JP2002237468A - Method of forming electrode passed through substrate, and substrate having through electrode - Google Patents

Method of forming electrode passed through substrate, and substrate having through electrode

Info

Publication number
JP2002237468A
JP2002237468A JP2001034528A JP2001034528A JP2002237468A JP 2002237468 A JP2002237468 A JP 2002237468A JP 2001034528 A JP2001034528 A JP 2001034528A JP 2001034528 A JP2001034528 A JP 2001034528A JP 2002237468 A JP2002237468 A JP 2002237468A
Authority
JP
Japan
Prior art keywords
electrode
hole
substrate
oxide film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001034528A
Other languages
Japanese (ja)
Other versions
JP3599325B2 (en
Inventor
Isao Takizawa
功 滝沢
Akinobu Satou
倬暢 佐藤
Tatsuo Suemasu
龍夫 末益
Kazuhisa Itoi
和久 糸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2001034528A priority Critical patent/JP3599325B2/en
Publication of JP2002237468A publication Critical patent/JP2002237468A/en
Application granted granted Critical
Publication of JP3599325B2 publication Critical patent/JP3599325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

PROBLEM TO BE SOLVED: To form a through electrode passed through a silicon substrate and having a high aspect ratio. SOLUTION: A through hole 12 having a high aspect ratio is formed by a photo-excited electrolytic polishing process in a silicon substrate 11. The inner wall of the through hole 12 is subjected to oxidation to form an oxide film 21 as an insulating layer. Then a metal 23 is filled into the through hole 12 by a melted metal refilling process to form a through electrode (23). The through electrode 12 having a high aspect ratio can be easily formed in the substrate 11, and thus there can be easily achieved a semiconductor package having, e.g. stacked silicon IC chips.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】この発明は、シリコン基板等
の基板に貫通電極を形成する貫通電極形成方法と、当該
方法により形成された貫通電極を少なくとも1ヶ所有す
る基板、および当該基板を用いたデバイスに関し、例え
ば、シリコンICチップを積層して高密度実装する際の
シリコン基板に貫通電極を形成する場合のように、高ア
スペクト比の貫通電極を必要とする場合に好適に適用で
きる基板の貫通電極形成方法と、貫通電極を有するシリ
コン等の基板、および当該基板をベースにした電子デバ
イスや光デバイスなどの各種デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a through electrode forming method for forming a through electrode on a substrate such as a silicon substrate, a substrate having at least one through electrode formed by the method, and a device using the substrate. For example, a through electrode of a substrate that can be suitably applied when a through electrode with a high aspect ratio is required, such as when a through electrode is formed on a silicon substrate when silicon IC chips are stacked and mounted at high density The present invention relates to a formation method, a substrate made of silicon or the like having a through electrode, and various devices such as an electronic device and an optical device based on the substrate.

【0002】[0002]

【従来の技術】例えば、シリコン基板に表裏を貫通する
貫通電極を形成する方法としては、異方性エッチングを
行なった後、酸化膜を形成し、半田で導通を取る方法が
提案されている。この場合、図11に示すように、異方
性エッチングでシリコン基板1に形成した貫通孔2は、
基板厚さに対する開口部の面積が大きなものとなる。3
は酸化膜、4は半田を示す。また、シリコン基板に貫通
電極を形成する、ICP−RIE(Inductively Couple
d Plasma - Reactive Ion Etching)法を用いて貫通孔
を形成し、貫通孔内壁を金属メッキして貫通電極を形成
する方法も提案されてる。
2. Description of the Related Art For example, as a method of forming a through electrode penetrating the front and back of a silicon substrate, a method has been proposed in which anisotropic etching is performed, an oxide film is formed, and conduction is performed by soldering. In this case, as shown in FIG. 11, the through holes 2 formed in the silicon substrate 1 by anisotropic etching are:
The area of the opening relative to the thickness of the substrate becomes large. 3
Indicates an oxide film, and 4 indicates solder. Also, an ICP-RIE (Inductively Coupled) for forming a through electrode on a silicon substrate.
A method has been proposed in which a through-hole is formed by using a d-plasma-reactive ion etching method, and the inner wall of the through-hole is metal-plated to form a through-electrode.

【0003】一方、シリコン基板に高アスペクト比(孔
深さに対する開口部面積)の貫通孔を形成する技術とし
て、光励起電解研磨法(J.Electrochem.Soc., Vol.137,
No.2,pp653-659参照)が知られている。この光励起電解
研磨法の詳細は後述する。
On the other hand, as a technique for forming a through hole having a high aspect ratio (opening area with respect to hole depth) in a silicon substrate, a photo-excited electrolytic polishing method (J. Electrochem. Soc., Vol.
No.2, pp653-659) is known. The details of the photoexcited electrolytic polishing method will be described later.

【0004】[0004]

【発明が解決しようとする課題】上記従来の異方性エッ
チング・半田の方法では、エッチング形状に制約があ
り、シリコン基板1の厚さに対する貫通孔の開口部の面
積が大きくなるので、高アスペクト比の貫通電極を形成
することはできず、シリコンICチップの高密度実装を
行なおうとする場合における、シリコン基板への貫通電
極の形成には向かない。
In the above-described conventional anisotropic etching / solder method, the etching shape is restricted, and the area of the opening of the through hole becomes large with respect to the thickness of the silicon substrate 1. It is not possible to form a through electrode with a specific ratio, and it is not suitable for forming a through electrode on a silicon substrate when high-density mounting of a silicon IC chip is to be performed.

【0005】また、ICP−RIE・金属メッキの方法
では、反応ガスやメッキ液が貫通孔内の奥深くまで進入
できないので、やはり、高アスペクト比の貫通電極を形
成することは困難である。
Also, in the ICP-RIE / metal plating method, it is difficult to form a through electrode having a high aspect ratio because the reaction gas and the plating solution cannot enter deep into the through hole.

【0006】また、光励起電解研磨法により形成した貫
通孔の形状では、サイドブランチ等が生じるため平坦な
壁面が得られない。
Further, in the shape of the through hole formed by the photoexcited electrolytic polishing method, a flat wall surface cannot be obtained because side branches and the like are generated.

【0007】本発明は上記事情に鑑みてなされたもの
で、高アスペクト比の貫通電極を形成することが可能で
あり、また、貫通電極が形成される貫通孔の内壁を平坦
にできる基板の貫通電極形成方法および貫通電極を有す
る基板を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to form a through electrode having a high aspect ratio, and to penetrate a substrate capable of flattening the inner wall of a through hole in which the through electrode is formed. An object is to provide a method for forming an electrode and a substrate having a through electrode.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明は、シリコン基板等の基板に貫通電極を形成する貫通
電極形成方法であって、基板に高アスペクト比の貫通孔
を形成し、この貫通孔の内壁を酸化処理して絶縁層とし
ての酸化膜を形成し、次いで、前記貫通孔に溶融金属埋
め戻し法により金属を充填することを特徴とする。
According to the present invention, there is provided a method of forming a through electrode in a substrate such as a silicon substrate, comprising forming a through hole having a high aspect ratio in the substrate. An inner wall of the through-hole is oxidized to form an oxide film as an insulating layer, and then the through-hole is filled with a metal by a backfill method of molten metal.

【0009】請求項2は、請求項1の基板の貫通電極形
成方法において、貫通孔内壁に絶縁層としての酸化膜を
形成するに際して、貫通孔内壁に形成した酸化膜を一旦
除去し、その後再び貫通孔内壁を酸化処理して酸化膜を
形成することを特徴とする。
According to a second aspect of the present invention, in the method of forming a through-electrode for a substrate according to the first aspect, when forming an oxide film as an insulating layer on the inner wall of the through-hole, the oxide film formed on the inner wall of the through-hole is once removed, and then again. An oxide film is formed by oxidizing the inner wall of the through hole.

【0010】請求項3は、請求項1の基板の貫通電極形
成方法において、貫通孔内壁に絶縁層としての酸化膜を
形成するに際して、貫通孔内壁に高濃度の不純物拡散を
行って、酸化膜の外側に不純物拡散層を形成することを
特徴とする。
According to a third aspect of the present invention, in the method for forming a through electrode of a substrate according to the first aspect, when forming an oxide film as an insulating layer on the inner wall of the through hole, a high concentration impurity diffusion is performed on the inner wall of the through hole. Is characterized in that an impurity diffusion layer is formed outside the substrate.

【0011】請求項4は、貫通電極を有するシリコン等
の基板であって、前記貫通電極は、光励起電解研磨法に
より形成され、内壁に酸化膜を有する貫通孔と、前記貫
通孔に充填された金属よりなり、前記貫通電極は前記基
板内に少なくとも1カ所形成されている貫通電極を有す
る基板を特徴とする。
According to a fourth aspect of the present invention, there is provided a substrate made of silicon or the like having a through electrode, wherein the through electrode is formed by a photo-excited electrolytic polishing method, and has a through hole having an oxide film on an inner wall, and is filled in the through hole. The through-electrode is made of metal, and the through-electrode is a substrate having at least one through-electrode formed in the substrate.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図10を参照して説明する。この実施形態は、例え
ば、シリコンICチップを積層して高密度実装する際の
シリコン基板に貫通電極を形成する場合を想定してい
る。 まず、図1(イ)に示すように、シリコン基板11
に、KOH等のエッチング液を用いた異方性エッチング
によりV形凹所(この例は四角錐状の凹所)11aを形
成する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIGS. In this embodiment, for example, it is assumed that a through electrode is formed on a silicon substrate when silicon IC chips are stacked and mounted at high density. First, as shown in FIG.
Then, a V-shaped recess (in this example, a pyramid-shaped recess) 11a is formed by anisotropic etching using an etching solution such as KOH.

【0013】次いで、前記シリコン基板11のV形凹
所11aの位置に、光励起電解研磨法により図1(ロ)
のように貫通孔12を形成する。光励起電解研磨法によ
る貫通孔12の形成の原理を図2に示した光励起電解研
磨装置10および図3を参照して説明する。前記のよう
に表面11bに予めKOHによりV形凹所11aを形成
したn型のシリコン基板11を、電解槽18内のHF溶
液からなる電解液13に浸漬し、このシリコン基板11
の前記V形凹所11aに対応する裏面11cに赤外線フ
ィルタ17を通して光(光源を14で示す)を照射しつ
つ、陽極とした前記シリコン基板11と陰極電極15と
の間に電流(直流電源を16で示す)を流すと、シリコ
ン基板11の前記V形凹所位置が選択的にエッチングさ
れ、このV形凹所位置に貫通孔12が形成される。選択
的にエッチングされる原理を説明すると、図3に示すよ
うに、n型のシリコン基板2の裏面に光14aを照射す
ると、その光照射による励起でシリコン基板2の裏面で
少数キャリア(正孔)が生成され、その少数キャリアが
表面側の四角錐状のV形凹所11aの先端に集中するこ
とにより、V形凹所11aの先端のみが電気化学的にエ
ッチングされ、そのエッチングが進行して貫通孔が形成
される。この光励起電解研磨法による貫通孔12の形成
の具体的な実施例としては、例えば、50℃、2.5w
t%のHFエッチング液中にて、光の照度6mW/c
2、印加電流0.1mA、印加時間24時間で研磨を
行い、例えば直径15μm、深さ400μmの貫通孔を
形成する。
Next, at the position of the V-shaped recess 11a of the silicon substrate 11, a photo-excited electrolytic polishing method is used as shown in FIG.
The through hole 12 is formed as shown in FIG. The principle of forming the through holes 12 by the photoexcited electrolytic polishing method will be described with reference to the photoexcited electrolytic polishing apparatus 10 shown in FIG. 2 and FIG. The n-type silicon substrate 11 having the V-shaped recess 11a formed in advance on the surface 11b with KOH as described above is immersed in the electrolytic solution 13 composed of an HF solution in the electrolytic bath 18, and the silicon substrate 11
While irradiating light (the light source is indicated by 14) to the back surface 11c corresponding to the V-shaped recess 11a through an infrared filter 17, a current (DC power supply is applied) between the silicon substrate 11 serving as an anode and the cathode electrode 15 is provided. 16), the V-shaped recess position of the silicon substrate 11 is selectively etched, and the through hole 12 is formed at the V-shaped recess position. The principle of selective etching will be described. As shown in FIG. 3, when light 14a is irradiated on the back surface of the n-type silicon substrate 2, minority carriers (holes) are excited on the back surface of the silicon substrate 2 by the light irradiation. ) Is generated, and the minority carriers are concentrated at the tip of the V-shaped recess 11a in the form of a pyramid on the surface side, so that only the tip of the V-shaped recess 11a is electrochemically etched, and the etching proceeds. Thus, a through hole is formed. As a specific example of the formation of the through hole 12 by the photoexcited electrolytic polishing method, for example, 50 ° C., 2.5 w
Illuminance of light 6mW / c in t% HF etchant
Polishing is performed with m 2 , an applied current of 0.1 mA, and an applied time of 24 hours to form a through hole having a diameter of 15 μm and a depth of 400 μm, for example.

【0014】次いで、前記貫通孔12の内壁を酸化し
て、図1(ハ)に示すように、絶縁層としての酸化膜2
1を形成する。酸化膜21の形成は、例えば熱酸化法に
より形成することができる。熱酸化の具体的な実施例と
しては、例えば、1100℃、2000cc/min.のスチ
ームを流したウェット雰囲気に3時間曝して、酸化膜2
1を形成する。
Next, the inner wall of the through hole 12 is oxidized to form an oxide film 2 as an insulating layer as shown in FIG.
Form one. The oxide film 21 can be formed by, for example, a thermal oxidation method. As a specific embodiment of the thermal oxidation, for example, the oxide film 2 is exposed to a wet atmosphere in which steam at 1100 ° C. and 2000 cc / min.
Form one.

【0015】なお、絶縁層として酸化膜21を形成する
場合、光励起電解研磨法で設けた貫通孔の内壁はサイド
ブランチ等が生じて平坦な内壁面が得られないので、一
旦形成した酸化膜21を除去し、再度酸化して酸化膜を
形成することが望ましい。これにより、貫通孔12の内
壁面を平坦化でき、良好な貫通電極を形成できる。な
お、酸化膜除去は、BOE(バッファードフッ酸)等に
より貫通孔12内の酸化膜を選択的にエッチングするこ
とで行うことができる。また、場合によっては、前記酸
化膜除去と酸化膜再形成の工程を複数回繰り返すと、貫
通孔12の内壁面を一層平坦化することができる。
When the oxide film 21 is formed as an insulating layer, the inner wall of the through-hole formed by the photoexcited electrolytic polishing method has side branches and the like, so that a flat inner wall surface cannot be obtained. Is desirably removed and oxidized again to form an oxide film. Thereby, the inner wall surface of the through hole 12 can be flattened, and a good through electrode can be formed. The removal of the oxide film can be performed by selectively etching the oxide film in the through hole 12 using BOE (buffered hydrofluoric acid) or the like. In some cases, when the steps of removing the oxide film and reforming the oxide film are repeated a plurality of times, the inner wall surface of the through hole 12 can be further flattened.

【0016】また、酸化膜を形成する際に、高濃度の不
純物拡散を行い、それによって形成される層(不純物拡
散槽)をシールド層として用いることができる。図4に
不純物拡散により形成した不純物拡散層を22で示す。
シールド層の形成により、ノイズを抑制できる。拡散さ
せる不純物としては、例えば、n型シリコン基板の場
合、ボロン等のp型層を形成する物質を拡散させるとよ
い。また、不純物拡散は例えば熱拡散法により行なうこ
とができる。この熱拡散法によれば、不純物拡散層22
の上の絶縁層(酸化膜21)の形成も同時に行なうこと
ができるので、能率的である。熱拡散による不純物拡散
の具体的な実施例としては、例えばn型シリコン基板に
ボロンを拡散する場合、固相ないしは気相の不純源を用
い、950℃、1時間、窒素雰囲気でボロンガラスをデ
ポジションした後、1,100℃、ウェット酸化雰囲
気、3時間ドライブインを行うと、例えば、2μm程度
の高濃度P++層(不純物拡散層22)が形成される。
Further, when forming an oxide film, high-concentration impurity diffusion is performed, and a layer (impurity diffusion tank) formed thereby can be used as a shield layer. FIG. 4 shows an impurity diffusion layer 22 formed by impurity diffusion.
Noise can be suppressed by forming the shield layer. As an impurity to be diffused, for example, in the case of an n-type silicon substrate, a substance which forms a p-type layer such as boron may be diffused. The impurity diffusion can be performed by, for example, a thermal diffusion method. According to this thermal diffusion method, the impurity diffusion layer 22
Since the formation of the insulating layer (oxide film 21) on the substrate can be performed at the same time, it is efficient. As a specific example of impurity diffusion by thermal diffusion, for example, when boron is diffused into an n-type silicon substrate, boron glass is decomposed in a nitrogen atmosphere at 950 ° C. for one hour using a solid or vapor impurity source. After the positioning, drive-in is performed at 1,100 ° C. in a wet oxidizing atmosphere for 3 hours to form, for example, a high-concentration P ++ layer (impurity diffusion layer 22) of about 2 μm.

【0017】次いで、溶融金属埋め戻し法により、図1
(ニ)に示すように貫通孔12内に金属23を充填す
る。溶融金属埋め戻し法とは、被加工対象となるシリコ
ン基板(ワーク)に形成された微細孔などの微細空間に
金属を充填する方法であって、まず、金属を充填しよう
とするワークの雰囲気圧を減圧し、次いで減圧状態を保
ったまま、前記ワークを溶融金属に挿入し、次いで前記
溶融金属の雰囲気圧を加圧して、金属挿入前後における
雰囲気圧差により前記空間に溶融金属を充填し、次いで
ワークを溶融金属槽から引き上げて冷やすことを特徴と
する方法である。ここで、充填する金属としては、イン
ジウム(In)、スズ(Sn)、あるいは金−錫の共晶
半田など比較的融点が低く、蒸気圧の低い金属を用いる
とよいが、特にそれらに限定されない。この溶融金属埋
め戻しの具体的な実施例としては、例えば図5のような
溶融金属充填装置30を使用して、例えば10-3Pa
(パスカル)程度の減圧雰囲気中で、貫通孔12をあけ
たシリコン基板11をワークとして、例えば300℃の
溶融すずに浸漬し、その後、大気圧下に雰囲気を戻すこ
とで高アスペクト比の貫通孔12内に錫を充填させる。
Next, FIG.
As shown in (d), the metal 23 is filled in the through hole 12. The molten metal backfill method is a method of filling a metal into a minute space such as a fine hole formed in a silicon substrate (work) to be processed. Is reduced, then, while maintaining the reduced pressure state, insert the work into the molten metal, then pressurize the atmosphere pressure of the molten metal, fill the space with the molten metal by the atmospheric pressure difference before and after metal insertion, then This method is characterized in that the work is pulled up from the molten metal bath and cooled. Here, as the metal to be filled, a metal having a relatively low melting point and a low vapor pressure, such as indium (In), tin (Sn), or eutectic solder of gold-tin, may be used, but is not particularly limited thereto. . Specific examples of the molten metal backfill, using molten metal filling apparatus 30 shown in FIG. 5, for example, for example, 10 -3 Pa
In a reduced pressure atmosphere of about (Pascal), the silicon substrate 11 with the through-holes 12 as a work is immersed in molten tin at, for example, 300 ° C., and then the atmosphere is returned to the atmospheric pressure to obtain a high aspect ratio through-hole. 12 is filled with tin.

【0018】前記溶融金属充填装置30は、ヒータ44
付きの溶融金属槽43を配置した真空チャンバー31
と、これにシャッター35で開閉可能な開口部36で連
通するバッファ用真空チャンバー37とを持ち、シリコ
ン基板11を把持するワーク固定用アーム47を蓋50
に取り付けている。両チャンバー31、37は、真空ポ
ンプ装置34に吸引管33または真空粗引き用吸引管3
8を介して接続され、また、図示略の窒素ボンベに窒素
導入管39、40を介して接続されている。
The molten metal filling device 30 includes a heater 44
Vacuum chamber 31 in which a molten metal tank 43 with
And a vacuum chamber for buffer 37 communicating with an opening 36 that can be opened and closed by a shutter 35, and a work fixing arm 47 for holding the silicon substrate 11 is covered with a lid 50.
Attached to. Both chambers 31, 37 are provided with a suction pipe 33 or a vacuum roughing suction pipe 3 in a vacuum pump device.
8 and connected to a nitrogen cylinder (not shown) via nitrogen introduction pipes 39 and 40.

【0019】上記の金属充填装置30でシリコン基板1
1の貫通孔12に金属を充填する作業手順を説明する
と、蓋50を閉じワーク固定用アーム47で把持したシ
リコン基板11をバッファ用真空チャンバー37内に位
置させた状態で、バッファ用真空チャンバー37内部を
真空ポンプ装置34により真空粗引きする。次いで、シ
ャッター35を開く(なお、真空チャンバー31は先に
減圧しておく)。次いで、真空ポンプ装置34で、真空
チャンバー11およびバッファ用真空チャンバー17の
内部を真空吸引し、真空圧10−2〜10−3Pa程度ま
で減圧する。次いで、ヒータ44で加熱して溶融金属槽
43内の金属を溶融させ、溶融金属23内にシリコン基
板11を挿入する。シリコン基板11が溶融金属23と
同じ温度に達した後、真空チャンバー11およびバッフ
ァ用真空チャンバー17内に窒素ボンベからの窒素を導
入して、内部を2〜5×10Pa(2〜5kgf/cm2)程度
まで加圧する。この加圧により、溶融金属23が高アス
ペクト比の貫通孔12内に充填される。その後、シリコ
ン基板11を溶融金属槽43から引き上げ、真空チャン
バー31の外に取り出して、室温にて空冷する。これに
より、シリコン基板11の貫通孔12への金属充填作業
が終了する。
The above-described metal filling device 30 uses the silicon substrate 1
The procedure for filling the metal into the through-hole 12 will be described. The buffer vacuum chamber 37 with the lid 50 closed and the silicon substrate 11 held by the work fixing arm 47 positioned in the buffer vacuum chamber 37. The inside of the vacuum pump 34 is roughly evacuated. Next, the shutter 35 is opened (the vacuum chamber 31 is first depressurized). Next, the inside of the vacuum chamber 11 and the vacuum chamber for buffer 17 is vacuum-sucked by the vacuum pump device 34, and the pressure is reduced to a vacuum pressure of about 10 −2 to 10 −3 Pa. Next, the metal in the molten metal tank 43 is melted by heating with the heater 44, and the silicon substrate 11 is inserted into the molten metal 23. After the silicon substrate 11 has reached the same temperature as the molten metal 23, nitrogen from a nitrogen cylinder is introduced into the vacuum chamber 11 and the buffer vacuum chamber 17, and the inside is 2 to 5 × 10 5 Pa (2 to 5 kgf / cm 2 ). By this pressurization, the molten metal 23 is filled in the through hole 12 having a high aspect ratio. Thereafter, the silicon substrate 11 is pulled up from the molten metal bath 43, taken out of the vacuum chamber 31, and air-cooled at room temperature. This completes the work of filling the through holes 12 of the silicon substrate 11 with metal.

【0020】なお、貫通孔12の内壁面に絶縁層(酸化
膜)を形成する方法としては、前述の熱酸化法に限ら
ず、例えばSiO2系皮膜形成用塗布液等の液相によ
り、低温条件下で形成することも考えられる。この方法
は、既にシリコン基板11上に回路等が形成されている
場合、それらに熱による影響を及ぼさないので、有利に
なる。
[0020] As a method of forming an insulating layer on the inner wall surface of the through-hole 12 (oxide film) is not limited to the thermal oxidation method described above, for example by SiO 2 type film-forming coating solution and the like of the liquid phase, a low temperature It is also conceivable to form under conditions. This method is advantageous when circuits and the like are already formed on the silicon substrate 11 because they are not affected by heat.

【0021】本発明は、シリコンICチップの積層高密
度実装(3次元実装)に適用して好適である。図7は、
シリコンICチップ(シリコン基板)の積層体を示す横断
面図である。図中71は、光励起電解研磨法により2箇
所の貫通電極72が形成されたシリコンICチップであ
り、該シリコンICチップ71は、ベース基板73上に、
上下の位置を合わせて3枚積層されている。シリコンIC
チップ71は、例えば、同一ウエハから切り出された同
一回路パターンを有し、ウエハ表面から見た場合におい
て、各チップ内の同一位置に貫通電極72と回路パター
ン(図示せず)が形成され、これらの貫通電極72は、
上下端を合わせて接続されている。すなはち、電極下端
に設けられた半田バンプ74と、相手側チップ上の貫通
電極上端が接続され、これらチップの貫通電極72は、
シリコン製ベース基板73に形成された貫通電極72と
位置合わせ接続される。この結果、ベース基板とシリコ
ンICチップを貫通する共通電極が形成され、該共通電極
の下端の半田ボール70は、図示しないベース基板の配
線回路と接続される。ただし、敢えて貫通電極の上下位
置を揃えないような設計をする場合には、一方のチップ
下部の半田バンプを、他方のチップ上部の配線パターン
(貫通電極と導通する他方のチップ上に形成された電極
層)と接続する事も可能である。以上のように、高アス
ペクト比の貫通電極が形成された何枚かのICチップを任
意位置に位置決めして重ね合わせ接続することにより、
複数層に積み上げられ実装密度の向上した3次元ICデバ
イスを作ることが可能である。なお、貫通電極の数は2
本には限定されず、これは他の実施例においても同様で
ある。
The present invention is suitable for application to stacked high-density mounting (three-dimensional mounting) of silicon IC chips. FIG.
FIG. 3 is a cross-sectional view showing a stacked body of a silicon IC chip (silicon substrate). In the figure, reference numeral 71 denotes a silicon IC chip on which two through electrodes 72 are formed by a photo-excited electrolytic polishing method.
Three layers are stacked with their upper and lower positions aligned. Silicon IC
The chip 71 has, for example, the same circuit pattern cut out from the same wafer, and when viewed from the wafer surface, a through electrode 72 and a circuit pattern (not shown) are formed at the same position in each chip. The through electrode 72 of
The upper and lower ends are connected together. That is, the solder bumps 74 provided at the lower ends of the electrodes are connected to the upper ends of the through electrodes on the partner chip, and the through electrodes 72 of these chips are
It is aligned and connected to the through electrode 72 formed on the silicon base substrate 73. As a result, a common electrode penetrating the base substrate and the silicon IC chip is formed, and the solder ball 70 at the lower end of the common electrode is connected to a wiring circuit of the base substrate (not shown). However, when the design is made so that the vertical positions of the through electrodes are not aligned, the solder bumps on the lower part of one chip are connected to the wiring pattern on the other chip (they are formed on the other chip which is electrically connected to the penetrating electrodes). (Electrode layer). As described above, by positioning several IC chips on which through electrodes with a high aspect ratio are formed at arbitrary positions and connecting them by overlapping,
It is possible to make a three-dimensional IC device that is stacked on multiple layers and has an improved mounting density. The number of through electrodes is 2
The invention is not limited to the book, and the same applies to other embodiments.

【0022】図8は、本発明の他の実施例であり、イン
ターポーザを用いたICチップのチップサイズ実装を示
す。図中81は、光励起電解研磨法により形成された2
ヶ所の貫通電極82を有するシリコン製のインターポー
ザ(シリコン基板)あり、該インターポーザ上には、例
えばフェースダウンされたICチップ83が搭載されてい
る。ICチップ表面の電極84は、インタポーザ表面の導
電層85を介して貫通電極82へ接続され、該インター
ポーザ下面においては、貫通電極82下端に形成された
半田ボール86が、マザーボード(ベース基板)80上
の配線パターンと接続されている。従来、インタポーザ
を用いたチップ実装では、マザーボードとの接続に制約
が多く、配線密度にも限界があったが、本実施例では、
高アスペクト比の貫通電極を複数形成することにより、
インタポーザの配線パターン設計の制約が少なくなり、
実装構造(あるいはパッケージ構造)を簡略化すること
ができる。さらに、インターポーザの素材としてシリコ
ンを用いているため、ICチップと熱膨張係数の整合性が
良好になり、他のセラミック製のものに比較して、マザ
ーボードへ実装する際にチップが受ける熱応力歪みが少
なく、また、シリコンの熱伝達効率が比較的優れている
ため、チップの発生熱を逃がし易いという利点が得られ
る。さらに、一般に普及しているシリコン精密加工技術
が使えるため表面配線パターンの精密化が可能という利
点も得られる。
FIG. 8 shows another embodiment of the present invention, and shows a chip size mounting of an IC chip using an interposer. In the figure, reference numeral 81 denotes 2 formed by the photoexcited electrolytic polishing method.
There is a silicon interposer (silicon substrate) having through electrodes 82 at various locations, and a face-down IC chip 83 is mounted on the interposer, for example. The electrode 84 on the surface of the IC chip is connected to the through electrode 82 via the conductive layer 85 on the surface of the interposer. On the lower surface of the interposer, a solder ball 86 formed at the lower end of the through electrode 82 is mounted on the motherboard (base substrate) 80. Is connected to the wiring pattern. Conventionally, in mounting a chip using an interposer, there are many restrictions on the connection with the motherboard and the wiring density is limited, but in this embodiment,
By forming multiple through electrodes with high aspect ratio,
The restrictions on the wiring pattern design of the interposer are reduced,
The mounting structure (or package structure) can be simplified. Furthermore, since silicon is used as the material of the interposer, the matching of the thermal expansion coefficient with the IC chip is improved, and the thermal stress distortion applied to the chip when mounted on a motherboard is better than that of other ceramics. And the heat transfer efficiency of silicon is relatively excellent, so that the heat generated from the chip can be easily released. Furthermore, since the commonly used silicon precision processing technology can be used, there is an advantage that the surface wiring pattern can be refined.

【0023】図9(A)は、本発明の他の実施例であ
り、貫通電極を有するイメージセンサを示す。図中、9
1はイメージセンサチップ90内の光電素子エリアであ
り、92は光励起電解研磨法によりシリコン基板93に
形成された高アスペクト比の貫通電極である。該貫通電
極92は、イメージセンサの能動領域(光電変換素子が
形成された光電素子エリア)91の外側でチップ端部に
形成され、その上端がチップ表面の電極層を介して能動
領域91へ接続されている。また、下端は半田ボール9
4等を介して図示しないマザーボード表面の配線パター
ンと接続されている。
FIG. 9A shows another embodiment of the present invention, which shows an image sensor having through electrodes. In the figure, 9
Reference numeral 1 denotes a photoelectric element area in the image sensor chip 90, and reference numeral 92 denotes a through electrode having a high aspect ratio formed on the silicon substrate 93 by a photo-excited electrolytic polishing method. The through electrode 92 is formed at the end of the chip outside the active area (photoelectric element area where the photoelectric conversion element is formed) 91 of the image sensor, and the upper end thereof is connected to the active area 91 via an electrode layer on the chip surface. Have been. The lower end is solder ball 9
4 and the like, and is connected to a wiring pattern on the motherboard surface (not shown).

【0024】図9(B)は、ワイヤ接続方式のイメージセ
ンサを示す。本図では、イメージセンサはチップの素子
エリアと同一面に、該素子エリアに導通する比較的面積
の大きなワイヤボンドパッド95を形成し、ボンディン
グワイヤ96により外部のリードフレーム等と接続して
いる。また、金線(ワイヤ)接続時に発生する熱等の影
響を軽減するため、ワイヤボンドパッドとイメージエリ
アは有る程度離隔する必要があり、以上の理由から、チ
ップ表面に占めるイメージエリアの面積には制約があ
る。
FIG. 9B shows a wire connection type image sensor. In this figure, the image sensor has a relatively large area wire bond pad 95 that is electrically connected to the element area on the same surface as the element area of the chip, and is connected to an external lead frame or the like by a bonding wire 96. Further, in order to reduce the influence of heat or the like generated at the time of gold wire (wire) connection, the wire bond pad and the image area need to be separated to some extent. For the above reasons, the area of the image area occupying the chip surface is limited. There are restrictions.

【0025】これに対して、本発明では、高アスペクト
比の貫通電極上端が、導電層97を介して光電素子エリ
ア91と接続されており、貫通電極下端の半田ボール9
4により外部と接続されるから、イメージエリアと同一
面へのワイヤボンディングパッドが不要となる。従っ
て、イメージセンサのチップ面積に占める素子エリアを
大きくすることができるから、イメージセンサを小型
化、あるいは限られた大きさのチップ内に広い面積の素
子エリアを確保することができる。また、ワイヤボンデ
ィングが不要であるから、ベース基板への表面実装が容
易となりイメージチップ実装基板の小型と薄型化、並び
に製造コストの削減を計ることができる。
On the other hand, in the present invention, the upper end of the through electrode having a high aspect ratio is connected to the photoelectric element area 91 via the conductive layer 97, and the solder ball 9 at the lower end of the through electrode is provided.
4, connection to the outside becomes unnecessary, so that a wire bonding pad on the same surface as the image area becomes unnecessary. Accordingly, since the element area occupying the chip area of the image sensor can be increased, the image sensor can be downsized or a large element area can be secured in a chip having a limited size. Further, since wire bonding is not required, surface mounting on the base substrate is facilitated, and the size and thickness of the image chip mounting substrate can be reduced, and the manufacturing cost can be reduced.

【0026】図10は、本発明の他の実施例であり、高
アスペクト比の貫通電極が形成された光回路素子(光ト
ランスミッタ)の横断面図を示す。図中100は、光励
起電解研磨法により形成された4ヶ所の貫通電極101
A、101B、101C(他の1ヶ所は図示せず)を有す
る精密加工されたシリコン製のプラットフォーム(シリ
コン基板)、101は、光ファイバ106を位置決め固
定するV溝、102は面実装型LD(レーザダイオード)
103の一方の電極面が接続される頂面が導電層102
Aをなす断面台形状の突部、104はモニタ用PD(ホト
ダイオード)105の片側電極面に接続される凹底部が
導電層104Aをなす逆台形状の凹部である。該突部1
02と該凹部104の下部には、導電層102A、導電
層104Aと導通する貫通電極101Aと101Bが形成
され、これら貫通電極101A、101Bの下端部は半田
バンプ(パッド)を形成して、図示せぬ外部回路と接続
される。一方、他の2ヶ所の貫通電極101C(1ヶ所
は図示せず)は、プラットフォーム表面100A上の2
ヶ所の電極パッド110(1ヶ所は図示せず)に接続さ
れ、これら電極パッドから導出する2本のボンディング
ワイヤ(金線)109A、109BがLD103、PD105
の他の片側電極面に接続される。更に具体的には、金線
109AはLD103上の片側電極に直接ボンディングさ
れ、金線109Bは素子電極に直接接続されるのではな
く、プラットフォーム上にメッキされた導電層104Aの延
出部と接続される。プラットフォーム100の下部で
は、これら貫通電極の下端が半田ボール111などを介
して実装基板に表面実装される。
FIG. 10 shows another embodiment of the present invention, and is a cross-sectional view of an optical circuit device (optical transmitter) in which a through electrode having a high aspect ratio is formed. In the figure, reference numeral 100 denotes four through electrodes 101 formed by a photo-excited electrolytic polishing method.
A, 101B, 101C (one other location is not shown), a precision-machined silicon platform (silicon substrate), 101 is a V-groove for positioning and fixing an optical fiber 106, and 102 is a surface-mount LD ( Laser diode)
The top surface to which one electrode surface of 103 is connected is a conductive layer 102
A projection 104 having a trapezoidal cross section and A is an inverted trapezoidal recess whose concave bottom connected to one electrode surface of a monitoring PD (photodiode) 105 forms a conductive layer 104A. The protrusion 1
02 and a lower portion of the concave portion 104, a conductive layer 102A and through electrodes 101A and 101B which are electrically connected to the conductive layer 104A are formed. The lower ends of the through electrodes 101A and 101B form solder bumps (pads). Connected to an external circuit not shown. On the other hand, the other two penetrating electrodes 101C (one not shown) are located on the platform surface 100A.
Are connected to two electrode pads 110 (one is not shown), and two bonding wires (gold wires) 109A and 109B derived from these electrode pads are LD103 and PD105.
Is connected to the other one-side electrode surface. More specifically, the gold wire 109A is directly bonded to one electrode on the LD 103, and the gold wire 109B is not directly connected to the device electrode, but is connected to the extension of the conductive layer 104A plated on the platform. Is done. In the lower part of the platform 100, the lower ends of these through electrodes are surface-mounted on a mounting substrate via solder balls 111 and the like.

【0027】次に、これら光デバイスの並び方向は、光
ファイバ106の軸心107と一致するように光軸が合
わされており、LD103の出射光が光ファイバへ入射
し、PD105がLD出力をモニタする。この実施例によれ
ば、光素子下部の各導電層102A、104Aが貫通電極
101A、101Bを介して外部回路と導通しているため
に、プラットフォーム表面上の配線パターンの形成が簡
略化される。また、ワイヤ(金線)ボンディングは、プ
ラットフォーム内の電極パッド110から光素子間だけ
であるから、光素子と外部リードフレームを接続するの
に比較してワイヤ長が短くなり接続が容易となる。従っ
て、光デバイス全体が小型化するのみならず、接続工数
を経らすことができるため製品コストを低下させること
ができる利点がある。なお、上記プラットフォームの形
状を変更して、光ファイバからの外部入射光を受光用PD
で受けるような構成とすれば、光レシーバを構成するこ
とができる。また、光ファイバを2本(v溝を2本)と
して、プラットフォームを加工して同一プラットフォー
ム上に、光トランスミッタと光レシーバを作り付けれ
ば、光トランシーバが構成できる。
Next, the arrangement direction of these optical devices is aligned so that the optical axis coincides with the axis 107 of the optical fiber 106, the light emitted from the LD 103 enters the optical fiber, and the PD 105 monitors the LD output. I do. According to this embodiment, since the respective conductive layers 102A and 104A under the optical element are electrically connected to the external circuit via the through electrodes 101A and 101B, the formation of the wiring pattern on the platform surface is simplified. Further, since the wire (gold wire) bonding is performed only between the optical pad and the electrode pad 110 in the platform, the wire length becomes shorter and the connection becomes easier as compared with the case where the optical element and the external lead frame are connected. Therefore, there is an advantage that not only the size of the entire optical device can be reduced, but also that the number of connection steps can be reduced and the product cost can be reduced. In addition, the shape of the above-mentioned platform was changed to allow external incident light from the optical fiber to
With such a configuration, an optical receiver can be configured. If two optical fibers (two v-grooves) are used, the platform is processed, and an optical transmitter and an optical receiver are built on the same platform, whereby an optical transceiver can be configured.

【0028】以上説明したように、本発明は、高アスペ
クト比の貫通電極を各種素子に形成することができ、ま
た、汎用的なシリコン精密加工技術の利用が可能である
から、各種素子、デバイスの精密化、小型化、ならびに
実装密度の向上を計ることができる。また、煩雑でコス
ト高となるワイヤボンド等の工程を省略できるから、製
品コストを低下させることも可能となる。なお、本発明
はシリコン基板に貫通電極を形成する場合が主である
が、シリコン以外の素材による基板に貫通電極を形成す
ることも考えられる。
As described above, according to the present invention, a through electrode having a high aspect ratio can be formed in various elements, and a general-purpose silicon precision processing technique can be used. The precision and size of the device can be improved, and the mounting density can be improved. In addition, since complicated and costly processes such as wire bonding can be omitted, the product cost can be reduced. In the present invention, a through electrode is mainly formed on a silicon substrate. However, a through electrode may be formed on a substrate made of a material other than silicon.

【0029】[0029]

【発明の効果】本発明によれば、例えば光励起電解研磨
法により基板に高アスペクト比の貫通孔を形成し、この
貫通孔の内壁を酸化処理して絶縁層としての酸化膜を形
成し、次いで、前記貫通孔に溶融金属埋め戻し法により
金属を充填して、貫通電極を形成するので、高アスペク
ト比の貫通電極を容易に得ることができる。これによ
り、例えばシリコンICチップを積層した高密度実装の
半導体パッケージや光デバイスを実現すること等が容易
になる。
According to the present invention, a through hole having a high aspect ratio is formed in a substrate by, for example, photoexcited electrolytic polishing, and an inner wall of the through hole is oxidized to form an oxide film as an insulating layer. Since the through holes are filled with a metal by the molten metal backfill method to form the through electrodes, a through electrode having a high aspect ratio can be easily obtained. This facilitates, for example, realizing a high-density semiconductor package or an optical device in which silicon IC chips are stacked.

【0030】請求項2のように、貫通孔内壁に形成した
酸化膜を一旦除去した後、再酸化して酸化膜を形成すれ
ば、貫通孔内壁を平坦化することができ、良好な貫通電
極を形成できる。
If the oxide film formed on the inner wall of the through-hole is once removed and then re-oxidized to form an oxide film, the inner wall of the through-hole can be flattened. Can be formed.

【0031】請求項3のように、貫通孔内壁に高濃度の
不純物拡散を行って、酸化膜の外側に不純物拡散層を形
成すれば、この不純物拡散層をシールド層として利用で
き、ノイズの抑制に有効である。
According to a third aspect of the present invention, if a high-concentration impurity is diffused into the inner wall of the through-hole and an impurity diffusion layer is formed outside the oxide film, the impurity diffusion layer can be used as a shield layer to suppress noise. It is effective for

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の基板の貫通電極形成方法
を工程に分けて説明する模式図であり、(イ)はシリコ
ン基板にV形凹所を形成した段階、(ロ)は光励起電解
研磨法で貫通孔をあけた段階、(ハ)は貫通孔内壁に酸
化膜を形成した段階、(ニ)は貫通孔に金属を充填して
貫通電極を形成した段階を示す。
FIGS. 1A and 1B are schematic views illustrating a method of forming a through electrode in a substrate according to an embodiment of the present invention by dividing the process into steps, wherein FIG. 1A shows a step in which a V-shaped recess is formed in a silicon substrate, and FIG. (C) shows a stage in which an oxide film is formed on the inner wall of the through hole, and (d) shows a stage in which a metal is filled in the through hole to form a through electrode.

【図2】本発明実施形態の貫通電極形成方法において、
貫通孔の形成に用いる光励起電解研磨装置の模式図であ
る。
FIG. 2 illustrates a method of forming a through electrode according to an embodiment of the present invention.
It is a schematic diagram of a photoexcited electrolytic polishing apparatus used for forming a through hole.

【図3】上記の光励起電解研磨法で、V形凹所に選択的
なエッチングが行なわれる原理を説明する図である。
FIG. 3 is a view for explaining the principle that selective etching is performed on a V-shaped recess by the photoexcited electrolytic polishing method.

【図4】図1(ハ)の酸化膜の形成に際して、不純物拡
散を行なってシールド層(不純物拡散)を形成した状態
を示す模式図である。
FIG. 4 is a schematic diagram showing a state in which a shield layer (impurity diffusion) is formed by performing impurity diffusion when forming the oxide film of FIG.

【図5】本発明実施形態の貫通電極形成方法において、
貫通孔への金属充填に用いる金属充填装置の要部の一部
切り欠き正面図である。
FIG. 5 illustrates a method of forming a through electrode according to an embodiment of the present invention.
It is a partially cutaway front view of the principal part of the metal filling apparatus used for filling metal into a through-hole.

【図6】上述の貫通電極形成方法で実際にシリコン基板
に貫通電極を形成した実施例を示すもので、シリコン基
板の貫通電極部分の断面の顕微鏡写真のスケッチであ
る。
FIG. 6 shows an embodiment in which a through electrode is actually formed on a silicon substrate by the above-described through electrode forming method, and is a sketch of a micrograph of a cross section of a through electrode portion of the silicon substrate.

【図7】シリコンICチップ(シリコン基板)の積層体
の横断面図である。
FIG. 7 is a cross-sectional view of a laminated body of a silicon IC chip (silicon substrate).

【図8】本発明の他の実施例を示すもので、インターポ
ーザを用いたICチップのチップサイズ実装を示す図で
ある。
FIG. 8 is a view showing another embodiment of the present invention and showing chip size mounting of an IC chip using an interposer.

【図9】(A)は本発明のさらに他の実施例を示すもの
で、貫通電極を有するイメージセンサの断面図、(B)
はワイヤ接続方式のイメージセンサを示す断面図であ
る。
9A is a cross-sectional view of an image sensor having a through electrode according to still another embodiment of the present invention, and FIG.
FIG. 3 is a cross-sectional view showing a wire connection type image sensor.

【図10】本発明のさらに他の実施例を示すもので、高
アスペクト比の貫通電極が形成された光回路素子(光ト
ランスミッタ)の横断面図である。
FIG. 10 shows still another embodiment of the present invention, and is a cross-sectional view of an optical circuit element (optical transmitter) on which a through electrode having a high aspect ratio is formed.

【図11】従来の異方性エッチング・半田の方法でシリ
コン基板に貫通電極の形成した場合における貫通電極部
分の模式的な断面図である。
FIG. 11 is a schematic cross-sectional view of a through electrode portion when a through electrode is formed on a silicon substrate by a conventional anisotropic etching / solder method.

【符号の説明】[Explanation of symbols]

10 光励起電解研磨装置 11 シリコン基板 11a V形凹所 11b シリコン基板の表面 11c シリコン基板の裏面 12 貫通孔 13 電解液 14 光源 15 陰極電極 21 酸化膜 22 不純物拡散層(シールド層) 23 充填金属(溶融金属も同じ符号で示す) 30 金属充填装置 31 真空チャンバー 37 バッファ用真空チャンバー 34 真空吸引装置 43 溶融金属槽 44 ヒータ 70 半田ボール 71 シリコンICチップ 72 貫通電極 73 ベース基板 74 半田バンプ 80 マザーボード(ベース基板) 81 シリコン製のインターポーザ(シリコン基板) 82 貫通電極 83 ICチップ 84 電極 85 導電層 86 半田ボール 90 イメージセンサチップ 91 光電素子エリア(イメージセンサの能動領域) 92 貫通電極 93 シリコン基板 94 半田ボール 97 導電層 100 シリコン製のプラットフォーム(シリコン基
板) 101A、101B、101C 貫通電極 101 V溝 101A、101B 貫通電極 101C 貫通電極 102 突部 102A 導電層 103 面実装型LD(レーザーダイオード) 104 逆台形状の凹部 104A 導電層 105 PD(ホトダイオード) 106 光ファイバ 107 軸心 109A、109B ボンディングワイヤ(金線) 110 電極パッド 111 半田ボール
DESCRIPTION OF SYMBOLS 10 Photoexcited electropolishing apparatus 11 Silicon substrate 11a V-shaped recess 11b Surface of silicon substrate 11c Back surface of silicon substrate 12 Through hole 13 Electrolyte 14 Light source 15 Cathode electrode 21 Oxide film 22 Impurity diffusion layer (shield layer) 23 Filling metal (melting) 30 Metal filling device 31 Vacuum chamber 37 Vacuum chamber for buffer 34 Vacuum suction device 43 Molten metal tank 44 Heater 70 Solder ball 71 Silicon IC chip 72 Through electrode 73 Base substrate 74 Solder bump 80 Mother board (base substrate) 81 interposer (silicon substrate) made of silicon 82 through electrode 83 IC chip 84 electrode 85 conductive layer 86 solder ball 90 image sensor chip 91 photoelectric element area (active area of image sensor) 92 through electrode 93 silicon Con board 94 Solder ball 97 Conductive layer 100 Platform made of silicon (silicon substrate) 101A, 101B, 101C Through electrode 101 V groove 101A, 101B Through electrode 101C Through electrode 102 Projection 102A Conductive layer 103 Surface mount type LD (laser diode) 104 inverted trapezoidal recess 104A conductive layer 105 PD (photodiode) 106 optical fiber 107 axis 109A, 109B bonding wire (gold wire) 110 electrode pad 111 solder ball

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末益 龍夫 東京都江東区木場1−5−1 株式会社フ ジクラ内 (72)発明者 糸井 和久 東京都江東区木場1−5−1 株式会社フ ジクラ内 Fターム(参考) 4M104 AA01 BB09 BB36 CC01 DD07 DD09 DD22 DD23 DD26 DD31 EE02 EE16 FF01 FF21 GG04 GG05 HH14 5F043 AA02 BB02 DD08 DD14 FF04 FF06 GG04 5F058 BC03 BE04 BE10 BF46 BF56 BF63 BJ10  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Tatsuo Suemitsu 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Kazuhisa Itoi 1-5-1 Kiba, Koto-ku, Tokyo F-term (reference) in Jikura 4M104 AA01 BB09 BB36 CC01 DD07 DD09 DD22 DD23 DD26 DD31 EE02 EE16 FF01 FF21 GG04 GG05 HH14 5F043 AA02 BB02 DD08 DD14 FF04 FF06 GG04 5F058 BC03 BE04 BE10 BF46 BF56 BF56

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板等の基板に貫通電極を形成
する貫通電極形成方法であって、 光励起電解研磨法により、基板に高アスペクト比の貫通
孔を形成し、この貫通孔の内壁を酸化処理して絶縁層と
しての酸化膜を形成し、次いで、前記貫通孔に溶融金属
埋め戻し法により金属を充填することを特徴とする基板
の貫通電極形成方法。
1. A through electrode forming method for forming a through electrode on a substrate such as a silicon substrate, wherein a through hole having a high aspect ratio is formed in the substrate by a photo-excited electrolytic polishing method, and an inner wall of the through hole is oxidized. Forming an oxide film as an insulating layer, and then filling the through-hole with a metal by a molten metal backfilling method.
【請求項2】 貫通孔内壁に絶縁層としての酸化膜を形
成するに際して、貫通孔内壁に形成した酸化膜を一旦除
去し、その後再び貫通孔内壁を酸化処理して酸化膜を形
成する工程を少なくとも一回有することを特徴とする請
求項1記載の基板の貫通電極形成方法。
2. A process for forming an oxide film as an insulating layer on the inner wall of a through hole, comprising removing the oxide film formed on the inner wall of the through hole, and then oxidizing the inner wall of the through hole again to form an oxide film. 2. The method for forming a through electrode in a substrate according to claim 1, wherein the method is provided at least once.
【請求項3】 貫通孔内壁に絶縁層としての酸化膜を形
成するに際して、貫通孔内壁に高濃度の不純物拡散を行
って、酸化膜の外側に不純物拡散層を形成することを特
徴とする請求項1記載の基板の貫通電極形成方法。
3. The method according to claim 1, wherein, when forming an oxide film as an insulating layer on the inner wall of the through hole, a high concentration impurity is diffused on the inner wall of the through hole to form an impurity diffusion layer outside the oxide film. Item 4. The method for forming a through electrode of a substrate according to Item 1.
【請求項4】 貫通電極を有するシリコン等の基板であ
って、 前記貫通電極は、光励起電解研磨法により形成され、内
壁に酸化膜を有する貫通孔と、前記貫通孔に充填された
金属よりなり、 前記貫通電極は前記基板内に少なくとも1カ所形成され
ていることを特徴とする貫通電極を有する基板。
4. A substrate made of silicon or the like having a through electrode, wherein the through electrode is formed by a photoexcited electrolytic polishing method, and is formed of a through hole having an oxide film on an inner wall, and a metal filled in the through hole. A substrate having a through electrode, wherein the through electrode is formed in at least one place in the substrate.
JP2001034528A 2001-02-09 2001-02-09 Method of forming through electrode on substrate and substrate having through electrode Expired - Fee Related JP3599325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034528A JP3599325B2 (en) 2001-02-09 2001-02-09 Method of forming through electrode on substrate and substrate having through electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034528A JP3599325B2 (en) 2001-02-09 2001-02-09 Method of forming through electrode on substrate and substrate having through electrode

Publications (2)

Publication Number Publication Date
JP2002237468A true JP2002237468A (en) 2002-08-23
JP3599325B2 JP3599325B2 (en) 2004-12-08

Family

ID=18898118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034528A Expired - Fee Related JP3599325B2 (en) 2001-02-09 2001-02-09 Method of forming through electrode on substrate and substrate having through electrode

Country Status (1)

Country Link
JP (1) JP3599325B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095849A (en) * 2002-08-30 2004-03-25 Fujikura Ltd Method for manufacturing semiconductor substrate with through electrode, and method for manufacturing semiconductor device with through electrode
JP2004152810A (en) * 2002-10-28 2004-05-27 Sharp Corp Semiconductor device and laminated semiconductor device
JP2004152812A (en) * 2002-10-28 2004-05-27 Sharp Corp Semiconductor device and stacked semiconductor device
WO2006051727A1 (en) * 2004-11-09 2006-05-18 Osaka University Method for forming hole in crystal substrate, and crystal substrate having hole formed by said method
JP2007163501A (en) * 2006-12-25 2007-06-28 Matsushita Electric Works Ltd Semiconductor sensor and manufacturing method therefor
KR100817718B1 (en) 2006-12-27 2008-03-27 동부일렉트로닉스 주식회사 Semiconductor device fabricating method
CN100390981C (en) * 2004-03-31 2008-05-28 恩益禧电子股份有限公司 Semiconductor device and method for manufacturing the same
US7576413B2 (en) 2004-11-30 2009-08-18 Kyushu Institute Of Technology Packaged stacked semiconductor device and method for manufacturing the same
JP2010034591A (en) * 2002-09-24 2010-02-12 Hamamatsu Photonics Kk Semiconductor device and method of manufacturing the same
KR100967019B1 (en) 2008-11-26 2010-06-30 유겐가이샤 나프라 Method for filling metal into fine space
EP2259307A2 (en) 2009-06-02 2010-12-08 Napra co.,Ltd Electronic device, conductive compositon, metal filling apparatus, and electronic decive manufacturing method
DE102010038910A1 (en) 2009-08-21 2011-02-24 Mitsubishi Electric Corp. Through-electrode semiconductor device and manufacturing method
US7994048B2 (en) 2004-03-30 2011-08-09 Renesas Electronics Corporation Method of manufacturing a through electrode
EP2381469A1 (en) 2010-04-22 2011-10-26 Napra co.,Ltd Filling material and filling method using the same
US8143716B2 (en) 2004-03-29 2012-03-27 Renesas Electronics Corporation Semiconductor device with plate-shaped component
WO2011036088A3 (en) * 2009-09-22 2013-04-18 Siemens Aktiengesellschaft Carrier for electrically connecting a plurality of contacts of at least one chip applied to the carrier and method for producing the carrier
JP2015153978A (en) * 2014-02-18 2015-08-24 キヤノン株式会社 Manufacturing method of through wiring
US9147641B2 (en) 2013-02-18 2015-09-29 Kabushiki Kaisha Toshiba Semiconductor device
US9576881B2 (en) 2013-02-18 2017-02-21 Kabushiki Kaisha Toshiba Semiconductor device
EP3361499A4 (en) * 2015-10-05 2019-05-22 Hamamatsu Photonics K.K. Wiring structure and method for producing wiring structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3534377B1 (en) 2018-02-28 2021-11-17 Siemens Healthcare GmbH Method for producing a microstructure component
EP3534376A1 (en) 2018-02-28 2019-09-04 Siemens Healthcare GmbH Method for producing a microstructure component, microstructure component and xray device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095849A (en) * 2002-08-30 2004-03-25 Fujikura Ltd Method for manufacturing semiconductor substrate with through electrode, and method for manufacturing semiconductor device with through electrode
JP2010034591A (en) * 2002-09-24 2010-02-12 Hamamatsu Photonics Kk Semiconductor device and method of manufacturing the same
EP2996148A1 (en) * 2002-09-24 2016-03-16 Hamamatsu Photonics K. K. Photodiode array and method for manufacturing the same
JP2004152810A (en) * 2002-10-28 2004-05-27 Sharp Corp Semiconductor device and laminated semiconductor device
JP2004152812A (en) * 2002-10-28 2004-05-27 Sharp Corp Semiconductor device and stacked semiconductor device
US7276780B2 (en) 2002-10-28 2007-10-02 Sharp Kabushiki Kaisha Semiconductor device and chip-stack semiconductor device
US8143716B2 (en) 2004-03-29 2012-03-27 Renesas Electronics Corporation Semiconductor device with plate-shaped component
US7994048B2 (en) 2004-03-30 2011-08-09 Renesas Electronics Corporation Method of manufacturing a through electrode
CN100390981C (en) * 2004-03-31 2008-05-28 恩益禧电子股份有限公司 Semiconductor device and method for manufacturing the same
WO2006051727A1 (en) * 2004-11-09 2006-05-18 Osaka University Method for forming hole in crystal substrate, and crystal substrate having hole formed by said method
US7718254B2 (en) 2004-11-09 2010-05-18 Sharp Kabushiki Kaisha Method of forming pores in crystal substrate, and crystal substrate containing pores formed by the same
JP4807754B2 (en) * 2004-11-09 2011-11-02 シャープ株式会社 Method for forming holes in a crystal substrate
JPWO2006051727A1 (en) * 2004-11-09 2008-05-29 シャープ株式会社 Method for forming holes in crystal substrate, and crystal substrate having holes formed by the method
JP2011101009A (en) * 2004-11-09 2011-05-19 Sharp Corp Single-crystal substrate
US7576413B2 (en) 2004-11-30 2009-08-18 Kyushu Institute Of Technology Packaged stacked semiconductor device and method for manufacturing the same
JP4706634B2 (en) * 2006-12-25 2011-06-22 パナソニック電工株式会社 Semiconductor sensor and manufacturing method thereof
JP2007163501A (en) * 2006-12-25 2007-06-28 Matsushita Electric Works Ltd Semiconductor sensor and manufacturing method therefor
KR100817718B1 (en) 2006-12-27 2008-03-27 동부일렉트로닉스 주식회사 Semiconductor device fabricating method
EP2253397A2 (en) 2008-11-26 2010-11-24 Napra co.,Ltd Method for filling metal into fine space
KR100967019B1 (en) 2008-11-26 2010-06-30 유겐가이샤 나프라 Method for filling metal into fine space
US8079131B2 (en) 2008-11-26 2011-12-20 Napra Co., Ltd. Method for filling metal into fine space
EP2253397A3 (en) * 2008-11-26 2011-06-08 Napra co.,Ltd Method for filling metal into fine space
CN101740425B (en) * 2008-11-26 2012-12-12 纳普拉有限公司 Method for filling metal into fine space
KR20160023734A (en) 2009-06-02 2016-03-03 유겐가이샤 나프라 Metal filling apparatus
KR101615491B1 (en) 2009-06-02 2016-04-25 유겐가이샤 나프라 Metal filling apparatus
EP2259307A2 (en) 2009-06-02 2010-12-08 Napra co.,Ltd Electronic device, conductive compositon, metal filling apparatus, and electronic decive manufacturing method
US8415784B2 (en) 2009-06-02 2013-04-09 Napra Co., Ltd. Electronic device, conductive composition, metal filling apparatus, and electronic device manufacturing method
US8759211B2 (en) 2009-06-02 2014-06-24 Napra Co., Ltd. Electronic device, conductive composition, metal filling apparatus, and electronic device manufacturing method
DE102010038910A1 (en) 2009-08-21 2011-02-24 Mitsubishi Electric Corp. Through-electrode semiconductor device and manufacturing method
US8618666B2 (en) 2009-08-21 2013-12-31 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
WO2011036088A3 (en) * 2009-09-22 2013-04-18 Siemens Aktiengesellschaft Carrier for electrically connecting a plurality of contacts of at least one chip applied to the carrier and method for producing the carrier
US8377565B2 (en) 2010-04-22 2013-02-19 Napra Co., Ltd. Filling material and filling method using the same
JP2011228571A (en) * 2010-04-22 2011-11-10 Napura:Kk Base material for filling and filling method employing the same
EP2381469A1 (en) 2010-04-22 2011-10-26 Napra co.,Ltd Filling material and filling method using the same
US9147641B2 (en) 2013-02-18 2015-09-29 Kabushiki Kaisha Toshiba Semiconductor device
US9576881B2 (en) 2013-02-18 2017-02-21 Kabushiki Kaisha Toshiba Semiconductor device
JP2015153978A (en) * 2014-02-18 2015-08-24 キヤノン株式会社 Manufacturing method of through wiring
EP3361499A4 (en) * 2015-10-05 2019-05-22 Hamamatsu Photonics K.K. Wiring structure and method for producing wiring structure
US10573556B2 (en) 2015-10-05 2020-02-25 Hamamatsu Photonics K.K. Wiring structure and method for producing wiring structure

Also Published As

Publication number Publication date
JP3599325B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP3599325B2 (en) Method of forming through electrode on substrate and substrate having through electrode
US7687916B2 (en) Semiconductor substrates including vias of nonuniform cross-section and associated structures
CN1523665B (en) Semiconductor device and manufacturing method thereof
JP6067679B2 (en) Vias in porous substrates
JP4546087B2 (en) Semiconductor structure with one or more through holes, method for providing the semiconductor structure, and optoelectronic assembly structure including the semiconductor structure
CN100385621C (en) Semiconductor device and manufacturing method of the same
EP3832706A1 (en) Reduced stress tsv and interposer structures
TW201320287A (en) Low-stress vias
TWI233189B (en) Semiconductor device and manufacturing method thereof
JP3975194B2 (en) Package manufacturing method
US20080268638A1 (en) Substrate with Feedthrough and Method for Producing the Same
JP2008300782A (en) Method of manufacturing substrate with penetrating electrodes
US8777638B2 (en) Wiring board and method of manufacturing the same
JP2002343924A (en) Semiconductor device and manufacturing method therefor
WO2009120961A1 (en) Hermetically sealed device with transparent window and method of manufacturing same
WO2005105661A1 (en) Techniques for providing a structure with through-holes that may be used in a sub-assembly for micro-components
US7635869B2 (en) Support with recessed electrically conductive chip attachment material for flip-chip bonding a light emitting chip
JP2006041450A (en) Semiconductor integrated circuit device and its manufacturing method
JP4511148B2 (en) Manufacturing method of semiconductor device
US4549338A (en) Method of fabricating an IC including electro-optical transmitters and receivers
JPS60140850A (en) Manufacture of laminated integration type semiconductor circuit device
JP2006196619A (en) Electronic equipment and its manufacture
CN113539858A (en) Wafer-level chip packaging method and packaging structure
US7141871B2 (en) Method for manufacturing encapsulated opto-electronic devices and encapsulated device thus obtained
JP2003298126A (en) Thermoelectric element module, package for housing semiconductor element, and semiconductor module

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees