WO2008047806A1 - Cold work die steel, die, and method for production of cold work die steel - Google Patents

Cold work die steel, die, and method for production of cold work die steel Download PDF

Info

Publication number
WO2008047806A1
WO2008047806A1 PCT/JP2007/070197 JP2007070197W WO2008047806A1 WO 2008047806 A1 WO2008047806 A1 WO 2008047806A1 JP 2007070197 W JP2007070197 W JP 2007070197W WO 2008047806 A1 WO2008047806 A1 WO 2008047806A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
hardness
present
temperature
Prior art date
Application number
PCT/JP2007/070197
Other languages
French (fr)
Japanese (ja)
Inventor
Shogo Murakami
Tsuyoshi Tonomura
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Nippon Koshuha Steel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006294528A external-priority patent/JP4266383B2/en
Priority claimed from JP2007047490A external-priority patent/JP4266384B2/en
Application filed by Kabushiki Kaisha Kobe Seiko Sho, Nippon Koshuha Steel Co., Ltd. filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US12/444,400 priority Critical patent/US20100074792A1/en
Publication of WO2008047806A1 publication Critical patent/WO2008047806A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to cold mold steel and molds, and a method for producing cold mold steel, and more specifically, cold-warm press forming of steel sheets for automobiles and steel sheets for home appliances.
  • the present invention relates to a mold steel useful as a mold material used for punching, bending, drawing, trimming, and the like, and a method for manufacturing the mold steel.
  • Molds used for forming automobile steel plates, home appliance steel plates, and the like are required to have an improved service life as the strength of the steel plates increases.
  • the demand for high-tensile steel sheets with a tensile strength of about 590 MPa or more is increasing rapidly in order to improve automobile fuel efficiency in consideration of environmental problems.
  • a mold is composed of a mold base material (mold steel) and a surface hardened layer (surface coating) applied to the surface thereof.
  • the base metal mold steel is generally obtained by annealing ⁇ cutting ⁇ quenching / tempering (in this specification, quenching is called solution treatment and tempering is called aging). Manufactured.
  • Patent Documents 1 to 3 propose techniques for improving the components in steel.
  • Patent Document 1 has been proposed to further improve the hardness of the matrix high speed.
  • a large amount of Nb and / or Ta is contained, and by suppressing the coarsening of crystal grains when subjected to high-temperature quenching, high-temperature quenching is possible and higher hardness (improved wear resistance) is achieved.
  • the method of aiming at is described.
  • Patent Document 2 relates to a cold die steel that achieves a size change suppressing characteristic and a high hardness characteristic
  • Patent Document 3 describes that the amount of dimensional change (size change) due to quenching and tempering treatment, in particular, the expansion change during tempering can be suppressed, and an appropriate amount of Ni or A1 for the purpose of increasing hardness. And cold die steel with the appropriate amount of Cu added is disclosed. Moreover, it is described that galling resistance is improved by adjusting the C and Cr contents and finely dispersing the carbide distribution in the structure.
  • Patent Document 4 for the purpose of reducing the die manufacturing cost, cutting is performed from a quenching and tempering state, in which a quenching and tempering process is not performed after a conventional cutting process.
  • the technique of “pre-hardened steel” to be performed (quenching and tempering ⁇ cutting) is disclosed. Specifically, as a steel that can exhibit good machinability even at high hardness and can be punched in the cold, especially pre-hardened steel with appropriately controlled contents of C, Si and S It is disclosed. However, at present, the life of molds using pre-hardened steel is short and has not been put into practical use.
  • Patent Documents 5 to 7 which will be described later, mainly disclose techniques for suppressing deformation by controlling heat treatment conditions such as quenching and tempering! /.
  • Patent Document 5 discloses a method of suppressing dimensional changes after quenching and tempering by performing low temperature tempering at 150 to 450 ° C and high temperature tempering at 480 to 550 ° C at least once. It is disclosed.
  • Patent Document 6 discloses a method of performing quenching ⁇ sub-zero treatment at 0 to ⁇ 200 ° C. ⁇ low temperature tempering at 500 ° C. or lower. Specifically, a method is described in which the sub-zero treatment is performed at the above temperature, the dimensional change is controlled by adjusting the amount of retained austenite, and then the low-temperature tempering is performed to achieve the target dimension.
  • Patent Document 7 discloses a method of realizing a predetermined hardness by increasing the hardenability by adjusting the components in steel and controlling the cooling rate during quenching by pearlite nose and gas cooling. As a result, heat treatment distortion is reduced while ensuring the necessary hardness for the mold.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-330894
  • Patent Document 2 JP 2006-152356 A
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-169624
  • Patent Document 4 JP-A-2002-241894
  • Patent Document 6 Japanese Patent Laid-Open No. 200-172748
  • Patent Document 7 Japanese Patent Laid-Open No. 2002-167644
  • the properties required for the cold mold steel include not only the above-described increase in hardness and the ability to suppress change in size after heat treatment, but also excellent weld repairability.
  • Welding repair is performed mainly for the purpose of correcting and repairing damage to the mold (specifically, unevenness of the hardened surface layer) by welding and reusing the mold.
  • overlay welding by argon welding is widely used.
  • the tensile strength is about
  • HAZ softening HAZ softening
  • HAZ softening is applied to the bond part (welded metal and base metal The boundary, also called “weld melt line”. This is a phenomenon seen in a region slightly away from ()). In this region, transformation occurs from fine-grained austenite where the heating temperature is lower than that of the bond part, so the hardenability is reduced and the fraction of the soft ferrite phase increases.
  • Fig. 1 (a) is a diagram schematically showing how the base metals are welded together with weld metal
  • Fig. 1 (b) schematically shows the hardness distribution in region A shown in Fig. 1 (a). Is shown.
  • the HAZ hardness decreases and becomes softer as the distance from the bond portion increases.
  • the protective effect of the surface hardening layer is not fully exhibited, and the surface hardening layer is damaged early, and the life of the mold is reduced.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a steel for cold molds that has high hardness, is excellent in restraining deformation after heat treatment, and has good weld repairability. And to provide molds.
  • Another object of the present invention is to provide a production method for efficiently obtaining a steel for a cold mold which has high hardness and is excellent in restraining to change in size after heat treatment. Means for solving the problem
  • the present invention relates to the following;
  • ⁇ [] means the content (%) of each element.
  • the cooling according to the above 1 or 2 containing at least one element selected from the group force consisting of Ti, Zr, Hf, Ta, and Nb in total of 0.5% or less (excluding 0%) Steel for molds.
  • Martensitic transformation point (Ms point) expressed by the following formula:
  • T2 means aging temperature (° C)
  • a method for producing steel for cold molds including:
  • Martensitic transformation point (Ms point) expressed by the following formula:
  • the alloy components are appropriately controlled as described above. Therefore, the hardness is high, the deformation resistance after heat treatment is excellent, and the weld repairability is also good. . Therefore, the mold obtained by using the above cold mold steel is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more, and has a long life, particularly after welding repair. Life is further increased.
  • the components in the steel and the conditions of the solution treatment and the aging treatment are appropriately controlled! /.
  • Excellent cold mold steel can be produced efficiently. Therefore, the mold obtained using the production method of the present invention is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more, and has a longer life, particularly after welding repair. Enhanced.
  • Fig. 1 is a diagram schematically showing a state in which the base metals are welded to each other with a weld metal.
  • Fig. 1 (a) is a cross-sectional view of a welded portion, and
  • Fig. 1 (b ) Is a diagram schematically showing the hardness distribution of region A shown in FIG. 1 (a).
  • Fig. 2 is an optical micrograph showing the condition of galling on the surface of a mold that uses JIS SKD11 as the mold steel and has a TiN coating on it.
  • Fig. 2 (c) are optical micrographs showing an enlarged part
  • Fig. 2 (d) is an optical micrograph of the mold base material before the TiN film is applied.
  • FIG. 3 (a) is a schematic view showing the shape of a welding test piece used in the examples
  • FIG. 3 (b) is an enlarged sectional view of a groove.
  • FIG. 4 is a schematic view schematically showing a state of a test piece subjected to buttering.
  • FIG. 5 is a schematic view showing the shape of a Charpy impact test piece used in the examples.
  • FIG. 6 is a graph showing the relationship between the [Cu] / [Ni] ratio and the HAZ softening width.
  • FIG. 7 is a graph showing a profile of hardness distribution.
  • FIG. 9 is a diagram schematically showing the influence of aging treatment on hardness and dimensional change (size change rate).
  • the present inventor has, among other things, a cold mold having improved properties of hardness, resistance to deformation after heat treatment, and weld repairability.
  • a cold mold having improved properties of hardness, resistance to deformation after heat treatment, and weld repairability.
  • Fig. 2 (a) is an optical micrograph showing a state in which galling occurs on the surface of a mold having JIS SKD11 as a mold steel and having a TiN film formed thereon.
  • b) and Fig. 2 (c) are optical micrographs of a part of it.
  • Fig. 2 (d) also shows an optical micrograph of the mold base material before the TiN film is applied.
  • the white parts are Cr-based carbides.
  • the area where the film was peeled off was hard and coarse Cr-based carbide (carbonization of about 1 to 50 m, mainly containing Cr and Fe. It can be seen that the product is precipitated on the surface and cracks are generated starting from the carbide.
  • the present inventor has found that the starting point of galling is the coarse Cr-based carbide described above, and if the generation of the carbide is suppressed (not generated) as much as possible, peeling of the surface film is prevented. It was possible to improve the life of the mold.
  • alloy components particularly Al, Cu, Ni, Mo, etc.
  • w precipitation hardening of alloy elements
  • high hardness means a material having a maximum hardness of 650 HV or higher when the maximum hardness is measured by the method described in the column of Examples described later.
  • the "size after heat treatment (dimensional change rate)" is the average of the three directions of thickness, width, and length before and after aging treatment. Evaluation is based on both the value and the difference between the maximum and minimum values.
  • the former is referred to as “average size change rate” and the latter is referred to as “change in rate of change”.
  • the change in size after heat treatment is evaluated using both the “average value of change rate” and the “difference in change rate”. This is different from the technique of Patent Document 2 in which only the former (the average value of the change rate) is measured.
  • HAZ softening width is measured within the range of 6.5 mm or less when measured by the method described in the column of Examples described later.
  • the components in the steel according to the first aspect of the present invention are as described in detail below, and the following formula is obtained only by controlling the contents of various alloy elements contributing to precipitation hardening within a predetermined range. As shown in (1) to (3), the balance with a predetermined element is also appropriately controlled, thereby improving the above characteristics. As shown in the examples described later, those which do not satisfy any of these requirements cannot secure desired characteristics. In particular, the present invention Therefore, it is indispensable to add all of Cu, Ni, and Al. For example, in steels having components that do not contain either one of them as described in Patent Document 1 and Patent Document 3, the desired effect is obtained. I can't get the result! /, I confirmed by experimenting! /, I'll (see the examples below).
  • the components in the steel according to the first aspect of the present invention are classified into “weld repairability” (evaluated by the HAZ softening width) and “after heat treatment” which are the main improvement targets in the first aspect of the present invention.
  • welding repairability evaluationated by the HAZ softening width
  • after heat treatment which are the main improvement targets in the first aspect of the present invention.
  • the amount of C to be reduced by hardening by martensite generation is set to about 0.2 to 0.60%, and the alloy composition (mainly Al , Cu, Ni, Mo, W) are used for precipitation hardening (eg, ⁇ _Cu, Ni_Al intermetallic compounds, Ni-Mo intermetallic compounds). Since these precipitates are finely matched and precipitated in the matrix, the hardness is remarkably increased.
  • FIG. 6 is a graph showing the influence of the ratio of [Cu] / [Ni] on the HAZ softening width when the HAZ softening width is measured by the method described in the examples described later. This draft plots the results of Nos. 7, 8, and 10 in Table 3 and Nos. 31-35 and 37 in Table 4 below. As shown in Fig.
  • the ratio of [Cu] / [Ni] has a close relationship with the HAZ softening width, and by controlling the above ratio within the range of 0.5 to 2.2. It can be seen that the HAZ softening width can be suppressed within the range specified in the present invention (6.5 mm or less).
  • the product of Cr and C content (upper limit of [Cr] X [C]), C amount (upper limit), Si amount ( Upper limit), Mn amount (upper limit), Ms point (lower limit), A It is important to appropriately control 1 amount (upper limit), Ni amount (upper limit), Cr amount (upper limit), and [Mo] + 0.5 X [W] (upper limit). Since the present invention is based on low C, the content of alloy components such as Cu, Ni, and A1 is appropriately controlled in addition to the fact that the amount of retained austenite is originally low due to the high Ms point.
  • ⁇ _Cu force is mainly about 450 to 530 in the low temperature range of C.
  • Ni- (A1, Mo) -based intermetallic compounds are mainly produced in the intermediate temperature range of C
  • Mo-V-based carbides are mainly produced in the high temperature range of about 500 to 550 ° C.
  • the crystal structure of these precipitates Since the FCC structure is different from the matrix (BCC structure), the volume is shrunk, which is considered to contribute to the suppression of the size change after heat treatment.
  • the composition design is such that coarse Cr-based carbides are not precipitated as much as possible, the crystal structure is isotropic in any direction, and even in the manufacture of a large complex mold. It is considered that the size change after heat treatment can be effectively suppressed.
  • C is an element that ensures hardness and wear resistance and contributes to the suppression of the HAZ softening width.
  • a carbide film such as VC or TiC
  • the lower limit of the C content was set to 0.20% in order to effectively exert the above-described effects.
  • the amount of C is preferably 0.22% or more. However, if added in excess, the retained austenite increases and the desired hardness cannot be obtained unless high-temperature aging treatment is performed. 60%.
  • the amount of C is preferably 0.50% or less, and is preferably 0.45% or less.
  • Si 0.5 to 2.00%
  • Si is useful as a deoxidizing element during steelmaking, and is an element that contributes to improving hardness and securing machinability.
  • Si suppresses the temper softening of martensite in the matrix and is useful for suppressing the HAZ softening width.
  • the lower limit of the Si amount is set to 0.5%.
  • the upper limit was made 2.00%.
  • the lower limit of the Si amount is 1%, preferably S. 1.2% is more preferred, while the upper limit of the Si amount is preferably 1.85%.
  • Mn is an element useful for ensuring hardenability. When excessively added, the Ms point is significantly lowered and the retained austenite increases. Therefore, the desired hardness can be obtained without high-temperature aging treatment. Absent. Taking these into consideration, the Mn content was set within the above range.
  • the lower limit of the Mn content is preferably 0.15%, while the upper limit of the Mn content is preferably 1%, more preferably 0.5%, and still more preferably 0.35%.
  • Cr is an element useful for ensuring a predetermined hardness. If the Cr content is less than 3.00%, the hardenability is insufficient and a part of bainite is generated, so that the hardness decreases and the strength S cannot be ensured.
  • the Cr content is preferably 3.5% or more, and preferably 4.0% or more. However, if added excessively, a large amount of coarse Cr-based carbides are formed, shrink after heat treatment, and the durability of the film decreases, so the upper limit was made 9.00%.
  • the Cr content is preferably 7.0% or less, more preferably 6.5% or less, and even more preferably 6.0% or less.
  • Al is intended to improve hardness by precipitation strengthening of Al_Ni intermetallic compounds such as Ni A1.
  • A1 is also useful as a deoxidizer. Taking these into account, the lower limit of A1 was set to 0.3%. However, if added in excess, segregation increases, dimensional change after heat treatment (especially the difference in change rate) increases, and toughness decreases, so the upper limit was made 2.0%.
  • the amount of A1 is preferably 0.50% or more and 1.8% or less, and more preferably 0.7% or more and 1.6% or less.
  • Cu is an element necessary for improving the hardness by precipitation strengthening of ⁇ -Cu and contributes to the suppression of the HAZ softening width. However, if excessively added, forging cracks are likely to occur, so the upper limit was made 5%.
  • the amount of Cu is preferably 2.0% or more and 4.0% or less. [0047] Ni: l. 00—5%
  • Ni is intended to improve hardness by precipitation strengthening of Ni-based intermetallic compounds such as Ni Al.
  • Ni can also be used in combination with Cu to suppress hot brittleness caused by excessive addition of Cu and to prevent cracking during forging. However, if added excessively, retained austenite increases, and if it is not aged at a high temperature, it will expand after heat treatment.
  • the amount of Ni is preferably 1.5% or more and 4.0% or less.
  • Mo 0.5-3% and / or W: 2% or less (including 0%)
  • Mo is an essential component and W is a selective element, but both may be used in combination.
  • Mo is preferably 0.5% or more and 3% or less, and more preferably 0.7% or more and 2.5% or less. Further, W is preferably 2% or less, and more preferably 1.5% or less.
  • S is an element useful for ensuring machinability. If it is added in excess of force, weld cracking occurs, so the upper limit was made 0.10%.
  • the amount of S is preferably 0.07% or less, more preferably 0.05% or less, and still more preferably 0.025% or less.
  • ⁇ [] means the content (%) of each element. . ⁇ .
  • the above (1) is set for the purpose of suppressing the formation of coarse Cr-based carbides. If the product of [C r] and [C] exceeds 3.00, the size change after heat treatment is large. As a result, the durability of the surface film decreases.
  • the product of [Cr] and [C] is 1. 80 or less force S, preferably 1. 70 or less than force S.
  • the lower limit is better from the viewpoint of suppressing the size change after the heat treatment, but considering the fact that the above effect is effectively exhibited by the addition of Cr and C, it is generally 0.8. It is preferable that [0052] (2) [Cu] / [Ni]: 0 ⁇ 5 ⁇ 2 ⁇ 2
  • the above (2) is mainly set as a parameter for suppressing the HAZ softening width by utilizing precipitation strengthening of ⁇ -Cu (see the examples described later).
  • the ratio of [Cu] to [Ni] was set to 0.5.
  • the upper limit was set to 2.2.
  • the ratio is preferably 0.7 or more and 1.5 or less, more preferably 0.85 or more and 1.2 or less.
  • Mo and W constituting the above (3) are elements contributing to precipitation strengthening, and the above (3) is mainly used as a parameter for ensuring hardness improvement by precipitation strengthening. It is effective for suppressing the HAZ softening width.
  • the [W] coefficient (0.5) was determined taking into account that the atomic weight of Mo is about half that of W.
  • the lower limit of the above (3) is set to 0.5%.
  • adding excessive amounts of Mo and W will add excessive amounts of the above carbides, leading to a decrease in toughness, and increase the size change (especially the difference in size change rate) after heat treatment.
  • the upper limit of 3) was set to 3.0%.
  • the lower limit of (3) is preferably 1 ⁇ 0%, while 1.2% is more preferred, while the upper limit is preferably 2 ⁇ 8%.
  • the components in steel in the first embodiment of the present invention are as described above, and the balance: iron and inevitable impurities.
  • inevitable impurities include elements that are inevitably mixed in the manufacturing process, and examples thereof include P, N, and O.
  • the amount of P is preferably about 0.05% or less, more preferably 0.03% or less.
  • the amount of N is preferably 350 ppm or less, more preferably 200 ppm or less, and even more preferably 150 ppm or less.
  • the amount of O is preferably 50 ppm or less, more preferably 30 ppm or less, and even more preferably 20 ppm or less.
  • the following components may be added for the purpose of improving other characteristics.
  • V 0.5% or less (excluding 0%)
  • V is an element that forms carbides such as VC and contributes to improved hardness, and is effective in suppressing the HAZ softening width.
  • nitriding such as gas nitriding, salt bath nitriding, or plasma nitriding on the surface of the base material
  • the amount of V is approximately 0.05% or more.
  • the upper limit is preferably made 0.5%.
  • the amount of V is more preferably 0.4% or less, and still more preferably 0.30% or less.
  • a total of at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb is 0.5% or less (excluding 0%). It is an element that contributes to toughness improvement by fine dispersion and crystal grain refinement of the nitride and A1N.
  • Ti is 0.01% or more
  • Zr is 0.02% or more
  • Hf is 0.04% or more
  • Ta is 0.04% or more
  • Nb is 0.0.
  • the total amount of the above elements is preferably 0.5%.
  • the total amount of the above elements is preferably 0.4% or less, more preferably 0.30% or less.
  • the above elements may be added alone or in combination of two or more.
  • Co is an element that increases the Ms point and is effective in reducing retained austenite, and this improves the hardness.
  • the amount of Co is preferably approximately 1% or more.
  • the upper limit is preferably made 10%.
  • the upper limit of Co content is preferably 5.5%.
  • Martensitic transformation point (Ms point) ⁇ 170 ° C
  • the Ms point mainly serves as an index for suppressing the change in size after hardness and heat treatment.
  • the Ms point is less than 170 ° C, the retained austenite increases, and it does not age at high temperatures. In addition to obtaining the desired hardness, it causes expansion after heat treatment.
  • the higher the Ms point the better.
  • the temperature is 230 ° C or higher, and it is more preferable that the temperature is 235 ° C or higher.
  • the upper limit is not particularly limited from the viewpoint of the above action, but it is generally preferable that the upper limit is 350 ° C. in consideration of the action effect by addition of the above elements constituting the Ms point. More preferably, it is ° C.
  • the present invention also includes a mold obtained using the above steel for molds.
  • the method for producing the mold is not particularly limited.For example, after the above steel is melted, hot forged and then annealed (for example, after holding at about 700 ° C for 7 hours, about 17 ° C / hr After the furnace is cooled to an average cooling rate of about 400 ° C and then left to cool, it is softened and then roughly processed into a predetermined shape by cutting, etc., and then about 950 to 1150 ° C There is a method of imparting a desired hardness by performing a solution treatment at a temperature ⁇ aging treatment at about 400 to 530 ° C.
  • the present inventor has made further improvements based on the components in steel disclosed in the previous application, in particular, in order to further improve the reduction in size after heat treatment. I have been studying it. As a result, if the steel according to the first aspect of the present invention is used and solution treatment and aging treatment are performed under appropriate conditions, the steel for cold molds, in which the dimensional change after the heat treatment is further suppressed, is efficient. I found that I can get it well.
  • the manufacturing method according to the second aspect of the present invention in order to efficiently obtain the steel for cold mold in which the dimensional change after heat treatment is further suppressed.
  • the solution temperature and the aging temperature are characterized by the parameters (Cu / C mass ratio) that contribute most to the suppression of size change after heat treatment.
  • a patent document As described in Table 5 there is no special heat treatment such as “one or more two-stage tempering treatments” or the sub-zero treatment described in Patent Document 6.
  • the present inventor first searched for the cause of galling due to damage to the surface film of the mold in the conventional mold using JIS SKD11 or matrix high speed. As a result, hard coarse Cr-based carbides (mainly containing Cr and Fe, approximately;! ⁇ 50 m carbide) are deposited on the surface in the area where the film is peeled off, and cracks start from the carbides. It was found that this occurred.
  • hard coarse Cr-based carbides mainly containing Cr and Fe, approximately;! ⁇ 50 m carbide
  • the present inventor is able to prevent the peeling of the surface film if the generation of galling is the coarse Cr-based carbide described above and the generation of the carbide is suppressed (not generated) as much as possible. Thought that the life of the mold could be improved.
  • the present inventors have further studied.
  • various alloy components should be actively added after properly controlling the C content, and the alloy component design should be appropriately It was found that it is extremely important to control the system.
  • the alloy components especially Al, Cu, Ni, Mo, W
  • the alloy components that are not intended to increase the hardness by controlling carbide as in the past are actively added to the alloy. It is effective to increase the hardness by precipitation hardening of elements, and mainly use precipitation hardening by Al-Ni intermetallic compounds and secondary hardening by carbide formation of Mo, W and C. I found it.
  • the solution temperature (° C) is Tl
  • the aging temperature (° C) is T2
  • the mass ratio of Cu and C is [Cu] / [C]
  • T2 is expressed by the following formula (5) where TA
  • solution treatment is synonymous with quenching treatment
  • aging treatment is synonymous with tempering treatment
  • high hardness means a material having a hardness of 650 HV or higher when the hardness is measured by the method described in the column of Examples described later.
  • the "size after heat treatment (dimensional change rate)" is the thickness ( ⁇ X), width (Ay), and length ( ⁇ z) before aging treatment.
  • ⁇ X thickness
  • Ay width
  • ⁇ z length
  • the former is referred to as “average value of change rate or average change rate”
  • maximum value of change rate or maximum change rate the change in size after heat treatment is evaluated using both the “average value of change rate” and the “maximum value of change rate”!
  • Patent Document 2 which measures only the former (average value of change rate). According to the experiment results of the present inventor, it is not sufficient to reduce the average value of the rate of change as in Patent Document 2 in order to sufficiently suppress the size change after the heat treatment, and the thickness, width, length It is indispensable to reduce the dimensional change (variation) in all directions, even if the average value of the dimensional change rate is suppressed, the difference in dimensional change rate may increase (and vice versa). (See Examples below).
  • “The change in size after heat treatment is small! /” (Excellent in suppressing change in size) is described later. Based on the method described in the example column, when measuring the dimensional change before and after the heat treatment, the average value of the change rate is within ⁇ 0.03% and the maximum value of the change rate (Absolute value) means less than 0.05%.
  • the "average value of the change ratio" is adopted as the evaluation standard for the change in size after the heat treatment.
  • it is ⁇ 0.05%
  • ⁇ 0.03% which is stricter than the first aspect of the present invention.
  • the “difference in size change” that is, the difference (absolute value) between the maximum value and the minimum value among the above-mentioned ⁇ , Ay, ⁇ is adopted.
  • the “maximum change rate” is adopted. This is because, in order to provide a steel that is more excellent in restraining deformation than in the first aspect of the present invention, the portion (maximum value) where the size (variation) after heat treatment becomes the largest is as much as possible.
  • the “maximum change rate” is adopted in addition to the “difference in change rate” described in the above description of the first aspect of the present invention. It depends on you. As shown in the examples described later, even if the “difference in size change” defined in the first aspect of the present invention is satisfied, the “maximum size change ratio” defined in the second aspect of the present invention is satisfied. There are some that do not satisfy the value! / (See the examples described later), but this is not the “steel that is excellent in restraining deformation after heat treatment” in the second aspect of the present invention. Absent.
  • the content of alloy components such as Cu, Ni, and A1 is appropriately controlled in addition to the fact that the amount of retained austenite is originally low due to the high Ms point. Therefore, in particular, expansion and contraction after aging treatment at about 400 to 550 ° C. and after surface hardening treatment can be remarkably suppressed. This is about 400-500 if you don't need to use the above alloy components.
  • ⁇ _Cu force is mainly about 450 to 530 in the low temperature range of C.
  • Ni- (A1, Mo) -based intermetallic compounds are mainly produced in the intermediate temperature range of C
  • Mo-V-based carbides are mainly produced in the high temperature range of about 500 to 550 ° C.
  • the crystal structure of these precipitates Since the FCC structure is different from the matrix (BCC structure), the volume shrinks, which is considered to contribute to the suppression of the size change after heat treatment. Further, in the present invention, since the component design is such that coarse Cr-based carbides are not precipitated as much as possible, the crystal structure is isotropic in any direction, and a large complex shape mold is manufactured. Therefore, it is considered that the size change after heat treatment can be effectively suppressed.
  • the upper limit of [Cr] X [C] in order to improve weld repairability (reduce the HAZ softening width), the upper limit of [Cr] X [C], the Ms point (lower limit), the C amount (Lower limit), A1 amount (lower limit), Ni amount (lower limit), [Cu] / [Ni] (upper limit, lower limit), [Mo] + 0.5 X [W] (lower limit), V amount (upper limit) Is properly controlled.
  • the amount of C to be removed by hardening by martensite generation should be as low as about 0.2 to 0.60%, and the alloy components (mainly Al , Cu, Ni, Mo, W) are used for precipitation hardening (for example, ⁇ -Cu, Ni-Al intermetallic compounds, Ni-Mo intermetallic compounds). Since these precipitates are finely aligned in the matrix, the hardness increases significantly.
  • ratio of [Cu] / [Ni] is closely related to the suppression of HAZ softening. It was found that HAZ softening can be suppressed by appropriately controlling the above ratio.
  • C is an element that ensures hardness and wear resistance and contributes to the suppression of the HAZ softening width.
  • a carbide film such as VC or TiC
  • the lower limit of the C content was set to 0.20% in order to effectively exert the above-described effects.
  • the amount of C is preferably 0.22% or more. However, if added in excess, the retained austenite increases and the desired hardness cannot be obtained unless high-temperature aging treatment is performed. 60%.
  • the amount of C is preferably 0.50% or less, and is preferably 0.45% or less.
  • Si is useful as a deoxidizing element during steelmaking, and is an element that contributes to improving hardness and securing machinability.
  • Si suppresses the temper softening of martensite in the matrix and is useful for suppressing the HAZ softening width.
  • the lower limit of the Si amount is set to 0.5%. However, if added in excess, segregation increases, the force that increases in size after heat treatment, and toughness also decreases, so the upper limit was made 2.00%.
  • the lower limit of the Si amount is 1%, preferably S. 1.2% is more preferred, while the upper limit of the Si amount is preferably 1.85%.
  • Mn is an element useful for ensuring hardenability. When excessively added, the Ms point is significantly lowered and the retained austenite increases. Therefore, the desired hardness can be obtained without high-temperature aging treatment. Absent. Taking these into consideration, the Mn content was set within the above range.
  • the lower limit of the Mn content is preferably 0.15%, while the upper limit of the Mn content is preferably 1%, more preferably 0.5%, and still more preferably 0.35%.
  • Cr is an element useful for ensuring a predetermined hardness. If the Cr content is less than 3.00% However, since hardenability is insufficient and a portion of bainite is generated, the hardness is reduced and the wear resistance cannot be ensured.
  • the Cr content is preferably 3.5% or more, and preferably 4.0% or more. However, if added excessively, a large amount of coarse Cr-based carbides are formed, shrink after heat treatment, and the durability of the film decreases, so the upper limit was made 9.00%.
  • the Cr content is preferably 7.0% or less, more preferably 6.5% or less, and even more preferably 6.0% or less.
  • Al is intended to improve hardness by precipitation strengthening of Al_Ni intermetallic compounds such as Ni A1.
  • A1 is also useful as a deoxidizer. Taking these into account, the lower limit of A1 was set to 0.3%. However, if added in excess, segregation increases, dimensional change after heat treatment (especially the difference in change rate) increases, and toughness decreases, so the upper limit was made 2.0%.
  • the amount of A1 is preferably 0.50% or more and 1.8% or less, and more preferably 0.7% or more and 1.6% or less.
  • Cu is an element necessary for improving the hardness by precipitation strengthening of ⁇ -Cu and contributes to the suppression of the HAZ softening width. However, if excessively added, forging cracks are likely to occur, so the upper limit was made 5%.
  • the amount of Cu is preferably 2.0% or more and 4.0% or less.
  • Ni is intended to improve hardness by precipitation strengthening of Ni-based intermetallic compounds such as Ni Al.
  • Mo 0.5-3% and / or W: 2% or less (including 0%)
  • Mo is an essential component and W is a selective element, but both may be used in combination.
  • Mo is preferably 0.5% or more and 3% or less, and more preferably 0.7% or more and 2.5% or less. Further, W is preferably 2% or less, and more preferably 1.5% or less.
  • S is an element useful for ensuring machinability. If it is added in excess of force, weld cracking occurs, so the upper limit was made 0.10%.
  • the amount of S is preferably 0.07% or less, more preferably 0.05% or less, and still more preferably 0.025% or less.
  • the above (2) is mainly set as a parameter for suppressing the HAZ softening width by utilizing precipitation strengthening of ⁇ -Cu (see the examples described later).
  • the ratio of [Cu] to [Ni] was set to 0.5.
  • the upper limit was set to 2.2.
  • the ratio is preferably 0.7 or more and 1.5 or less, more preferably 0.85 or more and 1.2 or less.
  • Mo and W constituting the above (3) are elements contributing to precipitation strengthening, and the above (3) is mainly used as a parameter for ensuring hardness improvement by precipitation strengthening. It is effective for suppressing the HAZ softening width.
  • the [W] coefficient (0.5) was determined taking into account that the atomic weight of Mo is about half that of W. These actions Therefore, the lower limit of the above (4) is set to 0.5%.
  • adding excessive amounts of Mo and W will add excessive amounts of the above carbides, leading to a decrease in toughness, and increase the size change (especially the difference in size change rate) after heat treatment.
  • the upper limit of 3) was set to 3.0%.
  • the lower limit of (3) is preferably 1 ⁇ 0%, while 1.2% is more preferred, while the upper limit is preferably 2 ⁇ 8%.
  • the above (4) is mainly positioned as a parameter for shifting the hardness peak after heat treatment (after aging treatment) to a lower temperature side.
  • expansion deformation after aging treatment (tempering) is said to occur due to the release (decomposition) of retained austenite during solution treatment (quenching) (for example, see Fig. 9 below).
  • the mass ratio ([Cu] / [C] ratio) between Cu, which has the effect of shifting the hardness peak after aging to the low temperature side, and C, which has a close correlation with retained austenite is appropriate. It was found that the size change after heat treatment can be remarkably suppressed by controlling to.
  • the ratio of [Cu] / [C] By controlling the above ratio within the range of 4.0 to 15; the rate of change is within the range specified in the second aspect of the present invention (the rate of change). It can be seen that the average value of S is suppressed to 0.03% or less for soil and the maximum value of change rate is 0.05% or less.
  • the ratio of [Cu] / [C] is less than 4.0, the aging temperature at which the hardness reaches a peak is considerably higher than the temperature at which the residual austenite begins to decompose. On the other hand, if the above ratio exceeds 15, shrinkage due to increase in aging temperature (cancellation with expansion after solution treatment) does not occur. Sex cannot be obtained.
  • the ratio is preferably 5.0 or more and 13 or less, and more preferably 6.0 or more and 12 or less.
  • V 0.5% or less (excluding 0%)
  • V is an element that forms carbides such as VC and contributes to improved hardness, and is effective in suppressing the HAZ softening width. In addition, it is an effective element for improving the surface hardness and increasing the depth of the hardened layer when a diffusion hardened layer is formed by nitriding such as gas nitriding, salt bath nitriding, or plasma nitriding on the surface of the base material. .
  • nitriding such as gas nitriding, salt bath nitriding, or plasma nitriding on the surface of the base material.
  • the amount of V is approximately 0.05% or more. However, if added excessively, the amount of dissolved C will decrease and the hardness of the martensite structure which is the parent phase will be reduced, so the upper limit is preferably made 0.5%.
  • the amount of V is more preferably 0.4% or less, and still more preferably 0.30% or less.
  • a total of at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb is 0.5% or less (excluding 0%)
  • These elements are all nitride-forming elements and contribute to the improvement of toughness by the fine dispersion of the nitride and A1N and the refinement of crystal grains.
  • Ti is 0.01% or more
  • Zr is 0.02% or more
  • Hf is 0.04% or more
  • Ta is 0.04% or more
  • Nb is 0.02 It is preferable to add at least%.
  • the total amount of the above elements is preferably 0.5%.
  • the total amount of the above elements is 0.4% or less, and preferably S, more preferably 0.30% or less. Note that the above elements may be added alone or in combination of two or more.
  • Co is an element that increases the Ms point and is effective in reducing retained austenite. , The hardness is improved. In order to effectively exhibit the above action, the amount of Co is preferably approximately 1% or more. However, if added excessively, the cost will increase, so the upper limit is preferably made 10%. The upper limit of Co content is preferably 5.5%.
  • the Ms point is mainly used as an index for suppressing the change in hardness and the heat treatment after heat treatment.
  • the Ms point is less than 170 ° C, the retained austenite increases, and it is desirable that it does not age at high temperatures. Hardness cannot be obtained, and expansion after heat treatment is caused.
  • the higher the Ms point the better.
  • the temperature is 230 ° C or higher, and it is more preferable that the temperature is 235 ° C or higher.
  • the upper limit is not particularly limited from the viewpoint of the above action, but it is generally preferable that the upper limit is 350 ° C. in consideration of the action effect by addition of the above elements constituting the Ms point. More preferably, it is ° C.
  • the production method of the present invention includes a step of preparing steel that satisfies the above-described requirements and a step of solution treatment and aging treatment under the conditions satisfying the following formula (5).
  • T1 is the solution temperature (° c)
  • T2 means aging temperature (° C), respectively.
  • the mass of Cu and C If the ratio ([Cu] / [C]) is controlled in relation to the solution temperature T1 and the aging temperature T2, the hardness after aging peaks before the retained austenite decomposes and expands after aging treatment. Therefore, it is possible to achieve both reduction in size after heat treatment and hardness.
  • solution treatment at a temperature of about 950 to 1150 ° C ⁇ aging treatment at a temperature of about 400 to 530 ° C gives the desired hardness.
  • FIG. 2 (corresponding to FIG. 1 of Patent Document 2) is shown in Patent Document 2.
  • Fig. 1 when the retained austenite is decomposed to some extent, the tempering process is performed so that the change in size during tempering becomes zero, whereas in the present invention, the residual austenite is decomposed before or after the decomposition. They are different in that they are tempered at the temperature immediately after they begin! That is, the present invention uses an aging treatment at a lower temperature than a conventional high C high Cr steel (specifically, a low temperature of about 500 ° C. or lower).
  • the aging temperature T2 is preferably TA ⁇ 5 ° C represented by the above.
  • the solution temperature T1 can be a temperature lower than the range normally employed in the production of mold steel, and thereby heat treatment deformation can be reduced. Specifically, it is preferable that the temperature is approximately in the range of 900 to 1150 ° C.
  • the temperature of the solution treatment and the aging treatment be appropriately controlled as described above, and these times are not particularly limited, and are usually used for the production of mold steel. However, it is generally good to control the solution time (heating time) to about 1 to 5 hours and the aging time (holding time) to about 2 to 8 hours!
  • Solution treatment (quenching treatment): approx. 1020 ⁇ ; Heating at 1030 ° C for 120 minutes ⁇ Air cooling ⁇ Aging treatment (tempering treatment): Hold at approx. 400 ⁇ 560 ° C for approx. 3 hours ⁇ Allow to cool
  • the hardness when the tempering temperature was changed within the range of about 400 to 560 ° C was measured with a Vickers hardness tester (standard AVK manufactured by AKASHI, load 5 kg). Hardness (HV) was examined. In this example, a sample having a maximum hardness of 650 HV or higher was accepted ( ⁇ ).
  • test piece of 40 mm TX 70 mm W X lOO mm L was generally cut out and used as a test piece for measuring deformation. This was subjected to the same solution treatment as the hardness test in (1) above, and then tempered at a temperature that reached the maximum hardness. Next, change The “average dimension value” and “difference in size change” were measured, and according to the following criteria, those having both evaluations of “0” were considered to have excellent size control after heat treatment (pass).
  • test piece of 40 mm TX 45 mm W X 75 mm L was cut out from the above annealed material to make a test piece for welding. This was subjected to a solution treatment and a tempering treatment in the same manner as the size change test of (2).
  • the tempered material thus obtained was processed to obtain the plate material of Fig. 3 (a).
  • the plate material in FIG. 3 (a) has the groove shown in FIG. 3 (b).
  • the composition shown in Table 3 (the balance: iron and inevitable impurities, unit: mass 0/0) TIG wire (Nippon Yuteku Co. "TIG_Tectic 5H SS", 2. 4 mm) using, the plate Overlay welding was performed on the groove in the following manner. Welding conditions:
  • composition of TIG wire for notching welding 0.09% C-0. 93% Si-l. 95% Mn_0. 009% P-0. 01% S (remainder: iron and inevitable impurities, unit: mass%)
  • the position was 30 mm away from the position of the weld melt line (bond) at the 1/4 part of the plate thickness. Hardness was measured continuously at lmm pitch. The distance from the center of the weld metal to the position where the hardness dropped below 600HV was defined as the “HAZ softening width”.
  • the measurement area of the HAZ softening width is shown in Fig. 1 above. In this example, the HAZ softening width of 6.5 mm or less was evaluated as being excellent in weld repairability ( ⁇ ), and the one exceeding 6.5 mm was evaluated as being poor in weld repairability (X).
  • the annealed material was subjected to the following heat treatment.
  • Solution treatment (quenching treatment): approx. 1020 ⁇ ; heating at 1030 ° C for 120 minutes ⁇ air cooling ⁇ aging treatment (tempering treatment): holding at approx. 400 to 560 ° C for approx. 3 hours ⁇ air cooling or cooling
  • a test piece having a V notch of lOmmR was cut out to obtain a test piece for toughness measurement (Charby impact test piece).
  • a Charpy impact test was carried out, and the absorbed energy (Charby impact value) at room temperature was measured. Three Charpy impact test specimens were collected, and the average of these was taken as the Charpy impact value. In this example, a Charpy impact value of 15 J or more was evaluated as “excellent toughness”.
  • Nos. 22 and 23 in Table 5 are examples using Nos. 22 and 23 in Table 2 simulating a conventional high C high Cr steel, and the product of [Cr] and [C] Since the Ms point is large and the difference is high, the difference between the HAZ softening width and the size change rate increased. Since these steel types have higher hardness as the tempering temperature is lower, the tempering temperature when using the above steel types is set to 510 ° C, and various properties are obtained. It was measured.
  • No. 26 in Table 5 is an example using No. 26 in Table 2 with a large amount of Si.
  • the average value of the change rate after heat treatment is good, but the difference in change rate is large. .
  • No. 28 in Table 5 is an example using No. 28 in Table 2 with a large amount of S.
  • the limit preheating temperature becomes high and there is a risk of weld cracking.
  • No. 29 in Table 5 is an example using No. 29 in Table 2 with a small amount of A1.
  • No. 30 in Table 5 is an example using No. 30 in Table 2 with a large amount of A1, and the average value of the change rate after heat treatment is good, but the difference in change rate is large. .
  • No. 32 in Table 5 is an example using No. 32 in Table 2 with a large amount of Ni. The hardness decreased and the average value of the change rate after the heat treatment increased.
  • No. 33 in Table 5 is an example using No. 33 in Table 2 with a small amount of Cu and a small ratio of [Cu] / [Ni]. The hardness decreases and the HAZ softening width increases. It was observed.
  • No. 34 in Table 5 is an example of simulating a steel to which Cu content is not practically added, and the Cu content is 0.0.
  • No. 35 in Table 5 is an example of simulating a steel that does not practically contain Ni.
  • the amount of Ni is extremely low at 0.05%, and the ratio of [Cu] / [Ni] is low.
  • the small No. 35 in Table 2 was used, so a decrease in hardness and an increase in the HAZ softening width were observed, as well as an increase in the average size change rate after heat treatment. Yes
  • No. 38 in Table 5 is an example using No. 38 in Table 2 with a small amount of Cr, and the hardness decreased.
  • No. 40 in Table 5 is an example of using No. 40 in Table 2 where the total amount of [Mo] + 0.5 X [W] is small. Decrease in hardness and increase in HAZ softening width It was observed.
  • No. 41 in Table 5 is an example using No. 41 in Table 2 with a large total amount of [Mo] + 0.5 X [W]. Although it is good, the difference in the change rate is large.
  • a 20mmTX 20mmW X 15mmL size test piece It cut out to make a test piece for hardness measurement, and this was subjected to solution treatment ⁇ air cooling ⁇ aging treatment under the conditions shown in Table 2, and then allowed to cool. In each case, the solution treatment time was about 120 minutes, and the aging treatment time was about 3 hours.
  • the “difference in size change” described in the description of the first embodiment of the present invention was also measured. Specifically, with respect to the above-mentioned test pieces for measurement of dimensions (after annealing and before solution treatment) and the test pieces after aging, the thickness, width and length were measured in three directions, respectively, before and after heat treatment. Thickness differences, width differences, and length differences were determined. Among these, the difference (percentage) between the maximum value and the minimum value was defined as “difference in size change”. A difference in size change ratio of 0.08% or less was accepted ( ⁇ ), and a ratio exceeding 0.08% was rejected (X).
  • No. 46 is a comparative example in which the aging temperature T2 exceeds the range of the present invention
  • No. 47 is a comparative example in which the aging temperature T2 is lower than the range of the present invention.
  • Nos. 48 to 51 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed in various ways using the steel type B in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
  • No. 48 and No. 49 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ⁇ 10 ° C.). Excellent size control.
  • No. 50 is a comparative example in which the aging temperature T2 exceeds the range of the present invention.
  • No. 51 is a comparative example in which the aging temperature T2 is lower than the range of the present invention. In all cases, the difference in the sizing rate after the heat treatment was good, but the average sizing rate and the maximum sizing rate were reduced. In addition, No. 51 also decreased in hardness.
  • Nos. 52 to 55 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed in various ways using the steel type C in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
  • No. 52 and No. 53 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ⁇ 10 ° C), both of which are post-heat treatment changes with high hardness. Excellent size control.
  • No. 54 is a comparative example in which the aging temperature T2 exceeds the range of the present invention.
  • No. 55 is a comparative example in which the aging temperature T2 is lower than the range of the present invention, and a decrease in hardness and an increase in the maximum size change rate after heat treatment were observed. No. 54 also increases the average size change rate after heat treatment. did.
  • Nos. 56 to 58 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type D in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
  • No. 56 and No. 57 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ⁇ 10 ° C). Excellent size control.
  • No. 58 was a comparative example in which the aging temperature T2 exceeded the range of the present invention, and the maximum size change rate after heat treatment increased.
  • Nos. 59 to 61 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type E in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
  • No. 59 and No. 60 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ⁇ 10 ° C). Excellent size control.
  • No. 61 is a comparative example in which the aging temperature T2 exceeds the range of the present invention, and although the difference in the size change ratio after heat treatment is good, the average size change ratio and the maximum size change The rate fell.
  • Nos. 62 to 64 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type F in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
  • No. 64 is a comparative example in which the aging temperature T2 exceeds the range of the present invention, and the difference in size change after heat treatment is good, but the average size change rate and the maximum size change The rate fell.
  • Nos. 65 to 67 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type G in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated. [0190] Of these, No. 65 and No. 66 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ⁇ 10 ° C). Excellent size control.
  • No. 67 is a comparative example in which the aging temperature T2 exceeds the range of the present invention, and the difference in the size change rate after heat treatment is good, but the average size change rate and the maximum size change rate are good. The rate fell.
  • No. 68 and No. 69 are examples using steel types H and I in Table 6 simulating conventional high-C high-Cr steel, and the product of [Cr] and [C] Since steel grades with a large ratio of [Cu] and [C] and a low Ms point were used, all of the average sizing ratio, maximum sizing ratio, and sizing ratio after heat treatment increased. Since these steel types have high hardness when the tempering temperature is low, the tempering temperature when using the above steel types was set to 510 ° C, and various characteristics were measured.
  • No. 70 and No. 71 are examples using the steel bumps in Table 6 in which the ratio of [Cu] / [Ni] and the ratio of [Cu] / [C] are small, with a small amount of Cu. A decrease in hardness and an increase in the maximum size change rate were observed.
  • No. 72 and No. 73 are examples using the steel grade K in Table 6 where the ratio of [Cu]] and [C] is large.
  • the steel for cold mold of the present invention has the alloy components appropriately controlled as described above, the hardness is high, and the deformability after heat treatment is excellent, and the weld repairability is also good. Therefore, the mold obtained by using the above cold mold steel is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more, and has a long life, particularly after welding repair. Life is further increased.
  • the steel components and the conditions of the solution treatment and the aging treatment are appropriately controlled! /.
  • Steel for molds can be produced efficiently. Therefore, the mold obtained using the production method of the present invention is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more, and has a longer life, particularly after welding repair. Enhanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed is a cold work die steel which comprises (by mass): C: 0.20-0.60%, Si: 0.5-2.00%, Mn: 0.1-2%, Cr: 3.00-9.00%, Al: 0.3-2.0%, Cu: 1.00-5%, Ni: 1.00-5%, Mo: 0.5-3% and/or W: 2% or less (including 0%), and S: 0.10% or less (excluding 0%) wherein these components satisfy the following requirements (1) to (3) [wherein each square bracket [ ] means a content (%) of each element]: (1) [Cr] x [C]≤3.00; (2) [Cu]/[Ni]: 0.5-2.2; and (3) [Mo]+0.5 x [W]: 0.5-3.0%, with the remainder being iron and unavoidable impurities. Also disclosed is a die produced by using the steel. Further disclosed is a method for producing the cold work die steel.

Description

明 細 書  Specification
冷間金型用鋼および金型、ならびに冷間金型用鋼の製造方法  COLD MOLD STEEL AND MOLD, AND METHOD FOR PRODUCING COLD MOLD STEEL
技術分野  Technical field
[0001] 本発明は、冷間金型用鋼および金型、ならびに冷間金型用鋼の製造方法に関し、 詳細には、自動車用鋼板や家電用鋼板などを冷間 ·温間でプレス成形(打ち抜き、 曲げ、絞り、トリミングなど)するのに用いられる金型の素材として有用な金型鋼、及び 金型鋼の製造方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to cold mold steel and molds, and a method for producing cold mold steel, and more specifically, cold-warm press forming of steel sheets for automobiles and steel sheets for home appliances. The present invention relates to a mold steel useful as a mold material used for punching, bending, drawing, trimming, and the like, and a method for manufacturing the mold steel.
背景技術  Background art
[0002] 自動車用鋼板や家電用鋼板などの成形に用いられる金型は、鋼板の高強度化に 伴い、寿命の改善が求められている。特に、自動車用鋼板では、環境問題を考慮し 、 自動車の燃費向上のために、引張強度が約 590MPa以上のハイテン鋼板の需要 が急速に高まっているが、それに伴い、金型の表面皮膜が早期に損傷するなどして「 カジリ」(プレス成形時に焼きつく現象)が発生し、金型寿命が極端に低下するといつ た問題が生じている。  [0002] Molds used for forming automobile steel plates, home appliance steel plates, and the like are required to have an improved service life as the strength of the steel plates increases. In particular, for steel sheets for automobiles, the demand for high-tensile steel sheets with a tensile strength of about 590 MPa or more is increasing rapidly in order to improve automobile fuel efficiency in consideration of environmental problems. There is a problem that occurs when the tool life is drastically reduced due to damage to the die, resulting in an extremely short die life.
[0003] 金型は、金型母材 (金型用鋼)と、その表面に施される表面硬化層(表面皮膜)とか ら構成されている。母材の金型用鋼は、一般に、焼鈍→切削加工→焼入焼戻処理( 本明細書では、特に、焼入処理を溶体化処理、焼戻処理を時効処理と呼んでいる。 )によって製造される。  [0003] A mold is composed of a mold base material (mold steel) and a surface hardened layer (surface coating) applied to the surface thereof. The base metal mold steel is generally obtained by annealing → cutting → quenching / tempering (in this specification, quenching is called solution treatment and tempering is called aging). Manufactured.
[0004] 金型用鋼 (冷間ダイス鋼)としては、これまで、 JIS SKD11に代表される高 C高 Cr の合金工具鋼や、耐摩耗性が更に改善され IS SKH51に代表される高速度工具 鋼などが汎用されてきた。これらの工具鋼では、主に、 Cr系炭化物や Mo、 W、 V系 炭化物の析出硬化によって硬度の向上を図っている。また、耐摩耗性と靭性の両方 の向上を目的として、 JIS SKH51の C、 Mo、 W、 Vなどの合金含有量を低減した低 合金高速度工具鋼(通常、マトリックスハイスと呼ばれる。)も使用されている。  [0004] As mold steel (cold die steel), high C high Cr alloy tool steel represented by JIS SKD11 and high speed represented by IS SKH51 with improved wear resistance. Tool steel has been widely used. In these tool steels, hardness is mainly improved by precipitation hardening of Cr-based carbides and Mo, W, and V-based carbides. In addition, for the purpose of improving both wear resistance and toughness, low alloy high speed tool steel (usually called matrix high speed steel) with reduced alloy content such as C, Mo, W and V of JIS SKH51 is also used. Has been.
[0005] 冷間金型用鋼の更なる特性改善を目指して、例えば、特許文献 1〜特許文献 3に は、鋼中成分の改良技術が提案されている。  [0005] With the aim of further improving the properties of cold mold steel, for example, Patent Documents 1 to 3 propose techniques for improving the components in steel.
[0006] 特許文献 1は、マトリックスハイスの硬さを更に向上させるために提案されたものであ り、ここには、 Nbおよび/または Taを多量に含有させ、高温焼入れした場合の結晶 粒の粗大化を抑制することにより、高温焼入れを可能とし、高硬度化(耐摩耗性の向 上)を図る方法が記載されてレ、る。 [0006] Patent Document 1 has been proposed to further improve the hardness of the matrix high speed. In this case, a large amount of Nb and / or Ta is contained, and by suppressing the coarsening of crystal grains when subjected to high-temperature quenching, high-temperature quenching is possible and higher hardness (improved wear resistance) is achieved. The method of aiming at is described.
[0007] 特許文献 2は、変寸抑制特性と高硬度特性を達成した冷間ダイス鋼に関し、主に、 [0007] Patent Document 2 relates to a cold die steel that achieves a size change suppressing characteristic and a high hardness characteristic,
(ァ)焼入れ時の残留オーステナイトの分解によって生じる焼戻し時の膨張変寸を、 N i-Al系金属間化合物の析出強化による変寸抑制作用によって相殺すること、(ィ)所 定の鋼中成分によって算出される偏析指数 Kによって変寸を更に抑制することが開 示されている。特許文献 2の図 1には、最大硬さが得られる温度で焼戻しを行なうこと が示されている。  (A) The expansion change during tempering caused by the decomposition of retained austenite during quenching is offset by the effect of suppressing the change due to precipitation strengthening of Ni-Al intermetallic compounds. (Ii) Predetermined steel components It has been disclosed that the segregation index K calculated by FIG. 1 of Patent Document 2 shows that tempering is performed at a temperature at which the maximum hardness is obtained.
[0008] 特許文献 3には、焼入焼戻処理による寸法変化量 (変寸)、特に、焼戻時の膨張変 寸を抑制し得、硬度の上昇を目的として、適正量の Niや A1を添加し、それに応じた 適正量の Cuを添加した冷間ダイス鋼が開示されている。また、 Cおよび Crの含有量 を調整し、組織中の炭化物分布を微細に分散させると、耐カジリ性も向上することが 記載されている。  [0008] Patent Document 3 describes that the amount of dimensional change (size change) due to quenching and tempering treatment, in particular, the expansion change during tempering can be suppressed, and an appropriate amount of Ni or A1 for the purpose of increasing hardness. And cold die steel with the appropriate amount of Cu added is disclosed. Moreover, it is described that galling resistance is improved by adjusting the C and Cr contents and finely dispersing the carbide distribution in the structure.
[0009] 一方、特許文献 4には、金型製造コストの低減を目的として、従来のように切削加工 を行ってから焼入焼戻処理を行うのではなぐ焼入焼戻状態から切削加工を行う(焼 入焼戻→切削加工)「プリハードン鋼」の技術が開示されている。具体的には、高硬 度でも良好な被削性を発揮し得、冷間で打抜き加工が可能な鋼として、特に、 C、 Si 、および Sの含有量が適切に制御されたプリハードン鋼が開示されている。しかしな がら、プリハードン鋼を用いた金型の寿命は短ぐ実用化に至っていないのが現状で ある。  [0009] On the other hand, in Patent Document 4, for the purpose of reducing the die manufacturing cost, cutting is performed from a quenching and tempering state, in which a quenching and tempering process is not performed after a conventional cutting process. The technique of “pre-hardened steel” to be performed (quenching and tempering → cutting) is disclosed. Specifically, as a steel that can exhibit good machinability even at high hardness and can be punched in the cold, especially pre-hardened steel with appropriately controlled contents of C, Si and S It is disclosed. However, at present, the life of molds using pre-hardened steel is short and has not been put into practical use.
[0010] 上記の特許文献;!〜 4は、主に、鋼中成分の制御によって熱処理後(時効処理後ま たは焼戻処理後)の変寸 (寸法変化)を抑制するものであるが、後記する特許文献 5 〜7には、主に、焼入れ焼戻しなどの熱処理条件を制御することによって変寸を抑制 する技術が開示されて!/、る。  [0010] The above-mentioned patent documents;! To 4 mainly suppress the size change (size change) after heat treatment (after aging treatment or tempering treatment) by controlling the components in steel. Patent Documents 5 to 7, which will be described later, mainly disclose techniques for suppressing deformation by controlling heat treatment conditions such as quenching and tempering! /.
[0011] このうち、特許文献 5には、 150〜450°Cの低温焼戻しと 480〜550°Cの高温焼戻 しを、それぞれ 1回以上施すことによって焼入れ焼戻し後の寸法変化を抑える方法が 開示されている。 [0012] 特許文献 6には、焼入れ→0〜- 200°Cのサブゼロ処理→500°C以下の低温焼戻 しを行う方法が開示されている。詳細には、上記温度でサブゼロ処理を行い、残留ォ ーステナイト量を調整することによって寸法変化を制御し、次いで、低温焼戻しを行 つて目標寸法を実現する方法が記載されてレ、る。 [0011] Among these, Patent Document 5 discloses a method of suppressing dimensional changes after quenching and tempering by performing low temperature tempering at 150 to 450 ° C and high temperature tempering at 480 to 550 ° C at least once. It is disclosed. Patent Document 6 discloses a method of performing quenching → sub-zero treatment at 0 to −200 ° C. → low temperature tempering at 500 ° C. or lower. Specifically, a method is described in which the sub-zero treatment is performed at the above temperature, the dimensional change is controlled by adjusting the amount of retained austenite, and then the low-temperature tempering is performed to achieve the target dimension.
[0013] 特許文献 7には、鋼中成分の調整によって焼入れ性を高め、パーライトノーズおよ びガス冷却による焼入れ時の冷却速度を制御することによって所定の硬さを実現す る方法が開示されており、これにより、金型として必要な硬さを確保しつつ熱処理歪 の低減を図っている。 [0013] Patent Document 7 discloses a method of realizing a predetermined hardness by increasing the hardenability by adjusting the components in steel and controlling the cooling rate during quenching by pearlite nose and gas cooling. As a result, heat treatment distortion is reduced while ensuring the necessary hardness for the mold.
特許文献 1:特開平 10-330894号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-330894
特許文献 2:特開 2006-152356号公報  Patent Document 2: JP 2006-152356 A
特許文献 3:特開 2006-169624号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2006-169624
特許文献 4 :特開 2002-241894号公報  Patent Document 4: JP-A-2002-241894
特許文献 5:特開平 9-125204号公報  Patent Document 5: JP-A-9-125204
特許文献 6 :特開 200卜172748号公報  Patent Document 6: Japanese Patent Laid-Open No. 200-172748
特許文献 7:特開 2002-167644号公報  Patent Document 7: Japanese Patent Laid-Open No. 2002-167644
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 冷間金型用鋼に要求される特性としては、前述した高硬度化や熱処理後の変寸抑 制性に優れるほか、溶接補修性に優れてレ、ることも挙げられる。 [0014] The properties required for the cold mold steel include not only the above-described increase in hardness and the ability to suppress change in size after heat treatment, but also excellent weld repairability.
[0015] 溶接補修は、主に、金型の損傷 (詳細には、表面硬化層の疵ゃ凹凸など)を溶接に よって補正、補修し、金型の再生利用を図る目的で行なわれるものであり、例えば、 アルゴン溶接による肉盛溶接などが汎用されている。前述したように、引張強度が約[0015] Welding repair is performed mainly for the purpose of correcting and repairing damage to the mold (specifically, unevenness of the hardened surface layer) by welding and reusing the mold. For example, overlay welding by argon welding is widely used. As mentioned above, the tensile strength is about
580MPa以上のハイテン鋼の需要増大によって金型の寿命が極端に低下している ことから、経費削減のため、金型への溶接補修は頻繁に行なわれている。 Due to the drastic decrease in mold life due to an increase in demand for high-tensile steel over 580MPa, welding repairs to the mold are frequently performed to reduce costs.
[0016] ところが、硬化皮膜が施された金型に溶接補修を施すと、溶接部周辺の硬さのバラ ツキが大きくなり、割れやカジリが発生しやすくなる。特に、溶接後の熱影響部(Heat Affected Zone, HAZ)の軟化(HAZ軟化)が顕著に見られるため、溶接補修後の 金型寿命の低下が問題になっている。 HAZ軟化は、ボンド部 (溶接金属と母材との 境界部、「溶接溶融線」とも呼ばれる。)から少し離れた領域において見られる現象で あり、当該領域では、ボンド部より加熱温度が低ぐ細粒オーステナイトより変態する ため、焼入れ性が低下して軟質なフェライト相の分率が多くなり、更に離れたところは 高温で焼戻された状態となることから、硬度が低下すると考えられている。図 1 (a)は 、母材同士を溶接金属で溶接したときの様子を模式的に示す図であり、図 1 (b)に、 図 1 (a)中に示す領域 Aの硬度分布を模式的に示している。図 1 (b)に示すように、ボ ンド部から離れるにつれて HAZの硬度は低下し、軟化している。 HAZが軟化すると 、その後に表面硬化処理を施しても表面硬化層による保護作用が充分発揮されず、 表面硬化層が早期に損傷するなどして、金型の寿命が低下する。 [0016] However, when welding repair is performed on a mold having a hardened film, the hardness variation around the welded portion increases, and cracks and galling are likely to occur. In particular, the heat affected zone (Heat Affected Zone, HAZ) softening (HAZ softening) after welding is prominently seen, so a reduction in die life after welding repair is a problem. HAZ softening is applied to the bond part (welded metal and base metal The boundary, also called “weld melt line”. This is a phenomenon seen in a region slightly away from ()). In this region, transformation occurs from fine-grained austenite where the heating temperature is lower than that of the bond part, so the hardenability is reduced and the fraction of the soft ferrite phase increases. The further distance is tempered at high temperature, which is considered to reduce the hardness. Fig. 1 (a) is a diagram schematically showing how the base metals are welded together with weld metal, and Fig. 1 (b) schematically shows the hardness distribution in region A shown in Fig. 1 (a). Is shown. As shown in Fig. 1 (b), the HAZ hardness decreases and becomes softer as the distance from the bond portion increases. When the HAZ is softened, even if a surface hardening treatment is subsequently applied, the protective effect of the surface hardening layer is not fully exhibited, and the surface hardening layer is damaged early, and the life of the mold is reduced.
[0017] なお、溶接補修は、前述したように、母材に表面硬化皮膜が施された後に行なわれ るほ力、、母材に表面硬化皮膜が施される前に行なわれることもある。特に、引張強度 が約 590MPa以上のハイテン鋼板を金型を用いてプレス成形するに当たっては、狙 いどおりの形状にプレスするのは困難であるため、予め、試打ちおよび溶接補修(肉 盛溶接)を行ない、所望の形状とする場合もある。試打ち工程では、溶接補修後、熱 処理を行なわずプレス成形を行なうため、 HAZ軟化部に疵が発生し易くなる。このよ うな HAZ軟化部に発生した疵は、その後の硬化処理によって形成される表面皮膜に も残留するため、この残留部分が皮膜損傷の起点になると考えられる。また、 HAZ軟 化部のみならず硬化部も発生し(図 1、図 7を参照)、硬化部では割れや欠けが発生 しゃすぐトラブルになる。  [0017] As described above, the welding repair may be performed after the surface hardening film is applied to the base material, or before the surface hardening film is applied to the base material. In particular, when press-molding high-tensile steel sheets with a tensile strength of about 590 MPa or more using a mold, it is difficult to press into the desired shape, so trial testing and welding repair (overlay welding) are required in advance. To obtain a desired shape. In the trial punching process, after welding repairs, press forming is performed without heat treatment, so wrinkles tend to occur in the HAZ softened part. Such wrinkles generated in the HAZ softened part also remain in the surface film formed by the subsequent hardening process, so this residual part is considered to be the starting point of film damage. Also, not only the HAZ softened part but also the hardened part is generated (see Fig. 1 and Fig. 7), and cracks and chipping occur in the hardened part, causing trouble immediately.
[0018] 従って、溶接補修時の HAZ軟化を抑制し得、コーナー部の肉盛溶接も容易に実 施可能な、溶接補修性に優れた金型用鋼の提供が切望されている。ところ力 前述 した特許文献は、いずれも、溶接補修性について何ら考慮されておらず、溶接補修 後の金型寿命の低下が懸念される。  [0018] Accordingly, there is an urgent need to provide a mold steel with excellent weld repairability that can suppress HAZ softening during welding repair, and can easily perform overlay welding of corner portions. However, none of the above-mentioned patent documents considers weld repairability, and there is a concern that the mold life after weld repair will be reduced.
[0019] 本発明は、上記事情に鑑みてなされたものであり、その目的は、硬度が高ぐ熱処 理後の変寸抑制性に優れ、溶接補修性も良好な冷間金型用鋼、および金型を提供 することにある。  [0019] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a steel for cold molds that has high hardness, is excellent in restraining deformation after heat treatment, and has good weld repairability. And to provide molds.
[0020] また、本発明の別の目的は、硬度が高ぐ熱処理後の変寸抑制性に優れた冷間金 型用鋼を効率よく得るための製造方法を提供することにある。 課題を解決するための手段 [0020] Another object of the present invention is to provide a production method for efficiently obtaining a steel for a cold mold which has high hardness and is excellent in restraining to change in size after heat treatment. Means for solving the problem
すなわち、本発明は以下の;!〜 12に関する。  That is, the present invention relates to the following;
1. 質量%で、  1. By mass%
C :0.20—0.60%、  C: 0.20-0.60%,
Si:0.5—2.00%、 Si: 0.5-2.00%,
Mn:0.;!〜 2%、 Mn: 0.;! ~ 2%
Cr:3.00— 9.00%、 Cr: 3.00—9.00%,
A1:0.3— 2.0%、 A1: 0.3—2.0%,
Cu:l.00—5%, Cu: l.00—5%,
Ni:l.00—5%, Ni: l.00—5%,
Mo: 0.5〜3%及び/又は W: 2%以下(0%を含む)、  Mo: 0.5 to 3% and / or W: 2% or less (including 0%),
S :0.10%以下(0%を含まない)、 S: 0.10% or less (excluding 0%),
下記(1)〜(3) { [ ]は、各元素の含有量 (%)を意味する。 } The following (1) to (3) {[] means the content (%) of each element. }
(1) [Cr] X [C]≤3.00、  (1) [Cr] X [C] ≤3.00,
(2) [Cu]/[Ni] :0.5〜2· 2、  (2) [Cu] / [Ni]: 0.5 ~ 2 ・ 2,
(3) [Μο]+0.5Χ [W] :0.5—3.0%  (3) [Μο] + 0.5Χ [W]: 0.5—3.0%
の要件を満足し、 Satisfy the requirements of
残部:鉄および不可避不純物である冷間金型用鋼。 Remainder: Steel for cold mold, which is iron and inevitable impurities.
2. 更に、 V:0.5%以下(0%を含まない)を含有する上記 1に記載の冷間金型用  2. Further, for cold mold as described in 1 above, further containing V: 0.5% or less (excluding 0%)
3. 更に、 Ti、 Zr、 Hf、 Ta、および Nbよりなる群力、ら選択される少なくとも一種の 元素を合計で 0.5%以下(0%を含まない)含有する上記 1または 2に記載の冷間金 型用鋼。 3. Further, the cooling according to the above 1 or 2, containing at least one element selected from the group force consisting of Ti, Zr, Hf, Ta, and Nb in total of 0.5% or less (excluding 0%) Steel for molds.
4. 更に、 Co :10%以下(0%を含まない)を含有する上記 1〜3のいずれかに記 載の冷間金型用鋼。  4. Furthermore, the steel for cold mold as described in any one of 1 to 3 above, further comprising Co: 10% or less (not including 0%).
5. 下式で表されるマルテンサイト変態点(Ms点):  5. Martensitic transformation point (Ms point) expressed by the following formula:
Ms点 Ms point
= 550-361 X [C]-39X [Mn]-35X [V]-20X [Cr] -17X [Ni]-10X [Cu]-5X ([Mo] + [W]) = 550-361 X [C] -39X [Mn] -35X [V] -20X [Cr] -17X [Ni] -10X [Cu] -5X ([Mo] + [W])
+ 15X [Co] + 30X [Al]  + 15X [Co] + 30X [Al]
{式中、 [ ]は、各元素の含有量(%)を表す。 }  {In the formula, [] represents the content (%) of each element. }
は 170°C以上である上記 1〜4のいずれかに記載の冷間金型用鋼。 The steel for cold molds as described in any one of 1 to 4 above, which has a temperature of 170 ° C or higher.
6. 上記 1〜5のいずれかに記載の冷間金型用鋼を用いて得られる金型。  6. A mold obtained using the cold mold steel according to any one of 1 to 5 above.
7. 上記 1に記載の組成を満足する鋼であって、更に下記 (4) {[ ]は、各元素の 含有量 (%)を意味する。 }  7. Steel that satisfies the composition described in 1 above, and the following (4) {[] means the content (%) of each element. }
(4) [Cu]/[C] :4.0〜; 15  (4) [Cu] / [C]: 4.0 ~; 15
の要件を満足する鋼を用意する工程と、 A process of preparing steel that satisfies the requirements of
下式(5)を満足する条件で溶体化処理および時効処理を行う工程と、 A step of solution treatment and aging treatment under conditions satisfying the following formula (5);
TA-10≤T2≤TA+10 ··· (5) TA-10≤T2≤TA + 10 (5)
式中、 Where
TA = 0. 29XT1-2. 63X [Cu]/[C] + 225で表され、  TA = 0.29XT1-2. 63X [Cu] / [C] + 225,
T1は溶体化温度 (°c)、  T1 is the solution temperature (° c),
T2は時効温度(°C)をそれぞれ、意味する、  T2 means aging temperature (° C),
を含む冷間金型用鋼の製造方法。 A method for producing steel for cold molds including:
8. 前記鋼は、 V:0. 5%以下(0%を含まない)を含有する上記 7に記載の製造方 法。  8. The manufacturing method according to 7 above, wherein the steel contains V: 0.5% or less (not including 0%).
9. 前記鋼は、 Ti、 Zr、 Hf、 Ta、および Nbよりなる群力、ら選択される少なくとも一 種の元素を合計で 0. 5%以下(0%を含まない)含有する上記 7または 8に記載の製 造方法。  9. The steel according to the above 7 or 7 containing a total of at least one element selected from the group force consisting of Ti, Zr, Hf, Ta, and Nb of 0.5% or less (excluding 0%) 8. The production method according to 8.
10. 前記鋼は、 Co :10%以下(0%を含まない)を含有する上記 7〜9のいずれか に記載の製造方法。  10. The manufacturing method according to any one of 7 to 9 above, wherein the steel contains Co: 10% or less (not including 0%).
11. 下式で表されるマルテンサイト変態点(Ms点):  11. Martensitic transformation point (Ms point) expressed by the following formula:
Ms点 Ms point
= 550-361 X [C]-39X [Mn]-35X [V]-20X [Cr]  = 550-361 X [C] -39X [Mn] -35X [V] -20X [Cr]
-17X [Ni]-10X [Cu]-5X ([Mo] + [W]) -17X [Ni] -10X [Cu] -5X ([Mo] + [W])
+ 15X [Co] + 30X [Al] は 170°C以上である上記 7〜; 10のいずれかに記載の製造方法。 + 15X [Co] + 30X [Al] 11. The production method according to any one of 7 to 10 above, which is 170 ° C. or higher.
12. 上記 7〜; 11のいずれかに記載の製造方法によって得られる金型。 発明の効果  12. A mold obtained by the production method according to any one of 7 to 11 above. The invention's effect
[0022] 本発明の冷間金型用鋼は、上記のように合金成分が適切に制御されているため、 硬度が高ぐ熱処理後の変寸抑制性に優れ、溶接補修性も良好である。従って、上 記の冷間金型用鋼を用いて得られる金型は、特に、引張強度が約 590MPa以上の ハイテン鋼板の成形用金型として好適に用いられ、寿命、とりわけ、溶接補修後の寿 命が一層高められる。  [0022] In the cold mold steel of the present invention, the alloy components are appropriately controlled as described above. Therefore, the hardness is high, the deformation resistance after heat treatment is excellent, and the weld repairability is also good. . Therefore, the mold obtained by using the above cold mold steel is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more, and has a long life, particularly after welding repair. Life is further increased.
[0023] また、本発明の製造方法は、鋼中成分、並びに溶体化処理および時効処理の条 件が適切に制御されて!/、るため、硬度が高ぐ熱処理後の変寸抑制性に優れた冷間 金型用鋼を効率よく製造することができる。従って、本発明の製造方法を用いて得ら れる金型は、特に、引張強度が約 590MPa以上のハイテン鋼板の成形用金型として 好適に用いられ、寿命、とりわけ、溶接補修後の寿命が一層高められる。  [0023] Further, in the production method of the present invention, the components in the steel and the conditions of the solution treatment and the aging treatment are appropriately controlled! /. Excellent cold mold steel can be produced efficiently. Therefore, the mold obtained using the production method of the present invention is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more, and has a longer life, particularly after welding repair. Enhanced.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]図 1は、母材同士を溶接金属で溶接したときの様子を模式的に示す図であり、 図 1 (a)は溶接部の断面図であり、図 1 (b)は、図 1 (a)中に示す領域 Aの硬度分布を 模式的に示す図である。  [0024] [Fig. 1] Fig. 1 is a diagram schematically showing a state in which the base metals are welded to each other with a weld metal. Fig. 1 (a) is a cross-sectional view of a welded portion, and Fig. 1 (b ) Is a diagram schematically showing the hardness distribution of region A shown in FIG. 1 (a).
[図 2]図 2 (a)は、金型用鋼として JIS SKD11を用い、その上に TiNの皮膜を施した 金型の表面にカジリが発生した状態を示す光学顕微鏡写真、図 2 (b)および図 2 (c) は、その一部を拡大した光学顕微鏡写真、図 2 (d)は、 TiNの皮膜を施す前の金型 母材の光学顕微鏡写真である。  [Fig. 2] Fig. 2 (a) is an optical micrograph showing the condition of galling on the surface of a mold that uses JIS SKD11 as the mold steel and has a TiN coating on it. ) And Fig. 2 (c) are optical micrographs showing an enlarged part, and Fig. 2 (d) is an optical micrograph of the mold base material before the TiN film is applied.
[図 3]図 3 (a)は、実施例に用いた溶接用試験片の形状を示す概略図であり、図 3 (b) は、溝部を拡大した断面図である。  FIG. 3 (a) is a schematic view showing the shape of a welding test piece used in the examples, and FIG. 3 (b) is an enlarged sectional view of a groove.
[図 4]図 4は、バタリングを施した試験片の様子を模式的に示す概略図である。  FIG. 4 is a schematic view schematically showing a state of a test piece subjected to buttering.
[図 5]図 5は、実施例に用いたシャルピー衝撃試験片の形状を示す概略図である。  FIG. 5 is a schematic view showing the shape of a Charpy impact test piece used in the examples.
[図 6]図 6は、 [Cu]/[Ni]の比と HAZ軟化幅との関係を示すグラフである。  FIG. 6 is a graph showing the relationship between the [Cu] / [Ni] ratio and the HAZ softening width.
[図 7]図 7は、硬さ分布のプロファイルを示すグラフである。  FIG. 7 is a graph showing a profile of hardness distribution.
[0025] [図 8]図 8は、 [Cu]/[C]の比と変寸率 (平均値、最大値)との関係を示すグラフであ [図 9]図 9は、時効処理による硬さと寸法変化(変寸率)への影響を模式的に示す図 である。 [0025] [Fig. 8] Fig. 8 is a graph showing the relationship between the ratio of [Cu] / [C] and the change rate (average value, maximum value). [FIG. 9] FIG. 9 is a diagram schematically showing the influence of aging treatment on hardness and dimensional change (size change rate).
[図 10]図 10は、時効処理による変寸量への影響を模式的に示す図である。  [FIG. 10] FIG. 10 is a diagram schematically showing the influence of aging treatment on the amount of change in size.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明について詳細に説明する。なお、本明細書における百分率は、特に 示されない限り、それぞれ質量を基準とする。また、質量で定義される全ての百分率 は、それぞれ重量で定義されるそれらと同一である。  [0026] Hereinafter, the present invention will be described in detail. Note that percentages in this specification are based on mass unless otherwise indicated. Also, all percentages defined by mass are identical to those defined by weight, respectively.
まず、本発明の第 1の態様に係る冷間金型用鋼について詳細に説明する。  First, the cold mold steel according to the first aspect of the present invention will be described in detail.
[0027] 本発明者は、冷間金型用鋼に要求される種々の特性のなかでも、とりわけ、硬度、 熱処理後の変寸抑制性、溶接補修性の特性が高められた冷間金型用鋼を提供する ため、まず、従来の JIS SKD11やマトリックスハイスを用いた金型において、金型の 表面皮膜が損傷してカジリが発生する原因を探求した。  [0027] Among the various properties required for cold mold steel, the present inventor has, among other things, a cold mold having improved properties of hardness, resistance to deformation after heat treatment, and weld repairability. In order to provide steel, we first investigated the cause of galling due to damage to the surface film of the mold using conventional JIS SKD11 and matrix high speed steel.
[0028] 図 2 (a)は、金型用鋼として JIS SKD11を用い、その上に TiNの皮膜を施した金型 の表面にカジリが発生した状態を示す光学顕微鏡写真であり、図 2 (b)および図 2 (c )は、その一部を拡大した光学顕微鏡写真である。参考のため、図 2 (d)に、 TiNの皮 膜を施す前の金型母材の光学顕微鏡写真も示す。図 2 (d)中、白く見える部分は Cr 系炭化物である。図 2 (b)および図 2 (c)より明らかなように、皮膜が剥離した領域に は、硬質の粗大な Cr系炭化物(Crや Feを主に含有する、約 1〜50 m程度の炭化 物)が表面に析出し、当該炭化物を起点としてクラックが発生していることがわかる。  [0028] Fig. 2 (a) is an optical micrograph showing a state in which galling occurs on the surface of a mold having JIS SKD11 as a mold steel and having a TiN film formed thereon. b) and Fig. 2 (c) are optical micrographs of a part of it. For reference, Fig. 2 (d) also shows an optical micrograph of the mold base material before the TiN film is applied. In Fig. 2 (d), the white parts are Cr-based carbides. As is clear from Fig. 2 (b) and Fig. 2 (c), the area where the film was peeled off was hard and coarse Cr-based carbide (carbonization of about 1 to 50 m, mainly containing Cr and Fe. It can be seen that the product is precipitated on the surface and cracks are generated starting from the carbide.
[0029] 上記の観察結果から、本発明者は、カジリ発生の起点は上記の粗大な Cr系炭化物 であり、当該炭化物の生成を出来るだけ抑制(生成させない)すれば表面皮膜の剥 離を防止でき、金型の寿命を改善し得ると考えた。  [0029] From the above observation results, the present inventor has found that the starting point of galling is the coarse Cr-based carbide described above, and if the generation of the carbide is suppressed (not generated) as much as possible, peeling of the surface film is prevented. It was possible to improve the life of the mold.
[0030] 上記の知見に基づき、本発明者は更に検討を重ねてきた。その結果、粗大な炭化 物の生成を抑え、前述した特性の改善を図るためには、 C量を適切に制御したうえで [0030] Based on the above findings, the present inventors have further studied. As a result, in order to suppress the formation of coarse carbides and improve the characteristics described above, the amount of C should be controlled appropriately.
、種々の合金成分を積極的に添加し、合金の成分設計を適切に制御することが極め て重要であることを突き止めた。詳細には、所望の特性を得るためには、従来のよう に炭化物制御による硬度増加を図るのではなぐ合金成分(特に、 Al、 Cu、 Ni、 Mo 、 w)を積極的に添加して合金元素の析出硬化による硬度増加を図ることが有効で あり、主に、 Al-Ni系金属間化合物による析出硬化や、 Moや Wと Cとの炭化物形成 による二次硬化を利用すればよいことを見出し、更に実験を重ねた結果、本発明の 構成に到達した。 It was found that it is extremely important to actively add various alloy components and to properly control the alloy component design. Specifically, in order to obtain the desired properties, alloy components (particularly Al, Cu, Ni, Mo, etc.) that are not intended to increase hardness by controlling carbides as in the past. It is effective to increase the hardness by precipitation hardening of alloy elements by actively adding (w), mainly precipitation hardening by Al-Ni intermetallic compounds and formation of carbides of Mo, W and C. As a result of further experimentation, the present inventors have reached the configuration of the present invention.
[0031] 本明細書において、「硬度が高い」とは、後記する実施例の欄に記載の方法で最大 硬さを測定したとき、最大硬さが 650HV以上のものを意味する。  In the present specification, “high hardness” means a material having a maximum hardness of 650 HV or higher when the maximum hardness is measured by the method described in the column of Examples described later.
[0032] 本発明の第 1の態様において、「熱処理後の変寸(寸法変化率)」は、時効処理前 後の厚さ、幅、長さの 3方向をそれぞれ測定したとき、それらの平均値、および最大 値と最小値の差の両方で評価している。説明の便宜上、前者を「変寸率の平均値」、 後者を「変寸率の差」と呼ぶ。このように、本発明の第 1の態様においては、「変寸率 の平均値」および「変寸率の差」の両方を用いて熱処理後の変寸を評価して!/、る点 で、前者(変寸率の平均値)のみを測定する特許文献 2の技術と相違している。本発 明者の実験結果によれば、熱処理後の変寸を充分抑えるためには、特許文献 2のよ うに変寸率の平均値を小さくするだけでは不充分であり、厚さ、幅、長さの全方向に おける変寸 (バラツキ)を小さくすることが不可欠であり、たとえ、変寸率の平均値を抑 制したとしても変寸率の差が大きくなる場合がある(その逆もある)ことを突き止めた( 後記する実施例を参照)。なお、本発明の第 1の態様において、「熱処理後の変寸が 小さ!/、(変寸抑制性に優れる) Jとは、後記する実施例の欄に記載の方法に基づレ、て 熱処理前後の寸法変化を測定したとき、変寸率の平均値が ± 0. 05%の範囲内であ り、且つ、変寸率の差が 0. 08%以下であるものを意味する。  [0032] In the first embodiment of the present invention, the "size after heat treatment (dimensional change rate)" is the average of the three directions of thickness, width, and length before and after aging treatment. Evaluation is based on both the value and the difference between the maximum and minimum values. For convenience of explanation, the former is referred to as “average size change rate” and the latter is referred to as “change in rate of change”. Thus, in the first aspect of the present invention, the change in size after heat treatment is evaluated using both the “average value of change rate” and the “difference in change rate”. This is different from the technique of Patent Document 2 in which only the former (the average value of the change rate) is measured. According to the experiment results of the present inventor, it is not enough to reduce the average value of the rate of change as in Patent Document 2 in order to sufficiently suppress the size change after heat treatment. It is indispensable to reduce the size change (variation) in all directions, and even if the average value of the rate of change is suppressed, the difference in size change rate may increase (and vice versa). (See examples below). In the first aspect of the present invention, “the size change after heat treatment is small! /” (Excellent in size change suppression) J is based on the method described in the column of Examples described later. When the dimensional change before and after heat treatment is measured, it means that the average value of the change rate is within ± 0.05% and the difference of change rate is 0.08% or less.
[0033] また、本明細書にお!/、て、「溶接補修性」は、 HAZ軟化幅で評価して!/、る。「溶接 補修性に優れている」とは、後記する実施例の欄に記載の方法で HAZ軟化幅を測 定したとき、 6. 5mm以下の範囲内にあるものを意味する。  [0033] In the present specification, "/ weld repairability" is evaluated based on the HAZ softening width. “Excellent weld repairability” means that the HAZ softening width is measured within the range of 6.5 mm or less when measured by the method described in the column of Examples described later.
[0034] 本発明の第 1の態様における鋼中成分は、以下に詳述するとおりであり、析出硬化 に寄与する種々の合金元素の含有量が所定範囲に制御されているだけでなぐ下式 (1)〜(3)に示すように、所定の元素とのバランスも適切に制御されており、これによ り、上記特性の改善が図られている。後記する実施例に示すように、これらのいずれ かの要件を満足しないものは、所望の特性を確保することができない。特に、本発明 では、 Cuと Niと Alをすベて添加することが不可欠であり、例えば、前述した特許文献 1や特許文献 3のようにこれらのいずれか一方が含まれない成分の鋼では、所望の効 果が得られな!/、ことを実験によって確認して!/、る (後記する実施例を参照)。 [0034] The components in the steel according to the first aspect of the present invention are as described in detail below, and the following formula is obtained only by controlling the contents of various alloy elements contributing to precipitation hardening within a predetermined range. As shown in (1) to (3), the balance with a predetermined element is also appropriately controlled, thereby improving the above characteristics. As shown in the examples described later, those which do not satisfy any of these requirements cannot secure desired characteristics. In particular, the present invention Therefore, it is indispensable to add all of Cu, Ni, and Al. For example, in steels having components that do not contain either one of them as described in Patent Document 1 and Patent Document 3, the desired effect is obtained. I can't get the result! /, I confirmed by experimenting! /, I'll (see the examples below).
[0035] ここで、本発明の第 1の態様における鋼中成分を、本発明の第 1の態様における主 な改善対象である「溶接補修性」(HAZ軟化幅で評価)と「熱処理後の変寸抑制性」 ( 長方向の変寸率と変寸率の差の両方で評価)との関係で整理すると、おおむね、以 下のようになる。 [0035] Here, the components in the steel according to the first aspect of the present invention are classified into "weld repairability" (evaluated by the HAZ softening width) and "after heat treatment" which are the main improvement targets in the first aspect of the present invention. When organized in relation to the “restraint suppression” (evaluated by both the longitudinal change rate and the difference between the change rates), it is generally as follows.
[0036] まず、溶接補修性を高める(HAZ軟化幅を小さくする)ためには、主に、 [Cr] X [C ]の上限、 Ms点(下限)、 C量(下限)、 A1量(下限)、 Ni量(下限)、 [Cu] / [Ni] (上 限、下限)、 [Mo] + 0. 5 X [W] (下限)、 V量(上限)を適切に制御することが重要で ある。すなわち、 HAZ軟化幅を小さくするための設計指針として、マルテンサイト生 成による硬化ではなぐ C量を約 0. 2〜0. 60%程度と低 Cとしたうえで、合金成分( 主に、 Al、 Cu、 Ni、 Mo、 W)添加による析出硬化(例えば、 ε _Cu、 Ni_Al系金属間 化合物、 Ni-Mo系金属間化合物)を利用している。これらの析出物は、マトリックス中 に微細に整合析出するため、硬さが著しく増加する。  [0036] First, in order to improve weld repairability (reduce the HAZ softening width), the upper limit of [Cr] X [C], Ms point (lower limit), C amount (lower limit), A1 amount ( Lower limit), Ni amount (lower limit), [Cu] / [Ni] (upper limit, lower limit), [Mo] + 0.5 X [W] (lower limit), V amount (upper limit) can be controlled appropriately is important. That is, as a design guideline for reducing the HAZ softening width, the amount of C to be reduced by hardening by martensite generation is set to about 0.2 to 0.60%, and the alloy composition (mainly Al , Cu, Ni, Mo, W) are used for precipitation hardening (eg, ε_Cu, Ni_Al intermetallic compounds, Ni-Mo intermetallic compounds). Since these precipitates are finely matched and precipitated in the matrix, the hardness is remarkably increased.
[0037] 特に、 Cu、 Ni、 Alは析出硬化元素として重要であり、 HAZ軟化の抑制に大きく寄 与する元素である。これら元素のいずれかを実質的に添加しない鋼は、所望の HAZ 軟化抑制作用が得られないことを実験によって確認している。  [0037] In particular, Cu, Ni, and Al are important as precipitation hardening elements, and are elements that greatly contribute to the suppression of HAZ softening. Experiments have confirmed that steels that do not substantially contain any of these elements do not have the desired HAZ softening suppression effect.
[0038] 更に、 [Cu] / [Ni]の比([Ni]に対する [Cu]の比)は、 HAZ軟化の抑制と密接な 関係を有しており、上記の比率を適切に制御することによって HAZ軟化を抑制でき ることが分かった。図 6は、後記する実施例に記載の方法で HAZ軟化幅を測定した ときの、 [Cu] / [Ni]の比が HAZ軟化幅に及ぼす影響を示すグラフである。このダラ フは、後記する表 3の No. 7、 8、 10、表 4の No. 31— 35,および 37の結果をプロッ トしたものである。図 6に示すように、 [Cu] / [Ni]の比は、 HAZ軟化幅と密接な関係 を有しており、上記の比を 0. 5〜2. 2の範囲内に制御することにより、 HAZ軟化幅を 本発明に規定する範囲内(6. 5mm以下)に抑えられることが分かる。  [0038] Furthermore, the ratio of [Cu] / [Ni] (ratio of [Cu] to [Ni]) is closely related to the suppression of HAZ softening, and the above ratio should be appropriately controlled. It was found that the softening of HAZ can be suppressed. FIG. 6 is a graph showing the influence of the ratio of [Cu] / [Ni] on the HAZ softening width when the HAZ softening width is measured by the method described in the examples described later. This draft plots the results of Nos. 7, 8, and 10 in Table 3 and Nos. 31-35 and 37 in Table 4 below. As shown in Fig. 6, the ratio of [Cu] / [Ni] has a close relationship with the HAZ softening width, and by controlling the above ratio within the range of 0.5 to 2.2. It can be seen that the HAZ softening width can be suppressed within the range specified in the present invention (6.5 mm or less).
[0039] 一方、熱処理後の変寸をできるだけ小さくするためには、主に、 Crと Cの含有量の 積( [Cr] X [C]の上限)、 C量(上限)、 Si量(上限)、 Mn量(上限)、 Ms点(下限)、 A 1量(上限)、 Ni量(上限)、 Cr量(上限)、 [Mo] + 0. 5 X [W] (上限)を適切に制御す ることが重要である。本発明では、低 Cを基本としているため、 Ms点が高くなつて残 留オーステナイト量の生成がもともと少ないことに加えて、 Cu、 Ni、 A1などの合金成 分の含有量が適切に制御されているため、特に、約 400〜550°Cの時効処理後や 表面硬化処理後の膨張や収縮を著しく抑えることができる。これは、上記合金成分の 添カロにより、 ί列免ば、約 400〜500。Cの低温域では主に ε _Cu力 約 450〜530。C の中間温度域では主に Ni- (A1, Mo)系金属間化合物が、約 500〜550°Cの高温 域では主に Mo-V系炭化物が生成するが、これら析出物の結晶構造 (FCC構造)は マトリックス(BCC構造)と相違するため、体積が収縮し、これが、熱処理後の変寸抑 制に寄与していると考えられる。また、本発明では、粗大な Cr系炭化物が極力析出し ないような成分設計としているため、結晶構造は、いずれの方向に対しても等方的で あり、大型複雑形状の金型製造においても熱処理後の変寸を有効に抑制できると考 X_られる。 [0039] On the other hand, in order to make the dimension after heat treatment as small as possible, the product of Cr and C content (upper limit of [Cr] X [C]), C amount (upper limit), Si amount ( Upper limit), Mn amount (upper limit), Ms point (lower limit), A It is important to appropriately control 1 amount (upper limit), Ni amount (upper limit), Cr amount (upper limit), and [Mo] + 0.5 X [W] (upper limit). Since the present invention is based on low C, the content of alloy components such as Cu, Ni, and A1 is appropriately controlled in addition to the fact that the amount of retained austenite is originally low due to the high Ms point. Therefore, in particular, expansion and contraction after aging treatment at about 400 to 550 ° C and after surface hardening treatment can be remarkably suppressed. This is about 400-500 if you don't need to use the above alloy components. Ε_Cu force is mainly about 450 to 530 in the low temperature range of C. Ni- (A1, Mo) -based intermetallic compounds are mainly produced in the intermediate temperature range of C, and Mo-V-based carbides are mainly produced in the high temperature range of about 500 to 550 ° C. The crystal structure of these precipitates ( Since the FCC structure is different from the matrix (BCC structure), the volume is shrunk, which is considered to contribute to the suppression of the size change after heat treatment. Further, in the present invention, since the composition design is such that coarse Cr-based carbides are not precipitated as much as possible, the crystal structure is isotropic in any direction, and even in the manufacture of a large complex mold. It is considered that the size change after heat treatment can be effectively suppressed.
[0040] 以下、本発明の第 1の態様における鋼中成分について、説明する。  [0040] Hereinafter, the components in steel in the first embodiment of the present invention will be described.
[0041] C : 0. 20—0. 60%  [0041] C: 0.20—0.60%
Cは、硬さおよび耐摩耗性を確保し、 HAZ軟化幅の抑制にも寄与する元素である。 また、金型母材の表面に VCや TiCなどの炭化物皮膜を CVD法で生成する場合、 C 濃度が低いと皮膜の厚さが薄くなるなどの問題もある。これらを勘案し、上記作用を 有効に発揮させるために C量の下限を 0. 20%とした。 C量は 0. 22%以上であること が好ましい。ただし、過剰に添加すると、残留オーステナイトが増加し、高温の時効処 理を行わないと所望の硬さが得られないほか、時効処理後に膨張するなどし、変寸 が大きくなるため、上限を 0. 60%とした。 C量は 0. 50%以下であることが好ましぐ 0 . 45%以下であることが好ましい。  C is an element that ensures hardness and wear resistance and contributes to the suppression of the HAZ softening width. In addition, when a carbide film such as VC or TiC is formed on the surface of the mold base material by the CVD method, there is a problem that the film thickness becomes thin if the C concentration is low. Taking these into consideration, the lower limit of the C content was set to 0.20% in order to effectively exert the above-described effects. The amount of C is preferably 0.22% or more. However, if added in excess, the retained austenite increases and the desired hardness cannot be obtained unless high-temperature aging treatment is performed. 60%. The amount of C is preferably 0.50% or less, and is preferably 0.45% or less.
[0042] Si : 0. 5〜2. 00%  [0042] Si: 0.5 to 2.00%
Siは、製鋼時の脱酸元素として有用であり、硬さの向上と被削性確保に寄与する元 素である。また、 Siは、マトリックスのマルテンサイトの焼戻し軟化を抑え、 HAZ軟化 幅の抑制に有用である。このような作用を有効に発揮させるため、 Si量の下限を 0. 5 %とした。ただし、過剰に添加すると、偏析が大きくなり、熱処理後の変寸が大きくな るほ力、、靭性も低下するようになるため、上限を 2. 00%とした。 Si量の下限は、 1 % であること力 S好ましく、 1. 2%がより好ましぐ一方、 Si量の上限は 1. 85%であること が好ましい。 Si is useful as a deoxidizing element during steelmaking, and is an element that contributes to improving hardness and securing machinability. In addition, Si suppresses the temper softening of martensite in the matrix and is useful for suppressing the HAZ softening width. In order to effectively exhibit such an effect, the lower limit of the Si amount is set to 0.5%. However, if added excessively, segregation increases and the size change after heat treatment increases. Therefore, the upper limit was made 2.00%. The lower limit of the Si amount is 1%, preferably S. 1.2% is more preferred, while the upper limit of the Si amount is preferably 1.85%.
[0043] Mn : 0. ;!〜 2%  [0043] Mn: 0.;! ~ 2%
Mnは、焼入性確保に有用な元素である力 過剰に添加すると、 Ms点が顕著に低 下し、残留オーステナイトが増加するため、高温の時効処理を行わないと所望の硬さ が得られない。これらを勘案して、 Mnの含有量を上記範囲に定めた。 Mn量の下限 は 0. 15%であることが好ましぐ一方、 Mn量の上限は 1 %であることが好ましぐ 0. 5%がより好ましぐ 0. 35%が更に好ましい。  Mn is an element useful for ensuring hardenability. When excessively added, the Ms point is significantly lowered and the retained austenite increases. Therefore, the desired hardness can be obtained without high-temperature aging treatment. Absent. Taking these into consideration, the Mn content was set within the above range. The lower limit of the Mn content is preferably 0.15%, while the upper limit of the Mn content is preferably 1%, more preferably 0.5%, and still more preferably 0.35%.
[0044] Cr : 3. 00—9. 00%  [0044] Cr: 3. 00—9.0%
Crは、所定の硬さを確保するために有用な元素である。 Cr量が 3. 00%未満では 、焼入性が不足してベイナイトが一部生成するため、硬さが低下し、耐摩耗性を確保 すること力 Sできない。 Cr量は、 3. 5 %以上あることが好ましぐ 4. 0%以上であること 力はり好ましい。ただし、過剰に添加すると、粗大な Cr系炭化物が多量に生成し、熱 処理後に収縮し、皮膜の耐久性が低下するため、上限を 9. 00%とした。 Cr量は、 7 . 0%以下であることが好ましぐ 6. 5%以下であることがより好ましぐ 6. 0%以下で あることが更に好ましい。  Cr is an element useful for ensuring a predetermined hardness. If the Cr content is less than 3.00%, the hardenability is insufficient and a part of bainite is generated, so that the hardness decreases and the strength S cannot be ensured. The Cr content is preferably 3.5% or more, and preferably 4.0% or more. However, if added excessively, a large amount of coarse Cr-based carbides are formed, shrink after heat treatment, and the durability of the film decreases, so the upper limit was made 9.00%. The Cr content is preferably 7.0% or less, more preferably 6.5% or less, and even more preferably 6.0% or less.
[0045] Α1 : 0. 3〜2· 0%  [0045] Α1: 0. 3〜2 · 0%
Alは、 Ni A1などの Al_Ni系金属間化合物の析出強化による硬さ向上を図るため  Al is intended to improve hardness by precipitation strengthening of Al_Ni intermetallic compounds such as Ni A1.
3  Three
に必要な元素であり、 HAZ軟化幅の抑制にも寄与している。また、 A1は、脱酸剤とし ても有用である。これらを勘案して、 A1の下限を 0. 3%とした。ただし、過剰に添加す ると、偏析が大きくなり、熱処理後の寸法変化(特に、変寸率の差)が大きくなるほか、 靭性の低下を招くため、その上限を 2. 0 %とした。 A1量は、 0. 50%以上 1. 8 %以下 であることが好ましぐ 0. 7%以上 1. 6 %以下であることがより好ましい。  It is a necessary element for the metal and contributes to the suppression of the HAZ softening width. A1 is also useful as a deoxidizer. Taking these into account, the lower limit of A1 was set to 0.3%. However, if added in excess, segregation increases, dimensional change after heat treatment (especially the difference in change rate) increases, and toughness decreases, so the upper limit was made 2.0%. The amount of A1 is preferably 0.50% or more and 1.8% or less, and more preferably 0.7% or more and 1.6% or less.
[0046] Cu : l . 00〜5% [0046] Cu: l. 00 ~ 5%
Cuは、 ε -Cuの析出強化による硬さ向上を図るために必要な元素であり、 HAZ軟 化幅の抑制にも寄与している。ただし、過剰に添加すると、鍛造割れが発生しやすく なるため、上限を 5%とした。 Cu量は、 2. 0%以上 4. 0%以下であることが好ましい。 [0047] Ni : l . 00—5% Cu is an element necessary for improving the hardness by precipitation strengthening of ε-Cu and contributes to the suppression of the HAZ softening width. However, if excessively added, forging cracks are likely to occur, so the upper limit was made 5%. The amount of Cu is preferably 2.0% or more and 4.0% or less. [0047] Ni: l. 00—5%
Niは、 Ni Alなどの A Ni系金属間化合物の析出強化による硬さ向上を図るため  Ni is intended to improve hardness by precipitation strengthening of Ni-based intermetallic compounds such as Ni Al.
3  Three
に必要な元素であり、 HAZ軟化幅の抑制にも寄与している。また、 Niは、 Cuと併用 することにより、 Cuの過剰添加による熱間脆性を抑制し、鍛造時の割れを防止するこ ともできる。ただし、過剰に添加すると、残留オーステナイトが増加して高温で時効し ないと所定の硬さを確保できないほ力、、熱処理後に膨張してしまう。 Ni量は、 1. 5% 以上 4. 0%以下であることが好ましい。  It is a necessary element for the metal and contributes to the suppression of the HAZ softening width. Ni can also be used in combination with Cu to suppress hot brittleness caused by excessive addition of Cu and to prevent cracking during forging. However, if added excessively, retained austenite increases, and if it is not aged at a high temperature, it will expand after heat treatment. The amount of Ni is preferably 1.5% or more and 4.0% or less.
[0048] Mo : 0. 5〜3%及び/又は W : 2%以下(0%を含む) [0048] Mo: 0.5-3% and / or W: 2% or less (including 0%)
Moおよび Wは、いずれも、 M C型炭化物を形成するほか、 Ni Mo系金属間化合  Both Mo and W form MC type carbides and Ni-Mo intermetallic compounds.
6 3  6 3
物などを形成し、析出強化に寄与する元素である。ただし、 Moや Wを過剰に添加す ると、上記の炭化物などが過剰に生成し、靭性の低下を招くほか、熱処理後の変寸( 特に、変寸率の差)が大きくなるため、上記範囲を設定した。本発明では、 Moを必須 成分とし、 Wは選択元素とするが、両方を併用しても構わない。 Moは、 0. 5%以上 3 %以下であることが好ましぐ 0. 7%以上 2. 5%以下であることがより好ましい。また、 Wは、 2%以下であることが好ましぐ 1. 5%以下であることがより好ましい。  It is an element that forms an object and contributes to precipitation strengthening. However, if Mo or W is added excessively, the above carbides and the like are generated excessively, leading to a reduction in toughness and increasing the size after heat treatment (especially the difference in size change rate). A range was set. In the present invention, Mo is an essential component and W is a selective element, but both may be used in combination. Mo is preferably 0.5% or more and 3% or less, and more preferably 0.7% or more and 2.5% or less. Further, W is preferably 2% or less, and more preferably 1.5% or less.
[0049] S : 0. 10%以下(0%を含まない)  [0049] S: 0. 10% or less (excluding 0%)
Sは、被削性確保に有用な元素である力 過剰に添加すると溶接割れが生じるため 、上限を 0. 10%とした。 S量は、 0. 07%以下であることカ好ましく、 0. 05%以下で あること力 り好ましく、 0. 025%以下であることが更に好ましい。  S is an element useful for ensuring machinability. If it is added in excess of force, weld cracking occurs, so the upper limit was made 0.10%. The amount of S is preferably 0.07% or less, more preferably 0.05% or less, and still more preferably 0.025% or less.
[0050] 更に、本発明の第 1の態様では、下記(1)〜(3)の要件を満足していることが必要 である { [ ]は、各元素の含有量(%)を意味する。 }。  [0050] Furthermore, in the first aspect of the present invention, it is necessary to satisfy the following requirements (1) to (3) {[] means the content (%) of each element. . }.
[0051] (1) [Cr] X [C]≤3. 00  [0051] (1) [Cr] X [C] ≤3.0
上記(1)は、粗大な Cr系炭化物の生成抑制を目的として設定されたものであり、 [C r]と [C]との積が 3. 00を超えると、熱処理後の変寸が大きくなり、表面皮膜の耐久性 が低下する。 [Cr]と [C]との積は、 1. 80以下であること力 S好ましく、 1. 70以下である こと力 Sより好ましい。なお、その下限は、熱処理後の変寸抑制などの観点からは小さ い方が良いが、 Crや Cの添加による上記作用を有効に発揮させることなども勘案す ると、おおむね、 0. 8であることが好ましい。 [0052] (2) [Cu]/[Ni] : 0· 5〜2· 2 The above (1) is set for the purpose of suppressing the formation of coarse Cr-based carbides. If the product of [C r] and [C] exceeds 3.00, the size change after heat treatment is large. As a result, the durability of the surface film decreases. The product of [Cr] and [C] is 1. 80 or less force S, preferably 1. 70 or less than force S. The lower limit is better from the viewpoint of suppressing the size change after the heat treatment, but considering the fact that the above effect is effectively exhibited by the addition of Cr and C, it is generally 0.8. It is preferable that [0052] (2) [Cu] / [Ni]: 0 · 5〜2 · 2
上記(2)は、主に、 ε -Cuの析出強化を利用し、 HAZ軟化幅を抑制するためのパ ラメータとして設定されたものである(後記する実施例を参照)。このような作用を有効 に発揮させるため、 [Ni]に対する [Cu]の比を 0. 5とした。ただし、上記比が大きくな ると、鍛造割れが発生するため、その上限を 2. 2とした。上記比は、 0. 7以上 1. 5以 下であることが好ましぐ 0. 85以上 1. 2以下であることがより好ましい。  The above (2) is mainly set as a parameter for suppressing the HAZ softening width by utilizing precipitation strengthening of ε-Cu (see the examples described later). In order to effectively demonstrate such effects, the ratio of [Cu] to [Ni] was set to 0.5. However, if the ratio is increased, forging cracks occur, so the upper limit was set to 2.2. The ratio is preferably 0.7 or more and 1.5 or less, more preferably 0.85 or more and 1.2 or less.
[0053] (3) [Mo] + 0. 5 X [W] : 0. 5〜3· 0%  [0053] (3) [Mo] + 0.5 X [W]: 0.5 to 3 · 0%
上記(3)を構成する Moや Wは、前述したように、析出強化に寄与する元素であり、 上記(3)は、主に、これらの析出強化による硬さ向上を確保するためのパラメータとし て設定されたものであり、 HAZ軟化幅の抑制にも有効である。上記(3)中、 [W]の係 数(0. 5)は、 Moの原子量は Wの約 1/2であることを考慮して定めた。これらの作用 を有効に発揮させるため、上記(3)の下限を 0. 5%とした。ただし、 Moや Wの量を過 剰に添加すると、上記炭化物が過剰に添加し、靭性の低下を招くほか、熱処理後の 変寸(特に、変寸率の差)が大きくなるため、上記(3)の上限を 3. 0%とした。上記(3 )の下限は 1 · 0%であることが好ましぐ 1. 2%がより好ましぐ一方、その上限は 2· 8 %であることが好ましい。  As described above, Mo and W constituting the above (3) are elements contributing to precipitation strengthening, and the above (3) is mainly used as a parameter for ensuring hardness improvement by precipitation strengthening. It is effective for suppressing the HAZ softening width. In (3) above, the [W] coefficient (0.5) was determined taking into account that the atomic weight of Mo is about half that of W. In order to exert these effects effectively, the lower limit of the above (3) is set to 0.5%. However, adding excessive amounts of Mo and W will add excessive amounts of the above carbides, leading to a decrease in toughness, and increase the size change (especially the difference in size change rate) after heat treatment. The upper limit of 3) was set to 3.0%. The lower limit of (3) is preferably 1 · 0%, while 1.2% is more preferred, while the upper limit is preferably 2 · 8%.
[0054] 本発明の第 1の態様における鋼中成分は上記のとおりであり、残部:鉄および不可 避不純物である。不可避不純物としては、例えば、製造過程で不可避的に混入する 元素などが挙げられ、例えば、 P、 N、 Oなどが例示される。 P量は、おおむね、 0. 05 %以下であることが好ましぐ 0. 03%以下がより好ましい。 N量は、おおむね、 350p pm以下であることが好ましぐ 200ppm以下がより好ましぐ 150ppm以下が更に好 ましい。 O量は、おおむね、 50ppm以下であることが好ましぐ 30ppm以下がより好 ましぐ 20ppm以下が更に好ましい。  [0054] The components in steel in the first embodiment of the present invention are as described above, and the balance: iron and inevitable impurities. Examples of inevitable impurities include elements that are inevitably mixed in the manufacturing process, and examples thereof include P, N, and O. The amount of P is preferably about 0.05% or less, more preferably 0.03% or less. The amount of N is preferably 350 ppm or less, more preferably 200 ppm or less, and even more preferably 150 ppm or less. In general, the amount of O is preferably 50 ppm or less, more preferably 30 ppm or less, and even more preferably 20 ppm or less.
[0055] 本発明では、更に、他の特性改善を目的として、以下の成分を添加しても良い。  [0055] In the present invention, the following components may be added for the purpose of improving other characteristics.
[0056] V: 0. 5%以下(0%を含まない)  [0056] V: 0.5% or less (excluding 0%)
Vは、 VCなどの炭化物を形成して硬さ向上に寄与し、 HAZ軟化幅の抑制に有効 な元素である。また、母材表面にガス窒化、塩浴窒化、プラズマ窒化などの窒化処理 を施して拡散硬化層を形成する場合に、表面硬さの向上や硬化層深さの上昇に有 効な元素である。このような作用を有効に発揮させるためには、 V量は、おおむね、 0 . 05%以上添加することが好ましい。ただし、過剰に添加すると、固溶 C量が低下し、 母相であるマルテンサイト組織の硬さ低下を招くため、その上限を 0. 5%とすることが 好ましい。 V量は、 0. 4%以下であることがより好ましぐ 0. 30%以下であることが更 に好ましい。 V is an element that forms carbides such as VC and contributes to improved hardness, and is effective in suppressing the HAZ softening width. In addition, when a diffusion hardened layer is formed by nitriding such as gas nitriding, salt bath nitriding, or plasma nitriding on the surface of the base material, it is effective in improving the surface hardness and increasing the hardened layer depth. It is an effective element. In order to exert such an action effectively, it is preferable that the amount of V is approximately 0.05% or more. However, if added excessively, the amount of dissolved C will decrease and the hardness of the martensite structure which is the parent phase will be reduced, so the upper limit is preferably made 0.5%. The amount of V is more preferably 0.4% or less, and still more preferably 0.30% or less.
[0057] Ti、 Zr、 Hf、 Ta、および Nbよりなる群から選択される少なくとも一種の元素を合計 で 0. 5%以下(0%を含まない)これらの元素は、いずれも、窒化物形成元素であり、 当該窒化物および A1Nの微細分散化および結晶粒微細化による靭性向上に寄与す る元素である。このような作用を有効に発揮させるため、おおむね、 Tiを 0. 01 %以 上、 Zrを 0. 02%以上、 Hfを 0. 04%以上、 Taを 0. 04%以上、 Nbを 0. 02%以上 添加することが好ましい。ただし、過剰に添加すると、固溶 C量が低下してマルテンサ イトの硬さ低下を招くため、上記元素の合計量を 0. 5%とすることが好ましい。上記元 素の合計量は、 0. 4%以下であることが好ましぐ 0. 30%以下であることがより好ま しい。なお、上記の元素は、単独で添加しても良いし、 2種以上を併用しても構わな い。  [0057] A total of at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb is 0.5% or less (excluding 0%). It is an element that contributes to toughness improvement by fine dispersion and crystal grain refinement of the nitride and A1N. In order to effectively exert such actions, generally, Ti is 0.01% or more, Zr is 0.02% or more, Hf is 0.04% or more, Ta is 0.04% or more, and Nb is 0.0. It is preferable to add 02% or more. However, if added in excess, the amount of dissolved C decreases and the hardness of the martensite decreases, so the total amount of the above elements is preferably 0.5%. The total amount of the above elements is preferably 0.4% or less, more preferably 0.30% or less. The above elements may be added alone or in combination of two or more.
[0058] Co : 10%以下(0%を含まない)  [0058] Co: 10% or less (excluding 0%)
Coは、 Ms点を高め、残留オーステナイトの低減化に有効な元素であり、これにより 、硬さが向上する。上記作用を有効に発揮させるため、 Co量は、おおむね、 1 %以上 であることが好ましい。ただし、過剰に添加すると、コストなどの上昇を招くため、上限 を 10%とすることが好ましい。 Co量の上限は 5. 5%であることが好ましい。  Co is an element that increases the Ms point and is effective in reducing retained austenite, and this improves the hardness. In order to effectively exhibit the above action, the amount of Co is preferably approximately 1% or more. However, if added excessively, the cost will increase, so the upper limit is preferably made 10%. The upper limit of Co content is preferably 5.5%.
[0059] マルテンサイト変態点(Ms点)≥170°C [0059] Martensitic transformation point (Ms point) ≥170 ° C
Ms点  Ms point
= 550-361 X [C]-39 X [Mn]-35 X [V]-20 X [Cr]  = 550-361 X [C] -39 X [Mn] -35 X [V] -20 X [Cr]
-17 X [Ni]-10 X [Cu]-5 X ( [Mo] + [W] )  -17 X [Ni] -10 X [Cu] -5 X ([Mo] + [W])
+ 15 X [Co] + 30 X [Al]  + 15 X [Co] + 30 X [Al]
{式中、 [ ]は、各元素の含有量(%)を表す。 }  {In the formula, [] represents the content (%) of each element. }
本発明において、 Ms点は、主に、硬さや熱処理後の変寸抑制の指標となるもので あり、 Ms点が 170°C未満では、残留オーステナイトが増大し、高温で時効しないと所 望の硬さが得られないほか、熱処理後の膨張を招く。 Ms点は高いほど良ぐおおむ ね、 230°C以上であることがより好ましぐ 235°C以上であることが更に好ましぐ 250 °C以上が更に一層好ましい。なお、その上限は、上記作用の観点からは特に限定さ れないが、 Ms点を構成する上記元素の添加による作用効果などを勘案すると、おお むね、 350°Cであることが好ましぐ 320°Cであることがより好ましい。 In the present invention, the Ms point mainly serves as an index for suppressing the change in size after hardness and heat treatment. When the Ms point is less than 170 ° C, the retained austenite increases, and it does not age at high temperatures. In addition to obtaining the desired hardness, it causes expansion after heat treatment. The higher the Ms point, the better. Generally, it is more preferable that the temperature is 230 ° C or higher, and it is more preferable that the temperature is 235 ° C or higher. The upper limit is not particularly limited from the viewpoint of the above action, but it is generally preferable that the upper limit is 350 ° C. in consideration of the action effect by addition of the above elements constituting the Ms point. More preferably, it is ° C.
[0060] また、本発明には、上記の金型用鋼を用いて得られる金型も包含される。金型の製 造方法は、特に限定されないが、例えば、上記鋼を溶製後、熱間鍛造してから、焼鈍 (例えば、約 700°Cで 7時間保持した後、約 17°C/hrの平均冷却速度で約 400°Cま でを炉冷した後、放冷)を行なって軟化した後、切削加工などによって所定の形状に 粗加工を行ってから、約 950〜; 1150°Cの温度で溶体化処理→約 400〜530°Cで時 効処理を行なって所望の硬さを付与する方法が挙げられる。  [0060] The present invention also includes a mold obtained using the above steel for molds. The method for producing the mold is not particularly limited.For example, after the above steel is melted, hot forged and then annealed (for example, after holding at about 700 ° C for 7 hours, about 17 ° C / hr After the furnace is cooled to an average cooling rate of about 400 ° C and then left to cool, it is softened and then roughly processed into a predetermined shape by cutting, etc., and then about 950 to 1150 ° C There is a method of imparting a desired hardness by performing a solution treatment at a temperature → aging treatment at about 400 to 530 ° C.
[0061] つづいて、本発明の第 2の態様に係る冷間金型用鋼の製造方法について詳細に 説明する。  [0061] Next, the method for producing the steel for cold mold according to the second aspect of the present invention will be described in detail.
[0062] 本発明者は、冷間金型用鋼に要求される種々の特性のなかでも、とりわけ、硬度、 熱処理後の変寸抑制性、溶接補修性 (金型の損傷などを溶接によって補修したとき の金型寿命特性)といった特性が高められた冷間金型用鋼を提供するため、検討を 行なった。その結果、鋼中成分を適切に制御すれば所期の目的が達成されることを 見出した (本発明の第 1の態様)。  [0062] Among the various properties required for cold mold steel, the present inventor, among other things, repairs hardness, resistance to deformation after heat treatment, weld repairability (such as damage to the mold by welding). In order to provide steel for cold molds with improved properties (such as mold life characteristics), investigations were made. As a result, it was found that the intended purpose can be achieved if the components in the steel are appropriately controlled (first aspect of the present invention).
[0063] 本発明の第 1の態様につづいて、本発明者は、特に、熱処理後の変寸抑制性を一 層改善するため、先の出願で開示された鋼中成分をベースにして更に検討を重ねて きた。その結果、本発明の第 1の態様に係る鋼を用い、且つ、適切な条件で溶体化 処理および時効処理を行えば、熱処理後の寸法変化が一層抑えられた冷間金型用 鋼が効率よく得られることを見出した。  [0063] Continuing with the first aspect of the present invention, the present inventor has made further improvements based on the components in steel disclosed in the previous application, in particular, in order to further improve the reduction in size after heat treatment. I have been studying it. As a result, if the steel according to the first aspect of the present invention is used and solution treatment and aging treatment are performed under appropriate conditions, the steel for cold molds, in which the dimensional change after the heat treatment is further suppressed, is efficient. I found that I can get it well.
[0064] すなわち、本発明の第 2の態様に係る製造方法は、本発明の第 1の態様のうち、熱 処理後の寸法変化が一層抑えられた冷間金型用鋼を効率よく得るための好適な製 造条件を特定したところに特徴がある。詳細には、溶体化温度および時効温度を、 熱処理後の変寸抑制性に最も寄与するパラメータ(Cuと Cの質量比率)で規定したと ころに特徴がある。本発明の第 2の態様に係る製造方法によれば、例えば、特許文 献 5に記載されて!/、る「 1回以上の二段階焼戻し処理」や、特許文献 6に記載されて いるサブゼロ処理といった特別な熱処理を施さなくても、従来のように 1回の焼戻し処 理(時効処理)を行なうことによって、従来よりも、熱処理後の寸法変化が更に抑えら れた冷間金型用鋼を得られるため、生産性に極めて優れて!/、る。 [0064] That is, in the manufacturing method according to the second aspect of the present invention, in the first aspect of the present invention, in order to efficiently obtain the steel for cold mold in which the dimensional change after heat treatment is further suppressed. This is characterized by specifying suitable manufacturing conditions. In detail, the solution temperature and the aging temperature are characterized by the parameters (Cu / C mass ratio) that contribute most to the suppression of size change after heat treatment. According to the manufacturing method of the second aspect of the present invention, for example, a patent document As described in Table 5, there is no special heat treatment such as “one or more two-stage tempering treatments” or the sub-zero treatment described in Patent Document 6. By performing the treatment (aging treatment), it is possible to obtain a steel for cold molds in which the dimensional change after the heat treatment is further suppressed as compared with the conventional one, so that the productivity is extremely excellent!
[0065] はじめに、本発明の第 1の態様から、本発明の第 2の態様に係る冷間金型用鋼の 製造方法に到達した経緯を説明する。  [0065] First, how the cold mold steel manufacturing method according to the second aspect of the present invention is reached from the first aspect of the present invention will be described.
[0066] 本発明者は、まず、従来の JIS SKD11やマトリックスハイスを用いた金型において 、金型の表面皮膜が損傷してカジリが発生する原因を探求した。その結果、皮膜が 剥離した領域には、硬質の粗大な Cr系炭化物(Crや Feを主に含有する、約;!〜 50 m程度の炭化物)が表面に析出し、当該炭化物を起点としてクラックが発生してい ることがわかった。  [0066] The present inventor first searched for the cause of galling due to damage to the surface film of the mold in the conventional mold using JIS SKD11 or matrix high speed. As a result, hard coarse Cr-based carbides (mainly containing Cr and Fe, approximately;! ~ 50 m carbide) are deposited on the surface in the area where the film is peeled off, and cracks start from the carbides. It was found that this occurred.
[0067] 上記の結果から、本発明者は、カジリ発生の起点は上記の粗大な Cr系炭化物であ り、当該炭化物の生成を出来るだけ抑制(生成させない)すれば表面皮膜の剥離を 防止でき、金型の寿命を改善し得ると考えた。  [0067] From the above results, the present inventor is able to prevent the peeling of the surface film if the generation of galling is the coarse Cr-based carbide described above and the generation of the carbide is suppressed (not generated) as much as possible. Thought that the life of the mold could be improved.
[0068] 上記の知見に基づき、本発明者は更に検討を重ねてきた。その結果、粗大な炭化 物の生成を抑え、前述した特性の改善を図るためには、 C量を適切に制御したうえで 、種々の合金成分を積極的に添加し、合金の成分設計を適切に制御することが極め て重要であることを突き止めた。詳細には、所望の特性を得るためには、従来のよう に炭化物制御による硬度増加を図るのではなぐ合金成分(特に、 Al、 Cu、 Ni、 Mo 、 W)を積極的に添加して合金元素の析出硬化による硬度増加を図ることが有効で あり、主に、 Al-Ni系金属間化合物による析出硬化や、 Moや Wと Cとの炭化物形成 による二次硬化を利用すればよいことを見出した。  [0068] Based on the above findings, the present inventors have further studied. As a result, in order to suppress the formation of coarse carbides and improve the above-mentioned characteristics, various alloy components should be actively added after properly controlling the C content, and the alloy component design should be appropriately It was found that it is extremely important to control the system. Specifically, in order to obtain the desired characteristics, the alloy components (especially Al, Cu, Ni, Mo, W) that are not intended to increase the hardness by controlling carbide as in the past are actively added to the alloy. It is effective to increase the hardness by precipitation hardening of elements, and mainly use precipitation hardening by Al-Ni intermetallic compounds and secondary hardening by carbide formation of Mo, W and C. I found it.
[0069] 以上が、本発明の第 1の態様に到達した経緯である。その後も、本発明者は、熱処 理後の変寸抑制性に一層優れた冷間金型用鋼を、特別な熱処理を行うことなく従来 のように 1回の溶体化処理 ·時効処理を行うだけで容易に得ることが可能な生産性の 高い製造方法を提供するため、更に検討を重ねてきた。その結果、上記の鋼を用い て溶体化処理および時効処理を行うに当たり、後記する実施例に示すように、これら の温度 (溶体化温度および時効温度)を、熱処理後の変寸抑制性に最も寄与する「 Cuと Cの質量比率」との関係でうまく規定すれば所期の目的が達成されることを見出 し、本発明の第 2の態様に係る製造方法を完成した。 [0069] The above is the reason why the first aspect of the present invention has been reached. After that, the present inventor performed a single solution heat treatment and aging treatment on the cold mold steel, which is more excellent in size change suppression after the heat treatment, as before without performing a special heat treatment. Further studies have been made in order to provide a highly productive manufacturing method that can be easily obtained by simply performing it. As a result, when performing solution treatment and aging treatment using the above steel, these temperatures (solution treatment temperature and aging temperature) are the most effective in reducing the size change after the heat treatment, as shown in the examples described later. Contributing " It was found that the intended purpose was achieved if it was well defined in relation to the “mass ratio of Cu and C”, and the manufacturing method according to the second aspect of the present invention was completed.
[0070] 具体的には、溶体化温度(°C)を Tl、時効処理温度(°C)を T2、 Cuと Cとの質量比 率を [Cu]/[C]、下式 [0070] Specifically, the solution temperature (° C) is Tl, the aging temperature (° C) is T2, the mass ratio of Cu and C is [Cu] / [C],
0. 29 XT1-2. 63 X [Cu]/[C] + 225  0. 29 XT1-2. 63 X [Cu] / [C] + 225
で表される数ィ直を TAとしたとき、 T2が下式(5)  T2 is expressed by the following formula (5) where TA
TA-10≤T2≤TA+ 10 · · · (5)  TA-10≤T2≤TA + 10 (5)
を満足する範囲内(すなわち、 TA土 10°C)で溶体化処理および時効処理を行えば 、熱処理後の平均変寸率および最大変寸率 (詳細は後述する。)の両方が本発明の 第 2の態様に係る範囲を満足する変寸抑制性に極めて優れた鋼が得られることが判 明した(実施例の表 7を参照)。  If the solution treatment and the aging treatment are performed within a range satisfying the above conditions (that is, TA soil 10 ° C), both the average size change rate and the maximum size change rate (details will be described later) after the heat treatment are It was found that a steel excellent in size change suppression that satisfies the range according to the second aspect can be obtained (see Table 7 in the Examples).
[0071] 本明細書における「溶体化処理」は焼入れ処理と同義であり、「時効処理」は焼戻し 処理と同義である。 In the present specification, “solution treatment” is synonymous with quenching treatment, and “aging treatment” is synonymous with tempering treatment.
[0072] 本明細書において、「硬度が高い」とは、後記する実施例の欄に記載の方法で硬さ を測定したとき、硬さが 650HV以上のものを意味する。  In this specification, “high hardness” means a material having a hardness of 650 HV or higher when the hardness is measured by the method described in the column of Examples described later.
[0073] 本発明の第 2の態様において、「熱処理後の変寸(寸法変化率)」は、時効処理前 後の厚さ( Δ X)、幅( Ay)、長さ( Δ z)の 3方向をそれぞれ測定したとき、それらの平 均値 [ ( Δ χ+ Ay+ Δ ζ) /3]、および、上記の Δ χ、 Ay、 Δ ζの最大値(絶対値)の 両方で評価している。説明の便宜上、前者を「変寸率の平均値または平均変寸率」と 呼び、後者を「変寸率の最大値または最大変寸率」と呼ぶ。このように、本発明の第 2 の態様においては、「変寸率の平均値」および「変寸率の最大値」の両方を用いて熱 処理後の変寸を評価して!/、る点で、前者(変寸率の平均値)のみを測定する特許文 献 2の技術と相違している。本発明者の実験結果によれば、熱処理後の変寸を充分 抑えるためには、特許文献 2のように変寸率の平均値を小さくするだけでは不充分で あり、厚さ、幅、長さの全方向における変寸 (バラツキ)を小さくすることが不可欠であ り、たとえ、変寸率の平均値を抑制したとしても変寸率の差が大きくなる場合がある( その逆もある)ことを突き止めた(後記する実施例を参照)。なお、本発明の第 2の態 様にお!/、て「熱処理後の変寸が小さ!/、(変寸抑制性に優れる)」とは、後記する実施 例の欄に記載の方法に基づ!/、て熱処理前後の寸法変化を測定したとき、変寸率の 平均値が ± 0. 03%の範囲内であり、且つ、変寸率の最大値(絶対値)が 0. 05%以 下であるものを意味する。 [0073] In the second aspect of the present invention, the "size after heat treatment (dimensional change rate)" is the thickness (ΔX), width (Ay), and length (Δz) before aging treatment. When each of the three directions was measured, it was evaluated using both the average value [(Δχ + Ay + Δζ) / 3] and the maximum values (absolute values) of Δχ, Ay, Δζ above. Yes. For convenience of explanation, the former is referred to as “average value of change rate or average change rate”, and the latter is referred to as “maximum value of change rate or maximum change rate”. Thus, in the second aspect of the present invention, the change in size after heat treatment is evaluated using both the “average value of change rate” and the “maximum value of change rate”! In this respect, it is different from the technique of Patent Document 2 which measures only the former (average value of change rate). According to the experiment results of the present inventor, it is not sufficient to reduce the average value of the rate of change as in Patent Document 2 in order to sufficiently suppress the size change after the heat treatment, and the thickness, width, length It is indispensable to reduce the dimensional change (variation) in all directions, even if the average value of the dimensional change rate is suppressed, the difference in dimensional change rate may increase (and vice versa). (See Examples below). In addition, as in the second aspect of the present invention! /, “The change in size after heat treatment is small! /” (Excellent in suppressing change in size) is described later. Based on the method described in the example column, when measuring the dimensional change before and after the heat treatment, the average value of the change rate is within ± 0.03% and the maximum value of the change rate (Absolute value) means less than 0.05%.
[0074] なお、上述した本発明の第 2の態様における評価基準 (方法およびそのレベル)は 、以下の点で、前述した本発明の第 1の態様とも相違している。  It should be noted that the evaluation criteria (method and its level) in the above-described second aspect of the present invention are different from the above-described first aspect of the present invention in the following points.
[0075] まず、本発明の第 1の態様でも本発明の第 2の態様でも、熱処理後の変寸の評価 基準として「変寸率の平均値」を採用しているが、合格基準を、本発明の第 1の態様 では ± 0. 05%としているのに対し、本発明の第 2の態様では、本発明の第 1の態様 よりも厳しい ± 0. 03%と定めている。  [0075] First, in both the first aspect of the present invention and the second aspect of the present invention, the "average value of the change ratio" is adopted as the evaluation standard for the change in size after the heat treatment. In the first aspect of the present invention, it is ± 0.05%, while in the second aspect of the present invention, it is defined as ± 0.03% which is stricter than the first aspect of the present invention.
[0076] 更に、本発明の第 1の態様では、「変寸率の差」、すなわち、前述した Δ χ、 A y、 Δ ζのうち最大値と最小値の差 (絶対値)を採用しているのに対し、本発明の第 2の態様 では、上記のように「変寸率の最大値」を採用している。これは、「本発明の第 1の態 様よりも変寸抑制性に一層優れた鋼を提供するためには、熱処理後の変寸 (バラッ キ)が最も大きくなる部分 (最大値)をできるだけ小さくする必要がある」とレ、う認識のも と、上述した本発明の第 1の態様に関する説明中に記載の「変寸率の差」に加えて「 変寸率の最大値」を採用した次第である。後記する実施例に示すように、たとえ、本 発明の第 1の態様で規定する「変寸率の差」を満足していても本発明の第 2の態様で 規定する「変寸率の最大値」を満足しな!/、ものもある(後記する実施例を参照)が、こ れは、本発明の第 2の態様における「熱処理後の変寸抑制性に優れた鋼」とはいえ ない。  [0076] Further, in the first aspect of the present invention, the "difference in size change", that is, the difference (absolute value) between the maximum value and the minimum value among the above-mentioned Δχ, Ay, Δζ is adopted. In contrast, in the second aspect of the present invention, as described above, the “maximum change rate” is adopted. This is because, in order to provide a steel that is more excellent in restraining deformation than in the first aspect of the present invention, the portion (maximum value) where the size (variation) after heat treatment becomes the largest is as much as possible. Based on the recognition that “it is necessary to make it smaller”, the “maximum change rate” is adopted in addition to the “difference in change rate” described in the above description of the first aspect of the present invention. It depends on you. As shown in the examples described later, even if the “difference in size change” defined in the first aspect of the present invention is satisfied, the “maximum size change ratio” defined in the second aspect of the present invention is satisfied. There are some that do not satisfy the value! / (See the examples described later), but this is not the “steel that is excellent in restraining deformation after heat treatment” in the second aspect of the present invention. Absent.
[0077] 本発明の第 2の態様における鋼中成分は、以下に詳述するとおりであり、析出硬化 に寄与する種々の合金元素の含有量が所定範囲に制御されているだけでなぐ下式 (1)〜(4)に示すように、所定の元素とのバランスも適切に制御されており、これによ り、上記特性の改善が図られている。後記する実施例に示すように、これらのいずれ かの要件を満足しないものは、所望の特性を確保することができない。特に、本発明 の第 2の態様では、 Cuと Niと A1をすベて添加することが不可欠であり、例えば、前述 した特許文献 1や特許文献 3のようにこれらのいずれか一方が含まれない成分の鋼 では、所望の効果が得られなレ、ことを実験によって確認して!/、る。 [0078] 特に、本発明の第 2の態様では、熱処理後の変寸をできるだけ小さくするため、主 に、前述した式(5)を構成する [Cu]と [C]の質量比率のほ力、、 Crと Cの含有量の積( [Cr] X [C]の上限)、 C量(上限)、 Si量(上限)、 Mn量(上限)、 Ms点(下限)、 A1量 (上限)、 Ni量(上限)、 Cr量(上限)、 [Mo] + 0. 5 X [W] (上限)を適切に制御する ことが重要である。本発明では、低 Cを基本としているため、 Ms点が高くなつて残留 オーステナイト量の生成がもともと少ないことに加えて、 Cu、 Ni、 A1などの合金成分 の含有量が適切に制御されているため、特に、約 400〜550°Cの時効処理後や表 面硬化処理後の膨張や収縮を著しく抑えることができる。これは、上記合金成分の添 カロにより、 ί列免ば、約 400〜500。Cの低温域では主に ε _Cu力 約 450〜530。Cの 中間温度域では主に Ni- (A1, Mo)系金属間化合物が、約 500〜550°Cの高温域 では主に Mo-V系炭化物が生成するが、これら析出物の結晶構造 (FCC構造)はマ トリックス(BCC構造)と相違するため、体積が収縮し、これが、熱処理後の変寸抑制 に寄与していると考えられる。また、本発明では、粗大な Cr系炭化物が極力析出しな いような成分設計としているため、結晶構造は、いずれの方向に対しても等方的であ り、大型複雑形状の金型製造においても熱処理後の変寸を有効に抑制できると考え られる。 [0077] The components in the steel according to the second aspect of the present invention are as described in detail below, and the following formula is obtained only by controlling the contents of various alloy elements contributing to precipitation hardening within a predetermined range. As shown in (1) to (4), the balance with a predetermined element is also appropriately controlled, thereby improving the above characteristics. As shown in the examples described later, those which do not satisfy any of these requirements cannot secure desired characteristics. In particular, in the second aspect of the present invention, it is indispensable to add all of Cu, Ni and A1, and for example, one of these is included as in Patent Document 1 and Patent Document 3 described above. In the case of steel with no component, it is confirmed by experiment that the desired effect cannot be obtained! [0078] In particular, in the second aspect of the present invention, in order to minimize the size change after the heat treatment, mainly the mass ratio of [Cu] and [C] constituting the above-described formula (5) is used. ,, Product of Cr and C content (upper limit of [Cr] X [C]), C amount (upper limit), Si amount (upper limit), Mn amount (upper limit), Ms point (lower limit), A1 amount (upper limit) ), Ni amount (upper limit), Cr amount (upper limit), and [Mo] + 0.5 X [W] (upper limit) are appropriately controlled. In the present invention, since it is based on low C, the content of alloy components such as Cu, Ni, and A1 is appropriately controlled in addition to the fact that the amount of retained austenite is originally low due to the high Ms point. Therefore, in particular, expansion and contraction after aging treatment at about 400 to 550 ° C. and after surface hardening treatment can be remarkably suppressed. This is about 400-500 if you don't need to use the above alloy components. Ε_Cu force is mainly about 450 to 530 in the low temperature range of C. Ni- (A1, Mo) -based intermetallic compounds are mainly produced in the intermediate temperature range of C, and Mo-V-based carbides are mainly produced in the high temperature range of about 500 to 550 ° C. The crystal structure of these precipitates ( Since the FCC structure) is different from the matrix (BCC structure), the volume shrinks, which is considered to contribute to the suppression of the size change after heat treatment. Further, in the present invention, since the component design is such that coarse Cr-based carbides are not precipitated as much as possible, the crystal structure is isotropic in any direction, and a large complex shape mold is manufactured. Therefore, it is considered that the size change after heat treatment can be effectively suppressed.
[0079] また、本発明の第 2の態様では、溶接補修性を高める(HAZ軟化幅を小さくする) ため、主に、 [Cr] X [C]の上限、 Ms点(下限)、 C量(下限)、 A1量(下限)、 Ni量(下 限)、 [Cu] / [Ni] (上限、下限)、 [Mo] + 0. 5 X [W] (下限)、 V量(上限)を適切に 制御している。すなわち、 HAZ軟化幅を小さくするための設計指針として、マルテン サイト生成による硬化ではなぐ C量を約 0. 2〜0. 60%程度と低 Cとしたうえで、合 金成分(主に、 Al、 Cu、 Ni、 Mo、 W)添加による析出硬化(例えば、 ε - Cu、 Ni-Al 系金属間化合物、 Ni-Mo系金属間化合物)を利用している。これらの析出物は、マト リックス中に微細に整合析出するため、硬さが著しく増加する。  [0079] Further, in the second aspect of the present invention, in order to improve weld repairability (reduce the HAZ softening width), the upper limit of [Cr] X [C], the Ms point (lower limit), the C amount (Lower limit), A1 amount (lower limit), Ni amount (lower limit), [Cu] / [Ni] (upper limit, lower limit), [Mo] + 0.5 X [W] (lower limit), V amount (upper limit) Is properly controlled. In other words, as a design guideline for reducing the HAZ softening width, the amount of C to be removed by hardening by martensite generation should be as low as about 0.2 to 0.60%, and the alloy components (mainly Al , Cu, Ni, Mo, W) are used for precipitation hardening (for example, ε-Cu, Ni-Al intermetallic compounds, Ni-Mo intermetallic compounds). Since these precipitates are finely aligned in the matrix, the hardness increases significantly.
[0080] 特に、 Cu、 Ni、 A1は析出硬化元素として重要であり、 HAZ軟化の抑制に大きく寄 与する元素である。これら元素のいずれかを実質的に添加しない鋼は、所望の HAZ 軟化抑制作用が得られないことを実験によって確認している。  [0080] In particular, Cu, Ni, and A1 are important as precipitation hardening elements, and are elements that greatly contribute to the suppression of HAZ softening. Experiments have confirmed that steels that do not substantially contain any of these elements do not have the desired HAZ softening suppression effect.
[0081] 更に、 [Cu] / [Ni]の比([Ni]に対する [Cu]の比)は、 HAZ軟化の抑制と密接な 関係を有しており、上記の比率を適切に制御することによって HAZ軟化を抑制でき ることが分かった。 [0081] Furthermore, the ratio of [Cu] / [Ni] (ratio of [Cu] to [Ni]) is closely related to the suppression of HAZ softening. It was found that HAZ softening can be suppressed by appropriately controlling the above ratio.
[0082] 以下、本発明の第 2の態様における鋼中成分について、説明する。  [0082] Hereinafter, the components in steel in the second embodiment of the present invention will be described.
[0083] C : 0. 20—0. 60%  [0083] C: 0.20—0.60%
Cは、硬さおよび耐摩耗性を確保し、 HAZ軟化幅の抑制にも寄与する元素である。 また、金型母材の表面に VCや TiCなどの炭化物皮膜を CVD法で生成する場合、 C 濃度が低いと皮膜の厚さが薄くなるなどの問題もある。これらを勘案し、上記作用を 有効に発揮させるために C量の下限を 0. 20%とした。 C量は 0. 22%以上であること が好ましい。ただし、過剰に添加すると、残留オーステナイトが増加し、高温の時効処 理を行わないと所望の硬さが得られないほか、時効処理後に膨張するなどし、変寸 が大きくなるため、上限を 0. 60%とした。 C量は 0. 50%以下であることが好ましぐ 0 . 45%以下であることが好ましい。  C is an element that ensures hardness and wear resistance and contributes to the suppression of the HAZ softening width. In addition, when a carbide film such as VC or TiC is formed on the surface of the mold base material by the CVD method, there is a problem that the film thickness becomes thin if the C concentration is low. Taking these into consideration, the lower limit of the C content was set to 0.20% in order to effectively exert the above-described effects. The amount of C is preferably 0.22% or more. However, if added in excess, the retained austenite increases and the desired hardness cannot be obtained unless high-temperature aging treatment is performed. 60%. The amount of C is preferably 0.50% or less, and is preferably 0.45% or less.
[0084] Si : 0. 5〜2· 00%  [0084] Si: 0.5-2.00%
Siは、製鋼時の脱酸元素として有用であり、硬さの向上と被削性確保に寄与する元 素である。また、 Siは、マトリックスのマルテンサイトの焼戻し軟化を抑え、 HAZ軟化 幅の抑制に有用である。このような作用を有効に発揮させるため、 Si量の下限を 0. 5 %とした。ただし、過剰に添加すると、偏析が大きくなり、熱処理後の変寸が大きくな るほ力、、靭性も低下するようになるため、上限を 2. 00%とした。 Si量の下限は、 1 % であること力 S好ましく、 1. 2%がより好ましぐ一方、 Si量の上限は 1. 85%であること が好ましい。  Si is useful as a deoxidizing element during steelmaking, and is an element that contributes to improving hardness and securing machinability. In addition, Si suppresses the temper softening of martensite in the matrix and is useful for suppressing the HAZ softening width. In order to effectively exhibit such an effect, the lower limit of the Si amount is set to 0.5%. However, if added in excess, segregation increases, the force that increases in size after heat treatment, and toughness also decreases, so the upper limit was made 2.00%. The lower limit of the Si amount is 1%, preferably S. 1.2% is more preferred, while the upper limit of the Si amount is preferably 1.85%.
[0085] Mn : 0. ;!〜 2%  [0085] Mn: 0.;! ~ 2%
Mnは、焼入性確保に有用な元素である力 過剰に添加すると、 Ms点が顕著に低 下し、残留オーステナイトが増加するため、高温の時効処理を行わないと所望の硬さ が得られない。これらを勘案して、 Mnの含有量を上記範囲に定めた。 Mn量の下限 は 0. 15%であることが好ましぐ一方、 Mn量の上限は 1 %であることが好ましぐ 0. 5%がより好ましぐ 0. 35%が更に好ましい。  Mn is an element useful for ensuring hardenability. When excessively added, the Ms point is significantly lowered and the retained austenite increases. Therefore, the desired hardness can be obtained without high-temperature aging treatment. Absent. Taking these into consideration, the Mn content was set within the above range. The lower limit of the Mn content is preferably 0.15%, while the upper limit of the Mn content is preferably 1%, more preferably 0.5%, and still more preferably 0.35%.
[0086] Cr: 3. 00—9. 00%  [0086] Cr: 3. 00—9.0%
Crは、所定の硬さを確保するために有用な元素である。 Cr量が 3. 00%未満では 、焼入性が不足してベイナイトが一部生成するため、硬さが低下し、耐摩耗性を確保 すること力 Sできない。 Cr量は、 3. 5 %以上あることが好ましぐ 4. 0%以上であること 力はり好ましい。ただし、過剰に添加すると、粗大な Cr系炭化物が多量に生成し、熱 処理後に収縮し、皮膜の耐久性が低下するため、上限を 9. 00%とした。 Cr量は、 7 . 0%以下であることが好ましぐ 6. 5%以下であることがより好ましぐ 6. 0%以下で あることが更に好ましい。 Cr is an element useful for ensuring a predetermined hardness. If the Cr content is less than 3.00% However, since hardenability is insufficient and a portion of bainite is generated, the hardness is reduced and the wear resistance cannot be ensured. The Cr content is preferably 3.5% or more, and preferably 4.0% or more. However, if added excessively, a large amount of coarse Cr-based carbides are formed, shrink after heat treatment, and the durability of the film decreases, so the upper limit was made 9.00%. The Cr content is preferably 7.0% or less, more preferably 6.5% or less, and even more preferably 6.0% or less.
[0087] Α1 : 0. 3〜2· 0% [0087] Α1: 0. 3〜2 · 0%
Alは、 Ni A1などの Al_Ni系金属間化合物の析出強化による硬さ向上を図るため  Al is intended to improve hardness by precipitation strengthening of Al_Ni intermetallic compounds such as Ni A1.
3  Three
に必要な元素であり、 HAZ軟化幅の抑制にも寄与している。また、 A1は、脱酸剤とし ても有用である。これらを勘案して、 A1の下限を 0. 3%とした。ただし、過剰に添加す ると、偏析が大きくなり、熱処理後の寸法変化(特に、変寸率の差)が大きくなるほか、 靭性の低下を招くため、その上限を 2. 0 %とした。 A1量は、 0. 50%以上 1. 8 %以下 であることが好ましぐ 0. 7%以上 1. 6 %以下であることがより好ましい。  It is a necessary element for the metal and contributes to the suppression of the HAZ softening width. A1 is also useful as a deoxidizer. Taking these into account, the lower limit of A1 was set to 0.3%. However, if added in excess, segregation increases, dimensional change after heat treatment (especially the difference in change rate) increases, and toughness decreases, so the upper limit was made 2.0%. The amount of A1 is preferably 0.50% or more and 1.8% or less, and more preferably 0.7% or more and 1.6% or less.
[0088] Cu : l . 00〜5%  [0088] Cu: l. 00 ~ 5%
Cuは、 ε -Cuの析出強化による硬さ向上を図るために必要な元素であり、 HAZ軟 化幅の抑制にも寄与している。ただし、過剰に添加すると、鍛造割れが発生しやすく なるため、上限を 5%とした。 Cu量は、 2. 0%以上 4. 0%以下であることが好ましい。  Cu is an element necessary for improving the hardness by precipitation strengthening of ε-Cu and contributes to the suppression of the HAZ softening width. However, if excessively added, forging cracks are likely to occur, so the upper limit was made 5%. The amount of Cu is preferably 2.0% or more and 4.0% or less.
[0089] Ni : l . 00—5%  [0089] Ni: l. 00—5%
Niは、 Ni Alなどの A Ni系金属間化合物の析出強化による硬さ向上を図るため  Ni is intended to improve hardness by precipitation strengthening of Ni-based intermetallic compounds such as Ni Al.
3  Three
に必要な元素であり、 HAZ軟化幅の抑制にも寄与している。また、 Niは、 Cuと併用 することにより、 Cuの過剰添加による熱間脆性を抑制し、鍛造時の割れを防止するこ ともできる。ただし、過剰に添加すると、残留オーステナイトが増加して高温で時効し ないと所定の硬さを確保できないほ力、、熱処理後に膨張してしまう。 Ni量は、 1. 5% 以上 4. 0%以下であることが好ましい。  It is a necessary element for the metal and contributes to the suppression of the HAZ softening width. Ni can also be used in combination with Cu to suppress hot brittleness caused by excessive addition of Cu and to prevent cracking during forging. However, if added excessively, retained austenite increases, and if it is not aged at a high temperature, it will expand after heat treatment. The amount of Ni is preferably 1.5% or more and 4.0% or less.
[0090] Mo : 0. 5〜3%及び/又は W : 2%以下(0%を含む) [0090] Mo: 0.5-3% and / or W: 2% or less (including 0%)
Moおよび Wは、いずれも、 M C型炭化物を形成するほか、 Ni Mo系金属間化合  Both Mo and W form MC type carbides and Ni-Mo intermetallic compounds.
6 3  6 3
物などを形成し、析出強化に寄与する元素である。ただし、 Moや Wを過剰に添加す ると、上記の炭化物などが過剰に生成し、靭性の低下を招くほか、熱処理後の変寸( 特に、変寸率の差)が大きくなるため、上記範囲を設定した。本発明では、 Moを必須 成分とし、 Wは選択元素とするが、両方を併用しても構わない。 Moは、 0. 5%以上 3 %以下であることが好ましぐ 0. 7%以上 2. 5%以下であることがより好ましい。また、 Wは、 2%以下であることが好ましぐ 1. 5%以下であることがより好ましい。 It is an element that forms an object and contributes to precipitation strengthening. However, if Mo or W is added excessively, the above carbides will be generated excessively, leading to a decrease in toughness and deformation after heat treatment ( In particular, the above range was set because the difference in size change ratio was large. In the present invention, Mo is an essential component and W is a selective element, but both may be used in combination. Mo is preferably 0.5% or more and 3% or less, and more preferably 0.7% or more and 2.5% or less. Further, W is preferably 2% or less, and more preferably 1.5% or less.
[0091] S : 0. 10%以下(0%を含まない)  [0091] S: 0. 10% or less (excluding 0%)
Sは、被削性確保に有用な元素である力 過剰に添加すると溶接割れが生じるため 、上限を 0. 10%とした。 S量は、 0. 07%以下であることカ好ましく、 0. 05%以下で あること力 り好ましく、 0. 025%以下であることが更に好ましい。  S is an element useful for ensuring machinability. If it is added in excess of force, weld cracking occurs, so the upper limit was made 0.10%. The amount of S is preferably 0.07% or less, more preferably 0.05% or less, and still more preferably 0.025% or less.
[0092] 更に、本発明では、下記(1)〜(4)の要件を満足していることが必要である { [ ]は 、各元素の含有量(%)を意味する。 }。  [0092] Further, in the present invention, it is necessary to satisfy the following requirements (1) to (4): [[] means the content (%) of each element. }.
[0093] (1) [Cr] X [C]≤3. 00  [0093] (1) [Cr] X [C] ≤3.0
上記(1)は、粗大な Cr系炭化物の生成抑制を目的として設定されたものであり、 [C r]と [C]との積が 3. 00を超えると、熱処理後の変寸が大きくなり、表面皮膜の耐久性 が低下する。 [Cr]と [C]との積は、 1. 80以下であること力 S好ましく、 1. 70以下である こと力 Sより好ましい。なお、その下限は、熱処理後の変寸抑制などの観点からは小さ い方が良いが、 Crや Cの添加による上記作用を有効に発揮させることなども勘案す ると、おおむね、 0. 8であることが好ましい。  The above (1) is set for the purpose of suppressing the formation of coarse Cr-based carbides. If the product of [C r] and [C] exceeds 3.00, the size change after heat treatment is large. As a result, the durability of the surface film decreases. The product of [Cr] and [C] is 1. 80 or less force S, preferably 1. 70 or less than force S. The lower limit is better from the viewpoint of suppressing the size change after the heat treatment, but considering the fact that the above effect is effectively exhibited by the addition of Cr and C, it is generally 0.8. It is preferable that
[0094] (2) [Cu]/[Ni] : 0· 5〜2· 2  [0094] (2) [Cu] / [Ni]: 0 · 5〜2 · 2
上記(2)は、主に、 ε -Cuの析出強化を利用し、 HAZ軟化幅を抑制するためのパ ラメータとして設定されたものである(後記する実施例を参照)。このような作用を有効 に発揮させるため、 [Ni]に対する [Cu]の比を 0. 5とした。ただし、上記比が大きくな ると、鍛造割れが発生するため、その上限を 2. 2とした。上記比は、 0. 7以上 1. 5以 下であることが好ましぐ 0. 85以上 1. 2以下であることがより好ましい。  The above (2) is mainly set as a parameter for suppressing the HAZ softening width by utilizing precipitation strengthening of ε-Cu (see the examples described later). In order to effectively demonstrate such effects, the ratio of [Cu] to [Ni] was set to 0.5. However, if the ratio is increased, forging cracks occur, so the upper limit was set to 2.2. The ratio is preferably 0.7 or more and 1.5 or less, more preferably 0.85 or more and 1.2 or less.
[0095] (3) [Mo] + 0. 5 X [W] : 0. 5〜3· 0%  [0095] (3) [Mo] + 0.5 X [W]: 0.5-3 · 0%
上記(3)を構成する Moや Wは、前述したように、析出強化に寄与する元素であり、 上記(3)は、主に、これらの析出強化による硬さ向上を確保するためのパラメータとし て設定されたものであり、 HAZ軟化幅の抑制にも有効である。上記(3)中、 [W]の係 数(0. 5)は、 Moの原子量は Wの約 1/2であることを考慮して定めた。これらの作用 を有効に発揮させるため、上記(4)の下限を 0. 5%とした。ただし、 Moや Wの量を過 剰に添加すると、上記炭化物が過剰に添加し、靭性の低下を招くほか、熱処理後の 変寸(特に、変寸率の差)が大きくなるため、上記(3)の上限を 3. 0%とした。上記(3 )の下限は 1 · 0%であることが好ましぐ 1. 2%がより好ましぐ一方、その上限は 2· 8 %であることが好ましい。 As described above, Mo and W constituting the above (3) are elements contributing to precipitation strengthening, and the above (3) is mainly used as a parameter for ensuring hardness improvement by precipitation strengthening. It is effective for suppressing the HAZ softening width. In (3) above, the [W] coefficient (0.5) was determined taking into account that the atomic weight of Mo is about half that of W. These actions Therefore, the lower limit of the above (4) is set to 0.5%. However, adding excessive amounts of Mo and W will add excessive amounts of the above carbides, leading to a decrease in toughness, and increase the size change (especially the difference in size change rate) after heat treatment. The upper limit of 3) was set to 3.0%. The lower limit of (3) is preferably 1 · 0%, while 1.2% is more preferred, while the upper limit is preferably 2 · 8%.
[0096] (4) [Cu]/[C] : 4· 0〜; 15  [0096] (4) [Cu] / [C]: 4 · 0〜; 15
上記 (4)は、主に、熱処理後(時効処理後)の硬さのピークをより低温側にシフトさ せるためのパラメータとして位置づけられ、これにより、熱処理後の変寸抑制性を図つ ている。一般に時効処理 (焼戻し)後の膨張変寸は、溶体化処理 (焼入れ)時の残留 オーステナイトの開放 (分解)によって発生するといわれている(例えば、後記する図 9 を参照)が、上記 (4)のように、時効後の硬さのピークを低温側にシフトさせる作用を 有する Cuと、残留オーステナイトと密接な相関関係を有する Cとの質量比( [Cu] / [ C]の比)を適切に制御すれば、熱処理後の変寸を著しく抑制できることが分かった。  The above (4) is mainly positioned as a parameter for shifting the hardness peak after heat treatment (after aging treatment) to a lower temperature side. Yes. In general, expansion deformation after aging treatment (tempering) is said to occur due to the release (decomposition) of retained austenite during solution treatment (quenching) (for example, see Fig. 9 below). As shown in Fig. 5, the mass ratio ([Cu] / [C] ratio) between Cu, which has the effect of shifting the hardness peak after aging to the low temperature side, and C, which has a close correlation with retained austenite, is appropriate. It was found that the size change after heat treatment can be remarkably suppressed by controlling to.
[0097] 図 1は、後記する実施例に記載の方法で変寸率(平均値および最大値)を測定した ときの、 [Cu]/[C]の比が変寸率に及ぼす影響を示すグラフである。このグラフは、 後記する表 7の No. 44 (鋼種八)、 52 (鋼種 、 56 (鋼種0)、 70 (鋼衝)、 72 (鋼種 K)の結果をプロットしたものである。これらの鋼種は、 C、 Si、 Mn、 Cr、 Al、 Cu、 Ni、 Mo、 Wをほぼ同程度含有するものである。図 8に示すように、 [Cu]/[C]の比は、 変寸率と密接な関係を有しており、上記の比を 4. 0〜; 15の範囲内に制御することに より、変寸率を本発明の第 2の態様において規定する範囲内(変寸率の平均値が土 0. 03%以下、変寸率の最大値が 0. 05%以下)に抑えられることが分かる。  [0097] FIG. 1 shows the influence of the ratio of [Cu] / [C] on the rate of change when the rate of change (average value and maximum value) is measured by the method described in the examples described later. It is a graph. This graph plots the results for No. 44 (steel grade 8), 52 (steel grade, 56 (steel grade 0), 70 (steel grade), and 72 (steel grade K)) in Table 7 below. Contains almost the same amount of C, Si, Mn, Cr, Al, Cu, Ni, Mo, W. As shown in Fig. 8, the ratio of [Cu] / [C] By controlling the above ratio within the range of 4.0 to 15; the rate of change is within the range specified in the second aspect of the present invention (the rate of change). It can be seen that the average value of S is suppressed to 0.03% or less for soil and the maximum value of change rate is 0.05% or less.
[0098] [Cu]/[C]の比が 4. 0未満では、硬さがピークとなる時効温度が残留オーステナ イトの分解し始める温度よりも、かなり高温になるため、時効処理後の膨張量が大きく なり、一方、上記の比が 15超では、時効温度の上昇に伴う収縮 (溶体化処理後の膨 張との相殺)が生じなくなるため、いずれにしても、所定の耐変寸抑制性が得られな い。上記の比は、 5. 0以上 13以下であることが好ましぐ 6. 0以上 12以下であること がより好ましい。  [0098] When the ratio of [Cu] / [C] is less than 4.0, the aging temperature at which the hardness reaches a peak is considerably higher than the temperature at which the residual austenite begins to decompose. On the other hand, if the above ratio exceeds 15, shrinkage due to increase in aging temperature (cancellation with expansion after solution treatment) does not occur. Sex cannot be obtained. The ratio is preferably 5.0 or more and 13 or less, and more preferably 6.0 or more and 12 or less.
[0099] 本発明の第 2の態様における鋼中成分は上記のとおりであり、残部:鉄および不可 避不純物である。不可避不純物としては、例えば、製造過程で不可避的に混入する 元素などが挙げられ、例えば、 P、 N、 Oなどが例示される。 P量は、おおむね、 0. 05 %以下であることが好ましぐ 0. 03%以下がより好ましい。 N量は、おおむね、 350p pm以下であることが好ましぐ 200ppm以下がより好ましぐ 150ppm以下が更に好 ましい。 O量は、おおむね、 50ppm以下であることが好ましぐ 30ppm以下がより好 ましぐ 20ppm以下が更に好ましい。 [0099] The components in steel in the second aspect of the present invention are as described above, and the balance: iron and impossibility It is an impurity. Examples of inevitable impurities include elements that are inevitably mixed in the manufacturing process, and examples thereof include P, N, and O. The amount of P is preferably about 0.05% or less, more preferably 0.03% or less. The amount of N is preferably 350 ppm or less, more preferably 200 ppm or less, and even more preferably 150 ppm or less. In general, the amount of O is preferably 50 ppm or less, more preferably 30 ppm or less, and even more preferably 20 ppm or less.
[0100] 本発明では、更に、他の特性改善を目的として、以下の成分を添加しても良い。  [0100] In the present invention, the following components may be further added for the purpose of improving other characteristics.
[0101] V: 0. 5%以下(0%を含まない)  [0101] V: 0.5% or less (excluding 0%)
Vは、 VCなどの炭化物を形成して硬さ向上に寄与し、 HAZ軟化幅の抑制に有効 な元素である。また、母材表面にガス窒化、塩浴窒化、プラズマ窒化などの窒化処理 を施して拡散硬化層を形成する場合に、表面硬さの向上や硬化層深さの上昇に有 効な元素である。このような作用を有効に発揮させるためには、 V量は、おおむね、 0 . 05%以上添加することが好ましい。ただし、過剰に添加すると、固溶 C量が低下し、 母相であるマルテンサイト組織の硬さ低下を招くため、その上限を 0. 5%とすることが 好ましい。 V量は、 0. 4%以下であることがより好ましぐ 0. 30%以下であることが更 に好ましい。  V is an element that forms carbides such as VC and contributes to improved hardness, and is effective in suppressing the HAZ softening width. In addition, it is an effective element for improving the surface hardness and increasing the depth of the hardened layer when a diffusion hardened layer is formed by nitriding such as gas nitriding, salt bath nitriding, or plasma nitriding on the surface of the base material. . In order to exert such an action effectively, it is preferable that the amount of V is approximately 0.05% or more. However, if added excessively, the amount of dissolved C will decrease and the hardness of the martensite structure which is the parent phase will be reduced, so the upper limit is preferably made 0.5%. The amount of V is more preferably 0.4% or less, and still more preferably 0.30% or less.
[0102] Ti、 Zr、 Hf、 Ta、および Nbよりなる群から選択される少なくとも一種の元素を合計 で 0· 5%以下(0%を含まない)  [0102] A total of at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb is 0.5% or less (excluding 0%)
これらの元素は、いずれも、窒化物形成元素であり、当該窒化物および A1Nの微細 分散化および結晶粒微細化による靭性向上に寄与する元素である。このような作用 を有効に発揮させるため、おおむね、 Tiを 0. 01 %以上、 Zrを 0. 02%以上、 Hfを 0 . 04%以上、 Taを 0. 04%以上、 Nbを 0. 02%以上添加することが好ましい。ただし 、過剰に添加すると、固溶 C量が低下してマルテンサイトの硬さ低下を招くため、上記 元素の合計量を 0. 5%とすることが好ましい。上記元素の合計量は、 0. 4%以下で あること力 S好ましく、 0. 30%以下であることがより好ましい。なお、上記の元素は、単 独で添加しても良!/、し、 2種以上を併用しても構わなレ、。  These elements are all nitride-forming elements and contribute to the improvement of toughness by the fine dispersion of the nitride and A1N and the refinement of crystal grains. In order to effectively exert such effects, generally, Ti is 0.01% or more, Zr is 0.02% or more, Hf is 0.04% or more, Ta is 0.04% or more, and Nb is 0.02 It is preferable to add at least%. However, if added excessively, the amount of dissolved C decreases and the hardness of martensite decreases, so the total amount of the above elements is preferably 0.5%. The total amount of the above elements is 0.4% or less, and preferably S, more preferably 0.30% or less. Note that the above elements may be added alone or in combination of two or more.
[0103] Co : 10%以下(0%を含まない) [0103] Co: 10% or less (excluding 0%)
Coは、 Ms点を高め、残留オーステナイトの低減化に有効な元素であり、これにより 、硬さが向上する。上記作用を有効に発揮させるため、 Co量は、おおむね、 1%以上 であることが好ましい。ただし、過剰に添加すると、コストなどの上昇を招くため、上限 を 10%とすることが好ましい。 Co量の上限は 5. 5%であることが好ましい。 Co is an element that increases the Ms point and is effective in reducing retained austenite. , The hardness is improved. In order to effectively exhibit the above action, the amount of Co is preferably approximately 1% or more. However, if added excessively, the cost will increase, so the upper limit is preferably made 10%. The upper limit of Co content is preferably 5.5%.
[0104] マルテンサイト変態点(Ms点)≥170°C [0104] Martensitic transformation point (Ms point) ≥170 ° C
Ms点  Ms point
= 550-361 X [C]-39X [Mn]-35X [V]-20X [Cr]  = 550-361 X [C] -39X [Mn] -35X [V] -20X [Cr]
-17X [Ni]-10X [Cu]-5X ([Mo] + [W])  -17X [Ni] -10X [Cu] -5X ([Mo] + [W])
+ 15X [Co] + 30X [Al]  + 15X [Co] + 30X [Al]
{式中、 [ ]は、各元素の含有量(%)を表す。 }  {In the formula, [] represents the content (%) of each element. }
本発明において、 Ms点は、主に、硬さや熱処理後の変寸抑制の指標となるもので あり、 Ms点が 170°C未満では、残留オーステナイトが増大し、高温で時効しないと所 望の硬さが得られないほか、熱処理後の膨張を招く。 Ms点は高いほど良ぐおおむ ね、 230°C以上であることがより好ましぐ 235°C以上であることが更に好ましぐ 250 °C以上が更に一層好ましい。なお、その上限は、上記作用の観点からは特に限定さ れないが、 Ms点を構成する上記元素の添加による作用効果などを勘案すると、おお むね、 350°Cであることが好ましぐ 320°Cであることがより好ましい。  In the present invention, the Ms point is mainly used as an index for suppressing the change in hardness and the heat treatment after heat treatment. When the Ms point is less than 170 ° C, the retained austenite increases, and it is desirable that it does not age at high temperatures. Hardness cannot be obtained, and expansion after heat treatment is caused. The higher the Ms point, the better. Generally, it is more preferable that the temperature is 230 ° C or higher, and it is more preferable that the temperature is 235 ° C or higher. The upper limit is not particularly limited from the viewpoint of the above action, but it is generally preferable that the upper limit is 350 ° C. in consideration of the action effect by addition of the above elements constituting the Ms point. More preferably, it is ° C.
[0105] 次に、本発明の第 2の態様に係る、金型用鋼を製造する方法について説明する。 [0105] Next, a method for producing mold steel according to the second embodiment of the present invention will be described.
[0106] 本発明の製造方法は、前述した要件を満足する鋼を用意する工程と、下式(5)を 満足する条件で溶体化処理および時効処理を行う工程とを包含している。 [0106] The production method of the present invention includes a step of preparing steel that satisfies the above-described requirements and a step of solution treatment and aging treatment under the conditions satisfying the following formula (5).
TA-10≤T2≤TA+10 ··· (5)  TA-10≤T2≤TA + 10 (5)
式中、  Where
TA = 0. 29XT1-2. 63X [Cu]/[C] + 225で表され、  TA = 0.29XT1-2. 63X [Cu] / [C] + 225,
T1は溶体化温度 (°c)、  T1 is the solution temperature (° c),
T2は時効温度(°C)をそれぞれ、意味する。  T2 means aging temperature (° C), respectively.
[0107] 具体的には、前述した要件を満足する鋼を溶製した後、熱間鍛造してから、焼鈍( 例えば、約 700°Cで 7時間保持した後、約 17°C/hrの平均冷却速度で約 400°Cま でを炉冷した後、放冷)を行なって軟化した後、切削加工などによって所定の形状に 粗加工を行ってから、上式(5)の条件で溶体化処理および時効処理を行なえばよい [0108] 前述したように、本発明の第 2の態様では、溶体化処理時の残留オーステナイト量 が少ない鋼中成分としている力 更に、上式(5)に示すように、 Cuと Cの質量比([Cu ] / [C] )を溶体化温度 T1および時効温度 T2との関係で制御すれば、時効処理後 に残留オーステナイトが分解して膨張する前に時効後の硬さがピークになるように調 整されるため、熱処理後の変寸抑制と硬さとの両立を図ることができる。一般に、金 型用鋼の製造に当たっては、約 950〜; 1150°Cの温度で溶体化処理→約 400〜53 0°Cの温度で時効処理を行なって所望の硬さが付与されているが、本発明者の実験 結果によれば、上記の範囲で溶体化処理および時効処理を行っても、所望の硬さが 得られな力、つたり熱処理後の変寸を充分抑えられない場合があることが判明した(後 記する実施例を参照)ため、上式(5)を特定した次第である。 [0107] Specifically, after melting the steel that satisfies the above-mentioned requirements, hot forging, annealing (for example, holding at about 700 ° C for 7 hours, then about 17 ° C / hr. After the furnace is cooled to an average cooling rate of up to about 400 ° C, it is left to cool, and then softened and then roughed into a predetermined shape by cutting or the like. To perform aging and aging [0108] As described above, in the second aspect of the present invention, the force that is a component in steel with a small amount of retained austenite during solution treatment. Further, as shown in the above equation (5), the mass of Cu and C If the ratio ([Cu] / [C]) is controlled in relation to the solution temperature T1 and the aging temperature T2, the hardness after aging peaks before the retained austenite decomposes and expands after aging treatment. Therefore, it is possible to achieve both reduction in size after heat treatment and hardness. In general, in the manufacture of mold steel, solution treatment at a temperature of about 950 to 1150 ° C → aging treatment at a temperature of about 400 to 530 ° C gives the desired hardness. According to the inventor's experimental results, even when solution treatment and aging treatment are performed within the above range, there is a case in which the desired hardness cannot be obtained, and the deformation after the heat treatment cannot be sufficiently suppressed. Since it became clear (refer to the examples described later), it depends on the identification of the above formula (5).
[0109] 本発明の上記メカニズムを、前述した特許文献 2 (従来の高 C高 Cr鋼に相当)の方 法と対比すると、特許文献 2では、図 2 (特許文献 2の図 1に相当)に示すように、残留 オーステナイトがある程度分解した時点で焼戻し時の変寸がゼロになるように焼戻し 処理を行っているのに対し、本発明では、残留オーステナイトの分解が起こる前ある いは分解し始めた直後の温度にて焼戻し処理を行って!/、る点で、両者は相違してレヽ る。すなわち、本発明は、従来の高 C高 Cr鋼に比べ、おおむね、低い温度で時効処 理をいっている(具体的には、おおむね、約 500°C以下の低温度)。本発明によれば 、特許文献 2のように熱処理後の変寸が激しい領域(図 3中、 A)で時効処理を行わ ずに、安定な残留オーステナイトが多く生成していると推察される領域(図 3中、 B)で 時効処理を行っているため、特許文献 2に比べて変寸のバラツキが小さい鋼が得ら れると思料される。また、このように比較的低温度で時効処理を行った場合には、残 留オーステナイトの安定性が向上し、残留オーステナイトの経時変化が小さくなるた め、熱処理後の変寸の経時的変化も小さくなるといった効果も得られる。  [0109] When the above mechanism of the present invention is compared with the method of Patent Document 2 (equivalent to conventional high C high Cr steel) described above, FIG. 2 (corresponding to FIG. 1 of Patent Document 2) is shown in Patent Document 2. As shown in Fig. 1, when the retained austenite is decomposed to some extent, the tempering process is performed so that the change in size during tempering becomes zero, whereas in the present invention, the residual austenite is decomposed before or after the decomposition. They are different in that they are tempered at the temperature immediately after they begin! That is, the present invention uses an aging treatment at a lower temperature than a conventional high C high Cr steel (specifically, a low temperature of about 500 ° C. or lower). According to the present invention, a region in which a large amount of stable retained austenite is generated without performing an aging treatment in a region (A in FIG. 3) that undergoes severe deformation after heat treatment as in Patent Document 2. Since the aging treatment is performed in (B in Fig. 3), it is thought that a steel with a smaller variation in size compared to Patent Document 2 can be obtained. In addition, when aging treatment is performed at such a relatively low temperature, the stability of retained austenite is improved, and the temporal change of retained austenite is reduced. The effect of becoming smaller can also be obtained.
[0110] 時効温度 T2は、上記で表される TA± 5°Cであることが好ましい。  [0110] The aging temperature T2 is preferably TA ± 5 ° C represented by the above.
[0111] なお、溶体化温度 T1は、金型用鋼の製造に通常採用される範囲より低い温度を採 用することが可能であり、これにより熱処理変形を少なくすることができる。具体的に は、おおむね、 900〜1150°Cの範囲内であることが好ましい。 [0112] 本発明では、溶体化処理および時効処理の温度が上記のように適切に制御されて いれば良いのであって、これらの時間は特に限定されず、金型用鋼の製造に通常用 いられる条件で実施すれば良いが、おおむね、溶体化時間(加熱時間)を 1〜5時間 程度、時効時間 (保持時間)を 2〜8時間程度に制御すれば良!/、。 [0111] It should be noted that the solution temperature T1 can be a temperature lower than the range normally employed in the production of mold steel, and thereby heat treatment deformation can be reduced. Specifically, it is preferable that the temperature is approximately in the range of 900 to 1150 ° C. [0112] In the present invention, it is only necessary that the temperature of the solution treatment and the aging treatment be appropriately controlled as described above, and these times are not particularly limited, and are usually used for the production of mold steel. However, it is generally good to control the solution time (heating time) to about 1 to 5 hours and the aging time (holding time) to about 2 to 8 hours!
実施例  Example
[0113] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例によって制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に 変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含ま れる。  [0113] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as well as the present invention, and is appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement by adding any of these, and they are all included in the technical scope of the present invention.
[0114] まず、本発明の第 1の態様に係る実施例について、下記に示す。  [0114] First, examples according to the first aspect of the present invention will be described below.
[0115] 表 1および表 2に記載の種々の鋼種 No.を用い、真空誘導溶解炉で 150kgのイン ゴッ卜を溶製した後、約 900〜; 1150oCにカロ熱し、 40mmT X 75mmW X約 2000m mLの板 2枚に鍛造し、その後、約 60°C/hrの平均冷却速度で徐冷を行なった。 10 0°C以下の温度まで冷却した後、再び、約 850°Cの温度まで加熱し、約 50°C/hrの 平均冷却速度で徐冷を行なった (焼鈍)。 [0115] Using various steel grades listed in Tables 1 and 2, 150 kg of ingot was melted in a vacuum induction melting furnace, and then heated to about 900 to 1150 o C, 40mmT X 75mmW X It was forged into 2 plates of about 2000 mL and then slowly cooled at an average cooling rate of about 60 ° C./hr. After cooling to a temperature of 100 ° C. or lower, the sample was again heated to a temperature of about 850 ° C. and gradually cooled at an average cooling rate of about 50 ° C./hr (annealing).
[0116] 上記のようにして得られた各焼鈍材を用い、下記(1)〜(4)の試験を行った。  [0116] Using the annealed materials obtained as described above, the following tests (1) to (4) were performed.
[0117] (1)硬さ試験 (最大硬さの測定)  [0117] (1) Hardness test (maximum hardness measurement)
上記の焼鈍材から、おおむね、 20mmTX 20mmW X 15mmLサイズの試験片を 切出して硬さ測定用試験片とし、これに、以下の熱処理を施した。  From the above-mentioned annealed material, a 20 mm TX 20 mm W X 15 mm L size test piece was cut out to obtain a hardness measurement test piece, which was subjected to the following heat treatment.
溶体化処理(焼入処理):約 1020〜; 1030°Cで 120分間加熱→空冷→時効処理(焼 戻処理):約 400〜560°Cで約 3時間保持→放冷  Solution treatment (quenching treatment): approx. 1020 ~; Heating at 1030 ° C for 120 minutes → Air cooling → Aging treatment (tempering treatment): Hold at approx. 400 ~ 560 ° C for approx. 3 hours → Allow to cool
[0118] 上記のように、焼戻温度を約 400〜560°Cの範囲内で変化させたときの硬さをビッ カース硬度計 (AKASHI社製の規格 AVK、荷重 5kg)で測定し、最大硬さ(HV)を 調べた。本実施例では、最大硬さが 650HV以上のものを合格(〇)とした。  [0118] As described above, the hardness when the tempering temperature was changed within the range of about 400 to 560 ° C was measured with a Vickers hardness tester (standard AVK manufactured by AKASHI, load 5 kg). Hardness (HV) was examined. In this example, a sample having a maximum hardness of 650 HV or higher was accepted (◯).
[0119] (2)変寸試験 (変寸率の平均値および変寸率の差の測定)  [0119] (2) Size change test (Measurement of average change rate and change rate)
上記の焼鈍材から、おおむね、 40mmTX 70mmW X lOOmmLの試験片を切出 して変寸測定用試験片とした。これに、上記(1)の硬さ試験と同じ溶体化処理を行な つた後、最大硬さに到達した温度で焼戻処理を行った。次に、以下のようにして「変 寸率の平均値」および「変寸率の差」を測定し、下記基準に従い、これらの評価が両 方〇のものを、熱処理後の変寸抑制性に優れる(合格)とした。 From the above annealed material, a test piece of 40 mm TX 70 mm W X lOO mm L was generally cut out and used as a test piece for measuring deformation. This was subjected to the same solution treatment as the hardness test in (1) above, and then tempered at a temperature that reached the maximum hardness. Next, change The “average dimension value” and “difference in size change” were measured, and according to the following criteria, those having both evaluations of “0” were considered to have excellent size control after heat treatment (pass).
[0120] (2-1)変寸率の平均値の測定  [0120] (2-1) Measurement of average value of change rate
上記の変寸測定用試験片(焼鈍後溶体化処理前)および焼戻後の試験片につい て、厚さ、幅、長さの 3方向をそれぞれ測定し、熱処理前後の厚さの差、幅の差、およ び長さの差を求め、これらの平均値(百分率)を「変寸率の平均値」とした。本実施例 では、「変寸率の平均値」が ± 0. 05%以内のものを合格(〇)、 ± 0. 05%を超える ものを不合格(X )とした。  Measure the thickness, width, and length of each of the above test pieces for dimension measurement (after annealing and before solution treatment) and the specimen after tempering. The difference in length and the difference in length were determined, and the average value (percentage) was defined as the “average value of change ratio”. In this example, “average size change ratio” within ± 0.05% was accepted (◯) and those exceeding ± 0.05% were rejected (X).
[0121] (2-2)変寸率の差の測定  [0121] (2-2) Measurement of difference in change rate
上記の変寸測定用試験片(焼鈍後溶体化処理前)および焼戻後の試験片につい て、厚さ、幅、長さの 3方向をそれぞれ測定し、熱処理前後の厚さの差、幅の差、およ び長さの差を求めた。これらのうち、最大値と最小値の差(百分率)を「変寸率の差」と した。変寸率の差が 0. 08%以下のものを合格(〇)とし、 0. 08%を超えるものを不 合格(X )とした。  Measure the thickness, width, and length of each of the above test pieces for dimension measurement (after annealing and before solution treatment) and the specimen after tempering. The difference in length and the difference in length were obtained. Among these, the difference (percentage) between the maximum value and the minimum value was defined as “difference in change rate”. Those with a difference in size change rate of 0.08% or less were accepted (◯), and those with a difference of 0.08% or more were rejected (X).
[0122] (3)溶接試験(限界予熱温度、および HAZ軟化幅の測定)  [0122] (3) Welding test (measurement of critical preheating temperature and HAZ softening width)
上記の焼鈍材から、おおむね、 40mmTX 45mmW X 75mmLの試験片を切出し て溶接用試験片とした。これに、上記(2)の変寸試験と同様に溶体化処理および焼 戻処理を行った。  A test piece of 40 mm TX 45 mm W X 75 mm L was cut out from the above annealed material to make a test piece for welding. This was subjected to a solution treatment and a tempering treatment in the same manner as the size change test of (2).
[0123] 次に、このようにして得られた焼戻材に加工を施し、図 3 (a)の板材を得た。図 3 (a) の板材は、図 3 (b)に示す溝部を有している。次いで、表 3に示す組成 (残部:鉄およ び不可避不純物、単位:質量0 /0)の TIGワイヤ(日本ュテク(株)製「TIG_Tectic 5H SS」、 2. 4mm)を用い、上記板材の溝部に以下の要領で肉盛溶接を行なった。 溶接条件: [0123] Next, the tempered material thus obtained was processed to obtain the plate material of Fig. 3 (a). The plate material in FIG. 3 (a) has the groove shown in FIG. 3 (b). Next, the composition shown in Table 3 (the balance: iron and inevitable impurities, unit: mass 0/0) TIG wire (Nippon Yuteku Co. "TIG_Tectic 5H SS", 2. 4 mm) using, the plate Overlay welding was performed on the groove in the following manner. Welding conditions:
電流: 150A、電圧: 11V、溶接速度: 9. 5〜; 14cm/mm  Current: 150A, Voltage: 11V, Welding speed: 9.5 ~; 14cm / mm
パス間温度:予熱温度以下  Interpass temperature: below preheating temperature
入熱: 7· 1~10. 4kj/cm  Heat input: 7 · 1 ~ 10.4 kj / cm
予熱:なし、あり(100。C、 200。C、 300。C、 400。C)  Preheating: None, Yes (100.C, 200.C, 300.C, 400.C)
[0124] なお、表 2の No. 22および No. 23 (いずれも従来の高 C高い Cr鋼を模擬した鋼) については、溶接時における母材成分への影響を防止するため、図 4に示すように、 開先面に溶接材料を肉盛した (バタリング)。バタリングには、下記組成のバタリング 溶接用 TIGワイヤ [ (株)神戸製鋼所製「TGS_50」、 2. 4mm]を用い、 1層盛溶接 を行なった。溶接条件は、上記と同じである。 [0124] In Table 2, No. 22 and No. 23 (both steels simulating conventional high C high Cr steel) As shown in Fig. 4, welding material was built up on the groove surface (battering) to prevent the influence on the base metal component during welding. For buttering, TIG wire for buttering welding with the following composition [“TGS_50”, 2.4 mm, manufactured by Kobe Steel, Ltd.] was used for single layer welding. The welding conditions are the same as above.
ノ タリング溶接用 TIGワイヤの組成: 0. 09%C-0. 93%Si-l . 95%Mn_0. 009 %P-0. 01 %S (残部:鉄および不可避不純物、単位:質量%)  Composition of TIG wire for notching welding: 0.09% C-0. 93% Si-l. 95% Mn_0. 009% P-0. 01% S (remainder: iron and inevitable impurities, unit: mass%)
[0125] 上記のように予熱条件を変えたとき、溶接金属(DEPO)および HAZ部の両方で割 れが発生しな!/、温度の最低値(限界予熱温度)を測定した。限界予熱温度は低レ、ほ ど、割れ難いことを意味している。本実施例では、限界予熱温度が 200°C以下のもの を良好(〇)とし、 200°C超のものを不良(X )とした。  [0125] When the preheating conditions were changed as described above, cracks did not occur in both the weld metal (DEPO) and the HAZ part! /, And the minimum temperature (limit preheating temperature) was measured. The limit preheating temperature is low, which means that it is hard to crack. In this example, a sample with a critical preheating temperature of 200 ° C or lower was judged good (◯), and a sample with a temperature exceeding 200 ° C was judged defective (X).
[0126] また、上記の限界予熱温度で肉盛溶接を行なった試験片断面の硬さ分布を調べる ため、板厚の 1/4部位における溶接溶融線 (ボンド)位置から 30mm離れた位置ま で lmmピッチで連続的に硬さを測定した。溶接金属中央部から、硬さが 600HV以 下に低下した位置までの距離を「HAZ軟化幅」とした。参考のため、前述した図 1に、 HAZ軟化幅の測定領域を図示している。本実施例では、 HAZ軟化幅が 6. 5mm以 下のものを溶接補修性に優れる(〇)と評価し、 6. 5mm超のものを溶接補修性に劣 る(X )と評価した。  [0126] Further, in order to investigate the hardness distribution of the cross section of the specimen subjected to overlay welding at the above-mentioned limit preheating temperature, the position was 30 mm away from the position of the weld melt line (bond) at the 1/4 part of the plate thickness. Hardness was measured continuously at lmm pitch. The distance from the center of the weld metal to the position where the hardness dropped below 600HV was defined as the “HAZ softening width”. For reference, the measurement area of the HAZ softening width is shown in Fig. 1 above. In this example, the HAZ softening width of 6.5 mm or less was evaluated as being excellent in weld repairability (◯), and the one exceeding 6.5 mm was evaluated as being poor in weld repairability (X).
[0127] (4)靭性試験  [0127] (4) Toughness test
上記の焼鈍材に対し、以下の熱処理を施した。  The annealed material was subjected to the following heat treatment.
溶体化処理(焼入処理):約 1020〜; 1030°Cで 120分間加熱→空冷→時効処理( 焼戻処理):約 400〜560°Cで約 3時間保持→空冷または放冷  Solution treatment (quenching treatment): approx. 1020 ~; heating at 1030 ° C for 120 minutes → air cooling → aging treatment (tempering treatment): holding at approx. 400 to 560 ° C for approx. 3 hours → air cooling or cooling
次に、図 5に示すように、 lOmmRの Vノッチ部を有する試験片を切出して靭性測定 用試験片 (シャルビー衝撃試験片)とした。この試験片を用いてシャルピー衝撃試験 を実施し、室温での吸収エネルギー(シャルビー衝撃値)を測定した。シャルピー衝 撃試験片は 3本ずつ採取し、これらの平均値をシャルピー衝撃値とした。本実施例で は、シャルピー衝撃値が 15J以上のものを「靭性に優れる」と評価した。  Next, as shown in FIG. 5, a test piece having a V notch of lOmmR was cut out to obtain a test piece for toughness measurement (Charby impact test piece). Using this specimen, a Charpy impact test was carried out, and the absorbed energy (Charby impact value) at room temperature was measured. Three Charpy impact test specimens were collected, and the average of these was taken as the Charpy impact value. In this example, a Charpy impact value of 15 J or more was evaluated as “excellent toughness”.
[0128] これらの結果を表 4〜5に示す。 [0128] These results are shown in Tables 4-5.
[0129] [表 1] 0197 [0129] [Table 1] 0197
Figure imgf000033_0001
7070197 2]
Figure imgf000033_0001
7070197 2]
Figure imgf000034_0001
[0131] [表 3]
Figure imgf000035_0001
Figure imgf000034_0001
[0131] [Table 3]
Figure imgf000035_0001
[0132] [表 4] [0132] [Table 4]
Figure imgf000035_0002
Figure imgf000035_0002
[0133] [表 5] 変寸率の [0133] [Table 5] Change rate
最大硬さ HAZ軟化幅 限界予熱温度 変寸率の差 シャルビ--衝撃値 Maximum hardness HAZ softening range Limit preheating temperature Difference in rate of change Charbi-Impact value
No. 平均値 No. Average value
HV mm 。C % % J HV mm. C%% J
22 690 1 1.0 400 0.06 0.15 1022 690 1 1.0 400 0.06 0.15 10
23 720 10.5 400 0.01 0.12 1323 720 10.5 400 0.01 0.12 13
24 645 7.0 25 -0.02 0.04 3524 645 7.0 25 -0.02 0.04 35
25 715 5.2 300 0.06 0.10 1425 715 5.2 300 0.06 0.10 14
26 725 4.5 100 0.05 0.09 1226 725 4.5 100 0.05 0.09 12
27 722 5.1 100 0.06 0.08 1527 722 5.1 100 0.06 0.08 15
28 688 5.3 300 0.01 0.04 1928 688 5.3 300 0.01 0.04 19
29 638 8.4 100 0.04 0.05 3329 638 8.4 100 0.04 0.05 33
30 700 4.6 100 -0.02 0.09 1930 700 4.6 100 -0.02 0.09 19
31 640 7.5 100 0.03 0.04 2031 640 7.5 100 0.03 0.04 20
32 648 6.3 100 0.06 0.08 4032 648 6.3 100 0.06 0.08 40
33 645 6.6 100 0.05 0.04 3733 645 6.6 100 0.05 0.04 37
34 620 7.5 100 0.06 0.03 3034 620 7.5 100 0.06 0.03 30
35 625 7.3 100 0.06 0.04 2935 625 7.3 100 0.06 0.04 29
36 630 7.0 100 0.06 0.03 3336 630 7.0 100 0.06 0.03 33
37 661 7.0 100 0.01 0.03 1937 661 7.0 100 0.01 0.03 19
38 647 6.5 100 0.02 0.05 3938 647 6.5 100 0.02 0.05 39
39 683 4.9 100 -0.06 0.09 2139 683 4.9 100 -0.06 0.09 21
40 629 6.9 100 0.05 0.05 3540 629 6.9 100 0.05 0.05 35
41 723 5.0 100 0.03 0.10 1341 723 5.0 100 0.03 0.10 13
42 640 7.0 100 0.02 0.05 3542 640 7.0 100 0.02 0.05 35
43 630 7.7 100 0.02 0.04 33 43 630 7.7 100 0.02 0.04 33
[0134] 表 4および表 5より、以下のように考察することができる。 From Table 4 and Table 5, it can be considered as follows.
[0135] 表 4の No. ;!〜 21は、それぞれ、本発明の要件をすベて満足する表 1の No. ;!〜 2 1を用いた例であり、いずれも、硬度が高ぐ熱処理後の変寸抑制性および溶接補修 性に優れているほか、靭性も高ぐ限界予熱温度も 200°C以下と良好である。  [0135] Nos. In Table 4;! To 21 are examples using Nos. In Table 1 that satisfy all the requirements of the present invention;! To 21 and all have high hardness. In addition to excellent resistance to deformation and weld repair after heat treatment, it also has excellent toughness and a preheating temperature of 200 ° C or less.
[0136] これに対し、表 5の No. 22〜43は、それぞれ、本発明で定める要件のいずれかを 満足しない表 2の No. 22〜43を用いた例であり、以下の不具合を有している。  [0136] On the other hand, Nos. 22 to 43 in Table 5 are examples using Nos. 22 to 43 in Table 2 that do not satisfy any of the requirements defined in the present invention, and have the following problems. is doing.
[0137] 表 5の No. 22および 23は、いずれも、従来の高 C高 Cr鋼を模擬した表 2の No. 22 および 23を用いた例であり、 [Cr]と [C]の積が大きぐ Ms点が低いため、 HAZ軟化 幅および変寸率の差が増加した。なお、これらの鋼種は、焼戻温度が低いほど硬度 が高くなることから、上記鋼種を用いたときの焼戻温度は 510°Cとし、種々の特性を 測定した。 [0137] Nos. 22 and 23 in Table 5 are examples using Nos. 22 and 23 in Table 2 simulating a conventional high C high Cr steel, and the product of [Cr] and [C] Since the Ms point is large and the difference is high, the difference between the HAZ softening width and the size change rate increased. Since these steel types have higher hardness as the tempering temperature is lower, the tempering temperature when using the above steel types is set to 510 ° C, and various properties are obtained. It was measured.
[0138] 表 5の No. 24は、 C量が少ない表 2の No. 24を用いた例であり、硬さの低下と HA [0138] No. 24 in Table 5 is an example using No. 24 in Table 2 with low C content.
Z軟化幅の増加が見られた。 An increase in the Z softening width was observed.
[0139] 表 5の No. 25は、 C量が多ぐ [Cr]と [C]の積が大きぐ Ms点が低い表 2の No. 25 を用いた例であり、熱処理後の変寸抑制性に劣って!/、る。 [0139] No. 25 in Table 5 is an example using No. 25 in Table 2 with a large C content and a large product of [Cr] and [C] and a low Ms point. Inferior in control!
[0140] 表 5の No. 26は、 Si量が多い表 2の No. 26を用いた例であり、熱処理後の変寸率 の平均値は良好であるが、変寸率の差が大きい。 [0140] No. 26 in Table 5 is an example using No. 26 in Table 2 with a large amount of Si. The average value of the change rate after heat treatment is good, but the difference in change rate is large. .
[0141] 表 5の No. 27は、 Mn量が多ぐ Ms点が低い表 2の No. 27を用いた例であり、熱 処理後の変寸率の平均値が大き!/、。 [0141] No. 27 in Table 5 is an example using No. 27 in Table 2 with a large amount of Mn and a low Ms point. The average value of the change rate after heat treatment is large! /.
[0142] 表 5の No. 28は、 S量が多い表 2の No. 28を用いた例であり、限界予熱温度が高 くなり、溶接割れの恐れがある。 [0142] No. 28 in Table 5 is an example using No. 28 in Table 2 with a large amount of S. The limit preheating temperature becomes high and there is a risk of weld cracking.
[0143] 表 5の No. 29は、 A1量が少ない表 2の No. 29を用いた例であり、硬さの低下と HA[0143] No. 29 in Table 5 is an example using No. 29 in Table 2 with a small amount of A1.
Z軟化幅の増加が見られた。 An increase in the Z softening width was observed.
[0144] 表 5の No. 30は、 A1量が多い表 2の No. 30を用いた例であり、熱処理後の変寸率 の平均値は良好であるが、変寸率の差が大きい。 [0144] No. 30 in Table 5 is an example using No. 30 in Table 2 with a large amount of A1, and the average value of the change rate after heat treatment is good, but the difference in change rate is large. .
[0145] 表 5の No. 31は、 Ni量が少なぐ [Cu]/[Ni]の比が大きい表 2の No. 31を用い た例であり、硬さの低下と HAZ軟化幅の増加が見られた。 [0145] No. 31 in Table 5 is an example of using No. 31 in Table 2 with a small amount of Ni and a large ratio of [Cu] / [Ni]. The hardness decreases and the HAZ softening width increases. It was observed.
[0146] 表 5の No. 32は、 Ni量が多い表 2の No. 32を用いた例であり、硬さが低下し、且 つ、熱処理後の変寸率の平均値が増加した。 [0146] No. 32 in Table 5 is an example using No. 32 in Table 2 with a large amount of Ni. The hardness decreased and the average value of the change rate after the heat treatment increased.
[0147] 表 5の No. 33は、 Cu量が少なぐ [Cu]/[Ni]の比が小さい表 2の No. 33を用い た例であり、硬さの低下と HAZ軟化幅の増加が見られた。 [0147] No. 33 in Table 5 is an example using No. 33 in Table 2 with a small amount of Cu and a small ratio of [Cu] / [Ni]. The hardness decreases and the HAZ softening width increases. It was observed.
[0148] 表 5の No. 34は、 Cu量を実施的に添加しない鋼を模擬した例であり、 Cu量が 0. 0[0148] No. 34 in Table 5 is an example of simulating a steel to which Cu content is not practically added, and the Cu content is 0.0.
5%と極端に少なく、 [Cu]/[Ni]の比が小さい表 2の No. 34を用いたため、硬さの 低下と HAZ軟化幅の増加が見られた。更には、熱処理後の変寸率の平均値が増加 した。 Using No. 34 in Table 2 with an extremely small ratio of [Cu] / [Ni] of 5%, a decrease in hardness and an increase in the HAZ softening width were observed. Furthermore, the average value of the change rate after the heat treatment increased.
[0149] 表 5の No. 35は、 Ni量を実施的に添加しない鋼を模擬した例であり、 Ni量が 0. 0 5%と極端に少なく、 [Cu]/[Ni]の比が小さい表 2の No. 35を用いたため、硬さの 低下と HAZ軟化幅の増加が見られたほか、熱処理後の変寸率の平均値が増加した 〇 [0149] No. 35 in Table 5 is an example of simulating a steel that does not practically contain Ni. The amount of Ni is extremely low at 0.05%, and the ratio of [Cu] / [Ni] is low. The small No. 35 in Table 2 was used, so a decrease in hardness and an increase in the HAZ softening width were observed, as well as an increase in the average size change rate after heat treatment. Yes
[0150] 表 5の No. 36は、 Al量を実施的に添加しない鋼を模擬した例であり、 Al量が 0. 05 [0150] No. 36 in Table 5 is an example of simulating a steel to which Al content is not practically added.
%と極端に少ない表 2の No. 36を用いたため、硬さの低下と HAZ軟化幅の増加が 見られたほか、熱処理後の変寸率の平均値が増加した。 Since No. 36 in Table 2 was used, which was extremely low at%, a decrease in hardness and an increase in the HAZ softening width were observed, and the average value of the change rate after heat treatment increased.
[0151] 表 5の No. 37は、 Cu量および Ni量は本発明の範囲を満足する力 [Cu]/[Ni] の比が小さい表 2の No. 37を用いた例であり、 HAZ軟化幅が増加した。 [0151] No. 37 in Table 5 is an example using No. 37 in Table 2 in which the ratio of Cu and Ni satisfying the scope of the present invention is small. Softening width increased.
[0152] 表 5の No. 38は、 Cr量が少ない表 2の No. 38を用いた例であり、硬さが低下した。 [0152] No. 38 in Table 5 is an example using No. 38 in Table 2 with a small amount of Cr, and the hardness decreased.
[0153] 表 5の No. 39は、 Cr量が多い表 2の No. 39を用いた例であり、熱処理後の変寸抑 制性に劣っている。 [0153] No. 39 in Table 5 is an example using No. 39 in Table 2 with a large amount of Cr, and is inferior in size reduction after heat treatment.
[0154] 表 5の No. 40は、 [Mo] + 0. 5 X [W]の合計量が少ない表 2の No. 40を用いた 例であり、硬さの低下と HAZ軟化幅の増加が見られた。  [0154] No. 40 in Table 5 is an example of using No. 40 in Table 2 where the total amount of [Mo] + 0.5 X [W] is small. Decrease in hardness and increase in HAZ softening width It was observed.
[0155] 表 5の No. 41は、 [Mo] + 0. 5 X [W]の合計量が多い表 2の No. 41を用いた例 であり、熱処理後の変寸率の平均値は良好であるが、変寸率の差が大きい。 [0155] No. 41 in Table 5 is an example using No. 41 in Table 2 with a large total amount of [Mo] + 0.5 X [W]. Although it is good, the difference in the change rate is large.
[0156] 表 5の No. 42は、 Ti量が多い表 2の No. 42を用いた例であり、硬さの低下と HAZ 軟化幅の増加が見られた。 [0156] No. 42 in Table 5 is an example using No. 42 in Table 2 with a large amount of Ti, and a decrease in hardness and an increase in the HAZ softening width were observed.
[0157] 参考のため、図 7に、前述した方法によって得られた硬さ分布のプロファイルを示す[0157] For reference, Fig. 7 shows the hardness distribution profile obtained by the method described above.
。図中、本発明鋼(國)は表 1の No. 4、 SKD11従来鋼(♦)は表 2の Νο· 22の結果 をそれぞれ示している。図 7に示すように、本発明鋼を用いれば、従来鋼に比べ、溶 接後の ΗΑΖ軟化が著しく抑えられることが分かる。 . In the figure, steel of the present invention (country) shows the results of No. 4 in Table 1, and SKD11 conventional steel (♦) shows the results of 22ο · 22 in Table 2. As shown in Fig. 7, it can be seen that if the steel of the present invention is used, the softening after welding is remarkably suppressed as compared with the conventional steel.
[0158] つづいて、本発明の第 2の態様に係る実施例について、下記に示す。 [0158] Next, examples according to the second aspect of the present invention are shown below.
[0159] 表 6に記載の鋼種 Α〜Κを用い、真空誘導溶解炉で 150kgのインゴットを溶製した 後、約 900〜 150。Cにカロ熱し、 40mmT X 75mmWX約 2000mmLの板 2枚に銀 造し、その後、約 60°C/hrの平均冷却速度で徐冷を行なった。 100°C以下の温度ま で冷却した後、再び、約 850°Cの温度まで加熱し、約 50°C/hrの平均冷却速度で 徐冷を行なった (焼鈍)。 [0159] Using the steel types 溶 to 150 listed in Table 6, about 900 to 150 after melting 150 kg ingot in a vacuum induction melting furnace. C was heated to heat, silver was produced on two 40 mm T x 75 mm W x about 2000 mm L plates, and then slowly cooled at an average cooling rate of about 60 ° C / hr. After cooling to a temperature of 100 ° C or lower, the mixture was again heated to a temperature of about 850 ° C and annealed at an average cooling rate of about 50 ° C / hr (annealing).
[0160] 上記のようにして得られた各焼鈍材を用い、下記(1)〜(2)の試験を行った。 [0160] Using each of the annealed materials obtained as described above, the following tests (1) to (2) were performed.
[0161] (1)硬さ試験 (硬さの測定) [0161] (1) Hardness test (Measurement of hardness)
上記の焼鈍材から、おおむね、 20mmTX 20mmW X 15mmLサイズの試験片を 切出して硬さ測定用試験片とし、これに、表 2に記載の条件で溶体化処理→空冷→ 時効処理を行なった後、放冷した。なお、いずれにおいても、溶体化処理時間は約 1 20分間、時効処理時間は約 3時間とした。 From the above-mentioned annealed materials, generally, a 20mmTX 20mmW X 15mmL size test piece It cut out to make a test piece for hardness measurement, and this was subjected to solution treatment → air cooling → aging treatment under the conditions shown in Table 2, and then allowed to cool. In each case, the solution treatment time was about 120 minutes, and the aging treatment time was about 3 hours.
[0162] 時効処理後の硬さをビッカース硬度計 (AKASHI社製の規格 AVK、荷重 5kg)で 測定し、硬さ(HV)を調べた。本実施例では、硬さが 650HV以上のものを合格(〇) とした。 [0162] The hardness after aging treatment was measured with a Vickers hardness tester (standard AVK manufactured by AKASHI, load 5 kg), and the hardness (HV) was examined. In this example, a sample having a hardness of 650 HV or higher was accepted (◯).
[0163] (2)変寸試験 (変寸率の平均値および変寸率の最大値の測定)  [0163] (2) Size change test (Measurement of average value of change rate and maximum value of change rate)
上記の焼鈍材から、おおむね、 40mmTX 70mmW X lOOmmLの試験片を切出 して変寸測定用試験片とした後、表 2に条件で溶体化処理→ファン空冷→時効処理 を行なった後、放冷した。次に、以下のようにして「変寸率の平均値」および「変寸率 の最大値」を測定し、下記基準に従い、これらの評価がすべて〇のものを、熱処理後 の変寸抑制性に優れる (合格)とした。  After roughly cutting out a 40mmTX 70mmW x lOOmmL test piece from the above annealed material to make a test piece for size change measurement, it was subjected to solution treatment → fan air cooling → aging treatment under the conditions shown in Table 2 and then released. Chilled. Next, measure the “average value of the change rate” and “the maximum value of the change rate” as described below. Excellent (passed).
[0164] (2-1)変寸率の平均値 (平均変寸率)の測定  [0164] (2-1) Measurement of average value of change rate (average change rate)
上記の変寸測定用試験片(焼鈍後溶体化処理前)および時効後の試験片につい て、厚さ、幅、長さの 3方向をそれぞれ測定し、熱処理前後の厚さの差、幅の差、およ び長さの差を求め、これらの平均値(百分率)を「変寸率の平均値」とした。本実施例 では、「変寸率の平均値」が ± 0. 03%以内のものを合格(〇)、 ± 0. 03%を超える ものを不合格(X )とした。  Measure the three dimensions of thickness, width, and length for the above-mentioned test pieces for measuring dimensions (after annealing and before solution treatment) and after aging. The difference and the difference in length were determined, and the average value (percentage) was defined as the “average value of change ratio”. In this example, “average size change ratio” within ± 0.03% was determined to be acceptable (◯) and those exceeding ± 0.03% were regarded as unacceptable (X).
[0165] (2-2)変寸率の最大値 (最大変寸率)の測定  [0165] (2-2) Measurement of maximum change rate (maximum change rate)
上記の変寸測定用試験片(焼鈍後溶体化処理前)および時効後の試験片につい て、厚さ、幅、長さの 3方向をそれぞれ測定し、熱処理前後の厚さの差、幅の差、およ び長さの差を求め、これらの最大値の絶対値(百分率)を「変寸率の最大値」とした。 変寸率の最大値が 0. 05%以下のものを合格(〇)とし、 0. 05%を超えるものを不合 格(X )とした。  Measure the three dimensions of thickness, width, and length for the above-mentioned test pieces for measuring dimensions (after annealing and before solution treatment) and after aging. Differences and length differences were determined, and the absolute value (percentage) of these maximum values was defined as the “maximum value of the change rate”. When the maximum change rate was 0.05% or less, it was judged as acceptable (◯), and when it exceeded 0.05%, it was judged as unqualified (X).
[0166] (2-3)変寸率の差の測定  [0166] (2-3) Measurement of difference in change rate
参考のため、上述した本発明の第 1の態様に関する説明中に記載の「変寸率の差」 も測定した。具体的には、上記の変寸測定用試験片(焼鈍後溶体化処理前)および 時効後の試験片について、厚さ、幅、長さの 3方向をそれぞれ測定し、熱処理前後の 厚さの差、幅の差、および長さの差を求めた。これらのうち、最大値と最小値の差(百 分率)を「変寸率の差」とした。変寸率の差が 0. 08%以下のものを合格(〇)とし、 0. 08%を超えるものを不合格( X )とした。 For reference, the “difference in size change” described in the description of the first embodiment of the present invention was also measured. Specifically, with respect to the above-mentioned test pieces for measurement of dimensions (after annealing and before solution treatment) and the test pieces after aging, the thickness, width and length were measured in three directions, respectively, before and after heat treatment. Thickness differences, width differences, and length differences were determined. Among these, the difference (percentage) between the maximum value and the minimum value was defined as “difference in size change”. A difference in size change ratio of 0.08% or less was accepted (◯), and a ratio exceeding 0.08% was rejected (X).
[0167] これらの結果を表 7に示す。  [0167] These results are shown in Table 7.
[0168] [表 6] [0168] [Table 6]
Figure imgf000041_0001
Figure imgf000041_0001
L6l0L0/L00ZdT/13d 68 908 0/800 OAV 。^ ^^ ^ 秦 ^ τ )土 r: 挲 [ο ΐο]L6l0L0 / L00ZdT / 13d 68 908 0/800 OAV . ^ ^^ ^ 秦 ^ τ) Sat r: 挲 [ο ΐο]
S +[0]/[ηΟ] X ε9·Ζ— X 630= * V丄※ S + [0] / [η Ο] X ε9 · Ζ- X 630 = * V丄※
Figure imgf000042_0001
Figure imgf000042_0001
L6lOLO/LOOZdT/13d 908ム讀00 OAV [0171] まず、表 7の No. 44〜47は、鋼中成分が本発明の要件を満足する表 6の鋼種 Aを 用い、溶体化温度 T1および時効温度 T2を種々変化させたときの特性を調べたもの である。 L6lOLO / LOOZdT / 13d 908m 讀 00 OAV [0171] First, Nos. 44 to 47 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type A in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
[0172] このうち、 No. 44および No. 45は、時効温度 T2が本発明の範囲(TA± 10°C)を 満足する本発明例であり、いずれも、硬度が高ぐ熱処理後の変寸抑制性(変寸率の 差のみならず、平均変寸率および最大変寸率もすベて)に優れている。  [0172] Among them, No. 44 and No. 45 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ± 10 ° C). Excellent in size control (not only the difference in change rate, but also the average change rate and the maximum change rate).
[0173] これに対し、 No. 46は、時効温度 T2が本発明の範囲を超える比較例、 No. 47は 、時効温度 T2が本発明の範囲を下回る比較例であり、いずれも、硬度が低ぐ且つ、 熱処理後の変寸率の差は良好であるが平均変寸率および最大変寸率は低下した。  [0173] In contrast, No. 46 is a comparative example in which the aging temperature T2 exceeds the range of the present invention, and No. 47 is a comparative example in which the aging temperature T2 is lower than the range of the present invention. Although the difference in size change rate after heat treatment was low, the average size change rate and the maximum size change rate were reduced.
[0174] また、表 7の No. 48〜51は、鋼中成分が本発明の要件を満足する表 6の鋼種 Bを 用い、溶体化温度 T1および時効温度 T2を種々変化させたときの特性を調べたもの である。  [0174] Nos. 48 to 51 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed in various ways using the steel type B in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
[0175] このうち、 No. 48および No. 49は、時効温度 T2が本発明の範囲(TA± 10°C)を 満足する本発明例であり、いずれも、硬度が高ぐ熱処理後の変寸抑制性に優れて いる。  Of these, No. 48 and No. 49 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ± 10 ° C.). Excellent size control.
[0176] これに対し、 No. 50は、時効温度 T2が本発明の範囲を超える比較例であり、 No.  [0176] In contrast, No. 50 is a comparative example in which the aging temperature T2 exceeds the range of the present invention.
51は、時効温度 T2が本発明の範囲を下回る比較例であり、いずれも、熱処理後の 変寸率の差は良好であるが平均変寸率および最大変寸率が低下した。また、 No. 5 1は硬度も低下した。  No. 51 is a comparative example in which the aging temperature T2 is lower than the range of the present invention. In all cases, the difference in the sizing rate after the heat treatment was good, but the average sizing rate and the maximum sizing rate were reduced. In addition, No. 51 also decreased in hardness.
[0177] また、表 7の No. 52〜55は、鋼中成分が本発明の要件を満足する表 6の鋼種 Cを 用い、溶体化温度 T1および時効温度 T2を種々変化させたときの特性を調べたもの である。  [0177] Nos. 52 to 55 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed in various ways using the steel type C in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
[0178] このうち、 No. 52および No. 53は、時効温度 T2が本発明の範囲(TA± 10°C)を 満足する本発明例であり、いずれも、硬度が高ぐ熱処理後の変寸抑制性に優れて いる。  [0178] Among them, No. 52 and No. 53 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ± 10 ° C), both of which are post-heat treatment changes with high hardness. Excellent size control.
[0179] これに対し、 No. 54は、時効温度 T2が本発明の範囲を超える比較例であり、 No.  [0179] In contrast, No. 54 is a comparative example in which the aging temperature T2 exceeds the range of the present invention.
55は、時効温度 T2が本発明の範囲を下回る比較例であり、硬度の低下と熱処理後 の最大変寸率の増加が見られた。また、 No. 54は、熱処理後の平均変寸率も増加 した。 No. 55 is a comparative example in which the aging temperature T2 is lower than the range of the present invention, and a decrease in hardness and an increase in the maximum size change rate after heat treatment were observed. No. 54 also increases the average size change rate after heat treatment. did.
[0180] また、表 7の No. 56〜58は、鋼中成分が本発明の要件を満足する表 6の鋼種 Dを 用い、溶体化温度 T1および時効温度 T2を種々変化させたときの特性を調べたもの である。  [0180] Nos. 56 to 58 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type D in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
[0181] このうち、 No. 56および No. 57は、時効温度 T2が本発明の範囲(TA± 10°C)を 満足する本発明例であり、いずれも、硬度が高ぐ熱処理後の変寸抑制性に優れて いる。  [0181] Of these, No. 56 and No. 57 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ± 10 ° C). Excellent size control.
[0182] これに対し、 No. 58は、時効温度 T2が本発明の範囲を超える比較例であり、熱処 理後の最大変寸率が増加した。  [0182] On the other hand, No. 58 was a comparative example in which the aging temperature T2 exceeded the range of the present invention, and the maximum size change rate after heat treatment increased.
[0183] また、表 7の No. 59〜61は、鋼中成分が本発明の要件を満足する表 6の鋼種 Eを 用い、溶体化温度 T1および時効温度 T2を種々変化させたときの特性を調べたもの である。 [0183] Nos. 59 to 61 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type E in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
[0184] このうち、 No. 59および No. 60は、時効温度 T2が本発明の範囲(TA± 10°C)を 満足する本発明例であり、いずれも、硬度が高ぐ熱処理後の変寸抑制性に優れて いる。  [0184] Of these, No. 59 and No. 60 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ± 10 ° C). Excellent size control.
[0185] これに対し、 No. 61は、時効温度 T2が本発明の範囲を超える比較例であり、熱処 理後の変寸率の差は良好であるが平均変寸率および最大変寸率は低下した。  [0185] On the other hand, No. 61 is a comparative example in which the aging temperature T2 exceeds the range of the present invention, and although the difference in the size change ratio after heat treatment is good, the average size change ratio and the maximum size change The rate fell.
[0186] また、表 7の No. 62〜64は、鋼中成分が本発明の要件を満足する表 6の鋼種 Fを 用い、溶体化温度 T1および時効温度 T2を種々変化させたときの特性を調べたもの である。  [0186] Nos. 62 to 64 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type F in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated.
[0187] このうち、 No. 62および No. 63は、時効温度 T2が本発明の範囲(TA± 10°C)を 満足する本発明例であり、いずれも、硬度が高ぐ熱処理後の変寸抑制性に優れて いる。  [0187] Of these, No. 62 and No. 63 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ± 10 ° C), both of which are post-heat treatment changes with high hardness. Excellent size control.
[0188] これに対し、 No. 64は、時効温度 T2が本発明の範囲を超える比較例であり、熱処 理後の変寸率の差は良好であるが平均変寸率および最大変寸率は低下した。  [0188] On the other hand, No. 64 is a comparative example in which the aging temperature T2 exceeds the range of the present invention, and the difference in size change after heat treatment is good, but the average size change rate and the maximum size change The rate fell.
[0189] また、表 7の No. 65〜67は、鋼中成分が本発明の要件を満足する表 6の鋼種 Gを 用い、溶体化温度 T1および時効温度 T2を種々変化させたときの特性を調べたもの である。 [0190] このうち、 No. 65および No. 66は、時効温度 T2が本発明の範囲(TA± 10°C)を 満足する本発明例であり、いずれも、硬度が高ぐ熱処理後の変寸抑制性に優れて いる。 [0189] Further, Nos. 65 to 67 in Table 7 show the characteristics when the solution temperature T1 and the aging temperature T2 are changed variously using the steel type G in Table 6 whose components in the steel satisfy the requirements of the present invention. It is what was investigated. [0190] Of these, No. 65 and No. 66 are examples of the present invention in which the aging temperature T2 satisfies the range of the present invention (TA ± 10 ° C). Excellent size control.
[0191] これに対し、 No. 67は、時効温度 T2が本発明の範囲を超える比較例であり、熱処 理後の変寸率の差は良好であるが平均変寸率および最大変寸率は低下した。  [0191] On the other hand, No. 67 is a comparative example in which the aging temperature T2 exceeds the range of the present invention, and the difference in the size change rate after heat treatment is good, but the average size change rate and the maximum size change rate are good. The rate fell.
[0192] 以下の No.は、溶体化温度および時効温度は本発明の要件を満足しているが、鋼 中成分が本発明の範囲を満足しないために種々の不具合を有する比較例である。  [0192] The following Nos. Are comparative examples having various problems because the solution temperature and the aging temperature satisfy the requirements of the present invention but the components in the steel do not satisfy the scope of the present invention.
[0193] No. 68および No. 69は、いずれも、従来の高 C高 Cr鋼を模擬した表 6の鋼種 Hお よび鋼種 Iを用いた例であり、 [Cr]と [C]の積が大きぐ [Cu]と [C]の比が小さぐ Ms 点が低い鋼種を用いたため、熱処理後の平均変寸率、最大変寸率、変寸率のすべ てが増加した。なお、これらの鋼種は、焼戻温度が低い場合に高い硬度が得られる ため、上記鋼種を用いたときの焼戻温度は 510°Cとし、種々の特性を測定した。  [0193] No. 68 and No. 69 are examples using steel types H and I in Table 6 simulating conventional high-C high-Cr steel, and the product of [Cr] and [C] Since steel grades with a large ratio of [Cu] and [C] and a low Ms point were used, all of the average sizing ratio, maximum sizing ratio, and sizing ratio after heat treatment increased. Since these steel types have high hardness when the tempering temperature is low, the tempering temperature when using the above steel types was set to 510 ° C, and various characteristics were measured.
[0194] No. 70および No. 71は、 Cu量が少なぐ [Cu]/[Ni]の比および [Cu]/[C]の 比が小さい表 6の鋼衝を用いた例であり、硬さの低下と最大変寸率の増加が見られ た。  [0194] No. 70 and No. 71 are examples using the steel bumps in Table 6 in which the ratio of [Cu] / [Ni] and the ratio of [Cu] / [C] are small, with a small amount of Cu. A decrease in hardness and an increase in the maximum size change rate were observed.
[0195] No. 72および No. 73は、 [Cu]]と [C]の比が大きい表 6の鋼種 Kを用いた例であり [0195] No. 72 and No. 73 are examples using the steel grade K in Table 6 where the ratio of [Cu]] and [C] is large.
、いずれも、最大変寸率が増加した。 In both cases, the maximum size change rate increased.
[0196] なお、本実施例には、変寸率の経時的変化は示していないが、本発明の要件を満 足する条件で溶体化処理→時効処理を行えば、高!/、硬度と良好な変寸特性を維持 しつつ、しかも、変寸率の経時的変化も小さく抑えられると予想される。 [0196] Note that this example does not show the change in size change over time, but if solution treatment → aging treatment is performed under conditions that satisfy the requirements of the present invention, high! /, Hardness and It is expected that the change over time of the change rate will be kept small while maintaining good change characteristics.
[0197] 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れる ことなく様々な変更および修正が可能であることは、当業者にとって明らかである。 なお、本出願は、 2006年 10月 17日付けで出願された日本特許出願(特願 2006[0197] Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is a Japanese patent application filed on October 17, 2006 (Japanese Patent Application 2006).
- 283038)、 2006年 10月 30曰付けで出願された曰本特許出願(特願 2006 - 29-283038), Japanese patent application filed on October 30, 2006 (Japanese Patent Application 2006-29
4528)及び 2007年 2月 27日付けで出願された日本特許出願(特願 2007— 047494528) and Japanese patent applications filed on February 27, 2007 (Japanese Patent Application No. 2007-04749)
0)に基づレ、ており、その全体が弓 I用により援用される。 Based on 0), which is incorporated in its entirety by Bow I.
また、ここに引用されるすべての参照は全体として取り込まれる。  Also, all references cited herein are incorporated as a whole.
産業上の利用可能性 本発明の冷間金型用鋼は、上記のように合金成分が適切に制御されているため、 硬度が高ぐ熱処理後の変寸抑制性に優れ、溶接補修性も良好である。従って、上 記の冷間金型用鋼を用いて得られる金型は、特に、引張強度が約 590MPa以上の ハイテン鋼板の成形用金型として好適に用いられ、寿命、とりわけ、溶接補修後の寿 命が一層高められる。 Industrial applicability Since the steel for cold mold of the present invention has the alloy components appropriately controlled as described above, the hardness is high, and the deformability after heat treatment is excellent, and the weld repairability is also good. Therefore, the mold obtained by using the above cold mold steel is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more, and has a long life, particularly after welding repair. Life is further increased.
また、本発明の製造方法は、鋼中成分、並びに溶体化処理および時効処理の条 件が適切に制御されて!/、るため、硬度が高ぐ熱処理後の変寸抑制性に優れた冷間 金型用鋼を効率よく製造することができる。従って、本発明の製造方法を用いて得ら れる金型は、特に、引張強度が約 590MPa以上のハイテン鋼板の成形用金型として 好適に用いられ、寿命、とりわけ、溶接補修後の寿命が一層高められる。  In the production method of the present invention, the steel components and the conditions of the solution treatment and the aging treatment are appropriately controlled! /. Steel for molds can be produced efficiently. Therefore, the mold obtained using the production method of the present invention is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more, and has a longer life, particularly after welding repair. Enhanced.

Claims

請求の範囲 C :0. 20—0. 60%、 Si:0. 5—2.00%、 Mn:0.;!〜 2%、 Cr:3.00— 9.00%、 A1:0. 3— 2.0%、 Cu:l.00—5%, Ni:l.00—5%, Mo: 0. 5〜3%及び/又は W: 2%以下(0%を含む)、 S :0. 10%以下(0%を含まない)、 下記(1)〜(3) { [ ]は、各元素の含有量 (%)を意味する。 } Claim C: 0.20—0.60%, Si: 0.5-2.00%, Mn: 0.;! ~ 2%, Cr: 3.00—9.00%, A1: 0.3—2.0%, Cu : l.00—5%, Ni: l.00—5%, Mo: 0.5 to 3% and / or W: 2% or less (including 0%), S: 0. 10% or less (0% The following (1) to (3) {[] means the content (%) of each element. }
(1) [Cr] X [C]≤3. 00、  (1) [Cr] X [C] ≤3.00,
(2) [Cu]/[Ni] :0. 5〜2· 2、  (2) [Cu] / [Ni]: 0.5-5-2,
(3) [Μο]+0. 5Χ [W] :0. 5—3.0%  (3) [Μο] + 0.5.5Χ [W]: 0. 5—3.0%
の要件を満足し、  Satisfy the requirements of
残部:鉄および不可避不純物である冷間金型用鋼。  Remainder: Steel for cold mold, which is iron and inevitable impurities.
更に、 V:0. 5%以下 (0%を含まない)を含有する請求項 1に記載の冷間金型用鋼。 更に、 Ti、 Zr、 Hf、 Ta、および Nbよりなる群から選択される少なくとも一種の元素を 合計で 0. 5%以下 (0%を含まない)含有する請求項 1または 2に記載の冷間金型用  The cold mold steel according to claim 1, further comprising V: 0.5% or less (not including 0%). The cold according to claim 1 or 2, further comprising a total of 0.5% or less (excluding 0%) of at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb. For mold
[4] 更に、 Co :10%以下(0%を含まない)を含有する請求項 1〜3のいずれかに記載の 冷間金型用鋼。 [4] The steel for cold mold according to any one of claims 1 to 3, further comprising Co: 10% or less (not including 0%).
[5] 下式で表されるマルテンサイト変態点(Ms点): [5] Martensitic transformation point (Ms point) represented by the following formula:
Ms点  Ms point
= 550-361 X [C]-39X [Mn]-35X [V]-20X [Cr]  = 550-361 X [C] -39X [Mn] -35X [V] -20X [Cr]
-17X [Ni]-10X [Cu]-5X ([Mo] + [W])  -17X [Ni] -10X [Cu] -5X ([Mo] + [W])
+ 15X [Co] + 30X [Al] {式中、 [ ]は、各元素の含有量(%)を表す。 } + 15X [Co] + 30X [Al] {In the formula, [] represents the content (%) of each element. }
は 170°C以上である請求項 1〜4のいずれかに記載の冷間金型用鋼。  The steel for cold mold according to any one of claims 1 to 4, which has a temperature of 170 ° C or higher.
[6] 請求項 1〜5のいずれかに記載の冷間金型用鋼を用いて得られる金型。 [6] A mold obtained using the cold mold steel according to any one of claims 1 to 5.
[7] 請求項 1に記載の組成を満足する鋼であって、更に下記 (4) { [ ]は、各元素の含有 量(%)を意味する。 } [7] The steel satisfies the composition according to claim 1, and the following (4) {[] means the content (%) of each element. }
(4) [Cu]/[C] :4.0〜; 15  (4) [Cu] / [C]: 4.0 ~; 15
の要件を満足する鋼を用意する工程と、  A process of preparing steel that satisfies the requirements of
下式(5)を満足する条件で溶体化処理および時効処理を行う工程と、  A step of solution treatment and aging treatment under conditions satisfying the following formula (5);
TA-10≤T2≤TA+10 ··· (5)  TA-10≤T2≤TA + 10 (5)
式中、  Where
TA = 0.29XT1-2.63X [Cu]/[C] + 225で表され、  TA = 0.29XT1-2.63X [Cu] / [C] + 225,
T1は溶体化温度 (°c)、  T1 is the solution temperature (° c),
T2は時効温度(°C)をそれぞれ、意味する、  T2 means aging temperature (° C),
を含む冷間金型用鋼の製造方法。  A method for producing steel for cold molds including:
[8] 前記鋼は、 V:0.5%以下(0%を含まない)を含有する請求項 7に記載の製造方法。 8. The manufacturing method according to claim 7, wherein the steel contains V: 0.5% or less (not including 0%).
[9] 前記鋼は、 Ti、 Zr、 Hf、 Ta、および Nbよりなる群から選択される少なくとも一種の元 素を合計で 0.5%以下 (0%を含まない)含有する請求項 7または 8に記載の製造方 法。 [9] The steel according to claim 7 or 8, wherein the steel contains a total of 0.5% or less (not including 0%) of at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb. The manufacturing method described.
[10] 前記鋼は、 Co :10%以下(0%を含まない)を含有する請求項 7〜9のいずれかに記 載の製造方法。  [10] The manufacturing method according to any one of claims 7 to 9, wherein the steel contains Co: 10% or less (not including 0%).
[11] 下式で表されるマルテンサイト変態点(Ms点): [11] Martensitic transformation point (Ms point):
Ms点  Ms point
= 550-361 X [C]-39X [Mn]-35X [V]-20X [Cr]  = 550-361 X [C] -39X [Mn] -35X [V] -20X [Cr]
-17X [Ni]-10X [Cu]-5X ([Mo] + [W])  -17X [Ni] -10X [Cu] -5X ([Mo] + [W])
+ 15X [Co] + 30X [Al]  + 15X [Co] + 30X [Al]
は 170°C以上である請求項 7〜; 10のいずれかに記載の製造方法。  The production method according to any one of claims 7 to 10, wherein is 170 ° C or higher.
[12] 請求項 7〜; 11のいずれかに記載の製造方法によって得られる金型。 [12] A mold obtained by the production method according to any one of [7] to [11].
PCT/JP2007/070197 2006-10-17 2007-10-16 Cold work die steel, die, and method for production of cold work die steel WO2008047806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/444,400 US20100074792A1 (en) 2006-10-17 2007-10-16 Cold work die steel, die, and method for production of cold work die steel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006283038 2006-10-17
JP2006-283038 2006-10-17
JP2006294528A JP4266383B2 (en) 2006-10-17 2006-10-30 Cold mold steel and molds
JP2006-294528 2006-10-30
JP2007-047490 2007-02-27
JP2007047490A JP4266384B2 (en) 2007-02-27 2007-02-27 Manufacturing method of steel for cold mold

Publications (1)

Publication Number Publication Date
WO2008047806A1 true WO2008047806A1 (en) 2008-04-24

Family

ID=39314033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070197 WO2008047806A1 (en) 2006-10-17 2007-10-16 Cold work die steel, die, and method for production of cold work die steel

Country Status (3)

Country Link
US (1) US20100074792A1 (en)
TW (1) TW200831682A (en)
WO (1) WO2008047806A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403207B (en) * 2011-02-21 2016-06-15 日立金属株式会社 The manufacture method of cold working mould
US11235415B2 (en) * 2017-02-28 2022-02-01 Nippon Steel Corporation Fillet welded joint and method of manufacturing thereof
CN113528971B (en) * 2021-07-21 2022-08-02 攀钢集团江油长城特殊钢有限公司 Hot work die steel and preparation method thereof
CN114535944B (en) * 2021-12-15 2022-11-29 河北工业职业技术学院 Short-process bainite hot working die and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167863A (en) * 1984-02-20 1987-07-24 Hitachi Metals Ltd Free-cutting steel for prehardened metallic mold for molding plastic
JPH03122252A (en) * 1989-10-04 1991-05-24 Hitachi Metals Ltd Steel for metal mold and metal mold
JP2002241894A (en) * 2000-12-13 2002-08-28 Hitachi Metals Ltd High hardness prehardened steel for cold working having excellent machinability, die for cold working using the steel and working method for the steel
JP2002332539A (en) * 2001-03-05 2002-11-22 Kiyohito Ishida Free cutting tool steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663726B2 (en) * 2000-12-13 2003-12-16 Hitachi Metals, Ltd. High-hardness prehardened steel for cold working with excellent machinability, die made of the same for cold working, and method of working the same
TW567233B (en) * 2001-03-05 2003-12-21 Kiyohito Ishida Free-cutting tool steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167863A (en) * 1984-02-20 1987-07-24 Hitachi Metals Ltd Free-cutting steel for prehardened metallic mold for molding plastic
JPH03122252A (en) * 1989-10-04 1991-05-24 Hitachi Metals Ltd Steel for metal mold and metal mold
JP2002241894A (en) * 2000-12-13 2002-08-28 Hitachi Metals Ltd High hardness prehardened steel for cold working having excellent machinability, die for cold working using the steel and working method for the steel
JP2002332539A (en) * 2001-03-05 2002-11-22 Kiyohito Ishida Free cutting tool steel

Also Published As

Publication number Publication date
TW200831682A (en) 2008-08-01
US20100074792A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
KR102296359B1 (en) Hot-pressed member and manufacturing method thereof, cold-rolled steel sheet for hot pressing, and manufacturing method thereof
EP1577412B2 (en) High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof
JP5143531B2 (en) Cold mold steel and molds
US20110030854A1 (en) High-strength steel sheet and method for manufacturing the same
EP2824196A1 (en) Process for producing press-formed product and press-formed product
EP2708613A1 (en) Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
KR20190134704A (en) High Mn steel and its manufacturing method
JP2007016296A (en) Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
CA2770585A1 (en) Hot-pressed steel sheet member, steel sheet for hot-press, and method for manufacturing hot-pressed steel sheet member
KR20140127857A (en) Steel sheet for hot pressing use, press-molded article, and method for producing press-molded article
JP5114860B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
CN114438418A (en) Hot-formed member and method for manufacturing same
WO2019093384A1 (en) Hot press steel sheet member and manufacturing method therefor
JP6841382B2 (en) Hot-pressed members, cold-rolled steel sheets for hot-pressing, and their manufacturing methods
JP7028378B1 (en) Hot pressing member and its manufacturing method
JP4266383B2 (en) Cold mold steel and molds
WO2019093376A1 (en) Hot-pressed steel sheet member and method for producing same
WO2021251275A1 (en) Steel sheet and manufacturing method therefor
KR20080097467A (en) High-strength steel excellent in weldability and process for production thereof
WO2008047806A1 (en) Cold work die steel, die, and method for production of cold work die steel
JP5351528B2 (en) Cold mold steel and molds
CN111788325B (en) High Mn steel and method for producing same
CN108350550B (en) High-strength cold-rolled steel sheet having excellent shear workability and method for producing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038626.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12444400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829931

Country of ref document: EP

Kind code of ref document: A1