JP2002231522A - Cooling device for high-temperature superconductive coil - Google Patents
Cooling device for high-temperature superconductive coilInfo
- Publication number
- JP2002231522A JP2002231522A JP2001027195A JP2001027195A JP2002231522A JP 2002231522 A JP2002231522 A JP 2002231522A JP 2001027195 A JP2001027195 A JP 2001027195A JP 2001027195 A JP2001027195 A JP 2001027195A JP 2002231522 A JP2002231522 A JP 2002231522A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- coil
- refrigerator
- controller
- cooling device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims description 35
- 238000005057 refrigeration Methods 0.000 claims description 8
- 238000005339 levitation Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 230000008014 freezing Effects 0.000 abstract 1
- 238000007710 freezing Methods 0.000 abstract 1
- 239000002887 superconductor Substances 0.000 description 11
- 239000003507 refrigerant Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷凍機を使用する
高温超電導コイルの冷却装置に関し、特に、外乱に応じ
て冷凍機の出力を制御する手段を有する冷却装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a high-temperature superconducting coil using a refrigerator, and more particularly to a cooling device having means for controlling the output of the refrigerator in response to disturbance.
【0002】[0002]
【従来の技術】超電導体について、超電導状態を生成さ
せかつそれを安定に保つためには、超電導体を臨界温度
以下の温度で冷却することが必要である。その冷却方法
には、液体ヘリウム等の液体の冷媒により超電導体を冷
却する方式、および直接極低温冷凍機で冷却する方式等
がある。一般に、超電導マグネット等の冷却剤による冷
却は、液体ヘリウム中に直接超電導コイル等の被冷却体
が設けられる浸漬冷却方法と、真空容器中に設置された
被冷却体が循環ヘリウム等によって熱交換器を介して冷
却される強制循環冷却法とに大別することができる。冷
凍機を用いる方法では、必要とされる冷凍容量の規模に
よって形式の異なる種々の冷凍機が用いられる。kWレ
ベルの冷凍能力が必要な場合、タービン型の膨張器を備
えた冷凍機が用いられる一方、酸化物超電導体のような
より高い冷凍温度で超電導状態が得られる材料を冷却す
る場合、SolvayやG−Mサイクルによる2段膨張
式冷凍機等を用いることができる。2. Description of the Related Art In order to generate a superconducting state and keep it stable, it is necessary to cool the superconductor at a temperature lower than a critical temperature. The cooling method includes a method of cooling the superconductor with a liquid refrigerant such as liquid helium, and a method of cooling directly with a cryogenic refrigerator. Generally, cooling with a coolant such as a superconducting magnet is performed by a immersion cooling method in which a cooled object such as a superconducting coil is directly provided in liquid helium, or a heat exchanger using a circulating helium or the like to cool the cooled object installed in a vacuum vessel. And a forced circulation cooling method in which cooling is performed through In the method using a refrigerator, various types of refrigerators having different types are used depending on the required refrigerating capacity. When a kW-level refrigeration capacity is required, a refrigerator equipped with a turbine-type expander is used. On the other hand, when cooling a material capable of obtaining a superconducting state at a higher refrigeration temperature such as an oxide superconductor, Solvay or For example, a two-stage expansion refrigerator using a GM cycle can be used.
【0003】[0003]
【発明が解決しようとする課題】NbTi合金線が使用
される従来の磁気浮上(MAGLEV)装置では、コイ
ルに対する温度マージンが1K程度と小さく、不安定な
運転をしいられる。また、そのような装置の運転温度
は、通常4.2Kの極低温であり、冷凍機の冷凍効率
(COP)も悪く(1/1000程度)、冷凍出力もそ
れほど高くないため、コイル温度の制御に余裕がそれほ
どない。In a conventional magnetic levitation (MAGLEV) device using an NbTi alloy wire, the temperature margin for the coil is as small as about 1K, and the operation is unstable. In addition, the operating temperature of such a device is usually extremely low at 4.2 K, the refrigerating efficiency (COP) of the refrigerator is poor (about 1/1000), and the refrigerating output is not so high. There is not much room for it.
【0004】一方、磁気浮上装置に高温超電導マグネッ
トを使用すれば、上記より高い温度で運転を行うことが
でき、また温度マージンも大きくすることができる。し
かし、この場合も、以下に起因する発熱により、コイル
に熱がこもり、温度上昇がシステムにもたらされ、ひい
てはクエンチにつながる危険性がある。On the other hand, if a high-temperature superconducting magnet is used for the magnetic levitation device, the operation can be performed at a higher temperature and the temperature margin can be increased. However, in this case as well, there is a risk that heat will be trapped in the coil due to the heat generated due to the following, causing a temperature rise in the system, and eventually leading to quench.
【0005】(1)モーターに高温超電導コイルを使用
する場合、地上側の電機子コイルからの変動磁場や、コ
イルに対する機械的振動によって生じる摩擦熱による熱
侵入。(1) When a high-temperature superconducting coil is used for a motor, heat intrusion due to fluctuating heat generated by a fluctuating magnetic field from an armature coil on the ground side or mechanical vibration on the coil.
【0006】(2)コイルの急速な励磁で発生する自己
磁場による交流損失。このように、高温超電導マグネッ
トを使用する場合でも、冷凍機の外部からの変動熱負荷
にによりコイルがクエンチする可能性がある。(2) AC loss due to a self-magnetic field generated by rapid excitation of the coil. As described above, even when the high-temperature superconducting magnet is used, the coil may be quenched by a fluctuating heat load from the outside of the refrigerator.
【0007】そこで、本発明は、熱擾乱に対してコイル
温度を一定に保ち、安定なコイルの運転を可能にする装
置を提供することを目的とする。Accordingly, an object of the present invention is to provide an apparatus which maintains a constant coil temperature against thermal disturbance and enables a stable operation of the coil.
【0008】[0008]
【課題を解決するための手段】本発明により、冷凍機を
用いて高温超電導コイルを冷却する装置が提供され、当
該装置は、当該装置について予測される外乱に対し、十
分な冷凍能力を有する冷凍機と、コイルまたはその近傍
の温度を測定するための温度センサーと、温度センサー
からの温度情報に基づいて冷凍機の出力を制御するため
の制御手段とを備える。According to the present invention, there is provided an apparatus for cooling a high-temperature superconducting coil using a refrigerator, the apparatus having a refrigeration system having a sufficient refrigeration capacity against disturbances expected for the apparatus. A temperature sensor for measuring the temperature of the coil or the vicinity thereof, and control means for controlling the output of the refrigerator based on temperature information from the temperature sensor.
【0009】本発明の好ましい態様において、制御手段
は、調節計を備えるフィードバック制御手段である。温
度センサーにより検出される温度情報は、調節計に伝達
され、かつ調節計において目標値と比較されて制御偏差
をもたらす。調節計は、制御偏差に応じて、冷凍機の出
力を制御するための制御信号を出す。In a preferred aspect of the present invention, the control means is a feedback control means having a controller. The temperature information detected by the temperature sensor is transmitted to a controller and compared with a target value at the controller to produce a control deviation. The controller issues a control signal for controlling the output of the refrigerator according to the control deviation.
【0010】特に、本発明により、高温超電導コイルお
よび冷凍機を備え、それらの間の直接的な熱伝導により
コイルを冷却する冷却装置が提供される。該装置は、コ
イルを収容する断熱容器と、コイルの内側またはその近
傍に設けられる温度センサーと、温度センサーからの温
度情報を受け取る調節計とを備える。温度センサーによ
り検出される温度情報は、調節計に伝達され、かつ調節
計において目標値と比較されて制御偏差をもたらす。調
節計は、制御偏差に応じて、冷凍機の出力を制御するた
めの制御信号を出す。In particular, according to the present invention, there is provided a cooling device which includes a high-temperature superconducting coil and a refrigerator, and cools the coil by direct heat conduction therebetween. The apparatus includes a heat insulating container that houses a coil, a temperature sensor provided inside or near the coil, and a controller that receives temperature information from the temperature sensor. The temperature information detected by the temperature sensor is transmitted to a controller and compared with a target value at the controller to produce a control deviation. The controller issues a control signal for controlling the output of the refrigerator according to the control deviation.
【0011】特に本発明は、磁気浮上装置、具体的には
リニアモーターカーのマグネット冷却装置として適して
いる。In particular, the present invention is suitable as a magnetic levitation device, specifically, a magnet cooling device for a linear motor car.
【0012】[0012]
【発明の実施の形態】図1に本発明による装置の一具体
例を示す。冷却装置10において、高温超電導コイル1
1は、真空断熱容器12内に収容される。コイル11
は、コイルフランジ11aおよび冷凍機のクーリングヘ
ッド13を介して、断熱容器12の外側に設けらる冷凍
機本体14に熱連結される。コイル11と冷凍機本体1
4との間の直接的な熱伝導により、コイル11は冷却さ
れる。断熱容器12内において、コイル11の内側には
温度センサー15aおよび15bが取り付けられる。温
度センサー15aおよび15bはそれぞれ、断熱容器1
2の外側に設けられる温度調節計16aおよび16bに
接続される。温度調節計16aおよび16bは、インバ
ータ17に接続され、インバーター17は、冷凍機のモ
ーター18に接続される。断熱容器12内において、コ
イル11は、真空、液体、あるいは固体によって覆うこ
とができる。FIG. 1 shows a specific example of an apparatus according to the present invention. In the cooling device 10, the high-temperature superconducting coil 1
1 is housed in a vacuum insulated container 12. Coil 11
Is thermally connected to the refrigerator main body 14 provided outside the heat insulating container 12 via the coil flange 11a and the cooling head 13 of the refrigerator. Coil 11 and refrigerator body 1
The coil 11 is cooled by direct heat conduction between the coil 11 and the coil 4. In the heat insulating container 12, temperature sensors 15a and 15b are attached inside the coil 11. Each of the temperature sensors 15a and 15b is
2 are connected to temperature controllers 16a and 16b provided outside. The temperature controllers 16a and 16b are connected to an inverter 17, and the inverter 17 is connected to a motor 18 of the refrigerator. Within the insulated container 12, the coil 11 can be covered by vacuum, liquid, or solid.
【0013】冷却装置10において、冷凍機には、必要
とされる冷凍容量の規模によって種々の冷凍機を用いる
ことができる。たとえば、蓄冷式冷凍サイクルを利用し
たもので、一般にクライオクーラと呼ばれる冷凍機を好
ましく用いることができる。たとえば、Solvayや
G−Mサイクルによる2段膨張式冷凍機(Solvay
冷凍機およびGM冷凍機)を用いてもよい。一方、スタ
ーリング冷凍機を使用してもよい。また、熱負荷が大き
い場合や、急激な熱負荷がかかる場合に対応するため、
圧縮機、膨張機および熱交換器を備えた高出力のブレイ
トンサイクル方式の冷凍機を好ましく使用することがで
きる。これらの形式の10K程度まで冷却できる市販の
冷凍機を典型的に使用することができる。また、2また
はそれ以上の冷却ステージを有する冷凍機を使用するこ
とができる。In the cooling device 10, various types of refrigerators can be used as the refrigerator depending on the required refrigerating capacity. For example, a refrigerator using a regenerative refrigeration cycle, and a refrigerator generally called a cryocooler can be preferably used. For example, a two-stage expansion refrigerator (Solvay or Solvay or GM cycle)
Refrigerators and GM refrigerators). On the other hand, a Stirling refrigerator may be used. In addition, in order to cope with a case where the heat load is large or a sudden heat load is applied,
A high-output Brayton cycle refrigerator including a compressor, an expander, and a heat exchanger can be preferably used. Commercial refrigerators of these types, which can be cooled to about 10K, can typically be used. Also, a refrigerator having two or more cooling stages can be used.
【0014】冷却装置10において、冷凍機は、当該装
置について予測される外乱(特に熱侵入)に対し、十分
な冷凍能力を有するものである。外部からの熱侵入に
は、コイル11が真空雰囲気で覆われる場合、コイル1
1を収容する容器12およびコイル11に接続される電
流リード(図示せず)からの熱伝導および熱輻射が主に
寄与する。また、コイル11が固体や液体の冷媒で覆わ
れる場合、それらに冷媒からの熱伝導が付加される。冷
凍機の冷凍能力は、機種とその投入電力とによって決ま
るが、上述した要因から外乱を予測し、それに対して十
分な容量で十分な冷凍能力を発揮することができる冷凍
機を設計あるいは選択する。なお、高温超電導コイル1
1の冷却はたとえば10K〜40K、好ましくは20K
〜40Kで行うことができ、その場合、冷凍機の冷却効
率は、合金系超電導体を冷却する場合より1桁以上高く
なり、冷凍能力に余裕が生まれてくる。さらに、外乱が
入らない場合には、冷凍機の消費電力が少ない状態で必
要なコイル運転温度に保持することができ、大幅な省電
力が期待できる。In the cooling device 10, the refrigerator has a sufficient refrigerating capacity against disturbances (especially heat intrusion) expected for the device. When the coil 11 is covered in a vacuum atmosphere, heat is not applied to the coil 1
Heat conduction and heat radiation from a current lead (not shown) connected to the container 12 and the coil 11 accommodating 1 mainly contribute. When the coil 11 is covered with a solid or liquid refrigerant, heat conduction from the refrigerant is added to them. The refrigerating capacity of a refrigerator is determined by the model and its input power, but a disturbance is predicted from the above-described factors, and a refrigerator capable of exhibiting a sufficient refrigerating capacity with a sufficient capacity is designed or selected. . The high-temperature superconducting coil 1
The cooling of 1 is, for example, 10K to 40K, preferably 20K
In this case, the cooling efficiency of the refrigerator becomes one or more orders of magnitude higher than the case of cooling the alloy-based superconductor, so that the refrigeration capacity has room. Furthermore, when disturbance does not occur, the required coil operating temperature can be maintained in a state where the power consumption of the refrigerator is small, and significant power saving can be expected.
【0015】冷却装置10において、コイル11の温度
変化を0.1Kのオーダーで検知できるような高精度温
度センサーと温度調節計とから、温度計を構成すること
が好ましい。図1には2つの温度センサーが示されてい
るが、1つの温度センサーを使用してもよいし、3以上
の温度センサーを使用してもよい。複数の温度センサー
を設ける場合、それらにより温度分布を測定し、一番高
い温度に対して冷凍能力が発揮できるようシーケンスを
組んでもよい。In the cooling device 10, it is preferable that the thermometer is composed of a high-precision temperature sensor and a temperature controller capable of detecting a temperature change of the coil 11 on the order of 0.1K. Although FIG. 1 shows two temperature sensors, one temperature sensor may be used, or three or more temperature sensors may be used. When a plurality of temperature sensors are provided, a temperature distribution may be measured by the sensors and a sequence may be formed so that the refrigeration capacity can be exhibited at the highest temperature.
【0016】温度センサーは、予め発熱が大きいと予測
できる位置に配置することが望ましい。通常コイルの自
己磁場が一番高いところが発熱しやすいため、温度セン
サーはコイルの内側に取り付けることが望ましい。It is desirable that the temperature sensor be disposed at a position where a large amount of heat can be predicted in advance. Usually, it is desirable to mount the temperature sensor inside the coil, because the coil tends to generate heat at its highest magnetic field.
【0017】図1に示すように、温度センサー15aお
よび15bは、温度調節計16aおよび16bに接続さ
れる。温度マージンが所定の範囲内であるコイルの運転
が可能な温度に、調節計16aおよび16bの温度を設
定する(図1において設定温度はTsで表される)。温
度調節計16aおよび16bは、冷凍機のモーター18
を制御するインバータ17に接続される。温度センサー
15aおよび15bにより検出される温度情報は、調節
計16aおよび16bに伝達される。そして、調節計1
6aおよび16bは、温度情報と設定温度Tsとを比較
し、制御偏差を算出する。調節計16aおよび16b
は、制御偏差に応じた制御信号を、インバータ17に伝
え、その結果、インバータ17により冷凍機におけるモ
ーター18の駆動は制御される。したがって、外乱によ
りコイル11の温度が上昇しても、このフィードバック
制御により、冷凍機の出力が上げられ、その冷凍能力が
高められることによって、コイル11の温度が急激かつ
大幅に上昇することが食い止められる。外乱のない常時
は、上述したように、温度上昇しないため、少ない冷凍
機出力で運転できる。As shown in FIG. 1, the temperature sensors 15a and 15b are connected to temperature controllers 16a and 16b. The temperatures of the controllers 16a and 16b are set to a temperature at which the coil whose temperature margin is within a predetermined range is operable (the set temperature is represented by Ts in FIG. 1). The temperature controllers 16a and 16b are connected to the motor 18 of the refrigerator.
Are connected to an inverter 17 which controls Temperature information detected by the temperature sensors 15a and 15b is transmitted to the controllers 16a and 16b. And controller 1
6a and 16b compare the temperature information with the set temperature Ts and calculate the control deviation. Controllers 16a and 16b
Transmits a control signal corresponding to the control deviation to the inverter 17, and as a result, the drive of the motor 18 in the refrigerator is controlled by the inverter 17. Therefore, even if the temperature of the coil 11 rises due to disturbance, the output of the refrigerator is increased by this feedback control, and the temperature of the coil 11 rises sharply and drastically by increasing the refrigerating capacity. Can be When there is no disturbance, as described above, since the temperature does not rise, the operation can be performed with a small refrigerator output.
【0018】たとえば、上記冷却装置をリニアモーター
コイルの冷却装置として使用した場合、地上側電機子か
らの周期的あるいは突発的な外乱によりコイル温度が上
昇しようとしても、上記フィードバック制御によりイン
バータが働き、冷凍機の冷凍能力が増大するため、コイ
ル温度の急激な上昇は阻止される。また、外乱のない常
時は、インバータ出力をコイル温度保持に必要な最小値
に保って運転することができる。For example, when the cooling device is used as a cooling device for a linear motor coil, even if the coil temperature rises due to a periodic or sudden disturbance from the ground-side armature, the inverter operates by the feedback control, Since the refrigerating capacity of the refrigerator increases, a sharp rise in the coil temperature is prevented. Also, when there is no disturbance, the inverter can be operated with the inverter output kept at the minimum value required for maintaining the coil temperature.
【0019】冷却装置10において、コイル11の周囲
には冷媒を配置してもよい。冷媒には、飽和蒸気圧温度
が液体ヘリウムよりも高い冷媒を好ましく用いることが
できる。用いられる冷媒として、窒素の他に、水素、酸
素、ネオン、アルゴン、天然ガス、アンモニア、および
その混合物等を挙げることができる。たとえば、大気圧
下の飽和蒸気圧温度が15K〜100Kである冷媒を好
ましく用いることができる。コイル11の周囲におい
て、冷媒は液体でも固体でもよい。たとえば、冷媒に窒
素を用いる場合、冷凍機の冷却により液体窒素を固体窒
素に変えることもできる。In the cooling device 10, a refrigerant may be disposed around the coil 11. As the refrigerant, a refrigerant having a saturated vapor pressure temperature higher than that of liquid helium can be preferably used. As the refrigerant used, in addition to nitrogen, hydrogen, oxygen, neon, argon, natural gas, ammonia, a mixture thereof, and the like can be given. For example, a refrigerant having a saturated vapor pressure temperature under atmospheric pressure of 15K to 100K can be preferably used. The refrigerant around the coil 11 may be liquid or solid. For example, when nitrogen is used as the refrigerant, liquid nitrogen can be changed to solid nitrogen by cooling the refrigerator.
【0020】本発明において、高温超電導コイルを構成
する超電導体は、典型的に、酸化物超電導体等のより高
い臨界温度を有する超電導体である。酸化物超電導体に
は、Y1Ba2Cu3O7-Y(0≦Y<1)等のイットリウ
ム系酸化物超電導体、Bi2Sr2Ca1Cu2O8-Y、B
i2Sr2Ca2Cu3O10-X、(Bi,Pb)2Sr2Ca
1Cu2O8-X、(Bi,Pb)2Sr2Ca2Cu3O10-X
(0≦X<1)等のビスマス系酸化物超電導体、Tl1
Ba2Ca2Cu3O9-X 、Tl2Ba2Ca2Cu3O10-Z
(0≦Z<1)等のタリウム系酸化物超電導体などがあ
る。本発明において、超電導コイルには、パンケーキ型
のコイルのほか、ソレノイド型のコイルも使用すること
ができる。超電導コイルの数は任意であり、1個のコイ
ルについて本発明を適用してもよいし、複数のコイルに
本発明を適用してもよい。In the present invention, the superconductor constituting the high-temperature superconducting coil is typically a superconductor having a higher critical temperature, such as an oxide superconductor. The oxide superconductor includes an yttrium-based oxide superconductor such as Y 1 Ba 2 Cu 3 O 7 -Y (0 ≦ Y <1), Bi 2 Sr 2 Ca 1 Cu 2 O 8-Y , B
i 2 Sr 2 Ca 2 Cu 3 O 10-x , (Bi, Pb) 2 Sr 2 Ca
1 Cu 2 O 8-X , (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10-X
Bismuth-based oxide superconductor such as (0 ≦ X <1), Tl 1
Ba 2 Ca 2 Cu 3 O 9 -X, Tl 2 Ba 2 Ca 2 Cu 3 O 10-Z
There is a thallium-based oxide superconductor such as (0 ≦ Z <1). In the present invention, a superconducting coil may be a pancake coil or a solenoid coil. The number of superconducting coils is arbitrary, and the present invention may be applied to one coil or the present invention may be applied to a plurality of coils.
【0021】本発明は、リニアモータカー(MAGLE
V)、種々の産業用マグネットや電力機器用マグネット
等の超電導コイルを使用する種々の装置や機器に適用す
ることができる。たとえば、本発明をリニアモータカー
等に使用される磁気浮上用コイルの冷却装置として使用
した場合、地上側の電機子コイルからの磁場や振動によ
る周期的な外乱に対して、安全で安定なコイルの運転を
もたらすことができる。また、外乱のない常時は、大幅
な省エネルギーのコイル運転をもたらすことができる。The present invention relates to a linear motor car (MAGLE).
V), and can be applied to various devices and devices using superconducting coils such as various industrial magnets and power device magnets. For example, when the present invention is used as a cooling device for a magnetic levitation coil used in a linear motor car or the like, a safe and stable coil is prevented from being periodically disturbed by a magnetic field or vibration from an armature coil on the ground side. Can bring driving. Also, when there is no disturbance, it is possible to provide a coil operation with a large energy saving.
【0022】[0022]
【発明の効果】本発明によれば、熱擾乱に対してコイル
温度を一定に保ち、安定なコイルの運転を可能にするこ
とができる。本発明は、超電導コイルを使用する種々の
システム、装置、および機器に適用できるが、たとえ
ば、リニアモータカーのマグネット冷却システムに使用
すれば、常時発生する外乱に対し、コイルの運転を安定
させることができ、さらに、コイルの大幅な省エネ運転
が可能になる。According to the present invention, it is possible to keep the coil temperature constant with respect to thermal disturbance and to enable stable coil operation. The present invention can be applied to various systems, devices, and devices that use superconducting coils. Can be performed, and further, the coil can be drastically energy-saving.
【図1】 本発明による装置の一例を示す模式図であ
る。FIG. 1 is a schematic view showing an example of an apparatus according to the present invention.
10 冷却装置、11 高温超電導コイル、12 真空
断熱容器、13 冷凍機のクーリングヘッド、14 冷
凍機本体、15a,15b 温度センサー、16a,1
6b 温度調節計、17 インバータ、18 モータ
ー。Reference Signs List 10 cooling device, 11 high-temperature superconducting coil, 12 vacuum insulation container, 13 cooling head of refrigerator, 14 refrigerator body, 15a, 15b temperature sensor, 16a, 1
6b Temperature controller, 17 inverters, 18 motors.
Claims (4)
する装置であって、 当該装置について予測される外乱に対し、十分な冷凍能
力を有する冷凍機と、 前記コイルまたはその近傍の温度を測定するための温度
センサーと、 前記温度センサーからの温度情報に基づいて前記冷凍機
の出力を制御するための制御手段とを備える、高温超電
導コイルの冷却装置。An apparatus for cooling a high-temperature superconducting coil using a refrigerator, comprising: a refrigerator having a sufficient refrigeration capacity with respect to a disturbance predicted for the apparatus; and measuring a temperature of the coil or its vicinity. And a control unit for controlling the output of the refrigerator based on temperature information from the temperature sensor.
ドバック制御手段であり、 前記温度センサーにより検出される温度情報は、前記調
節計に伝達され、かつ前記調節計において目標値と比較
されて制御偏差をもたらし、 前記調節計は、前記制御偏差に応じて、前記冷凍機の出
力を制御するための制御信号を出すものである、請求項
1に記載の冷却装置。2. The control unit is a feedback control unit including a controller. Temperature information detected by the temperature sensor is transmitted to the controller, and compared with a target value in the controller to control the temperature information. 2. The cooling device according to claim 1, wherein the controller causes a deviation, and the controller outputs a control signal for controlling an output of the refrigerator according to the control deviation. 3.
それらの間の直接的な熱伝導により前記コイルを冷却す
る冷却装置であって、 前記コイルを収容する断熱容器と、 前記コイルの内側またはその近傍に設けられる温度セン
サーと、 前記温度センサーからの温度情報を受け取る調節計とを
備え、 前記温度センサーにより検出される温度情報は、前記調
節計に伝達され、かつ前記調節計において目標値と比較
されて制御偏差をもたらし、 前記調節計は、前記制御偏差に応じて、前記冷凍機の出
力を制御するための制御信号を出すものである、高温超
電導コイルの冷却装置。3. A high-temperature superconducting coil and a refrigerator,
A cooling device that cools the coil by direct heat conduction between them, a heat insulating container that houses the coil, a temperature sensor provided inside or near the coil, and a temperature from the temperature sensor. A controller for receiving information, wherein the temperature information detected by the temperature sensor is transmitted to the controller, and is compared with a target value in the controller to provide a control deviation; A cooling device for a high-temperature superconducting coil, which outputs a control signal for controlling the output of the refrigerator according to the deviation.
のいずれか1項に記載の冷却装置。4. The method according to claim 1, which is for magnetic levitation.
The cooling device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001027195A JP4821047B2 (en) | 2001-02-02 | 2001-02-02 | High temperature superconducting coil cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001027195A JP4821047B2 (en) | 2001-02-02 | 2001-02-02 | High temperature superconducting coil cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002231522A true JP2002231522A (en) | 2002-08-16 |
JP4821047B2 JP4821047B2 (en) | 2011-11-24 |
Family
ID=18891895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001027195A Expired - Fee Related JP4821047B2 (en) | 2001-02-02 | 2001-02-02 | High temperature superconducting coil cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4821047B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005061707A (en) * | 2003-08-11 | 2005-03-10 | Chubu Electric Power Co Inc | Electric power storage device |
JP2005210015A (en) * | 2004-01-26 | 2005-08-04 | Kobe Steel Ltd | Cryogenic apparatus |
JP2007093059A (en) * | 2005-09-27 | 2007-04-12 | Nippon Steel Corp | Cooling method using nitrogen-oxygen mixed refrigerant |
JP2007321050A (en) * | 2006-05-31 | 2007-12-13 | Kyoto Univ | Cryogenic cold-storing medium, and cryogenic refrigeration method and cryogenic refrigeration system, using the same |
JP2008016554A (en) * | 2006-07-04 | 2008-01-24 | Toshiba Corp | High-temperature superconducting coil equipment |
JP2008283027A (en) * | 2007-05-11 | 2008-11-20 | Railway Technical Res Inst | Super-conductive magnet for magnetic levitation rail vehicle |
CN106601422A (en) * | 2016-12-29 | 2017-04-26 | 东莞市玻尔超导科技有限公司 | Temperature control system for conductively cooling high-temperature superconducting magnet, and control method of control system |
JP2020060351A (en) * | 2018-10-12 | 2020-04-16 | 大陽日酸株式会社 | Cryogenic fluid circulation type cooling system |
WO2024084908A1 (en) * | 2022-10-19 | 2024-04-25 | テラル株式会社 | Cooling system, magnetic field generation device, and operation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101345776B1 (en) * | 2012-12-20 | 2013-12-27 | 한국기초과학지원연구원 | Initial cooling prediction system and method of superconducting magnet |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245285A (en) * | 1984-05-21 | 1985-12-05 | Toshiba Corp | Superconductive magnet apparatus |
JPS6152562A (en) * | 1984-08-23 | 1986-03-15 | 株式会社 富士電機総合研究所 | Control system of cooling temperature of refrigerator |
JPS63306361A (en) * | 1987-06-05 | 1988-12-14 | 株式会社日立製作所 | Cold accumulator type refrigerator |
JPH05234750A (en) * | 1992-02-26 | 1993-09-10 | Mitsubishi Electric Corp | Superconducting device |
JPH0650622A (en) * | 1992-07-28 | 1994-02-25 | Sumitomo Heavy Ind Ltd | Stirling freezer |
JPH0933126A (en) * | 1995-05-16 | 1997-02-07 | Toshiba Corp | Cooling system and superconduction magnet device |
JPH09312210A (en) * | 1996-03-18 | 1997-12-02 | Toshiba Corp | Cooling device and cooling method |
JPH11108768A (en) * | 1997-09-30 | 1999-04-23 | Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk | Temperature detector and temperature controller using the same |
JPH11354317A (en) * | 1998-06-11 | 1999-12-24 | Toshiba Corp | Superconducting magnet system |
JP2000012326A (en) * | 1998-06-26 | 2000-01-14 | Toshiba Corp | Conduction cooling type superconducting magnet system |
-
2001
- 2001-02-02 JP JP2001027195A patent/JP4821047B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245285A (en) * | 1984-05-21 | 1985-12-05 | Toshiba Corp | Superconductive magnet apparatus |
JPS6152562A (en) * | 1984-08-23 | 1986-03-15 | 株式会社 富士電機総合研究所 | Control system of cooling temperature of refrigerator |
JPS63306361A (en) * | 1987-06-05 | 1988-12-14 | 株式会社日立製作所 | Cold accumulator type refrigerator |
JPH05234750A (en) * | 1992-02-26 | 1993-09-10 | Mitsubishi Electric Corp | Superconducting device |
JPH0650622A (en) * | 1992-07-28 | 1994-02-25 | Sumitomo Heavy Ind Ltd | Stirling freezer |
JPH0933126A (en) * | 1995-05-16 | 1997-02-07 | Toshiba Corp | Cooling system and superconduction magnet device |
JPH09312210A (en) * | 1996-03-18 | 1997-12-02 | Toshiba Corp | Cooling device and cooling method |
JPH11108768A (en) * | 1997-09-30 | 1999-04-23 | Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk | Temperature detector and temperature controller using the same |
JPH11354317A (en) * | 1998-06-11 | 1999-12-24 | Toshiba Corp | Superconducting magnet system |
JP2000012326A (en) * | 1998-06-26 | 2000-01-14 | Toshiba Corp | Conduction cooling type superconducting magnet system |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005061707A (en) * | 2003-08-11 | 2005-03-10 | Chubu Electric Power Co Inc | Electric power storage device |
JP2005210015A (en) * | 2004-01-26 | 2005-08-04 | Kobe Steel Ltd | Cryogenic apparatus |
JP4494027B2 (en) * | 2004-01-26 | 2010-06-30 | 株式会社神戸製鋼所 | Cryogenic equipment |
JP2007093059A (en) * | 2005-09-27 | 2007-04-12 | Nippon Steel Corp | Cooling method using nitrogen-oxygen mixed refrigerant |
JP2007321050A (en) * | 2006-05-31 | 2007-12-13 | Kyoto Univ | Cryogenic cold-storing medium, and cryogenic refrigeration method and cryogenic refrigeration system, using the same |
JP2008016554A (en) * | 2006-07-04 | 2008-01-24 | Toshiba Corp | High-temperature superconducting coil equipment |
JP2008283027A (en) * | 2007-05-11 | 2008-11-20 | Railway Technical Res Inst | Super-conductive magnet for magnetic levitation rail vehicle |
CN106601422A (en) * | 2016-12-29 | 2017-04-26 | 东莞市玻尔超导科技有限公司 | Temperature control system for conductively cooling high-temperature superconducting magnet, and control method of control system |
JP2020060351A (en) * | 2018-10-12 | 2020-04-16 | 大陽日酸株式会社 | Cryogenic fluid circulation type cooling system |
JP7065745B2 (en) | 2018-10-12 | 2022-05-12 | 大陽日酸株式会社 | Ultra-low temperature fluid circulation cooling system |
WO2024084908A1 (en) * | 2022-10-19 | 2024-04-25 | テラル株式会社 | Cooling system, magnetic field generation device, and operation method |
Also Published As
Publication number | Publication date |
---|---|
JP4821047B2 (en) | 2011-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1248933B2 (en) | Cooling method for high temperature superconducting machines | |
KR20020073428A (en) | Cryogenic cooling system with cooldown and normal modes of operation | |
JP4821047B2 (en) | High temperature superconducting coil cooling system | |
JP2018091391A (en) | System for liquefying boil-off gas | |
JP2002208512A (en) | High-temperature superconducting coil cooling method and cooling structure | |
JP4720960B2 (en) | Superconducting coil operation system | |
KR101888503B1 (en) | Power supply for conduction cooled superconducting equipment | |
JP2015118997A (en) | Superconducting magnet and measuring device | |
JP3930153B2 (en) | Conduction cooled superconducting magnet system | |
JP2004222494A (en) | Vacuum retention method and superconducting machine with vacuum retention | |
JPH10275719A (en) | Method for cooling superconductor | |
JP2002252110A (en) | Refrigerator-cooled superconducting magnet device | |
JP2607661Y2 (en) | Cryogenic container | |
JP3117173B2 (en) | Superconducting magnet device with refrigerator | |
JPH10247753A (en) | Superconducting device and control method thereof | |
JPH04258103A (en) | Cooling device of superconducting coil | |
JP2023056570A (en) | Magnetic refrigeration system using all-solid thermal switch and method for manufacturing material for thermal switch | |
JP5424107B2 (en) | Superconducting magnet with self-excited vibration heat pipe | |
Nemoto et al. | Development of a low heat leak current-lead system | |
CN220306060U (en) | Nitrogen fixation cooling type high temperature superconducting magnet | |
JP2004047713A (en) | Superconducting magnet device | |
Duband et al. | Socool: A 300 K-0.3 K pulse tube/sorption cooler | |
JP2005124721A (en) | Superconductive magnetic resonance imaging equipment | |
JPH09106909A (en) | Conductive cooling superconducting magnet | |
JP2932816B2 (en) | Superconducting device for magnetic levitation train |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100506 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110809 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110822 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140916 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |