JP2002237646A - Nitride semiconductor light-emitting element - Google Patents

Nitride semiconductor light-emitting element

Info

Publication number
JP2002237646A
JP2002237646A JP2001375085A JP2001375085A JP2002237646A JP 2002237646 A JP2002237646 A JP 2002237646A JP 2001375085 A JP2001375085 A JP 2001375085A JP 2001375085 A JP2001375085 A JP 2001375085A JP 2002237646 A JP2002237646 A JP 2002237646A
Authority
JP
Japan
Prior art keywords
thin film
nitride semiconductor
light emitting
emitting device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001375085A
Other languages
Japanese (ja)
Other versions
JP3620498B2 (en
Inventor
Hitoshi Umemoto
整 梅本
Masayuki Senoo
雅之 妹尾
Ikuko Imaizumi
幾子 今泉
Asuka Maruoka
亜寿佳 丸岡
Hiroko Yoshida
妃呂子 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2001375085A priority Critical patent/JP3620498B2/en
Publication of JP2002237646A publication Critical patent/JP2002237646A/en
Application granted granted Critical
Publication of JP3620498B2 publication Critical patent/JP3620498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element wherein adherence of a chip is large and heat dissipating property is high. SOLUTION: In the light-emitting chip, nitride semiconductor is grown on a first main surface side of an oxide substrate having a first main surface and a second main surface, and a first heat dissipating thin film, including at least one kind of metal selected from among a group composed of Al, Ti, Zr, Cr, I, Mo, W, Ge, Si, Sn, Zn, Cu, Mn, V and Nb, is formed on a second main surface side. The light-emitting chip is die-bonded on a retainer via adhesive agent, having thermal conductivity and electric conductivity in a state with the first heat dissipating thin film facing the surface of the retainer, so that the light-emitting chip is bonded rigidly. In a part between the adhesive agent and the first heat-dissipating thin film, a second heat-dissipating thin film is formed, which contains at least one kind of metal selected from a group composed of Pt, Ti and Ni and whose thickness is nearly equal to or greater that that of the first heat-dissipating thin film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はLED、LD等の発
光デバイスに使用される窒化物半導体(InAl
1−X−YN、0≦X、0≦Y、X+Y≦1)よりなる発
光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitride semiconductor (In X Al Y G) used for a light emitting device such as an LED and an LD.
a 1- XYN, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1).

【0002】[0002]

【従来の技術】窒化物半導体よりなる光度1cd以上の
高輝度な青色、純緑色LEDは、最近実用化され、現在
本出願人により、製造、販売されて公知となっている。
それらのLEDは単一量子井戸構造のInGaNよりな
る活性層をAlGaN及び/又はGaNで挟んだp−n
接合を有するダブルへテロ構造を有し、窒化物半導体は
サファイア基板上に成長されている。サファイア基板に
成長された窒化物半導体発光チップはフェースアップ
(基板と支持体とが対向した状態)で、リードフレーム
のような支持体にダイボンディングされている。ダイボ
ンディング時の接着剤としては、例えば特開平7−86
640号公報に記載されているように、有機物を含む透
明な絶縁性の接着剤が使用されている。
2. Description of the Related Art High-brightness blue or pure green LEDs having a luminous intensity of 1 cd or more made of nitride semiconductors have recently been put to practical use, and are now manufactured and sold by the present applicant and are known.
These LEDs have a pn structure in which an active layer made of InGaN having a single quantum well structure is sandwiched between AlGaN and / or GaN.
It has a double heterostructure with a junction, and a nitride semiconductor is grown on a sapphire substrate. The nitride semiconductor light emitting chip grown on the sapphire substrate is die-bonded face-up (in a state where the substrate and the support face each other) to a support such as a lead frame. As an adhesive at the time of die bonding, for example, JP-A-7-86
As described in JP-A-640, a transparent insulating adhesive containing an organic substance is used.

【0003】一方、窒化物半導体よりなるLD(レーザ
ダイオード)については、また本出願人が世界で初め
て、410nmの室温でのパルス発振を報告した。(例
えば、日経エレクトロニクス 1996.1.15 (No.653) p13
〜p15)。このレーザ素子もサファイア基板の上にIn
GaNを含む多重量子井戸構造よりなる活性層をAlG
aN、GaN等で挟んだダブルへテロ構造を有してい
る。
On the other hand, as for an LD (laser diode) made of a nitride semiconductor, the present applicant has reported, for the first time in the world, pulse oscillation at room temperature of 410 nm at room temperature. (For example, Nikkei Electronics 1996.1.15 (No.653) p13
~ P15). This laser element also has In on a sapphire substrate.
An active layer having a multiple quantum well structure including GaN is formed of AlG
It has a double hetero structure sandwiched between aN, GaN, and the like.

【0004】[0004]

【発明が解決しようとする課題】透明な絶縁性の接着剤
でダイボンディングされたLEDは、接着剤自身が発光
を透過するために、LEDの外部量子効率を向上させる
上で非常に効果的である。しかし、有機物を含んでいる
ため、短波長による有機物の劣化と、長時間の使用によ
り接着剤が変色して外部量子効率を低下させる恐れがあ
る。また、基板と支持体との接着性が不十分であると、
ワイヤーボンディング時にチップが支持体から剥がれた
り、ずれたりする恐れがある。
An LED die-bonded with a transparent insulating adhesive is very effective in improving the external quantum efficiency of the LED because the adhesive itself transmits light. is there. However, since it contains an organic substance, the organic substance may be deteriorated due to a short wavelength, and the adhesive may be discolored due to long-time use, thereby lowering the external quantum efficiency. Also, if the adhesion between the substrate and the support is insufficient,
At the time of wire bonding, the chip may be peeled off or shifted from the support.

【0005】一方、LDの場合はパルス発振には成功し
たが、発光チップがヒートシンクのような支持体にダイ
ボンディングされた完成体は未だ開発されていない。L
Dの場合、LEDと異なり、チップの発熱量が桁違いに
大きい。そのため、発光チップをダイボンディングする
には熱伝導性に優れた接着剤を選択する必要がある。さ
らに、ワイヤーボンディング時に発光チップが支持体か
ら一部剥がれたり、ずれたりすると、接着剤と基板、若
しくは接着剤と支持体との間に空隙が存在し、密着性が
悪くなる。密着性が悪くなると、発光チップの発熱が十
分にヒートシンクに伝わらなくなるので、発振閾値が上
昇したり、発光チップの寿命を極端に短くする。
On the other hand, although pulse oscillation has been successful in the case of LD, a completed product in which a light emitting chip is die-bonded to a support such as a heat sink has not yet been developed. L
In the case of D, unlike the LED, the calorific value of the chip is orders of magnitude larger. Therefore, in order to die-bond the light emitting chip, it is necessary to select an adhesive having excellent thermal conductivity. Further, when the light emitting chip is partially peeled off or shifted from the support during wire bonding, a gap exists between the adhesive and the substrate or between the adhesive and the support, resulting in poor adhesion. If the adhesion is poor, the heat generated by the light emitting chip is not sufficiently transmitted to the heat sink, so that the oscillation threshold value is increased and the life of the light emitting chip is extremely shortened.

【0006】従って本発明の目的とするところは、酸化
物基板の上に成長された窒化物半導体よりなる発光チッ
プが、ヒートシンク、リードフレームのような支持体に
フェースアップでダイボンディングされた発光素子を実
現するに際し、チップの接着性が大きく、かつ放熱性の
高い発光素子を提供することにある。
Accordingly, an object of the present invention is to provide a light emitting device in which a light emitting chip made of a nitride semiconductor grown on an oxide substrate is die-bonded face-up to a support such as a heat sink or a lead frame. It is therefore an object of the present invention to provide a light emitting element having high chip adhesiveness and high heat dissipation.

【0007】[0007]

【課題を解決するための手段】我々は窒化物半導体より
なる発光チップの基板側に数々の金属薄膜を形成して、
ダイボンディングすると接着強度が増大することを発見
し、さらに接着強度が強い金属のみを列挙してみたとこ
ろ、ある特定の金属元素に接着強度を増大させる傾向が
あることを見いだし、本発明をなすに至った。即ち、本
発明の窒化物半導体発光素子は、第1の主面と第2の主
面とを有する酸化物基板の第1の主面側に窒化物半導体
が成長され、第2の主面側にAl、Ti、Zr、Cr、
Ni、Mo、W、Ge、Si、Sn、Zn、Cu、M
n、V、Nbよりなる群から選択された少なくとも一種
の金属を含む第1の放熱薄膜が形成された発光チップ
が、第1の放熱薄膜と支持体表面とが対向した状態で、
熱伝導性および導電性を有する接着剤を介して、支持体
にダイボンディングされてなる窒化物半導体発光素子で
あって、前記熱伝導性および導電性を有する接着剤と、
前記第1の放熱薄膜との間にPt、Ti、Niよりなる
群から選択された少なくとも一種の金属を含み、前記第
1の放熱薄膜の膜厚とほぼ同じか、もしくはそれよりも
厚い膜厚である第2の放熱薄膜が形成されていることを
特徴とする。
Means for Solving the Problems We form a number of metal thin films on the substrate side of a light emitting chip made of a nitride semiconductor,
The discovery that die bonding increases the bonding strength, and further enumerating only those metals having a strong bonding strength, found that there is a tendency to increase the bonding strength to a specific metal element, and to form the present invention. Reached. That is, in the nitride semiconductor light emitting device of the present invention, the nitride semiconductor is grown on the first main surface side of the oxide substrate having the first main surface and the second main surface, and the second main surface side To Al, Ti, Zr, Cr,
Ni, Mo, W, Ge, Si, Sn, Zn, Cu, M
A light emitting chip on which a first heat dissipation thin film containing at least one metal selected from the group consisting of n, V, and Nb is formed, with the first heat dissipation thin film facing the support surface,
A nitride semiconductor light-emitting device that is die-bonded to a support via an adhesive having thermal conductivity and conductivity, wherein the adhesive having thermal conductivity and conductivity;
A film containing at least one metal selected from the group consisting of Pt, Ti, and Ni between the first heat dissipation thin film and a thickness substantially equal to or greater than the thickness of the first heat dissipation thin film Wherein a second heat dissipation thin film is formed.

【0008】また、本発明の他の窒化物半導体発光素子
は、前記第1の放熱薄膜の膜厚が、50オングストロー
ム〜10μmであることを特徴とする。
Further, another nitride semiconductor light emitting device according to the present invention is characterized in that the first heat dissipation thin film has a thickness of 50 Å to 10 μm.

【0009】さらに、本発明の他の窒化物半導体発光素
子は、前記第1の放熱薄膜が、Ti、Cr、Ni、Zr
よりなる群から選択された少なくとも一種の金属を含む
ことを特徴とする。
Further, in another nitride semiconductor light emitting device according to the present invention, the first heat radiation thin film is made of Ti, Cr, Ni, Zr.
And at least one metal selected from the group consisting of:

【0010】さらにまた、本発明の他の窒化物半導体発
光素子は、前記第1の放熱薄膜がTiを含む金属であ
り、前記第2の放熱膜がPtであることを特徴とする。
さらにまた、本発明の他の窒化物半導体発光素子は、前
記熱伝導性および導電性を有する接着剤はSi、Ge、
Snよりなる群から選択された少なくとも一種の金属
と、Auとを含むことを特徴とする。さらにまた、本発
明の他の窒化物半導体発光素子は、前記熱伝導性および
導電性を有する接着剤はSiとAuとを含むことを特徴
とする。さらにまた、本発明の他の窒化物半導体発光素
子は、前記窒化物半導体発光素子が窒化物半導体発光素
子素子であり、前記支持体がヒートシンクであることを
特徴とする。
Further, another nitride semiconductor light emitting device according to the present invention is characterized in that the first heat dissipation thin film is a metal containing Ti and the second heat dissipation film is Pt.
Still further, in another nitride semiconductor light emitting device of the present invention, the adhesive having thermal conductivity and conductivity is Si, Ge,
At least one metal selected from the group consisting of Sn and Au are included. Furthermore, another nitride semiconductor light emitting device according to the present invention is characterized in that the adhesive having thermal conductivity and conductivity contains Si and Au. Still further, in another nitride semiconductor light emitting device according to the present invention, the nitride semiconductor light emitting device is a nitride semiconductor light emitting device, and the support is a heat sink.

【0011】[0011]

【発明の実施の形態】図1は本発明に係る発光素子の一
構造を示す模式的な断面図であり、具体的には、レーザ
光の共振方向に垂直な方向で切断したレーザ素子の構造
を示している。発光チップの基本的な構造としては、酸
化物基板1の第1の主面上にn型層2、活性層3、p型
層4が順に積層されたダブルへテロ構造を有しており、
さらにp型層から上をリッジ形状として、発光がp電極
11の下に相当する活性層3に集中するようにされてい
る。発光チップはフェースアップの状態で支持体30で
あるヒートシンク若しくはサブマウントに、導電性接着
剤23を介してダイボンディングされており、酸化物基
板1の第2の主面側には導電性接着剤23との接着性を
高める目的で、特定の金属よりなる第1の薄膜21が形
成されている。なおn電極10と、p電極11に電気的
に接続されたパッド電極12とは、それぞれ金線(図で
はワイヤーと記載する。)でワイヤーボンディングされ
ている。
FIG. 1 is a schematic cross-sectional view showing one structure of a light emitting device according to the present invention. Specifically, the structure of a laser device cut in a direction perpendicular to a resonance direction of laser light is shown. Is shown. The basic structure of the light emitting chip has a double hetero structure in which an n-type layer 2, an active layer 3, and a p-type layer 4 are sequentially stacked on a first main surface of an oxide substrate 1,
Further, a ridge shape is formed above the p-type layer so that light emission is concentrated on the active layer 3 corresponding to a portion below the p-electrode 11. The light emitting chip is die-bonded in a face-up state to a heat sink or a submount serving as a support 30 via a conductive adhesive 23, and a conductive adhesive is attached to the second main surface side of the oxide substrate 1. A first thin film 21 made of a specific metal is formed for the purpose of enhancing the adhesion to the first thin film 23. The n-electrode 10 and the pad electrode 12 electrically connected to the p-electrode 11 are respectively wire-bonded with gold wires (denoted as wires in the figure).

【0012】また基板1が酸化物基板であるので、基板
裏面(第2の主面)側にn電極を形成することができな
い。従って第1の主面側にある窒化物半導体層をエッチ
ングして、同一面側にn電極10と、p電極11とを取
り出した構造としている。同一面側にn電極10、p電
極11が形成された窒化物半導体レーザ素子では、この
図に示すように、レーザ光の共振方向に対して、ほぼ左
右対称にエッチングを行い、そのエッチング面にn電極
10を左右対称に2ヶ所設けることにより、閾値電流が
低下する傾向にある。さらに、エッチングされて露出し
たn型層2のほぼ全面にn電極10を設けると閾値電圧
も低下する傾向にある。
Further, since the substrate 1 is an oxide substrate, an n-electrode cannot be formed on the back surface (second main surface) of the substrate. Therefore, the structure is such that the nitride semiconductor layer on the first main surface side is etched to extract the n-electrode 10 and the p-electrode 11 on the same surface side. In the nitride semiconductor laser device in which the n-electrode 10 and the p-electrode 11 are formed on the same surface side, as shown in FIG. By providing two n-electrodes 10 symmetrically, the threshold current tends to decrease. Further, when the n-electrode 10 is provided on almost the entire surface of the n-type layer 2 exposed by etching, the threshold voltage tends to decrease.

【0013】さらに、p電極11に電気的に接続し、p
電極よりも表面積が大きいワイヤーボンディング用のパ
ッド電極12を形成している。パッド電極12はエッチ
ングにより露出された窒化物半導体層の表面に形成され
た絶縁膜13を介して形成する。p電極11はその表面
積がワイヤーボンドできるほど大きくない。従って、p
電極11と電気的に接続したパッド電極12を設けるこ
とにより、p電極にワイヤーボンディングできるように
している。なお、p電極11は最上層のp型層4にオー
ミック接触する必要があるため、その材料が限定される
が、パッド電極12はp電極11と強固に接着できて、
導電性の良好な材料であればどのような材料でもよい。
また、絶縁膜13は例えばSiO、TiO、Al
、ポリイミドのような絶縁性の材料で形成すること
ができ、例えば100オングストローム〜5μm以下の
膜厚で、n電極10、p電極11を形成すべき窒化物半
導体層の表面を除いたほぼ全面に形成する。絶縁膜13
はパッド電極12がn型層2に接触してショートするの
を防止すると共に、発光チップ表面に傷が入って素子を
ダメにするのを防止する作用がある。
Further, it is electrically connected to the p-electrode 11,
The pad electrode 12 for wire bonding having a larger surface area than the electrode is formed. The pad electrode 12 is formed via an insulating film 13 formed on the surface of the nitride semiconductor layer exposed by the etching. The surface area of the p-electrode 11 is not large enough to allow wire bonding. Therefore, p
By providing a pad electrode 12 electrically connected to the electrode 11, wire bonding to the p electrode can be performed. Since the p-electrode 11 needs to make ohmic contact with the uppermost p-type layer 4, its material is limited, but the pad electrode 12 can be firmly bonded to the p-electrode 11,
Any material may be used as long as it has good conductivity.
The insulating film 13 is made of, for example, SiO 2 , TiO 2 , Al 2
It can be formed of an insulating material such as O 3 or polyimide, and has a thickness of, for example, 100 Å to 5 μm or less, except for the surface of the nitride semiconductor layer on which the n-electrode 10 and the p-electrode 11 are to be formed. Formed over the entire surface. Insulating film 13
Has the effect of preventing the pad electrode 12 from coming into contact with the n-type layer 2 and causing a short circuit, and also prevents the surface of the light emitting chip from being damaged and damaging the element.

【0014】次に本発明の重要な点である酸化物基板
と、第1の薄膜との関係について述べる。本発明の発光
素子では基板に酸化物が用いられる。酸化物基板にはサ
ファイア(Al)、スピネル(MgAl
)、酸化亜鉛(ZnO)、マグネシア(MgO)
等の単結晶を用いることができるが、一般的にはサファ
イア若しくはスピネルを用いる。
Next, the relationship between the oxide substrate and the first thin film, which is an important point of the present invention, will be described. In the light emitting element of the present invention, an oxide is used for the substrate. Sapphire (Al 2 O 3 ), spinel (MgAl)
2 O 4 ), zinc oxide (ZnO), magnesia (MgO)
Can be used, but sapphire or spinel is generally used.

【0015】次に酸化物基板の第2の主面側に形成する
第1の薄膜21は、電気陰性度が2.0未満の金属で、
空気中で安定な金属であればよく、例えばAl=1.
5、Ti=1.5、Zr=1.4、Cr=1.6、Ni
=1.8、Mo=1.8、W=1.7、Ge=1.8、
Si=1.8、Sn=1.8、Zn=1.6、Cu=
1.9、Mn=1.5、V=1.6、Nb=1.6のよ
うに、アルカリ金属を除く金属で、融点が200℃以上
の金属を使用することができ、その中でも最も好ましく
はTi、Cr、Ni、Zr、Moよりなる群から選択さ
れた少なくとも一種の金属を第1の薄膜21とする。第
1の薄膜21は、蒸着、スパッタ等の通常のCVD装置
を用いて、通常50オングストローム〜10μmの膜厚
で形成できる。この第1の薄膜を形成することにより、
酸化物基板1と導電性接着剤23との接着性が良くな
り、さらに熱伝導性も向上する。なお電気陰性度はポー
リング(L.Pauling)の値による。
Next, the first thin film 21 formed on the second main surface side of the oxide substrate is a metal having an electronegativity of less than 2.0,
Any metal that is stable in air may be used. For example, Al = 1.
5, Ti = 1.5, Zr = 1.4, Cr = 1.6, Ni
= 1.8, Mo = 1.8, W = 1.7, Ge = 1.8,
Si = 1.8, Sn = 1.8, Zn = 1.6, Cu =
As described in 1.9, Mn = 1.5, V = 1.6, and Nb = 1.6, metals excluding alkali metals and having a melting point of 200 ° C. or more can be used, and among them, the most preferable is used. The first thin film 21 is made of at least one metal selected from the group consisting of Ti, Cr, Ni, Zr, and Mo. The first thin film 21 can be formed with a thickness of usually 50 Å to 10 μm using a normal CVD apparatus such as vapor deposition and sputtering. By forming this first thin film,
The adhesiveness between the oxide substrate 1 and the conductive adhesive 23 is improved, and the thermal conductivity is further improved. The electronegativity depends on the value of L. Pauling.

【0016】さらに、第1の薄膜21と支持体30とを
接続する導電性接着剤23は金属を含んだ熱伝導性に優
れた接着剤を使用でき、例えば銀ペースト、Inペース
ト、Ptペースト、Pb−Sn半田、その他金属系接着
剤があるが、その中でも特にSi、Ge、Snよりなる
群から選択された少なくとも一種の金属と、Auとを含
む導電性接着剤、具体的にはAu−Si、Au−Ge、
Au−Sn等を用いる。これら具体的接着剤の各金属の
組成比は特に規定しないが、通常はSi、Ge、Snよ
りもAuを多く含む方が、より強い接着力と高い熱伝導
性が得られる。なお、導電性接着剤23は発光チップを
ダイボンディングする際に、50オングストローム〜1
0μm程度の薄膜の状態で、予め第1の薄膜21の表面
に形成することもできるし、また支持体側に形成するこ
ともできる。
Further, as the conductive adhesive 23 for connecting the first thin film 21 and the support 30, an adhesive having a high thermal conductivity containing a metal can be used, such as a silver paste, an In paste, a Pt paste, or the like. There are Pb-Sn solder and other metal-based adhesives. Among them, a conductive adhesive containing Au and at least one metal selected from the group consisting of Si, Ge, and Sn, specifically, Au- Si, Au-Ge,
Au-Sn or the like is used. Although the composition ratio of each metal of these specific adhesives is not particularly defined, usually, when Au is contained more than Si, Ge, and Sn, stronger adhesive force and higher thermal conductivity can be obtained. When the light emitting chip is die-bonded, the conductive adhesive 23 is 50 Å to 1 Å.
In a state of a thin film of about 0 μm, it can be formed on the surface of the first thin film 21 in advance, or can be formed on the support side.

【0017】図2は本発明のレーザ素子に係る他の態様
を示す模式的な断面図であり、図1と同様に、レーザ素
子をレーザ光の共振方向に垂直な方向で切断した際の断
面を示しており、図1と同一符号は同一部材を示してい
る。この素子が図1の素子と異なる点は、第1の薄膜の
上に、Auよりも高融点を有する金属よりなる第2の薄
膜22を形成していることにある。この第2の薄膜22
の作用は、ダイボンディング時の加熱により、導電性接
着剤23が第1の薄膜21に混入してきて合金化し、第
1の薄膜を変質させるのを防止する作用がある。つま
り、第2の薄膜22は第1の薄膜21と導電性接着剤2
3との間のバリア層として作用し、接着力が低下するの
を防止する作用がある。第2の薄膜の材料としては例え
ばPt、Ti、Ni等を好ましく用いることができる。
また第2の薄膜の膜厚も特に限定するものではなく、第
1の薄膜とほぼ同じ膜厚か、それよりも厚くすることが
望ましい。
FIG. 2 is a schematic sectional view showing another embodiment of the laser device of the present invention. As in FIG. 1, a sectional view of the laser device cut in a direction perpendicular to the resonance direction of the laser beam. And the same reference numerals as those in FIG. 1 indicate the same members. This element differs from the element of FIG. 1 in that a second thin film 22 made of a metal having a higher melting point than Au is formed on the first thin film. This second thin film 22
Has the effect of preventing the conductive adhesive 23 from being mixed into the first thin film 21 and being alloyed by heating during die bonding, thereby preventing the first thin film from being altered. That is, the second thin film 22 is formed by the first thin film 21 and the conductive adhesive 2.
3 acts as a barrier layer between them and has an effect of preventing the adhesive strength from being reduced. As a material of the second thin film, for example, Pt, Ti, Ni or the like can be preferably used.
Also, the thickness of the second thin film is not particularly limited, and is desirably substantially the same as or larger than the first thin film.

【0018】本発明の発光素子において、酸化物基板の
第2の主面にAl、Ti、Zr、Cr、Ni、Mo、
W、Ge、Si、Sn、Zn、Cu、Mn、V、Nb等
の電気陰性度が2.0未満の金属薄膜を形成すると接着
力が向上するのかは定かではないが、他の2.0以上の
金属薄膜を形成した場合と明らかに差がある。この原因
は次のようなことが考えられる。発光チップをダイボン
ディングする際に導電性接着剤が数百℃に加熱される。
加熱時、熱は発光チップに形成された第1の薄膜、第2
の薄膜に伝わって、導電性接着剤に含まれる金属と、第
1の薄膜、第2の薄膜に含まれる金属とが一部、合金
化、若しくは共晶化する。この際に、酸化物基板の材料
と、第1の薄膜と、導電性接着剤との金属材料の組み合
わせで、何らかの物理的接着力、あるいは化学的接着力
が強まるのではないかと推察される。
In the light emitting device of the present invention, Al, Ti, Zr, Cr, Ni, Mo,
It is not clear whether the formation of a metal thin film having an electronegativity of less than 2.0, such as W, Ge, Si, Sn, Zn, Cu, Mn, V, and Nb, improves the adhesive strength. There is a clear difference from the case where the above metal thin film is formed. The possible causes are as follows. When the light emitting chip is die-bonded, the conductive adhesive is heated to several hundred degrees Celsius.
During heating, heat is applied to the first thin film and the second thin film formed on the light emitting chip.
The metal contained in the conductive adhesive and the metal contained in the first thin film and the second thin film partially alloy or eutectic. At this time, it is presumed that a combination of a metal material of the oxide substrate material, the first thin film, and the conductive adhesive may enhance some physical adhesive force or chemical adhesive force.

【0019】[0019]

【実施例】[実施例1]2インチφのサファイア基板C
面(0001)の上に、n型GaNよりなるn型コンタ
クト層と、n型AlGaNよりなるn型光閉じこめ層
と、n型AlGaNよりなる光ガイド層と、InGaN
よりなる活性層と、p型AlGaNよりなる光ガイド層
と、p型AlGaNよりなるp型光閉じこめ層と、p型
GaNよりなるp型コンタクト層とが積層されたレーザ
ウェーハを用意する。窒化物半導体の積層構造は単にレ
ーザ発振するための一例を示したものであって、この構
造に限定されるものではない。
[Embodiment 1] Sapphire substrate C of 2 inch φ
An n-type contact layer made of n-type GaN, an n-type light confinement layer made of n-type AlGaN, a light guide layer made of n-type AlGaN, and InGaN
A laser wafer is prepared in which an active layer made of p-type AlGaN, a light guide layer made of p-type AlGaN, a p-type light confinement layer made of p-type AlGaN, and a p-type contact layer made of p-type GaN are stacked. The laminated structure of the nitride semiconductor is merely an example for laser oscillation, and is not limited to this structure.

【0020】次に、このウェーハの窒化物半導体の最上
層に、所定の形状のマスクを形成した後、SiCl
ス、Clガスを用いてRIE(反応性イオンエッチン
グ)を行い、図1に示すような形状でn電極を形成すべ
きn型コンタクト層を露出させる。n型コンタクト層露
出後、マスクを形成し、再度エッチングを行い。p型コ
ンタクト層、p型クラッド層の一部をエッチングし、図
1に示すように、p型クラッド層から上をリッジ形状と
する。これらのエッチングにより、図1に示すように、
リッジ形状のストライプに対して左右対称なn型コンタ
クト層が露出される。
Next, after forming a mask of a predetermined shape on the uppermost layer of the nitride semiconductor of this wafer, RIE (reactive ion etching) is performed using SiCl 4 gas and Cl 2 gas, and FIG. An n-type contact layer on which an n-electrode is to be formed is exposed in the shape as shown. After exposing the n-type contact layer, a mask is formed and etching is performed again. A part of the p-type contact layer and the p-type cladding layer are etched to form a ridge shape from the p-type cladding layer as shown in FIG. By these etchings, as shown in FIG.
The n-type contact layer symmetrical to the ridge-shaped stripe is exposed.

【0021】n型コンタクト層露出後、最上層のp型コ
ンタクト層と、n電極を形成すべきn型コンタクト層の
表面を除く、窒化物半導体層の表面にSiOよりなる
絶縁膜をCVD法を用いて1μmの膜厚で形成する。絶
縁膜形成後、最上層のp型コンタクト層のほぼ全面に2
μmのストライプ状のNi−Auよりなるp電極を形成
し、n型コンタクト層のほぼ全面にストライプ状のTi
−Alよりなるn電極を形成する。そして、p電極の上
には同じくNi−Auよりなるパッド電極を図1に示す
ように絶縁膜を介して形成する。
After exposing the n-type contact layer, an insulating film made of SiO 2 is formed on the surface of the nitride semiconductor layer by a CVD method except for the uppermost p-type contact layer and the surface of the n-type contact layer on which the n-electrode is to be formed. To form a film having a thickness of 1 μm. After the formation of the insulating film, 2 is formed on almost the entire surface of the uppermost p-type contact layer.
A p-electrode made of Ni-Au having a stripe shape of μm is formed, and a stripe-shaped Ti
An n-electrode made of Al is formed. Then, a pad electrode made of Ni-Au is formed on the p-electrode via an insulating film as shown in FIG.

【0022】電極形成後、サファイア基板を80μmの
厚さまでラッピングと、ポリシングして研磨した後、そ
のポリシング面にCVD法を用いて、Tiよりなる第1
の薄膜を0.1μmの膜厚で形成する。
After the electrodes are formed, the sapphire substrate is wrapped to a thickness of 80 μm, polished and polished, and the polished surface is formed of a first Ti film made of Ti by CVD.
Is formed in a thickness of 0.1 μm.

【0023】続いてTiよりなる第1の薄膜の上に、A
u−Sn(70%−30%)よりなる導電性接着剤層を
0.5μmの膜厚で形成する。
Subsequently, on the first thin film made of Ti, A
A conductive adhesive layer made of u-Sn (70% -30%) is formed with a thickness of 0.5 μm.

【0024】導電性接着剤層形成後、基板を強制的に劈
開して、窒化物半導体の
After forming the conductive adhesive layer, the substrate is forcibly cleaved to form a nitride semiconductor.

【外1】 面に相当する面に共振面を作成し、バー状のレーザチッ
プを作製する。なお外1面とは窒化物半導体を六方晶系
で近似した際に表される六角柱の側面(四角形の面、M
面)に相当する面である。
[Outside 1] A resonance surface is formed on a surface corresponding to the surface, and a bar-shaped laser chip is manufactured. The outer surface is a side surface of a hexagonal prism (square surface, M
Surface).

【0025】次にバー状のレーザチップの共振面側に、
プラズマCVD装置を用いて、SiOとTiOより
なる誘電体多層膜を形成して反射鏡を形成し、バー状の
レーザチップを今度はn電極に平行な位置でスクライブ
により分割して、350×500μm角の矩形のレーザ
チップを得る。
Next, on the resonance surface side of the bar-shaped laser chip,
Using a plasma CVD apparatus, a dielectric multilayer film composed of SiO 2 and TiO 2 is formed to form a reflecting mirror, and the bar-shaped laser chip is divided by scribing at a position parallel to the n-electrode. Obtain a rectangular laser chip of × 500 μm square.

【0026】以上のようにして得られたレーザチップ
を、400℃に加熱したヒートシンクにフェースアップ
の状態でダイボンダーを用いてダイボンドする。ヒート
シンクにダイボンドされたレーザ素子を数千個作製し、
その中から1000個をランダムに抜き取り、さらにn
電極とp電極とをそれぞれ金線でワイヤーボンディング
する。ワイヤーボンディング工程中、若しくはワイヤー
ボンディング後にレーザチップがヒートシンクから剥が
れたり、浮いたりしたものを取り除いたところ、歩留は
99%以上あり、非常に強固にレーザ素子がダイボンド
されていることが判明した。さらに、このレーザ素子を
直流電流で発振させたところ、410nmのレーザ発振
を示し、1時間以上の寿命であった。
The laser chip obtained as described above is die-bonded to a heat sink heated to 400 ° C. in a face-up state using a die bonder. Thousands of laser elements die-bonded to heat sink
Randomly extract 1000 pieces from among them, and furthermore, n
The electrode and the p-electrode are each wire-bonded with a gold wire. When the laser chip was removed from the heat sink during the wire bonding step or after the wire bonding or was removed, the yield was 99% or more, and it was found that the laser element was die bonded very firmly. Further, when this laser element was oscillated by a direct current, it showed a laser oscillation of 410 nm and a life of one hour or more.

【0027】[実施例2]実施例1において、Tiより
なる第1の薄膜の上に、Ptよりなる第2の薄膜を0.
2μmの膜厚で形成し、その第2の薄膜の上にAu−S
iよりなる導電性接着剤層を同様に形成する。その他は
実施例1と同様にしてレーザチップをダイボンドした
後、電極をワイヤーボンドしたところ、歩留は99.5
%以上であり、レーザチップがヒートシンクから剥がれ
たものは発見されなかった。さらにレーザ素子の寿命も
実施例1とほぼ同等の寿命であった。
Example 2 In Example 1, a second thin film made of Pt was placed on top of the first thin film made of Ti.
It is formed with a thickness of 2 μm, and Au-S is formed on the second thin film.
A conductive adhesive layer made of i is similarly formed. Otherwise, the laser chip was die-bonded in the same manner as in Example 1, and the electrodes were wire-bonded. The yield was 99.5.
%, And no laser chip was peeled off from the heat sink. Further, the life of the laser element was almost the same as that of Example 1.

【0028】[実施例3]実施例1において、基板にス
ピネル基板を用い、スピネル基板の第1の主面に窒化物
半導体を成長させ、成長後、研磨したスピネル基板の第
2の主面側にCrよりなる第1の薄膜を0.1μmの膜
厚で形成し、そのCrよりなる第1の薄膜の上にAu−
Ge(70%−30%)よりなる導電性接着剤層を同じ
く0.5μmの膜厚で形成する他は同様にしてレーザチ
ップを得て、ワイヤーボンディングを行ったところ、同
じく歩留は99%以上であり、レーザ素子の寿命も実施
例1のものとほぼ同等であった。
[Example 3] In Example 1, a spinel substrate was used as the substrate, a nitride semiconductor was grown on the first main surface of the spinel substrate, and after growth, the polished spinel substrate was polished on the second main surface side. Then, a first thin film made of Cr is formed to a thickness of 0.1 μm, and an Au- thin film is formed on the first thin film made of Cr.
A laser chip was obtained and wire-bonded in the same manner except that a conductive adhesive layer made of Ge (70% -30%) was also formed with a thickness of 0.5 μm, and the yield was also 99%. As described above, the life of the laser element was almost equal to that of the first embodiment.

【0029】[実施例4]実施例3において、Crより
なる第1の薄膜の上に、Wよりなる第2の薄膜を0.2
μmの膜厚で形成し、その第2の薄膜の上にAu−Si
よりなる導電性接着剤層を同様に形成する。その他は実
施例1と同様にしてレーザチップをダイボンドした後、
電極をワイヤーボンドしたところ、歩留は99.5%以
上であり、レーザチップがヒートシンクから剥がれたも
のは発見されなかった。さらにレーザ素子の寿命も実施
例1とほぼ同等の寿命であった。
[Embodiment 4] In the third embodiment, a second thin film made of W is formed on the first thin film made of Cr by 0.2.
μm, and Au—Si on the second thin film.
A conductive adhesive layer made of the same is formed in the same manner. Otherwise, after die bonding the laser chip in the same manner as in Example 1,
When the electrodes were wire-bonded, the yield was 99.5% or more, and no laser chip was peeled off from the heat sink. Further, the life of the laser element was almost the same as that of Example 1.

【0030】[実施例5]実施例1において、基板にス
ピネル基板を用い、スピネル基板の第1の主面に窒化物
半導体を成長させ、成長後、研磨したスピネル基板の第
2の主面側にNiよりなる第1の薄膜を0.1μmの膜
厚で形成し、そのNiよりなる第1の薄膜の上にAu−
Si(70%−30%)よりなる導電性接着剤層を同じ
く0.5μmの膜厚で形成する他は同様にしてレーザチ
ップを得て、ワイヤーボンディングを行ったところ、同
じく歩留は99%以上であり、レーザ素子の寿命も実施
例1のものとほぼ同等であった。
Example 5 In Example 1, a spinel substrate was used as the substrate, a nitride semiconductor was grown on the first main surface of the spinel substrate, and after growth, the second main surface of the polished spinel substrate was polished. First, a first thin film made of Ni is formed to a thickness of 0.1 μm, and an Au- thin film is formed on the first thin film made of Ni.
A laser chip was obtained and wire-bonded in the same manner except that a conductive adhesive layer made of Si (70% -30%) was also formed with a thickness of 0.5 μm, and the yield was also 99%. As described above, the life of the laser element was almost equal to that of the first embodiment.

【0031】[実施例6]実施例1において、研磨した
サファイア基板の第2の主面側にZrよりなる第1の薄
膜を0.1μmの膜厚で形成し、そのZrよりなる第1
の薄膜の上にAu−Sn(70%−30%)よりなる導
電性接着剤層を同じく0.5μmの膜厚で形成する他は
同様にしてレーザチップを得て、ワイヤーボンディング
を行ったところ、同じく歩留は99%以上であり、レー
ザ素子の寿命も実施例1のものとほぼ同等であった。
[Embodiment 6] In Embodiment 1, a first thin film made of Zr is formed to a thickness of 0.1 μm on the polished sapphire substrate on the second principal surface side, and the first thin film made of Zr is formed.
A laser chip was obtained and wire-bonded in the same manner as above except that a conductive adhesive layer made of Au-Sn (70% -30%) was also formed on the thin film with a thickness of 0.5 μm. Similarly, the yield was 99% or more, and the life of the laser element was almost the same as that of the first embodiment.

【0032】[実施例7]実施例1において、研磨した
サファイア基板の第2の主面側にMoよりなる第1の薄
膜を0.1μmの膜厚で形成し、Moよりなる第1の薄
膜の上にAu−Sn(70%−30%)よりなる導電性
接着剤層を同じく0.5μmの膜厚で形成する他は同様
にしてレーザチップを得て、ワイヤーボンディングを行
ったところ、同じく歩留は99%以上であり、レーザ素
子の寿命も実施例1のものとほぼ同等であった。
[Embodiment 7] In the first embodiment, a first thin film made of Mo is formed to a thickness of 0.1 μm on the polished sapphire substrate on the second main surface side, and the first thin film made of Mo is formed. A laser chip was obtained and wire-bonded in the same manner except that a conductive adhesive layer made of Au-Sn (70% -30%) was formed with a thickness of 0.5 μm on the same. The yield was 99% or more, and the life of the laser element was almost the same as that of the first embodiment.

【0033】[実施例8〜16]実施例1において、研
磨したサファイア基板の第2の主面側に、それぞれAl
(例8)、W(例9)、Si(例10)、Sn(例1
1)、Zn(例12)、Cu(例13)、Mn(例1
4)、V(例15)、Nb(例16)よりなる第1の薄
膜を0.1μmの膜厚で形成し、その第1の薄膜の上に
Au−Sn(70%−30%)よりなる導電性接着剤層
を同じく0.5μmの膜厚で形成する他は同様にしてレ
ーザチップを得て、ワイヤーボンディングを行ったとこ
ろ、それぞれ歩留は実施例1に比較して93〜95%以
上とやや低下したが、レーザ素子の寿命は実施例1のも
のとほぼ同等であった。
[Embodiments 8 to 16] In the first embodiment, Al was added to the polished sapphire substrate on the second main surface side.
(Example 8), W (Example 9), Si (Example 10), Sn (Example 1)
1), Zn (Example 12), Cu (Example 13), Mn (Example 1)
4) A first thin film made of V (Example 15) and Nb (Example 16) is formed to a thickness of 0.1 μm, and Au-Sn (70% -30%) is formed on the first thin film. A laser chip was obtained and wire-bonded in the same manner except that the conductive adhesive layer was formed to a thickness of 0.5 μm, and the yield was 93 to 95% as compared with Example 1. Although slightly reduced as described above, the life of the laser element was almost equal to that of the first embodiment.

【0034】[比較例1]実施例1において、研磨した
サファイア基板の第2の主面側にPd(電気陰性度=
2.2よりなる第1の薄膜を0.1μmの膜厚で形成
し、その第1の薄膜の上にAu−Sn(70%−30
%)よりなる導電性接着剤層を同じく0.5μmの膜厚
で形成する他は同様にしてレーザチップを得て、ワイヤ
ーボンディングを行ったところ、同じく歩留は85%に
低下した。
[Comparative Example 1] In Example 1, Pd (electronegativity =
A first thin film of 2.2 is formed to a thickness of 0.1 μm, and Au-Sn (70% -30%) is formed on the first thin film.
%), And a laser chip was obtained in the same manner as above, except that the conductive adhesive layer was formed with a thickness of 0.5 μm, and wire bonding was performed. The yield also decreased to 85%.

【0035】[比較例2]実施例1において、研磨した
サファイア基板の第2の主面側にPt(電気陰性度=
2.2よりなる第1の薄膜を0.1μmの膜厚で形成
し、その第1の薄膜の上に銀ペーストよりなる導電性接
着剤層を同じく0.5μmの膜厚で形成する他は同様に
してレーザチップを得て、ワイヤーボンディングを行っ
たところ、歩留は60%に低下した。
[Comparative Example 2] In Example 1, Pt (electronegativity =
A second thin film of 2.2 is formed with a thickness of 0.1 μm, and a conductive adhesive layer of silver paste is formed on the first thin film with a thickness of 0.5 μm. When a laser chip was obtained in the same manner and wire bonding was performed, the yield was reduced to 60%.

【0036】[比較例3]実施例1において、研磨した
サファイア基板の第2の主面側にAu(電気陰性度=
2.4)よりなる第1の薄膜を0.1μmの膜厚で形成
し、その第1の薄膜の上にAu−Geよりなる導電性接
着剤層を同じく0.5μmの膜厚で形成する他は同様に
してレーザチップを得て、ワイヤーボンディングを行っ
たところ、歩留は88%に低下した。
[Comparative Example 3] In Example 1, Au (electronegativity =
A first thin film of 2.4) is formed with a thickness of 0.1 μm, and a conductive adhesive layer of Au—Ge is formed on the first thin film with a thickness of 0.5 μm. Otherwise, a laser chip was obtained in the same manner and wire bonding was performed. As a result, the yield was reduced to 88%.

【0037】[0037]

【発明の効果】以上説明したように、本発明の窒化物半
導体素子では、窒化物半導体層を形成していない基板側
に、特定の金属よりなる薄膜を形成し、この特定の金属
を形成した状態で、支持体に加熱しながらAu−Sn等
の導電性接着剤を介してボンディングすることにより、
発光チップの接着性が向上する。さらに、第1の薄膜の
上に高融点金属よりなる第2の薄膜を形成すると、バリ
ア効果が高まりさらに接着性が向上する。さらにまた、
本発明の発光素子ではボンディング材料がすべて金属を
含む熱伝導性のよい材料を使用しているために、特にレ
ーザ素子のような放熱性を要求される発光デバイスに使
用すると、素子の寿命を向上させる上でも非常に都合が
よい。以上、本発明の発光素子ではレーザ素子について
説明したが、本発明はレーザ素子だけではなく、LED
素子にも適用することも可能である。
As described above, in the nitride semiconductor device of the present invention, a thin film made of a specific metal is formed on the substrate side where no nitride semiconductor layer is formed, and this specific metal is formed. In this state, by bonding to the support via a conductive adhesive such as Au-Sn while heating,
The adhesiveness of the light emitting chip is improved. Further, when a second thin film made of a high melting point metal is formed on the first thin film, the barrier effect is enhanced and the adhesiveness is further improved. Furthermore,
In the light emitting device of the present invention, since the bonding material uses a material having good heat conductivity including all metals, the life of the device is improved especially when used for a light emitting device requiring heat radiation such as a laser device. It is very convenient in making it work. As described above, the laser element has been described as the light emitting element of the present invention.
It is also possible to apply to an element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の発光素子に係る一構造を示す模式断
面図。
FIG. 1 is a schematic cross-sectional view illustrating one structure according to a light emitting element of the present invention.

【図2】 本発明の発光素子に係る他の構造を示す模式
断面図。
FIG. 2 is a schematic cross-sectional view showing another structure according to the light emitting element of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・酸化物基板 2・・・・n型層 3・・・・活性層 4・・・・p型層 10・・・・n電極 11・・・・p電極 12・・・・パッド電極 13・・・・絶縁膜 21・・・・第1の薄膜 22・・・・第2の薄膜 23・・・・導電性接着剤 30・・・・支持体 DESCRIPTION OF SYMBOLS 1 ... Oxide substrate 2 ... N-type layer 3 ... Active layer 4 ... P-type layer 10 ... N-electrode 11 ... P-electrode 12 ... Pad electrode 13: insulating film 21: first thin film 22: second thin film 23: conductive adhesive 30: support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今泉 幾子 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 (72)発明者 丸岡 亜寿佳 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 (72)発明者 吉田 妃呂子 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 Fターム(参考) 5F041 AA33 AA37 AA41 AA44 CA05 CA40 CA46 DA02 DA07 DA12 5F073 AA11 AA83 CA07 CB05 DA25 DA32 DA33 FA22  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ikuizumi Ikuizumi 491, Kaminakacho Oka, Anan-shi, Tokushima Prefecture Inside Nichia Chemical Industry Co., Ltd. 100 Nichia Kagaku Kogyo Co., Ltd. 5F073 AA11 AA83 CA07 CB05 DA25 DA32 DA33 FA22

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第1の主面と第2の主面とを有する酸化
物基板の第1の主面側に窒化物半導体が成長され、第2
の主面側にAl、Ti、Zr、Cr、Ni、Mo、W、
Ge、Si、Sn、Zn、Cu、Mn、V、Nbよりな
る群から選択された少なくとも一種の金属を含む第1の
放熱薄膜が形成された発光チップが、第1の放熱薄膜と
支持体表面とが対向した状態で、熱伝導性および導電性
を有する接着剤を介して、支持体にダイボンディングさ
れてなる窒化物半導体発光素子であって、 前記熱伝導性および導電性を有する接着剤と、前記第1
の放熱薄膜との間にPt、Ti、Niよりなる群から選
択された少なくとも一種の金属を含み、前記第1の放熱
薄膜の膜厚とほぼ同じか、もしくはそれよりも厚い膜厚
である第2の放熱薄膜が形成されていることを特徴とす
る窒化物半導体発光素子。
An oxide substrate having a first main surface and a second main surface, wherein a nitride semiconductor is grown on the first main surface side;
Al, Ti, Zr, Cr, Ni, Mo, W,
The light-emitting chip on which the first heat-dissipating thin film containing at least one metal selected from the group consisting of Ge, Si, Sn, Zn, Cu, Mn, V, and Nb is formed, comprises a first heat-dissipating thin film and a support surface. And a nitride semiconductor light emitting device die-bonded to a support via an adhesive having thermal conductivity and conductivity, wherein the adhesive having thermal conductivity and conductivity is provided. , The first
A first heat radiation thin film that includes at least one metal selected from the group consisting of Pt, Ti, and Ni between the first heat radiation thin film and the first heat radiation thin film; 2. A nitride semiconductor light emitting device, wherein the heat dissipation thin film is formed.
【請求項2】 前記第1の放熱薄膜の膜厚が、50オン
グストローム〜10μmであることを特徴とする請求項
1記載の窒化物半導体発光素子。
2. The nitride semiconductor light emitting device according to claim 1, wherein said first heat dissipation thin film has a thickness of 50 Å to 10 μm.
【請求項3】 前記第1の放熱薄膜が、Ti、Cr、N
i、Zrよりなる群から選択された少なくとも一種の金
属を含むことを特徴とする請求項1又は2に記載の窒化
物半導体発光素子。
3. The method according to claim 1, wherein the first heat radiation thin film is made of Ti, Cr, N
3. The nitride semiconductor light emitting device according to claim 1, comprising at least one metal selected from the group consisting of i and Zr.
【請求項4】 前記第1の放熱薄膜がTiを含む金属で
あり、前記第2の放熱膜がPtであることを特徴とする
請求項1から3のいずれかに記載の窒化物半導体発光素
子。
4. The nitride semiconductor light emitting device according to claim 1, wherein said first heat radiation thin film is a metal containing Ti, and said second heat radiation film is Pt. .
【請求項5】 前記熱伝導性および導電性を有する接着
剤はSi、Ge、Snよりなる群から選択された少なく
とも一種の金属と、Auとを含むことを特徴とする請求
項1から4のいずれかに記載の窒化物半導体発光素子。
5. The method according to claim 1, wherein the adhesive having heat conductivity and conductivity contains Au and at least one metal selected from the group consisting of Si, Ge, and Sn. The nitride semiconductor light emitting device according to any one of the above.
【請求項6】 前記熱伝導性および導電性を有する接着
剤はSiとAuとを含むことを特徴とする請求項1から
5のいずれかに記載の窒化物半導体発光素子。
6. The nitride semiconductor light emitting device according to claim 1, wherein the adhesive having thermal conductivity and electrical conductivity contains Si and Au.
【請求項7】 前記窒化物半導体発光素子が窒化物半導
体発光素子素子であり、前記支持体がヒートシンクであ
ることを特徴とする請求項1から6のいずれかに記載の
窒化物半導体発光素子。
7. The nitride semiconductor light emitting device according to claim 1, wherein said nitride semiconductor light emitting device is a nitride semiconductor light emitting device, and said support is a heat sink.
JP2001375085A 2001-12-07 2001-12-07 Nitride semiconductor laser device Expired - Fee Related JP3620498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375085A JP3620498B2 (en) 2001-12-07 2001-12-07 Nitride semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375085A JP3620498B2 (en) 2001-12-07 2001-12-07 Nitride semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26191996A Division JP3495853B2 (en) 1996-10-02 1996-10-02 Nitride semiconductor laser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003011426A Division JP4288947B2 (en) 2003-01-20 2003-01-20 Manufacturing method of nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2002237646A true JP2002237646A (en) 2002-08-23
JP3620498B2 JP3620498B2 (en) 2005-02-16

Family

ID=19183517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375085A Expired - Fee Related JP3620498B2 (en) 2001-12-07 2001-12-07 Nitride semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3620498B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373640C (en) * 2004-08-02 2008-03-05 晶元光电股份有限公司 LED with bonding layer and making method thereof
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373640C (en) * 2004-08-02 2008-03-05 晶元光电股份有限公司 LED with bonding layer and making method thereof
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8704246B2 (en) 2005-06-22 2014-04-22 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8895957B2 (en) 2005-06-22 2014-11-25 Seoul Viosys Co., Ltd Light emitting device and method of manufacturing the same
US9209223B2 (en) 2005-06-22 2015-12-08 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
US9627435B2 (en) 2005-06-22 2017-04-18 Seoul Viosys Co., Ltd. Light emitting device
US9929208B2 (en) 2005-06-22 2018-03-27 Seoul Vlosys Co., Ltd. Light emitting device
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device

Also Published As

Publication number Publication date
JP3620498B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
US7141828B2 (en) Flip-chip light emitting diode with a thermally stable multiple layer reflective p-type contact
KR101028965B1 (en) Light emitting diode including barrier layers and manufacturing methods therefor
JP3745763B2 (en) Gallium nitride light emitting diode for flip chip bonding and method for manufacturing the same
JP3259811B2 (en) Method for manufacturing nitride semiconductor device and nitride semiconductor device
JP3511970B2 (en) Nitride semiconductor light emitting device
TWI449201B (en) High reflectivity p-contact for ingan leds
JP5100301B2 (en) Light emitting device
JP4572597B2 (en) Nitride semiconductor device
US20100207145A1 (en) Thin film light emitting diode
JP4597796B2 (en) Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP3087831B2 (en) Nitride semiconductor device
JPH07235729A (en) Gallium nitride compound semiconductor laser element
JP2007067184A (en) Led package
KR100890468B1 (en) Light emitting diode device using conductive interconnection part
JP3618989B2 (en) Semiconductor laser device
JP3495853B2 (en) Nitride semiconductor laser
JP4622426B2 (en) Semiconductor light emitting device
JP3620498B2 (en) Nitride semiconductor laser device
JP4288947B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2004006919A (en) Nitride semiconductor device
JP3309953B2 (en) Nitride semiconductor laser diode
JP2950192B2 (en) Nitride semiconductor electrode
JP2007042985A (en) Gallium-nitride-based compound semiconductor light-emitting device and packaging body thereof
JPH09181394A (en) Nitride semiconductor laser diode
KR20090032212A (en) Nitride semiconductor light emitting device for flip-chip

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees