JP2002241580A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2002241580A
JP2002241580A JP2001036644A JP2001036644A JP2002241580A JP 2002241580 A JP2002241580 A JP 2002241580A JP 2001036644 A JP2001036644 A JP 2001036644A JP 2001036644 A JP2001036644 A JP 2001036644A JP 2002241580 A JP2002241580 A JP 2002241580A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
specific gravity
rubber particles
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001036644A
Other languages
Japanese (ja)
Inventor
Yusuke Ito
祐輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001036644A priority Critical patent/JP2002241580A/en
Publication of JP2002241580A publication Critical patent/JP2002241580A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an epoxy resin composition for sealing a semiconductor having excellent fluidity during molding, solder and temperature cycle resistances. SOLUTION: This epoxy resin for sealing the semiconductor is characterized by having >=0.2 ratio of bulk specific gravity/true specific gravity of the bulk specific gravity to the true specific gravity of rubber particles in the epoxy resin composition consisting essentially of (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, (D) an inorganic filler and (E) the rubber particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形性、信頼性に
優れた半導体封止用エポキシ樹脂組成物、及びこれを用
いた半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent moldability and reliability, and a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体素子の高集積化が年々
進み、半導体素子のサイズは大きくなり配線は微細化し
ている。この様な半導体素子をエポキシ樹脂組成物で封
止した場合、半導体素子に直接エポキシ樹脂組成物の硬
化物が接触するため、温度サイクルによるエポキシ樹脂
組成物の硬化物の膨張、収縮によってひずみ応力が発生
し、配線のずれやボンディングワイヤーの切断、半導体
素子の破壊等の問題が生じる。これらの問題に対してエ
ポキシ樹脂組成物の硬化物の弾性率を低減することによ
りエポキシ樹脂組成物の硬化物に柔軟性を持たせる必要
がある。又、半導体装置の表面実装化が一般的になって
きている現状では、吸湿した半導体装置が半田処理時に
高温にさらされ、気化した水蒸気の爆発的応力により半
導体装置にクラックが発生したり、あるいは半導体素子
やリードフレームとエポキシ樹脂組成物の硬化物との界
面に剥離が発生することにより、電気的信頼性を大きく
損なう不良が生じ、これらの不良の防止、即ち耐半田性
の向上も大きな課題となっている。この耐半田性の向上
のために、エポキシ樹脂組成物は無機質充填材を多量に
配合することにより、半導体装置の低吸湿化、低熱膨張
化、高強度化を図ってきている。このためエポキシ樹脂
としては、低粘度型のものや、常温では結晶性の個体で
あり融点を越えると極めて低粘度の液状となる結晶性エ
ポキシ樹脂を使用して、無機質充填材の配合量の増加に
伴うエポキシ樹脂組成物の成形時の流動性の低下を防止
する手法が提案されている。ところが、各成分を加熱混
練して製造されるエポキシ樹脂組成物において、無機質
充填材を多量に配合したエポキシ樹脂組成物の硬化物で
は、強度の増加と共に弾性率も増大してしまうため、温
度サイクルによるひずみ応力が増大してしまい、耐温度
サイクル性に問題が生じる。この様に耐温度サイクル性
と耐半田性の両立を達成するためには、無機質充填材を
多量に配合した系においても弾性率の増大を押さえる必
要がある。その具体的な手法の一つとして、従来から低
応力特性を付与するために種々のゴム粒子を添加すると
いう方法が知られている。しかしながら、従来のゴム粒
子だと、粒子の凝集力が強いため混練時にエポキシ樹脂
組成物中に十分に分散しなかった。このためエポキシ樹
脂組成物が不均一になり特性のばらつきが大きくなっ
た。又ゴム粒子の凝集物が大きいと溶融状態での粘度が
増大し流動性が下がったり、半田リフロー時に凝集物を
起点としてクラックが発生する等の不良が生じることが
あった。このため、流動性と耐半田性、及び耐温度サイ
クル性のすべての要求を満たすエポキシ樹脂組成物の開
発が望まれていた。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductor elements is progressing year by year, and the size of semiconductor elements is increasing and wiring is becoming finer. When such a semiconductor device is encapsulated with an epoxy resin composition, the cured product of the epoxy resin composition comes into direct contact with the semiconductor device, so that the stress stress is caused by expansion and contraction of the cured product of the epoxy resin composition due to a temperature cycle. This causes problems such as misalignment of wiring, cutting of bonding wires, and destruction of semiconductor elements. For these problems, it is necessary to make the cured product of the epoxy resin composition flexible by reducing the elastic modulus of the cured product of the epoxy resin composition. Also, in the current situation where surface mounting of semiconductor devices has become common, a semiconductor device that has absorbed moisture is exposed to high temperatures during soldering, and cracks occur in the semiconductor device due to the explosive stress of vaporized water vapor, or The occurrence of peeling at the interface between the semiconductor element or lead frame and the cured product of the epoxy resin composition causes defects that greatly impair electrical reliability, and prevention of these defects, that is, improvement of solder resistance is also a major issue. It has become. In order to improve the solder resistance, the epoxy resin composition is blended with a large amount of an inorganic filler to reduce the moisture absorption, lower the thermal expansion, and increase the strength of the semiconductor device. For this reason, use of low-viscosity epoxy resins or crystalline epoxy resins that are crystalline solids at room temperature and become extremely low-viscosity liquid above the melting point. There has been proposed a method for preventing a decrease in fluidity during molding of an epoxy resin composition accompanying the above. However, in an epoxy resin composition manufactured by heating and kneading each component, a cured product of an epoxy resin composition containing a large amount of an inorganic filler increases the elasticity as the strength increases. Increases the stress caused by the stress, which causes a problem in the temperature cycle resistance. In order to achieve both temperature cycle resistance and solder resistance as described above, it is necessary to suppress an increase in elastic modulus even in a system in which a large amount of an inorganic filler is blended. As one of the specific methods, a method of adding various rubber particles for imparting low stress characteristics has been conventionally known. However, conventional rubber particles did not disperse sufficiently in the epoxy resin composition during kneading due to the strong cohesive force of the particles. For this reason, the epoxy resin composition became non-uniform, and the variation in characteristics became large. In addition, when the aggregates of the rubber particles are large, the viscosity in the molten state increases and the fluidity decreases, and defects such as cracks starting from the aggregates during solder reflow may occur. Therefore, development of an epoxy resin composition that satisfies all requirements for fluidity, solder resistance, and temperature cycle resistance has been desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、成形時の流
動性に優れ、かつ成形品である半導体装置の耐半田性、
及び耐温度サイクル性等の信頼性に優れた半導体封止用
エポキシ樹脂組成物、及びこれを用いた半導体装置を提
供するものである。
SUMMARY OF THE INVENTION The present invention provides a semiconductor device which is excellent in fluidity during molding and which is a molded product.
The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in reliability such as temperature cycling resistance and the like, and a semiconductor device using the same.

【0004】[0004]

【課題を解決するための手段】本発明は、[1](A)
エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進
剤、(D)無機質充填材、及び(E)ゴム粒子を必須成
分とするエポキシ樹脂組成物において、ゴム粒子の真比
重と嵩比重の比が嵩比重/真比重で0.2以上である半
導体封止用エポキシ樹脂組成物、[2]ゴム粒子の含有
量が、全エポキシ樹脂組成物中に0.1〜5重量%であ
る第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3]第[1]、又は[2]項記載の半導体封止用エポ
キシ樹脂組成物を用いて半導体素子を封止してなること
を特徴とする半導体装置、である。
Means for Solving the Problems The present invention provides [1] (A)
In an epoxy resin composition containing an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, (D) an inorganic filler, and (E) rubber particles as essential components, a ratio of a true specific gravity to a bulk specific gravity of the rubber particles. [2] The epoxy resin composition for semiconductor encapsulation having a bulk specific gravity / true specific gravity of 0.2 or more, [2] a rubber composition having a rubber particle content of 0.1 to 5% by weight in the total epoxy resin composition. 1] The epoxy resin composition for semiconductor encapsulation according to the item [1],
[3] A semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition for semiconductor sealing according to the item [1] or [2].

【0005】[0005]

【発明の実施の形態】本発明に用いられるエポキシ樹脂
は、1分子中に2個以上のエポキシ基を有するモノマ
ー、オリゴマー、ポリマー全般を指し、例えば、ビスフ
ェノールA型エポキシ樹脂、ビスフェノールF型エポキ
シ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポ
キシ樹脂、フェノールノボラック型エポキシ樹脂、クレ
ゾールノボラック型エポキシ樹脂、ナフトールノボラッ
ク型エポキシ樹脂、トリフェノールメタン型エポキシ樹
脂、アルキル変性トリフェノールメタン型エポキシ樹
脂、ジシクロペンタジエン変性フェノール型エポキシ樹
脂、フェノールアラルキル型エポキシ樹脂(フェニレン
骨格、ビフェニレン骨格等を有する)、ナフトールアラ
ルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン
骨格等を有する)、テルペン変性フェノール型エポキシ
樹脂、ハイドロキノン型エポキシ樹脂、トリアジン核含
有エポキシ樹脂等が挙げられるが、これらに限定される
ものではない。又、これらのエポキシ樹脂は単独でも2
種類以上併用して用いてもよい。半導体装置の耐半田性
を向上することを目的に、エポキシ樹脂組成物中の無機
質充填材の配合量を増大させ、得られたエポキシ樹脂組
成物の硬化物の低吸湿化、低熱膨張化、高強度化を達成
させる場合には、常温で結晶性を示し融点を越えると極
めて低粘度の液状となる結晶性エポキシ樹脂を、全エポ
キシ樹脂中に30重量%以上用いることが特に好まし
い。結晶性エポキシ樹脂としては、融点70〜150℃
であるものが、取り扱い作業性、混練時の作業性の点か
ら好ましい。本発明での結晶性エポキシ樹脂の融点は、
示差走査熱量計(セイコー電子工業(株)・製)を用い
て、常温から5℃/分で昇温した結晶融解の吸熱ピーク
の頂点の温度を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention refers to all monomers, oligomers and polymers having two or more epoxy groups in one molecule, such as bisphenol A type epoxy resin and bisphenol F type epoxy resin. , Biphenyl epoxy resin, stilbene epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, naphthol novolak epoxy resin, triphenolmethane epoxy resin, alkyl-modified triphenolmethane epoxy resin, dicyclopentadiene-modified phenol Epoxy resin, phenol aralkyl type epoxy resin (having a phenylene skeleton, biphenylene skeleton, etc.), naphthol aralkyl type epoxy resin (having a phenylene skeleton, biphenylene skeleton, etc.), Pen-modified phenol type epoxy resins, hydroquinone type epoxy resin, triazine nucleus-containing epoxy resins, but are not limited thereto. These epoxy resins can be used alone or
It may be used in combination of more than one kind. In order to improve the solder resistance of the semiconductor device, the amount of the inorganic filler in the epoxy resin composition is increased, and the cured product of the obtained epoxy resin composition has low moisture absorption, low thermal expansion, and high heat resistance. In order to achieve strength, it is particularly preferable to use 30% by weight or more of a crystalline epoxy resin which exhibits crystallinity at ordinary temperature and becomes a liquid having an extremely low viscosity when the melting point is exceeded. As a crystalline epoxy resin, the melting point is 70 to 150 ° C.
Is preferred in terms of handling workability and workability during kneading. The melting point of the crystalline epoxy resin in the present invention,
Using a differential scanning calorimeter (manufactured by Seiko Denshi Kogyo Co., Ltd.), the temperature at the top of the endothermic peak of crystal melting when the temperature was raised from room temperature at 5 ° C./min.

【0006】本発明に用いられるフェノール樹脂として
は、1分子中に2個以上のフェノール性水酸基を有する
モノマー、オリゴマー、ポリマー全般を指し、例えば、
フェノールノボラック樹脂、クレゾールノボラック樹
脂、フェノールアラルキル樹脂(フェニレン骨格、ビフ
ェニレン骨格等を有する)、ナフトールアラルキル樹脂
(フェニレン骨格、ビフェニレン骨格等を有する)、テ
ルペン変性フェノール樹脂、ジシクロペンタジエン変性
フェノール樹脂、トリフェノールメタン型樹脂、ビスフ
ェノール化合物等が挙げられるが、これらに限定される
ものではない。又、これらのフェノール樹脂は単独でも
2種類以上併用して用いてもよい。これらのフェノール
樹脂は、分子量、軟化点、水酸基当量等に制限なく使用
することができるが、軟化点90℃以下の比較的低粘度
のフェノール樹脂が好ましい。軟化点が90℃以上だと
エポキシ樹脂の低粘度化の効果が薄れる可能性がある。
本発明におけるフェノール樹脂の軟化点は、JIS K
2406の環球法に準じて測定した。全エポキシ樹脂
のエポキシ基と全フェノール樹脂のフェノール性水酸基
との当量比としては、好ましくは0.5〜2.0、特に
好ましくは0.7〜1.5である。0.5〜2.0の範
囲を外れると、硬化性、耐湿信頼性等が低下する可能性
がある。
[0006] The phenolic resin used in the present invention refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule.
Phenol novolak resin, cresol novolak resin, phenol aralkyl resin (having phenylene skeleton, biphenylene skeleton, etc.), naphthol aralkyl resin (having phenylene skeleton, biphenylene skeleton, etc.), terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, triphenol Examples include, but are not limited to, methane type resins and bisphenol compounds. These phenol resins may be used alone or in combination of two or more. These phenolic resins can be used without any limitation in molecular weight, softening point, hydroxyl equivalent, etc., but phenol resins having a softening point of 90 ° C. or lower and a relatively low viscosity are preferred. If the softening point is 90 ° C. or higher, the effect of lowering the viscosity of the epoxy resin may be reduced.
The softening point of the phenolic resin in the present invention is determined according to JIS K
It was measured according to the ring and ball method of 2406. The equivalent ratio of the epoxy group of all epoxy resins to the phenolic hydroxyl group of all phenol resins is preferably 0.5 to 2.0, particularly preferably 0.7 to 1.5. If the ratio is outside the range of 0.5 to 2.0, the curability, the moisture resistance reliability and the like may be reduced.

【0007】本発明に用いられる硬化促進剤としては、
エポキシ樹脂とフェノール樹脂との架橋反応の触媒とな
り得るものを指し、具体例としては、トリブチルアミ
ン、1,8−ジアザビシクロ(5,4,0)ウンデセン
−7等のアミン系化合物、トリフェニルホスフィン、テ
トラフェニルホスホニウム・テトラフェニルボレート塩
等の有機リン系化合物、2−メチルイミダゾール等のイ
ミダゾール化合物等が挙げられるが、これらに限定され
るものではない。又、これらの硬化促進剤は単独でも2
種類以上併用して用いてもよい。
The curing accelerator used in the present invention includes:
A substance that can serve as a catalyst for a crosslinking reaction between an epoxy resin and a phenol resin. Specific examples thereof include amine compounds such as tributylamine and 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, Examples include organic phosphorus compounds such as tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators can be used alone or
It may be used in combination of more than one kind.

【0008】本発明に用いられる無機質充填材として
は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化
珪素、窒化アルミ等が挙げられる。又、これらの無機質
充填材は単独でも2種類以上併用して用いてもよい。無
機質充填材の配合量を多くする場合は、溶融シリカを用
いるのが一般的である。溶融シリカは、破砕状、球状の
いずれでも使用可能であるが、溶融シリカの配合量を高
め、かつエポキシ樹脂組成物の溶融粘度の上昇を抑える
ためには、球状のものを主に用いる方が好ましい。更に
溶融球状シリカの配合量を多くするためには、溶融球状
シリカの粒度分布がより広くなるように調整することが
望ましい。無機質充填材は、予めシランカップリング剤
等で表面処理されているものを用いてもよい。
The inorganic filler used in the present invention includes, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride and the like. These inorganic fillers may be used alone or in combination of two or more. When increasing the amount of the inorganic filler, fused silica is generally used. Fused silica can be used in either crushed or spherical form.However, in order to increase the amount of the fused silica and to suppress an increase in the melt viscosity of the epoxy resin composition, it is better to mainly use a spherical form. preferable. In order to further increase the blending amount of the fused spherical silica, it is desirable to adjust the particle size distribution of the fused spherical silica to be wider. The inorganic filler that has been surface-treated with a silane coupling agent or the like in advance may be used.

【0009】本発明に用いられるゴム粒子としては、例
えば、ブタジエンスチレンゴム、ブタジエンアクリロニ
トリルゴム、ポリウレタンゴム、ポリイソプレンゴム、
アクリルゴム、フッ素ゴム、シリコーンゴム等が挙げら
れるが、これらに限定されるものではない。これらは単
独でも2種類以上併用して用いてもよい。又、エポキシ
樹脂、フェノール樹脂との親和性を付与するために、メ
チル基、フェニル基等の有機置換基の他に、C、O、
N、S原子等を有する有機置換基をその架橋構造内に有
していてもよい。C、O、N、S原子等を有する有機置
換基としては、例えば、ビニル基、フェネチル基、ヒド
ロキシ基、カルボキシル基、アクリル基、アルコキシ
基、エポキシ基、ポリエーテル基、カプロラクトン基、
アミノ基、ウレイド基、イソシアネート基、メルカプト
基等が挙げられるが、これらに限定されるものではな
い。本発明のゴム粒子の真比重と嵩比重の比が嵩比重/
真比重で0.2以上が好ましい。更に好ましくは、0.
3〜0.7である。0.2未満だと、ゴム粒子の凝集が
強くなり過ぎ混練時にエポキシ樹脂組成物中へ十分に分
散せずエポキシ樹脂組成物が不均一になり特性にばらつ
きが生じ、又、ゴム粒子が十分に分散せず凝集している
と、溶融状態での粘度が増大し流動性が低下したり、半
田リフロー時にゴム粒子の凝集物を起点としてクラック
が発生したりする等の不良が生じるので好ましくない。
本発明で用いるゴム粒子の嵩比重は、ホソカワ・製パウ
ダーテスターPT−Eを用いて測定した。100cm3
の容器にカバーを取り付けて100cm3よりも余分に
入るようにしたものに試料粉末を入れ、180回タッピ
ングした後、カバーをはずし、100cm3よりも余分
の試料粉末は除き、100cm3分の重量を測定するこ
とによりゴム粒子の嵩比重を求めた。本発明で用いるゴ
ム粒子の真比重はピクノメーター法を用いて求めた。本
発明のゴム粒子の最大粒径としては、100μm以下が
好ましい。100μmを越えると、半導体装置の成形時
に金型内でゴム粒子が詰まり、未充填が生じる可能性が
ある。本発明のゴム粒子の平均粒径は50μm以下が好
ましい。50μmを越えるとエポキシ樹脂組成物の流動
性が損なわれ、又、強度の低下も起こるので好ましくな
い。本発明でのゴム粒子の最大粒径及び平均粒径は、界
面活性剤を用いてゴム粒子を水に分散させ、コールター
カウンターを用いて測定した。本発明のゴム粒子の含有
量としては、全エポキシ樹脂組成物中に0.1〜5重量
%が好ましい。0.1重量%未満だと改質の効果が少な
く弾性率低減の効果が見られない可能性がある。又、5
重量%を越えると強度が低下する可能性がある。又、本
発明のゴム粒子の特性を損なわない範囲で、その他の可
撓性付与剤を添加してもかまわない。併用できる可撓性
付与剤としては、例えば、液状オルガノポリシロキサ
ン、液状ポリブタジエン等の液状合成ゴム等が挙げられ
るが、これらに限定されるものではない。又、これらは
単独でも2種類以上併用して用いてもよい。
The rubber particles used in the present invention include, for example, butadiene styrene rubber, butadiene acrylonitrile rubber, polyurethane rubber, polyisoprene rubber,
Examples include, but are not limited to, acrylic rubber, fluorine rubber, silicone rubber, and the like. These may be used alone or in combination of two or more. In addition, in order to impart affinity with epoxy resin and phenol resin, in addition to organic substituents such as methyl group and phenyl group, C, O,
An organic substituent having an N, S atom or the like may be present in the crosslinked structure. Examples of the organic substituent having a C, O, N, S atom or the like include a vinyl group, a phenethyl group, a hydroxy group, a carboxyl group, an acryl group, an alkoxy group, an epoxy group, a polyether group, a caprolactone group,
Examples include, but are not limited to, amino groups, ureido groups, isocyanate groups, and mercapto groups. The ratio of the true specific gravity to the bulk specific gravity of the rubber particles of the present invention is the bulk specific gravity /
The true specific gravity is preferably 0.2 or more. More preferably, it is 0.
3 to 0.7. If it is less than 0.2, the cohesion of the rubber particles becomes too strong, the epoxy resin composition is not sufficiently dispersed in the kneading during kneading, and the epoxy resin composition becomes non-uniform, and the characteristics are varied. Aggregation without dispersion increases viscosity in a molten state and decreases fluidity, and causes unfavorable problems such as cracks starting from agglomerates of rubber particles during solder reflow.
The bulk specific gravity of the rubber particles used in the present invention was measured using a powder tester PT-E manufactured by Hosokawa. 100cm 3
Put the sample powder into a container that is more than 100 cm 3 by attaching a cover to the container and tap it 180 times, then remove the cover, remove the sample powder more than 100 cm 3 , and remove 100 cm 3 of weight. Was measured to determine the bulk specific gravity of the rubber particles. The true specific gravity of the rubber particles used in the present invention was determined by using a pycnometer method. The maximum particle size of the rubber particles of the present invention is preferably 100 μm or less. If it exceeds 100 μm, rubber particles may be clogged in the mold during molding of the semiconductor device, and unfilling may occur. The average particle size of the rubber particles of the present invention is preferably 50 μm or less. If it exceeds 50 μm, the flowability of the epoxy resin composition is impaired, and the strength is undesirably reduced. The maximum particle size and the average particle size of the rubber particles in the present invention were measured by dispersing the rubber particles in water using a surfactant and using a Coulter counter. The content of the rubber particles of the present invention is preferably from 0.1 to 5% by weight in the entire epoxy resin composition. If it is less than 0.1% by weight, the effect of the modification is small, and the effect of reducing the elastic modulus may not be seen. Also, 5
Exceeding the weight percentage may reduce the strength. Further, other flexibility-imparting agents may be added as long as the properties of the rubber particles of the present invention are not impaired. Examples of the flexibility-imparting agent that can be used in combination include, but are not limited to, liquid synthetic rubbers such as liquid organopolysiloxane and liquid polybutadiene. These may be used alone or in combination of two or more.

【0010】本発明のエポキシ樹脂組成物は、(A)〜
(E)成分を必須成分とするが、これ以外にも必要に応
じて臭素化エポキシ樹脂、酸化アンチモン等の難燃剤、
シランカップリング剤、天然ワックス及び合成ワックス
等の離型剤、カーボンブラック等の着色剤等の各種添加
剤を適宜配合してもよい。本発明のエポキシ樹脂組成物
は、(A)〜(E)成分、及びその他の添加剤等をミキ
サー等を用いて混合後、加熱ニーダや熱ロール等を用い
て加熱混練し、冷却、粉砕して得られる。本発明のエポ
キシ樹脂組成物を用いて、半導体素子等の電子部品を封
止し、半導体装置を製造するには、トランスファーモー
ルド、コンプレッションモールド、インジェクションモ
ールド等の成形方法で硬化成形すればよい。
The epoxy resin composition of the present invention comprises (A)
The component (E) is an essential component, but if necessary, a flame retardant such as a brominated epoxy resin or antimony oxide,
Various additives such as a silane coupling agent, a release agent such as a natural wax and a synthetic wax, and a coloring agent such as carbon black may be appropriately compounded. The epoxy resin composition of the present invention is obtained by mixing the components (A) to (E), other additives, and the like using a mixer or the like, then kneading the mixture using a heating kneader or a hot roll, cooling, and pulverizing. Obtained. In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the epoxy resin composition of the present invention, it is sufficient to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold.

【0011】[0011]

【実施例】以下、本発明を実施例で具体的に説明する。
配合量の単位は重量部とする。 実施例1 ビフェニル型エポキシ樹脂(油化シェルエポキシ(株)・製 YX4000H 、融点105℃、エポキシ当量195) 7.8重量部 フェノールアラルキル樹脂(三井化学(株)・製 XL225、軟化点75℃ 、水酸基当量175) 7.0重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 0.2重量部 球状溶融シリカ 83.5重量部 ゴム粒子1(シリコーンゴム、嵩比重/真比重=0.61) 1.0重量部 カルナバワックス 0.2重量部 カーボンブラック 0.3重量部 をミキサーを用いて混合した後、表面温度が90℃と2
5℃の2本ロールを用いて混練し、冷却後粉砕してエポ
キシ樹脂組成物を得た。得られたエポキシ樹脂組成物の
特性を以下の方法で評価した。結果を表1に示す。
The present invention will be specifically described below with reference to examples.
The unit of the compounding amount is part by weight. Example 1 Biphenyl type epoxy resin (YX4000H manufactured by Yuka Shell Epoxy Co., Ltd., melting point: 105 ° C, epoxy equivalent: 195) 7.8 parts by weight Phenol aralkyl resin (XL225 manufactured by Mitsui Chemicals, Inc., softening point: 75 ° C) (Hydroxyl equivalent 175) 7.0 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.2 part by weight Spherical fused silica 83.5 parts by weight Rubber particles 1 (silicone rubber, Bulk specific gravity / true specific gravity = 0.61) 1.0 part by weight Carnauba wax 0.2 part by weight Carbon black 0.3 part by weight was mixed using a mixer.
The mixture was kneaded using two rolls at 5 ° C., cooled and pulverized to obtain an epoxy resin composition. The properties of the obtained epoxy resin composition were evaluated by the following methods. Table 1 shows the results.

【0012】評価方法 スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力6.9N/mm2、硬化時間120秒間で測定
した。単位はcm。 曲げ強度:25℃又は240℃での曲げ強さをJIS
K 6911に準じて測定した。単位はN/mm2。 曲げ弾性率:25℃又は240℃での曲げ弾性率をJI
S K 6911に準じて測定した。単位はN/m
2。 耐温度サイクル性:100ピンTQFPパッケージ(パ
ッケージサイズは14×14mm、厚み1.4mm、シ
リコンチップのサイズは、8.0×8.0mm、リード
フレームは42アロイ製)を金型温度175℃、注入圧
力7.5N/mm2、硬化時間120秒間でトランスフ
ァー成形し、175℃で8時間の後硬化をした。得られ
たパッケージを−60℃/30分〜150℃/30分の
環境下で繰り返し処理を行い、外部クラックの有無を観
察した。得られたパッケージの50%以上の個数に外部
クラックが生じた時間を測定し、「50%不良発生時
間」で示した。単位はhr。 耐半田性:100ピンTQFPパッケージ(パッケージ
サイズは14×14mm、厚み1.4mm、シリコンチ
ップのサイズは、8.0×8.0mm、リードフレーム
は42アロイ製)を金型温度175℃、注入圧力7.5
N/mm2、硬化時間120秒間でトランスファー成形
し、175℃で8時間の後硬化をした。得られたパッケ
ージを85℃、相対湿度85%の環境下で168時間放
置し、吸湿前後の重量差を吸湿前の重量で除して吸湿率
を求め、%で表示した。その後このパッケージを240
℃の半田槽に10秒間浸漬した。顕微鏡で外部クラック
を観察し、クラック発生率[(クラック発生パッケージ
数)/(全パッケージ数)×100]を%で表示した。
又、このパッケージを超音波探傷装置を用いて観察し、
チップ(SiNコート品)とエポキシ樹脂組成物の硬化
物との界面に剥離が発生した剥離発生率[(剥離発生パ
ッケージ数)/(全パッケージ数)×100]を%で表
示した。
Evaluation method Spiral flow: Using a mold for spiral flow measurement in accordance with EMMI-1-66, a mold temperature of 175 ° C.
The measurement was performed at an injection pressure of 6.9 N / mm 2 and a curing time of 120 seconds. The unit is cm. Flexural strength: JIS defines flexural strength at 25 ° C or 240 ° C
It was measured according to K 6911. The unit is N / mm 2 . Flexural modulus: JI is the flexural modulus at 25 ° C or 240 ° C
It was measured according to SK6911. The unit is N / m
m 2 . Temperature cycle resistance: 100-pin TQFP package (package size is 14 x 14 mm, thickness is 1.4 mm, silicon chip size is 8.0 x 8.0 mm, lead frame is made of 42 alloy), mold temperature is 175 ° C, Transfer molding was performed with an injection pressure of 7.5 N / mm 2 and a curing time of 120 seconds, and post-curing was performed at 175 ° C. for 8 hours. The obtained package was repeatedly treated in an environment of −60 ° C./30 minutes to 150 ° C./30 minutes, and the presence or absence of external cracks was observed. The time during which external cracks occurred in 50% or more of the obtained packages was measured and indicated as "50% failure occurrence time". The unit is hr. Solder resistance: 100-pin TQFP package (package size: 14 x 14 mm, thickness: 1.4 mm, silicon chip size: 8.0 x 8.0 mm, lead frame made of 42 alloy), mold temperature: 175 ° C, injection Pressure 7.5
Transfer molding was performed at N / mm 2 and a curing time of 120 seconds, and post-curing was performed at 175 ° C. for 8 hours. The obtained package was left in an environment of 85 ° C. and a relative humidity of 85% for 168 hours, and the difference in weight before and after moisture absorption was divided by the weight before moisture absorption to obtain a moisture absorption rate, and the result was expressed in%. After that 240
C. for 10 seconds. External cracks were observed with a microscope, and the crack occurrence rate [(number of crack occurrence packages) / (total number of packages) × 100] was expressed in%.
Also, observe this package using an ultrasonic flaw detector,
The percentage of occurrence of peeling at the interface between the chip (SiN-coated product) and the cured product of the epoxy resin composition [(number of peeling occurrence packages) / (total number of packages) × 100] was expressed in%.

【0013】実施例2〜5、比較例1〜3 表1の配合に従い、実施例1と同様にしてエポキシ樹脂
組成物を得、実施例1と同様にして評価した。結果を表
1に示す。又、表2に実施例、比較例で用いたゴム粒子
の材質及び真比重と嵩比重の比を示す。
Examples 2 to 5 and Comparative Examples 1 to 3 According to the formulations shown in Table 1, an epoxy resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. Table 2 shows the material of the rubber particles and the ratio of the true specific gravity to the bulk specific gravity used in Examples and Comparative Examples.

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】本発明のエポキシ樹脂組成物は、成形時
の流動性に優れ、かつ高強度化と低弾性率化を両立した
ものであり、これを用いた半導体装置は耐半田性、及び
耐温度サイクル性等の信頼性に優れている。
The epoxy resin composition of the present invention has excellent fluidity at the time of molding and has both high strength and low elastic modulus. A semiconductor device using the epoxy resin composition has solder resistance and Excellent reliability such as temperature cycle resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/31 Fターム(参考) 4J002 AC063 AC073 AC083 BC043 BD123 CC032 CD051 CD061 CK023 CP033 DF017 DJ007 DJ017 EN026 EU006 EU116 EW016 EW176 FD013 FD017 FD142 FD156 GJ02 4J036 AA01 FA03 FA04 FA05 FA12 FB02 FB03 FB05 FB06 FB07 FB08 FB10 FB16 JA07 4M109 AA01 EA02 EB03 EB04 EB12 EB19 EC03 EC04 EC09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 23/31 F-term (Reference) 4J002 AC063 AC073 AC083 BC043 BD123 CC032 CD051 CD061 CK023 CP033 DF017 DJ007 DJ017 EN026 EU006 EU116 EW016 EW176 FD013 FD017 FD142 FD156 GJ02 4J036 AA01 FA03 FA04 FA05 FA12 FB02 FB03 FB05 FB06 FB07 FB08 FB10 FB16 JA07 4M109 AA01 EA02 EB03 EB04 EB12 EB19 EC03 EC04 EC09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂、(C)硬化促進剤、(D)無機質充填材、及び
(E)ゴム粒子を必須成分とするエポキシ樹脂組成物に
おいて、ゴム粒子の真比重と嵩比重の比が嵩比重/真比
重で0.2以上である半導体封止用エポキシ樹脂組成
物。
1. An epoxy resin composition comprising (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, (D) an inorganic filler, and (E) rubber particles as essential components. The epoxy resin composition for semiconductor encapsulation wherein the ratio of the true specific gravity to the bulk specific gravity is 0.2 or more in terms of bulk specific gravity / true specific gravity.
【請求項2】 ゴム粒子の含有量が、全エポキシ樹脂組
成物中に0.1〜5重量%である請求項1記載の半導体
封止用エポキシ樹脂組成物。
2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the content of the rubber particles is 0.1 to 5% by weight in the total epoxy resin composition.
【請求項3】 請求項1、又は2記載の半導体封止用エ
ポキシ樹脂組成物を用いて半導体素子を封止してなるこ
とを特徴とする半導体装置。
3. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1 or 2.
JP2001036644A 2001-02-14 2001-02-14 Epoxy resin composition and semiconductor device Withdrawn JP2002241580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036644A JP2002241580A (en) 2001-02-14 2001-02-14 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036644A JP2002241580A (en) 2001-02-14 2001-02-14 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2002241580A true JP2002241580A (en) 2002-08-28

Family

ID=18899893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036644A Withdrawn JP2002241580A (en) 2001-02-14 2001-02-14 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2002241580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241581A (en) * 2001-02-14 2002-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296052A (en) * 1985-06-24 1986-12-26 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPS6262811A (en) * 1985-09-11 1987-03-19 Nippon Zeon Co Ltd Epoxy resin composition for sealing semiconductor
JPH02311520A (en) * 1989-05-27 1990-12-27 Toshiba Chem Corp Epoxy resin composition
JPH10173102A (en) * 1996-12-12 1998-06-26 Nitto Denko Corp Semiconductor device
JPH11292980A (en) * 1998-02-10 1999-10-26 Dow Corning Toray Silicone Co Ltd Granular composition of silicone rubber and its production
JP2002241581A (en) * 2001-02-14 2002-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296052A (en) * 1985-06-24 1986-12-26 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPS6262811A (en) * 1985-09-11 1987-03-19 Nippon Zeon Co Ltd Epoxy resin composition for sealing semiconductor
JPH02311520A (en) * 1989-05-27 1990-12-27 Toshiba Chem Corp Epoxy resin composition
JPH10173102A (en) * 1996-12-12 1998-06-26 Nitto Denko Corp Semiconductor device
JPH11292980A (en) * 1998-02-10 1999-10-26 Dow Corning Toray Silicone Co Ltd Granular composition of silicone rubber and its production
JP2002241581A (en) * 2001-02-14 2002-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241581A (en) * 2001-02-14 2002-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Similar Documents

Publication Publication Date Title
JP5019251B2 (en) Epoxy resin composition and semiconductor device
JP2874089B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP3192953B2 (en) Epoxy resin molding material for semiconductor encapsulation and method for producing the same
JP2004018803A (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP3714399B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003105064A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
JP2000281751A (en) Epoxy resin composition and semiconductor device
JP5153050B2 (en) Epoxy resin composition and semiconductor device
JP2002241580A (en) Epoxy resin composition and semiconductor device
JP2991849B2 (en) Epoxy resin composition
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JP2003213095A (en) Epoxy resin composition and semiconductor device
JPH04296046A (en) Resin-sealed semiconductor device
JPH09124774A (en) Resin composition for semiconductor sealing
JP4635360B2 (en) Semiconductor device
JP2862777B2 (en) Epoxy resin composition
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP2003206393A (en) Epoxy resin molding material and semiconductor device
JP4379972B2 (en) Epoxy resin composition and semiconductor device
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JP3093051B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100907

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101104