JP2002235156A - High strength steel having excellent stress corrosion cracking resistance and production method therefor - Google Patents

High strength steel having excellent stress corrosion cracking resistance and production method therefor

Info

Publication number
JP2002235156A
JP2002235156A JP2001032636A JP2001032636A JP2002235156A JP 2002235156 A JP2002235156 A JP 2002235156A JP 2001032636 A JP2001032636 A JP 2001032636A JP 2001032636 A JP2001032636 A JP 2001032636A JP 2002235156 A JP2002235156 A JP 2002235156A
Authority
JP
Japan
Prior art keywords
steel
phase
corrosion cracking
stress corrosion
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001032636A
Other languages
Japanese (ja)
Other versions
JP3462473B2 (en
Inventor
Toshiyuki Yashiro
利之 八代
Takayuki Mine
隆之 峯
Koji Kobayashi
弘二 小林
Masaru Tamura
勝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kinzoku Co Ltd
Original Assignee
Nippon Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kinzoku Co Ltd filed Critical Nippon Kinzoku Co Ltd
Priority to JP2001032636A priority Critical patent/JP3462473B2/en
Publication of JP2002235156A publication Critical patent/JP2002235156A/en
Application granted granted Critical
Publication of JP3462473B2 publication Critical patent/JP3462473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an inexpensive high strength stainless steel which has a strength level of the Vickers hardness >500 Hv, excellent toughness and stress corrosion cracking resistance, and to provide a production method therefor. SOLUTION: A steel having a chemical composition containing, by mass, 12 to 16% Cr, 0.1 to 0.3% Ni, 0.07 to 0.13% C, 0.04 to 0.085% N and <=0.1% Cu is subjected to primary quenching treatment. The steel is next cold-rolled, and is thereafter subjected to secondary quenching treatment to form a metallic structure containing a martensitic phase of, by volume, 50 to 75% and a ferritic phase of 50 to 25% and having an average grain size of <=10 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用成形ば
ね、織機部品等、耐応力腐食割れ性に優れ、高強度およ
び高靱性が要求される鋼およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel having excellent stress corrosion cracking resistance, high strength and high toughness, such as molded springs for automobiles and looms, and a method for producing the same.

【0002】[0002]

【従来の技術】耐食性を具備した強靱鋼で、耐応力腐食
割れ性に優れた帯鋼として、マルテンサイト系ステンレ
ス鋼の焼き入れ・焼き戻し処理材、例えばSUS420
J2の熱処理鋼帯が知られているが、この熱処理ライン
の生産性は低く、生産コストが高いという問題を抱えて
いた。
2. Description of the Related Art As a steel strip having corrosion resistance and excellent stress corrosion cracking resistance, a quenching / tempering material of martensitic stainless steel such as SUS420 is used.
Although a heat-treated steel strip of J2 is known, there is a problem that productivity of this heat treatment line is low and production cost is high.

【0003】このような問題点を解決すべく特開平10
−265907号公報には、通常のステンレス鋼の生産
設備をそのまま利用できる、高生産性を特徴とした、耐
応力腐食割れ性に優れた強靱鋼が開示されている。しか
し、該鋼の最大強度はHv420程度であり、SUS4
20J2の焼き入れ・焼き戻し処理材がHv500まで
の強度領域を網羅できることを考えると、さらなる強度
の改善が所望される。
To solve such a problem, Japanese Patent Laid-Open No.
Japanese Patent Application Publication No. 265907 discloses a tough steel excellent in stress corrosion cracking resistance and characterized by high productivity, which can utilize ordinary stainless steel production equipment as it is. However, the maximum strength of the steel is about Hv420, and SUS4
Considering that the quenching / tempering material of 20J2 can cover the strength region up to Hv500, further improvement in strength is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたもので、その目的とするところは、Hv
500を超える強度レベルを狙え、靱性と耐応力腐食割
れ性に優れた安価な高強度ステンレス鋼およびこの鋼を
既存の製造ラインを利用して製造できる方法を提供する
ことである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object the purpose of the present invention.
It is an object of the present invention to provide an inexpensive high-strength stainless steel having a toughness and stress corrosion cracking resistance excellent at a strength level exceeding 500 and a method capable of manufacturing this steel using an existing manufacturing line.

【0005】[0005]

【課題を解決するための手段】本発明の上記目的は下記
構成の耐応力腐食割れ性に優れた強靱鋼およびその製造
方法により達成された。すなわち、 (1) 質量%で、Cr:12〜16%、Ni:0.1
〜0.3%、C:0.07〜0.13%、N:0.04
〜0.085%、Cu:0.1%以下の化学組成を有
し、体積率で50〜75%のマルテンサイト相と50〜
25%のフェライト相とからなる、平均結晶粒径が10
μm以下の金属組織を有することを特徴とする耐応力腐
食割れ性に優れた強靱鋼。
The above objects of the present invention have been attained by a tough steel having the following constitution and excellent stress corrosion cracking resistance, and a method for producing the same. (1) In mass%, Cr: 12 to 16%, Ni: 0.1
0.3%, C: 0.07-0.13%, N: 0.04
0.085%, Cu: 0.1% or less of chemical composition, 50 to 75% by volume of martensite phase and 50 to 75%
25% ferrite phase having an average crystal grain size of 10
A tough steel excellent in stress corrosion cracking resistance, having a metal structure of μm or less.

【0006】(2) 質量%で、Cr:12〜16%、
Ni:0.1〜0.3%、C:0.07〜0.13%、
N:0.04〜0.085%、Cu:0.1%以下の化
学組成を有する鋼に第1回の焼き入れ処理を行い、つい
で冷間圧延を行った後第2回の焼き入れ処理を行って、
体積率で50%〜75%のマルテンサイト相と50%〜
25%のフェライト相とを有し、平均結晶粒径が10μ
m以下の金属組織とすることを特徴とする耐応力腐食割
れ性に優れた強靱鋼の製造方法。
(2) Cr: 12 to 16% by mass%
Ni: 0.1 to 0.3%, C: 0.07 to 0.13%,
First quenching treatment is performed on steel having a chemical composition of N: 0.04 to 0.085% and Cu: 0.1% or less, then cold rolling is performed, and then second quenching treatment is performed. Go to
50% to 75% martensite phase and 50% to 50% by volume
Having a ferrite phase of 25% and an average crystal grain size of 10 μm
A method for producing a tough steel excellent in stress corrosion cracking resistance, characterized by having a metal structure of not more than m.

【0007】(3) (2)で得られた焼き入れ処理鋼
に、200℃〜550℃の低温焼鈍処理を施すことを特
徴とする耐応力腐食割れ性に優れた強靱鋼の製造方法。
(3) A method for producing a tough steel excellent in stress corrosion cracking resistance, characterized by subjecting the quenched steel obtained in (2) to low-temperature annealing at 200 ° C. to 550 ° C.

【0008】(4) (2)で得られた焼き入れ処理鋼
に、冷間加工を施すことを特徴とする耐応力腐食割れ性
に優れた強靱鋼の製造方法。
(4) A method for producing a tough steel excellent in stress corrosion cracking resistance, characterized by subjecting the quenched steel obtained in (2) to cold working.

【0009】(5) (2)で得られた焼き入れ処理鋼
に、冷間加工を施した後に、200℃〜550℃の低温
焼鈍処理を施すことを特徴とする耐応力腐食割れ性に優
れた強靱鋼の製造方法。
(5) The quenched steel obtained in (2) is subjected to low-temperature annealing at 200 ° C. to 550 ° C. after cold working, and is excellent in stress corrosion cracking resistance. Method of manufacturing tough steel.

【0010】[0010]

【発明の実施の形態】本発明者らは、高温でオーステナ
イト相形成能を持つフェライト系或いはマルテンサイト
系ステンレス鋼の熱処理材で、耐応力腐食割れ性を確保
するにはNiの添加を抑えなければならないことを特開
平10−265907号公報で指摘し、その結果として
起こる、オーステナイト相+フェライト相の二相域での
加熱処理時の結晶粒粗大化と靱性低下を防止する手段と
して、冷間圧延工程を挟む二回の焼き入れ処理工程が結
晶粒微細化と靱性確保に有効であることを提案してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied the heat treatment of ferritic or martensitic stainless steel having the ability to form an austenite phase at high temperatures. To ensure stress corrosion cracking resistance, the addition of Ni must be suppressed. Japanese Patent Application Laid-Open No. H10-265907 points out that the heat treatment in the two-phase region of the austenite phase and the ferrite phase causes the crystal grain coarsening and the decrease in toughness. It has been proposed that two quenching steps sandwiching the rolling step are effective for grain refinement and securing toughness.

【0011】本発明においては、特定の化学組成を有す
る鋼を所定板厚まで冷間圧延した後に、冷間圧延工程を
挟む二回の焼き入れ処理で、10μm以下の結晶粒径に
調整したフェライト相(α相)とマルテンサイト相
(α′相)の二相組織とし(以下、(α+α′)二段二
相化処理と称する)、次いで強靱化と高弾性化を目的と
した低温焼鈍処理を行う工程、もしくは二段二相化処理
後に所定の冷間圧延を施した後に低温焼鈍処理を行う工
程を経て、ビッカース硬さHv380〜550の耐応力
腐食割れ性および靱性に優れた強靱鋼が得られる。
In the present invention, a steel having a specific chemical composition is cold-rolled to a predetermined thickness, and then a ferrite ferrite adjusted to a grain size of 10 μm or less is subjected to two quenching treatments including a cold-rolling step. Phase (α phase) and martensite phase (α 'phase) (hereinafter referred to as (α + α') two-stage two-phase treatment), and then a low-temperature annealing treatment for toughness and high elasticity , Or through a step of performing a low-temperature annealing treatment after performing a predetermined cold rolling after the two-stage two-phase treatment, a tough steel excellent in stress corrosion cracking resistance and toughness of Vickers hardness Hv 380-550. can get.

【0012】本発明鋼は、質量%で、Cr:12〜16
%、Ni:0.1〜0.3%、C:0.07〜0.13
%、N:0.04〜0.085%、Cu:0.1%以下
の化学組成を有し、二段二相化処理後の金属組織が体積
率で50〜75%の平均結晶粒径が10μm以下のマル
テンサイト相と、体積率で50〜25%の平均結晶粒径
が10μm以下のフェライト相とを有する。
The steel of the present invention contains, by mass%, Cr: 12 to 16
%, Ni: 0.1 to 0.3%, C: 0.07 to 0.13
%, N: 0.04 to 0.085%, Cu: 0.1% or less, and the metal structure after the two-stage two-phase treatment has an average crystal grain size of 50 to 75% by volume. Has a martensite phase of 10 μm or less and a ferrite phase having an average crystal grain size of 50 to 25% by volume and 10 μm or less.

【0013】以下、本発明鋼およびその製造方法を詳細
に説明する。
Hereinafter, the steel of the present invention and a method for producing the same will be described in detail.

【0014】(鋼の化学組成)質量%で、Cr:12〜
16%、Ni:0.1〜0.3%、C:0.07〜0.
13%、N:0.04〜0.085%、Cu:0.1%
以下であり、且つ下記(I)式に示すマルテンサイト相
の体積率α′(%)が50〜75%になる化学組成を有
する。
(Chemical composition of steel) In mass%, Cr: 12-
16%, Ni: 0.1-0.3%, C: 0.07-0.
13%, N: 0.04 to 0.085%, Cu: 0.1%
And a chemical composition in which the volume fraction α ′ (%) of the martensite phase represented by the following formula (I) is 50 to 75%.

【0015】 α′(%)=407.4%C−46.53%N+88.69%Mn− 15.75%Cr+22.31%Ni−11.15%Si+8.73%Cu−1 1.64%Mo+227.05 … (I)Α ′ (%) = 407.4% C−46.53% N + 88.69% Mn− 15.75% Cr + 22.31% Ni-11.15% Si + 8.73% Cu-1 1.64% Mo + 227.05 (I)

【0016】Ni:0.1〜0.3% 本発明では、耐応力腐食割れ性を確保するために、Ni
添加量を0.1〜0.3%に限定する。この組成範囲で
あれば、弾性限度の負荷応力条件の下での42%塩化マ
グネシウム腐食試験におけるクラック形成時間が100
時間以上となる。
Ni: 0.1 to 0.3% In the present invention, in order to secure stress corrosion cracking resistance, Ni
The amount added is limited to 0.1-0.3%. Within this composition range, the crack formation time in a 42% magnesium chloride corrosion test under a load stress condition of an elastic limit is 100%.
More time.

【0017】Cr:12〜16% 前述のように、本発明ではNi添加量を極力制限してい
ることとの関係で、高Cr域でのγ相形成能が制限され
る。このためCr添加量の上限を16%とした。また、
耐食性への配慮から下限を12%に設定した。
Cr: 12 to 16% As described above, in the present invention, the ability to form a γ phase in a high Cr region is limited because the amount of Ni added is limited as much as possible. Therefore, the upper limit of the amount of added Cr is set to 16%. Also,
The lower limit was set to 12% in consideration of corrosion resistance.

【0018】C:0.07〜0.13%、N:0.04
〜0.085% 両元素ともに、(α+α′)二段二相化処理後のα′%
と二段二相化処理材の強度に強く影響する因子であり、 %C−0.114%N=f(Hv(Q)、da、df、
…) の関係にある。本発明では、商業生産の見地から窒素添
加量の上限値を0.08%とした。また、窒素添加量の
下限値を0.04%としたのは二段二相化処理後の強度
Hv(Q)を、Hv(Q)>380とした制約による。
炭素の濃度範囲は窒素量に連動したものである。
C: 0.07 to 0.13%, N: 0.04
0.085% Both elements are α ′% after (α + α ′) two-stage two-phase treatment
% C-0.114% N = f (Hv (Q), da, df,
…) In the present invention, the upper limit of the amount of added nitrogen is set to 0.08% from the viewpoint of commercial production. Further, the reason why the lower limit value of the nitrogen addition amount is set to 0.04% is that the strength Hv (Q) after the two-stage two-phase treatment is set to Hv (Q)> 380.
The concentration range of carbon is linked to the amount of nitrogen.

【0019】Cu:0.1%以下 CuはNiと同様に耐応力腐食割れ性を劣化させる元素
であり、効果はNiの半分である。本発明では意図的な
Cu添加のないことを意味するものとして上限を0.1
%に設定した。
Cu: 0.1% or less Cu is an element that deteriorates stress corrosion cracking resistance similarly to Ni, and the effect is half that of Ni. In the present invention, the upper limit is 0.1 to mean that there is no intentional addition of Cu.
%.

【0020】(金属組織)本発明の鋼は、平均結晶粒径
が10μm以下のマルテンサイト相のマトリックス(体
積率で75〜50%)に体積率で25〜50%の平均結
晶粒径が10μm以下のフェライト相を有する。平均結
晶粒径を10μm以下に制御し、(α+α′)二段二相
化処理後のマルテンサイト変態量を75%以下に制限す
るのは、マトリックスの靱性向上と残留するフェライト
相の緩衝効果を得るためであり、焼き入れ処理と低温焼
鈍処理を分離し、あるいはその間に冷間圧延処理を施す
等、ステンレス鋼の通常の生産設備を利用して、効率よ
く生産することができる。一方、マルテンサイト変態量
が50%未満では十分な強度が得られない。なお、本発
明において体積率とは、任意切断面における面積率をい
う。
(Metal Structure) The steel of the present invention has a martensite phase matrix (75 to 50% by volume) having an average crystal grain size of 10 μm or less and an average crystal grain size of 25 to 50% by volume ratio being 10 μm. It has the following ferrite phase. Controlling the average crystal grain size to 10 μm or less and restricting the amount of martensite transformation after (α + α ′) two-stage two-phase treatment to 75% or less improves the toughness of the matrix and the buffer effect of the remaining ferrite phase. For this reason, the production can be efficiently performed using ordinary stainless steel production equipment, such as separating the quenching treatment and the low-temperature annealing treatment, or performing a cold rolling treatment in the meantime. On the other hand, if the amount of martensite transformation is less than 50%, sufficient strength cannot be obtained. In the present invention, the term “volume ratio” refers to an area ratio at an arbitrary cut surface.

【0021】(鋼の製造方法)次に、上記の化学組成お
よび金属組織を有する鋼の製造方法を説明する。まず、
金属組織がフェライト相である上記設定範囲内の化学組
成を有する鋼を所定の板厚まで冷間圧延し、(α+
α′)二段二相化処理に供する。ここで二段二相化処理
前の冷間圧延率は、その後の特性に特に影響は与えない
ため特別に留意する必要はないが、一般的な圧延率は3
0〜80%程度である。二相化処理温度は第1回焼き入
れ処理と第2回焼き入れ処理ともに同じであり、図1に
示すように、最大硬さが得られる1000〜1100℃
が好適である。
(Method of Manufacturing Steel) Next, a method of manufacturing steel having the above-described chemical composition and metal structure will be described. First,
A steel having a chemical composition within the above set range in which the metal structure is a ferrite phase is cold-rolled to a predetermined thickness, and (α +
α ′) Provide for two-stage two-phase treatment. Here, it is not necessary to pay special attention to the cold rolling reduction before the two-stage two-phase treatment because the subsequent rolling reduction does not particularly affect the properties.
It is about 0 to 80%. The biphasic treatment temperature is the same for both the first quenching treatment and the second quenching treatment, and as shown in FIG.
Is preferred.

【0022】結晶粒径の制御は、二段二相化処理におけ
る第1回焼き入れ処理と第2回焼き入れ処理の間(以
下、「二段二相化処理間」ともいう)に介在する冷間圧
延工程の圧延率の設定により行う。ここで、二段二相化
処理後のマルテンサイト相の平均結晶粒径(d;二相
化処理温度域のオーステナイト相の平均結晶粒径d
等しい)とフェライト相平均結晶粒径(d)はほぼ等
しく、二段二相化処理の間に介在する圧延真歪みRと下
式(II)の関係にある。 d(μm)=d(μm)=2.24(1/R)+3.70 (II) ここで、R=Ln{1/(1−r)}であり、rは二段二
相化処理間の冷間圧延工程における圧延率を表す。
The control of the crystal grain size is interposed between the first quenching process and the second quenching process in the two-stage two-phase treatment (hereinafter, also referred to as “between the two-stage two-phase treatment”). It is performed by setting the rolling ratio in the cold rolling process. Here, two-stage two phase average crystal grain size of the martensite phase after treatment (d m; equal to the average grain size d a two-phase treatment temperature range austenite phase) and ferrite phase average grain diameter ( d f ) are substantially equal, and have a relationship represented by the following formula (II) with the true rolling strain R interposed during the two-stage two-phase treatment. d f (μm) = d m (μm) = 2.24 (1 / R) +3.70 (II) where a R = Ln {1 / (1 -r)}, r is two-stage two-phase It shows the rolling ratio in the cold rolling process between the oxidizing treatments.

【0023】靱性の観点から、平均結晶粒径は10μm
以下にすることが必要であり、(II)式から、二段二相
化処理間の圧延工程における圧延率は30%以上である
ことが必要となる。同圧延率の上限は製品板厚や経済的
理由により決定されるが、一般には80%以下である。
From the viewpoint of toughness, the average crystal grain size is 10 μm
From the formula (II), it is necessary that the rolling ratio in the rolling step between the two-stage two-phase processing be 30% or more. The upper limit of the rolling reduction is determined by the thickness of the product and economic reasons, but is generally 80% or less.

【0024】次いで、(a)200〜550℃の低温焼
鈍処理を施し(以下、Tempered仕上げと称する)、もし
くは(b)冷間加工を施した後、200〜550℃の低
温焼鈍処理を施す(以下、R&T仕上げと称する)。
Next, (a) low-temperature annealing at 200 to 550 ° C. (hereinafter referred to as Tempered finishing), or (b) cold-working, followed by low-temperature annealing at 200 to 550 ° C. ( Hereinafter, referred to as R & T finishing).

【0025】低温焼鈍処理は強靱化と高弾性化を目的と
して行う。本発明において、好ましい焼鈍処理温度は2
00〜550℃である。該焼鈍処理の効果はKb値(弾
性限)の回復挙動を観察することで評価することがで
き、図2に滞炉時間が2分と短時間時効の場合の例を示
す。図2の短時間時効の場合、450〜550℃の温度
範囲が好適な低温焼鈍処理条件となり、Kb値も100
0N/mmと高いレベルに回復している。30分以上の
長時間時効の場合の好適な低温焼鈍処理温度は低温側に
移行するが、200℃未満になることはない。200℃
未満でのKb値は400N/mm以下となる。冷間圧延
は強度を高めるために行い、圧延率20〜70%程度が
好ましい。上記(a)Tempered仕上げおよび(b)R&
T仕上げは、所望する強度値により適宜選択される。前
者はHv380〜420レベルの強靱鋼が対象となり、
それ以上の強度を有する強靱鋼が対象の場合は後者の工
程となる。
The low-temperature annealing is performed for the purpose of toughening and high elasticity. In the present invention, the preferred annealing temperature is 2
00-550 ° C. The effect of the annealing treatment can be evaluated by observing the recovery behavior of the Kb value (elastic limit), and FIG. 2 shows an example of the case where the aging time is as short as 2 minutes. In the case of the short-time aging in FIG. 2, the temperature range of 450 to 550 ° C. is a suitable low-temperature annealing condition, and the Kb value is 100
It has recovered to a high level of 0 N / mm 2 . The preferred low-temperature annealing treatment temperature for the long-term aging of 30 minutes or more shifts to the low-temperature side, but does not fall below 200 ° C. 200 ° C
The Kb value below 400 is not more than 400 N / mm 2 . Cold rolling is performed in order to increase the strength, and the rolling reduction is preferably about 20 to 70%. (A) Tempered finish and (b) R &
The T finish is appropriately selected depending on the desired strength value. The former is intended for high-strength steel of Hv 380-420 level,
In the case of a tough steel having higher strength, the latter step is performed.

【0026】Tempered仕上げおよびR&T仕上げの曲げ
靱性を90度V曲げ試験で評価し、その結果を表1に示
す。これより、Tempered仕上げおよびR&T仕上げは、
共に高強度であるにもかかわらず良好な曲げ靱性を示し
ていることがわかった。なお、表中の(R/t)とは
最小曲げ半径Rを板厚tで除した値で、曲げ靱性を示
す無次元量である。
The flexural toughness of the Tempered finish and the R & T finish was evaluated by a 90 ° V-bending test, and the results are shown in Table 1. From this, Tempered finish and R & T finish are
It was found that both exhibited high bending toughness despite high strength. Note that (R 0 / t) in the table is a value obtained by dividing the minimum bending radius R 0 by the plate thickness t, and is a dimensionless quantity indicating bending toughness.

【0027】[0027]

【表1】 [Table 1]

【0028】[(α+α′)二段二相化処理後のビッカ
ース硬さの決定]ここで、所望の強度レベルを備えた強
靱鋼を得るために、(α+α′)二段二相化処理後の鋼
のビッカース硬さの算出方法について説明しておく。
[Determination of Vickers hardness after (α + α ') two-stage two-phase treatment] Here, in order to obtain a tough steel having a desired strength level, (α + α') two-stage two-phase two-phase treatment A method for calculating the Vickers hardness of steel will be described.

【0029】(α+α′)二段二相化処理後の冷間圧延
における圧延率とビッカース硬さ増分の関係は(1)式
に、その後の低温焼鈍処理におけるビッカース硬さ増分
は(2)式に依存する。
The relationship between the rolling reduction and the Vickers hardness increment in the cold rolling after the (α + α ′) two-stage two-phase treatment is expressed by equation (1), and the Vickers hardness increment in the subsequent low-temperature annealing treatment is expressed by equation (2). Depends on.

【0030】 ΔHv(R)=58.5 LogR + 93.5 …(1) ΔHv(A)=20 …(2) ここで、ΔHv(R):二段二相化処理後の圧延加工に
よるビッカース硬さ増分 R:圧延真歪み=Ln{1/(1−r)} r:圧延率 ΔHv(A):低温焼鈍処理におけるビッカース硬さ増
分 従って、例えばR&T仕上げを施したビッカース硬さH
v=500の鋼における(α+α′)二段二相化処理後
の硬さHv(Q)は、r=0.5としたとき、(1)式
のΔHv(R)r=0.5値と(2)式から(3)式と
して求められる。
ΔHv (R) = 58.5 LogR + 93.5 (1) ΔHv (A) = 20 (2) where ΔHv (R): Vickers by rolling after two-stage two-phase processing Hardness increment R: True rolling strain = Ln {1 / (1-r)} r: Rolling rate ΔHv (A): Vickers hardness increment in low-temperature annealing treatment Therefore, for example, Vickers hardness H after R & T finish
The hardness Hv (Q) of the steel with v = 500 after (α + α ′) two-stage two-phase treatment is ΔHv (R) in equation (1), where r = 0.5, r = 0.5 And Equation (2) are obtained as Equation (3).

【0031】 Hv(Q)=500−ΔHv(R)r=0.5−ΔHv(A) =500−84.2−20=395.8 …(3)Hv (Q) = 500−ΔHv (R) r = 0.5− ΔHv (A) = 500−84.2−20 = 395.8 (3)

【0032】[(α+α′)二段二相化処理後のビッカ
ース硬さと化学組成]次いで、所望するビッカース硬度
を有する二段(α+α′)二相鋼を得るための化学組成
の決定方法について説明する。二段(α+α′)二相鋼
のビッカース硬さHv(Q)はα相およびα′相の平均
粒径、それらの体積率と化学組成から算出でき、(4)
式に従う。
[(Α + α ′) Vickers Hardness and Chemical Composition after Two-Stage Dual-Phase Treatment] Next, a method for determining a chemical composition for obtaining a two-stage (α + α ′) duplex stainless steel having a desired Vickers hardness will be described. I do. The Vickers hardness Hv (Q) of the two-step (α + α ′) duplex stainless steel can be calculated from the average particle size of the α phase and α ′ phase, their volume fraction and chemical composition, and (4)
Follow the formula.

【0033】 Hv(Q)=0.3{Vσ +(1−V)σ } …(4) ここで、 V :フェライト相の体積率 1−V=V:マルテンサイト相の体積率 =4.074%C−0.4653%N+0.8869%Mn−0. 1575%Cr+0.2231%Ni−0.1115%Si+0.0873%C u−0.1164%Mo+2.2705 …(5) σ :フェライト相の耐力(N/mm) =174+250%P+26.8%Si+61%Ni+64.8% Mo+21(d-1/2 …(6) d:平均フェライト粒径(mm) σ :マルテンサイト相の耐力(N/mm) =σ (0)+σ …(7) σ (0):Fe−C−N系としてのマルテンサイト相耐力 =3.33×10(%C+%N)0.425 …(8) σ :オーステナイト相の固溶強化および粒径強化による耐力増分 =390%C+710%N+21.6%Si+6.3%Cr−2. 6%Ni−6.4%Cu−1.1%Mn+66+8.6(d-1/2…(9) d:平均オーステナイト粒径(mm) (4)式から必要な化学組成を決定することができ、表
2は(α+α′)二段二相化処理後のビッカース硬さH
v400を得るために必要な化学組成の一例を示すもの
である。(4)式において表2記載の指定条件および前
提条件を用いることにより決定することができる。表2
に示す結果からわかるように、高窒素系の化学組成とな
るのが大きな特徴である。
[0033] Hv (Q) = 0.3 {V f σ y F + (1-V f) σ y M} ... (4) where, V f: volume fraction of the ferrite phase 1-V f = V M : Volume ratio of martensite phase = 4.074% C-0.4653% N + 0.8869% Mn-0. 1575% Cr + 0.2231% Ni- 0.1115% Si + 0.0873% C u-0.1164% Mo + 2.2705 ... (5) σ y F: Strength of ferrite phase (N / mm 2) = 174 + 250% P + 26.8 % Si + 61% Ni + 64.8 % Mo + 21 (d f) -1/2 ... (6) d f: average ferrite grain size (mm) σ y M: strength of martensite phase (N / mm 2) = σ y M ( 0) + σ y A (7) σ y M (0): Martensite proof stress as Fe—CN system = 3.33 × 10 3 (% C +% N) 0.425 (8) σ y A : Strength increase due to solid solution strengthening and grain size strengthening of austenite phase = 390% C + 710% N + 21.6% Si + 6.3% Cr-2. 6% Ni-6.4% Cu- 1.1% Mn + 66 + 8.6 (d a) -1/2 ... (9) d a: average austenite grain size (mm) (4) determining the chemical composition required from equation Table 2 shows the Vickers hardness H after the (α + α ′) two-stage two-phase treatment.
1 shows an example of a chemical composition necessary for obtaining v400. It can be determined by using the designated conditions and preconditions shown in Table 2 in the equation (4). Table 2
As can be seen from the results shown in the above, a significant feature is that the composition becomes high nitrogen based.

【0034】[0034]

【表2】 [Table 2]

【0035】本発明では、(α+α′)二段二相化処理
後のビッカース硬さをHv380〜420に、α′比率
を50〜75%に、平均結晶粒径を7μm(二段二相化
処理間の圧延率:50%)に設定して、前述の(1)式
から(4)式および製鋼時の脱酸条件を前提に、(I)
式を解くことで全体の化学組成を得ることができる。上
記設定範囲内で、本発明の特に好適な化学組成範囲を挙
げると、表3の13%Crフェライト系ステンレス鋼と
なる。
In the present invention, the Vickers hardness after the (α + α ′) two-stage two-phase treatment is Hv 380-420, the α ′ ratio is 50-75%, and the average grain size is 7 μm (two-stage two-phase treatment). (Rolling ratio between treatments: 50%) and (I) based on the above formulas (1) to (4) and the deoxidation conditions during steelmaking.
Solving the equation gives the overall chemical composition. A particularly preferred chemical composition range of the present invention within the above set range is 13% Cr ferritic stainless steel in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】二段二相化処理鋼の冷間圧延後の冷間圧延
率と硬さの関係、および、冷間圧延後、500℃で2分
間の時効を施した鋼の冷間圧延率と硬さの関係を図3に
示す。二段二相化処理後の冷間圧延率と硬さの関係は、
前述の(1)式と同様の関係にあり、時効硬化による硬
さ上昇は圧延率20%以上の領域ではΔHv=20〜3
0の間にある。
The relationship between the cold rolling ratio and the hardness of the two-stage dual phase-treated steel after the cold rolling, and the cold rolling ratio of the steel aged at 500 ° C. for 2 minutes after the cold rolling. FIG. 3 shows the relationship between the hardness. The relationship between the cold rolling reduction and hardness after the two-stage two-phase treatment is as follows:
There is a relationship similar to the above-mentioned formula (1), and the hardness increase due to age hardening is ΔHv = 20 to 3 in the region where the rolling reduction is 20% or more.
Between 0.

【0038】[0038]

【実施例】以下に本発明鋼の耐応力腐食割れ性について
実施例を挙げて説明する。ただし、本発明はこの実施例
に限定されるものではない。
EXAMPLES The resistance to stress corrosion cracking of the steel of the present invention will be described below with reference to examples. However, the present invention is not limited to this embodiment.

【0039】表4に示す各組成の材料を、真空溶解 →
インゴット鋳造 → 熱間圧延(仕上げ板厚:5mm) →
酸洗 → バッチ焼鈍(750℃×2時間) → 冷間圧延
(仕上げ板厚:2.6mm、圧延率:50%) → 第1
回(α+α′)二相化処理(1050℃×2分間) →
冷間圧延(仕上げ板厚:1.3mm、圧延率:50%)
→ 第2回(α+α′)二相化処理(1050℃×2分
間) → 冷間圧延(仕上げ板厚:0.57mm/圧延率5
6%) → 低温焼鈍処理(500℃×2分)のR&T仕
上げ工程で処理し、沸騰42%塩化マグネシウム腐食試
験に供した。耐応力腐食割れ性の評価は100時間に耐
える限界負荷応力で行い、結果をR&T仕上げ硬さと合
わせて表5に示す。
Materials of each composition shown in Table 4 were melted in vacuum.
Ingot casting → hot rolling (finished plate thickness: 5mm) →
Pickling → batch annealing (750 ° C × 2 hours) → cold rolling (finished plate thickness: 2.6 mm, rolling ratio: 50%) → 1st
Times (α + α ') two-phase treatment (1050 ° C x 2 minutes) →
Cold rolling (finished thickness: 1.3 mm, rolling ratio: 50%)
→ 2nd (α + α ') two-phase treatment (1050 ° C × 2 minutes) → Cold rolling (finished sheet thickness: 0.57mm / rolling ratio 5)
6%) → R & T finishing step of low-temperature annealing (500 ° C. × 2 minutes), and subjected to a boiling 42% magnesium chloride corrosion test. The stress corrosion cracking resistance was evaluated at a critical load stress that can withstand 100 hours, and the results are shown in Table 5 together with the R & T finish hardness.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】本発明鋼は(α+α′)二段二相化処理後
に圧延率56%の冷間圧延処理を施し、続いて500℃
で2分間の低温焼鈍処理を施すR&T仕上げでHv>5
00の強度を示し、尚かつ応力腐食割れを引き起こす限
界負荷応力が1360N/mm と当該鋼種の弾性限を十
分カバーするレベルにある。すなわち、本発明鋼はHv
500を超える強度域で実用的に応力腐食割れを回避で
きることが示された。
The steel of the present invention has been subjected to (α + α ') two-stage two-phase treatment.
Cold-rolled at a rolling rate of 56%,
Hv> 5 with R & T finishing that performs low-temperature annealing treatment for 2 minutes at
00 and still cause stress corrosion cracking
Field load stress is 1360N / mm 2And the elastic limit of the steel type
Minute level to cover. That is, the steel of the present invention has Hv
Avoid stress corrosion cracking practically in the strength range over 500
It was shown to be able to.

【0043】[0043]

【発明の効果】以上説明したように、本発明によればH
v500を超える強度レベルを狙え、尚かつ靱性と耐応
力腐食割れ性に優れた安価な高強度ステンレス鋼および
その製造方法を提供することができる。
As described above, according to the present invention, H
It is possible to provide an inexpensive high-strength stainless steel which aims at a strength level exceeding v500 and is excellent in toughness and stress corrosion cracking resistance, and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1回焼き入れ処理における二相化処理温度と
硬さの関係を示すグラフ。
FIG. 1 is a graph showing a relationship between a two-phase treatment temperature and hardness in a first quenching treatment.

【図2】低温焼鈍処理における加熱温度とKbの関係を
示すグラフ。
FIG. 2 is a graph showing a relationship between a heating temperature and Kb in a low-temperature annealing process.

【図3】二段二相化処理後圧延真歪と低温焼鈍処理後の
硬さの関係を示すグラフ。
FIG. 3 is a graph showing a relationship between true rolling strain after two-stage two-phase treatment and hardness after low-temperature annealing treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 弘二 東京都板橋区舟渡四丁目10番1号 日本金 属株式会社内 (72)発明者 田村 勝 東京都北区神谷3丁目6番18号 日本金属 株式会社内 Fターム(参考) 4K032 AA04 AA13 AA14 AA16 AA19 AA21 AA23 AA31 CG01 CG02 CH06 CL01 CL02 CM01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Koji Kobayashi, Inventor Nippon Metal Co., Ltd. 4-1-1, Funatari, Itabashi-ku, Tokyo (72) Inventor Masaru Tamura 3-6-1, Kamiya, Kita-ku, Tokyo Japan Metal Co., Ltd. F term (reference) 4K032 AA04 AA13 AA14 AA16 AA19 AA21 AA23 AA31 CG01 CG02 CH06 CL01 CL02 CM01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、Cr:12〜16%、Ni:
0.1〜0.3%、C:0.07〜0.13%、N:
0.04〜0.085%、Cu:0.1%以下の化学組
成を有し、体積率で50〜75%のマルテンサイト相と
50〜25%のフェライト相とからなる、平均結晶粒径
が10μm以下の金属組織を有することを特徴とする耐
応力腐食割れ性に優れた強靱鋼。
Claims: 1. A mass% of Cr: 12-16%, Ni:
0.1-0.3%, C: 0.07-0.13%, N:
Average crystal grain size having a chemical composition of 0.04 to 0.085%, Cu: 0.1% or less, and having a volume fraction of 50 to 75% martensite phase and 50 to 25% ferrite phase. A tough steel excellent in stress corrosion cracking resistance, characterized by having a metal structure of 10 μm or less.
【請求項2】 質量%で、Cr:12〜16%、Ni:
0.1〜0.3%、C:0.07〜0.13%、N:
0.04〜0.085%、Cu:0.1%以下の化学組
成を有する鋼に第1回の焼き入れ処理を行い、ついで冷
間圧延を行った後第2回の焼き入れ処理を行って、体積
率で50〜75%のマルテンサイト相と50〜25%の
フェライト相とを有し、平均結晶粒径が10μm以下の
金属組織とすることを特徴とする耐応力腐食割れ性に優
れた強靱鋼の製造方法。
2. In mass%, Cr: 12 to 16%, Ni:
0.1-0.3%, C: 0.07-0.13%, N:
First quenching treatment is performed on steel having a chemical composition of 0.04 to 0.085% and Cu: 0.1% or less, then cold rolling is performed, and then second quenching treatment is performed. And having a metal structure having a martensite phase of 50 to 75% by volume and a ferrite phase of 50 to 25% by volume and having an average crystal grain size of 10 μm or less. Method of manufacturing tough steel.
【請求項3】 請求項2で得られた焼き入れ処理鋼に、
200℃〜550℃の低温焼鈍処理を施すことを特徴と
する耐応力腐食割れ性に優れた強靱鋼の製造方法。
3. The quenched steel obtained in claim 2,
A method for producing a tough steel having excellent resistance to stress corrosion cracking, comprising performing a low-temperature annealing treatment at 200 ° C to 550 ° C.
【請求項4】 請求項2で得られた焼き入れ処理鋼に、
冷間加工を施すことを特徴とする耐応力腐食割れ性に優
れた強靱鋼の製造方法。
4. The quenched steel obtained in claim 2,
A method for producing a tough steel excellent in stress corrosion cracking resistance, characterized by performing cold working.
【請求項5】 請求項2で得られた焼き入れ処理鋼に、
冷間加工を施した後に、200℃〜550℃の低温焼鈍
処理を施すことを特徴とする耐応力腐食割れ性に優れた
強靱鋼の製造方法。
5. The quenched steel obtained in claim 2,
A method for producing a tough steel excellent in stress corrosion cracking resistance, comprising performing low-temperature annealing at 200 ° C. to 550 ° C. after cold working.
JP2001032636A 2001-02-08 2001-02-08 Tough steel excellent in stress corrosion cracking resistance and method of manufacturing the same Expired - Fee Related JP3462473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001032636A JP3462473B2 (en) 2001-02-08 2001-02-08 Tough steel excellent in stress corrosion cracking resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001032636A JP3462473B2 (en) 2001-02-08 2001-02-08 Tough steel excellent in stress corrosion cracking resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002235156A true JP2002235156A (en) 2002-08-23
JP3462473B2 JP3462473B2 (en) 2003-11-05

Family

ID=18896523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032636A Expired - Fee Related JP3462473B2 (en) 2001-02-08 2001-02-08 Tough steel excellent in stress corrosion cracking resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3462473B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099035A1 (en) * 2008-02-07 2009-08-13 Nisshin Steel Co., Ltd. High-strength stainless steel material and process for production of the same
CN101867234A (en) * 2009-01-13 2010-10-20 日新制钢株式会社 Hysteresis motor and manufacturing method of rotor for hysteresis motor
CN102517512A (en) * 2011-12-22 2012-06-27 湖北永祥粮食机械股份有限公司 Huller blade and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099035A1 (en) * 2008-02-07 2009-08-13 Nisshin Steel Co., Ltd. High-strength stainless steel material and process for production of the same
US8273191B2 (en) 2008-02-07 2012-09-25 Nisshin Steel Co., Ltd. High-strength stainless steel material and production process of the same
JP5777283B2 (en) * 2008-02-07 2015-09-09 日新製鋼株式会社 High strength stainless steel material and manufacturing method thereof
CN101867234A (en) * 2009-01-13 2010-10-20 日新制钢株式会社 Hysteresis motor and manufacturing method of rotor for hysteresis motor
CN102517512A (en) * 2011-12-22 2012-06-27 湖北永祥粮食机械股份有限公司 Huller blade and preparation method thereof

Also Published As

Publication number Publication date
JP3462473B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP2003105485A (en) High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor
JP2756549B2 (en) Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.
JPH07278758A (en) Stainless steel for engine gasket and its production
JP2002097551A (en) High strength steel superior in resistance to hydrogen fatigue, and manufacturing method
JP4237183B2 (en) Stainless steel work hardener
JP2003082439A (en) Invar alloy wire having excellent strength and twisting property, and production method therefor
JPH08319519A (en) Production of high strength dual-phase stainless steel strip or sheet
JP2001140041A (en) Chromium stainless steel with double layer structure for spring and producing method therefor
JP3462473B2 (en) Tough steel excellent in stress corrosion cracking resistance and method of manufacturing the same
JP2583694B2 (en) Method for producing ferritic stainless steel for electrical materials with excellent ductility, wear resistance and rust resistance
JPH06287635A (en) Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JP2002332548A (en) Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP3172561B2 (en) Manufacturing method of composite structure stainless steel spring
JPH0830246B2 (en) High strength spring steel
EP0583445B1 (en) Work hardened stainless steel for springs
JP3769399B2 (en) Low cost manufacturing method for martensitic stainless steel wire with excellent cold workability
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JP3253256B2 (en) Method for producing steel with excellent stress corrosion resistance, strength and toughness
JP2000063947A (en) Manufacture of high strength stainless steel
JPH0717944B2 (en) Manufacturing method of bainite steel sheet with excellent spring characteristics
JP3035040B2 (en) Composite structure bake hardening steel sheet with excellent deep drawability
JP2000144244A (en) Production of steel having superfine structure
JP2001335835A (en) Method for producing heat resistant steel
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
JPS61186419A (en) Production of drive shaft

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080815

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees