせて0.2%以下の含有が
可能である。不可避的不純物の総量は0.5%以下が好
ましい。また、耐摩耗性付与がさらに必要な場合、Al
を1.5%以下添加して窒化硬さを上げることも可能で
ある。この場合、窒化硬さの過剰な増加による欠け等を
防止するため、好ましくは0.05%以上0.5%以下
である。
In addition, rare earth elements can be contained in a total amount of 0.2% or less for the purpose of improving machinability in the tool steel of the present invention. The total amount of inevitable impurities is preferably 0.5% or less. Further, if further wear resistance is required,
Can be added to increase the nitriding hardness by 1.5% or less. In this case, the content is preferably 0.05% or more and 0.5% or less in order to prevent chipping or the like due to an excessive increase in nitriding hardness.

【0039】本発明においては、C量が低くても焼入焼
戻し後の硬さが50HRC以上、さらには55HRC以
上得られるようNiAlの析出硬化を利用することがで
きる。このためには、Niを4.0%以下、Alを1.
5%以下、Cuを1.5%以下添加することが有効であ
る。
In the present invention, the precipitation hardening of NiAl can be used so that the hardness after quenching and tempering can be obtained at 50 HRC or more, and even at 55 HRC or more even if the C content is low. For this purpose, Ni is 4.0% or less, and Al is 1.0% or less.
It is effective to add 5% or less and 1.5% or less of Cu.

【0040】次に焼戻し温度と硬さについて述べる。打
抜き、曲げ等に用いられる冷間加工用の金型は耐摩耗性
の観点から50HRC以上、さらには54HRC以上、
望ましくは55HRC以上の硬さが必要である。よって
本発明での硬さは50HRC以上、望ましくは55HR
C以上としている。
Next, the tempering temperature and hardness will be described. The die for cold working used for punching, bending, etc. is 50HRC or more from the viewpoint of abrasion resistance, furthermore 54HRC or more,
Desirably, hardness of 55 HRC or more is required. Therefore, the hardness in the present invention is 50 HRC or more, preferably 55 HR.
C or higher.

【0041】また、これら金型の加工は切削のほかに放
電加工も広く用いられている。この場合焼戻し温度が低
温であると材料中の焼入れ歪が残留しており、放電加工
後に歪が開放され変形や割れが生じることがある。さら
に耐摩耗性付与のために行われる窒化、PVD等の表面
処理は一般には少なくとも400℃以上で行われるた
め、これを行なう場合の素材の焼戻し温度は表面処理温
度以上が必要、そのため調質における焼戻しは500℃
以上で行なうことが望ましい。
For machining these dies, electric discharge machining is widely used in addition to cutting. In this case, if the tempering temperature is low, quenching strain in the material remains, and the strain is released after electric discharge machining, which may cause deformation or cracking. Furthermore, since surface treatments such as nitriding and PVD performed for imparting wear resistance are generally performed at least at 400 ° C. or higher, the tempering temperature of the material in performing this is required to be higher than the surface treatment temperature. Tempering is 500 ℃
It is desirable to perform the above.

【0042】次に切削速度ついて述べる。50HRC以
上の高硬度材においても、例えばコーティング超硬エン
ドミルを用いて切削温度の過度の上昇を抑えるよう低速
切削を行えば、ある程度の切削は可能である。しかしな
がら、これでは切削加工工数が増加し結果的に型製作効
率の向上とはなり得ない。そこで本発明では、主にC量
を低減することによって過度の切削温度の上昇を抑え、
被削性を向上させているところに特徴を有する。
Next, the cutting speed will be described. Even a high hardness material of 50 HRC or more can be cut to some extent by performing low-speed cutting using a coated carbide end mill so as to suppress an excessive increase in the cutting temperature. However, in this case, the number of machining steps is increased, and as a result, it is impossible to improve the mold manufacturing efficiency. Therefore, in the present invention, the excessive increase in the cutting temperature is suppressed mainly by reducing the amount of C,
The feature is that the machinability is improved.

【0043】つまり、本発明の高硬度プリハードン鋼で
あれば切削速度が増加してもあまり切削温度が上昇しな
いため、50HRC以上、さらには55HRC以上とい
った高硬度においても高速切削加工が可能であり、型加
工効率の向上が達成できる。この場合、型加工効率を考
えると切削速度は50m/min以上であることが、本
発明の効果を発揮するにあたり、望ましい。本発明の切
削速度での加工は特にエンドミル加工や正面フライス加
工および旋削などで実施される。
That is, with the high hardness pre-hardened steel of the present invention, the cutting temperature does not increase so much even if the cutting speed is increased. An improvement in mold processing efficiency can be achieved. In this case, in consideration of the mold processing efficiency, it is desirable that the cutting speed is 50 m / min or more in order to exert the effect of the present invention. The machining at the cutting speed according to the present invention is particularly performed by end milling, face milling, turning, and the like.

【0044】以上のように本発明の高硬度プリハードン
鋼であれば50HRC以上、さらには55HRC以上と
いった高硬度においても効率良く型切削加工が可能であ
り、プレス金型といった金型の製作リードタイムが短縮
できる。さらに本発明鋼は高硬度かつ高被削性により、
ガラスを含むような耐摩耗性を必要とする樹脂型やゴム
型、プラ型、熱間加工型のスペーサ、ホルダなどの補助
工具にも使用できる。
As described above, the high hardness pre-hardened steel of the present invention enables efficient die cutting even at a high hardness of 50 HRC or more, and even 55 HRC or more. Can be shortened. Furthermore, the steel of the present invention has high hardness and high machinability,
It can also be used for auxiliary tools such as resin-type, rubber-type, plastic-type, hot-working-type spacers and holders that require wear resistance including glass.

【0045】[0045]

【実施例】次に本発明の実施例について詳細に説明する
が、本発明はこれらの実施例により何等限定されるもの
ではない。
EXAMPLES Next, examples of the present invention will be described in detail, but the present invention is not limited to these examples.

【0046】(実施例1)高周波炉により所定の合金を
溶解し、表1に示す化学組成の鋼塊を製作した。比較鋼
18はJIS SKD11相当成分である。これら鋼塊
を鍛造比5にて鍛造して鋼材に仕上げ、焼なましを行っ
た。次にこれら焼なまし材を大気炉において1030℃
に加熱保持後、空気焼入れを行い、500〜600℃の
焼戻しを行った。焼入焼戻し材は40×50×200m
mの寸法に仕上げ、切削試験用の試料とした。表1に焼
入焼戻し後の硬さを併せて示す。なお、比較鋼19はC
量が低すぎるため50HRC以上の硬さが得られていな
い。
Example 1 A predetermined alloy was melted in a high-frequency furnace to produce a steel ingot having the chemical composition shown in Table 1. Comparative steel 18 is a component equivalent to JIS SKD11. These steel ingots were forged at a forging ratio of 5 to finish them into steel and then annealed. Next, these annealed materials are heated at 1030 ° C. in an atmospheric furnace.
, And then air quenched and tempered at 500 to 600 ° C. Hardened and tempered material is 40 × 50 × 200m
m and finished as a sample for cutting test. Table 1 also shows the hardness after quenching and tempering. The comparative steel 19 is C
Since the amount is too low, a hardness of 50 HRC or more has not been obtained.

【0047】[0047]

【表1】 [Table 1]

【0048】50HRC以上の硬さが得られなかった比
較鋼19を除き、これらの試料を用いてスクエアエンド
ミルによる切削試験を行った。試験条件は表2に示す。
被削性は工具の逃げ面摩耗が0.1mmに達するまでの
切削長を工具寿命として評価した。被削性の評価結果を
表3に示す。
A cutting test using a square end mill was performed using these samples, except for Comparative Steel 19, which did not achieve a hardness of 50 HRC or more. The test conditions are shown in Table 2.
For the machinability, the cutting length until the flank wear of the tool reached 0.1 mm was evaluated as the tool life. Table 3 shows the machinability evaluation results.

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】切削速度30m/minの比較的低速での
加工では、比較鋼もある程度切削可能なものもあるが、
切削速度150m/minの高速加工では本発明鋼の工
具寿命、つまり被削性は良好であるのに対し、比較鋼1
8はC量が高くSiが低いため、比較鋼20はC量が高
いため、比較鋼21はSi量が低いため、比較鋼22は
S量が低いため、比較鋼23はC量が高いため被削性は
劣る。そして、比較鋼24は硬さが低めであるがC量が
高いため、比較鋼25はC量が高くS量が低いため被削
性が劣る。
In processing at a relatively low cutting speed of 30 m / min, some comparative steels can be cut to some extent.
In the high-speed machining at a cutting speed of 150 m / min, the tool life of the steel of the present invention, that is, the machinability is good, while the comparative steel 1
8 has a high C content and a low Si content, the comparative steel 20 has a high C content, the comparative steel 21 has a low Si content, the comparative steel 22 has a low S content, and the comparative steel 23 has a high C content. Machinability is poor. The comparative steel 24 has a low hardness but a high C content, and the comparative steel 25 has a high C content and a low S content, so that the machinability is inferior.

【0052】(実施例2)表1の本発明鋼2および比較
鋼18、24のプリハードン素材を用いて、エンドミル
切削時の切削温度の測定を行った。プリハードン素材の
寸法は40×50×200mmの板である。表4に本発
明鋼2、比較鋼18、24のプリハードン素材の硬さ、
炭化物量、固溶炭素量を、表5に切削条件および切削温
度測定方法を示す。なお、同組成の鋼で比べた場合、硬
さが低ければ切削温度が低くなることは当然である。そ
こで、今回の評価では本発明鋼2を比較鋼18、24よ
り高硬度とすることで、本発明の加工方法による効果の
顕著性をより明確にするものである。
(Example 2) Using pre-hardened materials of the present invention steel 2 and comparative steels 18 and 24 in Table 1, the cutting temperature at the time of end mill cutting was measured. The dimensions of the prehardened material are 40 × 50 × 200 mm plates. Table 4 shows the hardness of the pre-hardened materials of Invention Steel 2, Comparative Steels 18 and 24,
Table 5 shows the amount of carbide and the amount of solute carbon, and Table 5 shows the cutting conditions and the method of measuring the cutting temperature. In addition, when compared with steel of the same composition, if the hardness is low, the cutting temperature is naturally low. Therefore, in this evaluation, the hardness of the steel 2 of the present invention is made higher than that of the comparative steels 18 and 24, thereby making the effect of the working method of the present invention more remarkable.

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【表5】 [Table 5]

【0055】図1に切削温度測定結果を示す。切削速度
が30m/minの場合、どの鋼種とも切削温度に大差
はないものの、硬さの低い順番で比較鋼24が最も低
く、次に比較鋼18で、本発明鋼2であった。次に、ど
の鋼種も切削速度の増加に伴って切削温度が上昇してい
るが、切削速度が50m/min付近を超えたところか
ら切削温度の上昇傾向に差が生じ出した。これは素材の
基地中に固溶している炭素濃度に依存するものであり、
切削速度150m/minの場合では、固溶炭素量が約
0.35%と最も少ない本発明鋼2の切削温度が最も低
く、次に約0.60%である比較鋼18、そして約0.
80%である比較鋼24が最も切削温度が高く、それぞ
れの温度差が約100℃にも及んでいる。
FIG. 1 shows the cutting temperature measurement results. When the cutting speed was 30 m / min, there was no significant difference in cutting temperature with any steel type, but Comparative Steel 24 was the lowest in the order of hardness, followed by Comparative Steel 18 and Steel 2 of the present invention. Next, the cutting temperature of all steel types increased with the increase of the cutting speed. However, the difference in the increasing tendency of the cutting temperature began when the cutting speed exceeded about 50 m / min. This depends on the concentration of carbon dissolved in the material base,
In the case of a cutting speed of 150 m / min, the cutting temperature of the steel 2 of the present invention having the lowest amount of solute carbon of about 0.35% is the lowest, and then the comparative steel 18 having a cutting temperature of about 0.60%, and about 0.05%.
The cutting temperature of the comparative steel 24, which is 80%, is the highest, and each temperature difference reaches about 100 ° C.

【0056】また、高硬度鋼は一般にTiAlNでコー
ティングされた工具で切削されるが、このコーティング
工具の寿命を左右する因子にコーティング皮膜の酸化開
始温度があり、当然工具の高寿命化を達成するためには
この温度以下の切削温度で鋼を切削することが有効であ
る。工具に施されるTiAlNコーティング皮膜の酸化
開始温度は一般に800℃近傍であるところ、本発明鋼
2の場合、切削速度が200m/minに達した時でも
800℃以下の切削温度を維持しており、優れた被削性
を有していることがわかる。
High-hardness steel is generally cut with a tool coated with TiAlN. A factor that affects the life of the coated tool is the oxidation start temperature of the coating film. For this purpose, it is effective to cut steel at a cutting temperature lower than this temperature. The oxidation start temperature of the TiAlN coating film applied to the tool is generally around 800 ° C. In the case of the steel 2 of the present invention, the cutting temperature of 800 ° C. or less is maintained even when the cutting speed reaches 200 m / min. It has excellent machinability.

【0057】さらに、被削性を大きく左右する因子とし
て、素材中の炭化物分布がある。比較鋼18の場合、上
記に加えて、硬質な炭化物が多数析出しているためアブ
レッシブ摩耗が顕著に起こることも重畳して影響するこ
とから、実施例1の結果からもわかるように、その被削
性に劣るものである。
Further, as a factor largely affecting the machinability, there is a carbide distribution in the raw material. In the case of the comparative steel 18, in addition to the above, a large number of hard carbides are precipitated, so that the abrasive wear is remarkably caused, which also has an influence. It has poor machinability.

【0058】(実施例3)表1の本発明鋼2および比較
鋼18のプリハードン素材を用いて、プリント基板型を
想定した型製作試験を行った。プリハードン素材の寸法
は200×200×10mmの板であり、これにφ1m
mの穴あけを100穴行なうものである。
(Example 3) Using a pre-hardened material of the steel 2 of the present invention and the comparative steel 18 shown in Table 1, a mold production test was performed assuming a printed circuit board type. The dimensions of the pre-hardened material are 200 × 200 × 10 mm plates,
The drilling of m is performed for 100 holes.

【0059】また比較鋼18については、合わせてその
焼入焼戻し前、つまり焼なまし状態の素材からの型製作
も行った。つまり、現在の一般的な型製作工程であっ
て、焼なまし状態で穴あけ後、熱処理にて調質、仕上加
工を経て作製するものである。焼なまし素材の寸法は上
記プリハードン素材寸法に対し、仕上代として片肉0.
5mmずつ大きくしたものである。焼なまし材の熱処理
条件は焼入れが1030℃、真空加圧冷却で、焼戻しは
540℃で行った。
As for the comparative steel 18, a mold was also manufactured before the quenching and tempering, that is, from a material in an annealed state. In other words, it is a current general mold manufacturing process, in which holes are formed in an annealed state, and then heat treatment is performed, followed by finishing and finishing. The size of the annealed material is 0.1% of the thickness of the pre-hardened material.
It is increased by 5 mm. The heat treatment conditions for the annealed material were quenching at 1030 ° C., vacuum pressure cooling, and tempering at 540 ° C.

【0060】以上の型製作において、その穴切削条件
(焼なまし状態から作製の比較鋼18は、その仕上げ加
工条件)を表6に、そして、穴あけ加工からの型製作工
数を表7に示す。
Table 6 shows the hole cutting conditions (finish processing conditions for the comparative steel 18 manufactured from the annealed state) in the above-described die manufacturing, and Table 7 shows the die manufacturing man-hours from the drilling. .

【0061】[0061]

【表6】 [Table 6]

【0062】[0062]

【表7】 [Table 7]

【0063】比較鋼18のプリハードン素材からの穴あ
け加工では30穴でドリルが折損し、型加工ができなか
った。また、現在の一般的な型製作工程である焼なまし
材からの型製作において、比較鋼18を素材にした場合
は穴あけ後に熱処理および熱処理による変寸が生じるた
めに仕上加工が必要となり、型製作工数が大きくなる。
In the drilling of the comparative steel 18 from the pre-hardened material, the drill was broken at 30 holes, and the die could not be machined. Also, in the production of a mold from an annealed material, which is a current general mold production process, when the comparative steel 18 is used as a material, heat treatment is performed after drilling, and a dimension change due to the heat treatment occurs. Production man-hours increase.

【0064】これに対し、本発明鋼2のプリハードン素
材からの型製作の場合、その調質後の穴あけは可能であ
り、またその後の熱処理や仕上加工が不要なため、型製
作コストが大幅に削減できる。仮に比較鋼18の焼なま
し素材からの型製作において、穴あけに超硬ドリルを用
いて切削効率を上げたとしても本発明鋼2のプリハード
ン素材からの加工の工数には及ばない。
On the other hand, in the case of producing a mold from the pre-hardened material of the steel 2 of the present invention, it is possible to make a hole after the tempering, and it is not necessary to perform a heat treatment or a finishing process thereafter. Can be reduced. Even if the cutting efficiency of the comparative steel 18 from the annealed material is increased by using a carbide drill for drilling, it does not reach the man-hours required for processing the steel 2 of the present invention from the pre-hardened material.

【0065】[0065]

【発明の効果】以上述べたように、本発明鋼であれば打
抜き等の冷間加工用金型に必要な50HRC以上の硬
さ、さらには55HRC以上の硬さが得られ、かつ焼入
焼戻し後のいわゆるプリハードン状態においても高い硬
さでの被削性が良好であるため、型製作効率の向上およ
びそれによるコスト低減が期待できる。本発明による工
業的価値は高い。
As described above, according to the steel of the present invention, the hardness of 50 HRC or more required for the die for cold working such as punching, and the hardness of 55 HRC or more can be obtained, and quenching and tempering. Even in the so-called pre-hardened state, since the machinability with high hardness is good, it is possible to expect an improvement in mold manufacturing efficiency and a reduction in cost. The industrial value according to the invention is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】切削速度の増加に伴う切削温度の上昇状況を示
す図であり、本発明の効果の一例を説明するための図で
ある。
FIG. 1 is a diagram showing an increase in cutting temperature with an increase in cutting speed, and is a diagram for explaining an example of an effect of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加田 善裕 島根県安来市安来町2107番地2 日立金属 株式会社安来工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshihiro Kada 2107-2 Yasugi-cho, Yasugi-shi, Shimane Pref.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.3%以上0.5%未
満、Si:0.7〜2.0%、S:0.08〜0.25
%を含む冷間加工用鋼であって、50HRC以上の硬さ
に調質されていることを特徴とする被削性に優れた冷間
加工用高硬度プリハードン鋼。
1. In mass%, C: 0.3% to less than 0.5%, Si: 0.7 to 2.0%, S: 0.08 to 0.25
% Cold-working hardened steel with excellent machinability, characterized in that it is tempered to a hardness of at least 50 HRC.
【請求項2】 55HRC以上の硬さに調質されている
ことを特徴とする請求項1に記載の被削性に優れた冷間
加工用高硬度プリハードン鋼。
2. The high-hardness prehardened steel for cold working having excellent machinability according to claim 1, wherein the hardened steel has a hardness of 55 HRC or more.
【請求項3】 上記調質された状態より切削加工されて
使用される冷間加工用高硬度プリハードン鋼であって、
前記切削速度が50m/min以上であることを特徴と
する請求項1または2に記載の被削性に優れた冷間加工
用高硬度プリハードン鋼。
3. A high-hardness pre-hardened steel for cold working, which is used after being cut from the tempered state,
The high-hardness prehardened steel for cold working having excellent machinability according to claim 1 or 2, wherein the cutting speed is 50 m / min or more.
【請求項4】 質量%で、C:0.3%以上0.5%未
満、Si:0.7〜2.0%、Mn:0.1〜2.0
%、S:0.08〜0.25%、Cr:0.5〜15.
0%、WまたはMoの1種あるいは2種を(Mo+1/
2W)で3.5%以下、V:4.0%以下、N:0.1
5%以下、残部Feおよび不可避的不純物からなること
を特徴とする請求項1ないし3のいずれかに記載の被削
性に優れた冷間加工用高硬度プリハードン鋼。
4. In mass%, C: 0.3% or more and less than 0.5%, Si: 0.7-2.0%, Mn: 0.1-2.0.
%, S: 0.08 to 0.25%, Cr: 0.5 to 15.
0%, one or two of W or Mo (Mo + 1 /
2W) 3.5% or less, V: 4.0% or less, N: 0.1
The high-hardness prehardened steel for cold working excellent in machinability according to any one of claims 1 to 3, wherein the steel comprises 5% or less, the balance being Fe and inevitable impurities.
【請求項5】 質量%で、C:0.3%〜0.45%、
Si:0.8〜2.0%、Mn:0.1〜2.0%、
S:0.08〜0.25%、Cr:4.0〜6.0%、
WまたはMoの1種あるいは2種を(Mo+1/2W)
で2.0%以下、V:1.0%以下、N:0.15%以
下、残部Feおよび不可避的不純物からなることを特徴
とする請求項1ないし3のいずれかに記載の被削性に優
れた冷間加工用高硬度プリハードン鋼。
5% by mass, C: 0.3% to 0.45%,
Si: 0.8 to 2.0%, Mn: 0.1 to 2.0%,
S: 0.08 to 0.25%, Cr: 4.0 to 6.0%,
One or two of W or Mo (Mo + 1 / 2W)
The machinability according to any one of claims 1 to 3, wherein 2.0% or less, V: 1.0% or less, N: 0.15% or less, and the balance is Fe and unavoidable impurities. High-hardness pre-hardened steel for cold working with excellent performance.
【請求項6】 質量%で、Nb、Ta、Tiの1種また
は2種以上が合わせて0.4%以下であることを特徴と
する請求項1ないし5のいずれかに記載の被削性に優れ
た冷間加工用高硬度プリハードン鋼。
6. The machinability according to claim 1, wherein at least one of Nb, Ta, and Ti is at most 0.4% by mass. High-hardness pre-hardened steel for cold working with excellent performance.
【請求項7】 質量%で、Ni:4.0%以下であるこ
とを特徴とする請求項1ないし6のいずれかに記載の被
削性に優れた冷間加工用高硬度プリハードン鋼。
7. The high-hardness prehardened steel for cold working excellent in machinability according to claim 1, wherein Ni is not more than 4.0% in mass%.
【請求項8】 質量%で、Cu:2.0%以下であるこ
とを特徴とする請求項1ないし7のいずれかに記載の被
削性に優れた冷間加工用高硬度プリハードン鋼。
8. The high-hardness prehardened steel for cold working excellent in machinability according to claim 1, wherein Cu is not more than 2.0% by mass%.
【請求項9】 質量%で、Co:5.0%以下であるこ
とを特徴とする請求項1ないし8のいずれかに記載の被
削性に優れた冷間加工用高硬度プリハードン鋼。
9. The high-hardness prehardened steel for cold working excellent in machinability according to claim 1, wherein the content of Co is not more than 5.0% by mass.
【請求項10】 質量%で、Zr:0.2%以下である
ことを特徴とする請求項1ないし9のいずれかに記載の
被削性に優れた冷間加工用高硬度プリハードン鋼。
10. The high-hardness prehardened steel for cold working excellent in machinability according to any one of claims 1 to 9, wherein Zr: 0.2% or less by mass%.
【請求項11】 質量%で、Se:0.15%以下であ
ることを特徴とする請求項1ないし10のいずれかに記
載の被削性に優れた冷間加工用高硬度プリハードン鋼。
11. The high-hardness prehardened steel for cold working excellent in machinability according to claim 1, wherein the mass% is Se: 0.15% or less.
【請求項12】 質量比で、Ca:100ppm以下で
あることを特徴とする請求項1ないし11のいずれかに
記載の被削性に優れた冷間加工用高硬度プリハードン
鋼。
12. The high-hardness prehardened steel for cold working excellent in machinability according to claim 1, wherein the mass ratio is Ca: 100 ppm or less.
【請求項13】 質量%で、Al:1.5%以下である
ことを特徴とする請求項1ないし12のいずれかに記載
の被削性に優れた冷間加工用高硬度プリハードン鋼。
13. The high-hardness prehardened steel for cold working excellent in machinability according to claim 1, wherein Al is not more than 1.5% by mass%.
【請求項14】 請求項1ないし13のいずれかに記載
の冷間加工用高硬度プリハードン鋼を切削加工してなる
ことを特徴とする冷間加工用金型。
14. A cold working mold obtained by cutting the high-hardness pre-hardened steel for cold working according to any one of claims 1 to 13.
【請求項15】 50HRC以上の硬さに調質された鋼
に対し、50m/min以上の切削加工速度を適用する
鋼の加工方法であって、鋼の組成は質量%でC:0.3
%以上0.5%未満、Si:0.7〜2.0%、S:
0.08〜0.25%を含む鋼とすることを特徴とする
鋼の加工方法。
15. A method of processing steel, wherein a cutting speed of 50 m / min or more is applied to steel tempered to a hardness of 50 HRC or more, wherein the composition of the steel is C: 0.3 in mass%.
% To less than 0.5%, Si: 0.7 to 2.0%, S:
A method for processing steel, comprising steel containing 0.08 to 0.25%.
JP2001331472A 2000-12-13 2001-10-29 High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel Expired - Lifetime JP3830030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331472A JP3830030B2 (en) 2000-12-13 2001-10-29 High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000379222 2000-12-13
JP2000-379222 2000-12-13
JP2001331472A JP3830030B2 (en) 2000-12-13 2001-10-29 High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel

Publications (2)

Publication Number Publication Date
JP2002241894A true JP2002241894A (en) 2002-08-28
JP3830030B2 JP3830030B2 (en) 2006-10-04

Family

ID=26605773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331472A Expired - Lifetime JP3830030B2 (en) 2000-12-13 2001-10-29 High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel

Country Status (1)

Country Link
JP (1) JP3830030B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047806A1 (en) * 2006-10-17 2008-04-24 Kabushiki Kaisha Kobe Seiko Sho Cold work die steel, die, and method for production of cold work die steel
EP2979772A4 (en) * 2013-03-29 2016-10-12 Hitachi Metals Ltd Steel material for die and process for producing same, process for producing prehardened steel product for die, and process for producing cold working die
JP2019019397A (en) * 2017-07-20 2019-02-07 山陽特殊製鋼株式会社 Preharden hot tool steel excellent in machinability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047806A1 (en) * 2006-10-17 2008-04-24 Kabushiki Kaisha Kobe Seiko Sho Cold work die steel, die, and method for production of cold work die steel
EP2979772A4 (en) * 2013-03-29 2016-10-12 Hitachi Metals Ltd Steel material for die and process for producing same, process for producing prehardened steel product for die, and process for producing cold working die
JP2019019397A (en) * 2017-07-20 2019-02-07 山陽特殊製鋼株式会社 Preharden hot tool steel excellent in machinability

Also Published As

Publication number Publication date
JP3830030B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
KR100765661B1 (en) Low carbon martensitic stainless steel and production method thereof
WO2009088027A1 (en) Cold-work die steel and dies for cold pressing
JP2011001573A (en) Tool steel for hot work and steel product using the same
JP2010503770A (en) Steel alloys, holders or holder details for plastic forming tools, toughened blanks for holders or holder details, steel alloy production methods
JP2009013439A (en) High toughness high-speed tool steel
JPH10273756A (en) Cold tool made of casting, and its production
US6663726B2 (en) High-hardness prehardened steel for cold working with excellent machinability, die made of the same for cold working, and method of working the same
JP4860774B1 (en) Cold work tool steel
JP2005336553A (en) Hot tool steel
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
JP3846008B2 (en) Cold tool steel with excellent toughness and wear resistance and manufacturing method thereof
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JP4099742B2 (en) Tool steel with excellent weldability and machinability and mold using the same
JP4322239B2 (en) Cold tool steel and manufacturing method thereof
JP3830030B2 (en) High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel
JP2866113B2 (en) Corrosion resistant mold steel
JPH093604A (en) High speed tool steel for precision casting
JPH09316601A (en) Cold tool steel suitable for surface treatment, die and tool for the same
JP3780690B2 (en) Hot work tool steel with excellent machinability and tool life
CN112813361A (en) Steel for hardware tools and preparation method thereof
JP2001123247A (en) Cold tool steel excellent in machinability
JPH09227990A (en) Hot tool steel excellent in high temperature strength and fracture toughness
JPH09165649A (en) Hot tool steel excellent in high temperature strength and fracture toughness
JP2001064754A (en) Tool steel with excellent weldability and machinability and suppressed secular change, and die using the same
JP2001234278A (en) Cold tool steel excellent in machinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Ref document number: 3830030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

EXPY Cancellation because of completion of term